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ABSTRACT
The emergence of ML in various cloud system management tasks (e.g., workload autoscaling and job scheduling)
has become a core driver of ML-centric cloud platforms. However, there are still numerous algorithmic and systems
challenges that prevent ML-centric cloud platforms from being production-ready. In this paper, we focus on the
challenges of model performance variability and costly model retraining, introduced by dynamic workload patterns
and heterogeneous applications and infrastructures in cloud environments. To address these challenges, we present
FLASH, an extensible framework for fast model adaptation in ML-based system management tasks. We show how
FLASH leverages existing ML agents and their training data to learn to generalize across applications/environments
with meta-learning. FLASH can be easily integrated with an existing ML-based system management agent with
a unified API. We demonstrate the use of FLASH by implementing three existing ML agents that manage (1)
resource configurations, (2) autoscaling, and (3) server power. Our experiments show that FLASH enables fast
adaptation to new, previously unseen applications/environments (e.g., 5.5x faster than transfer learning in the

autoscaling task), indicating significant potential for adopting ML-centric cloud platforms in production.

1 INTRODUCTION

ML techniques such as supervised learning (SL) and rein-
forcement learning (RL) have been widely applied in many
system management tasks, e.g., resource management (Qiu
et al., 2020), job scheduling (Mao et al., 2019b), and power
management (Wang et al., 2022a). However, from produc-
tion experience at Microsoft (Liang et al., 2020), costly
model retraining (regarding computation time, energy con-
sumption, and additional hand-made data collection) is nec-
essary to adapt to previously unseen applications or de-
ployment environments that are constantly introduced in
heterogeneous (or even multi-cloud) datacenters (Mars &
Tang, 2013; Stoica & Shenker, 2021).

In this paper, we aim to facilitate efficient ML model adap-
tation in practice. The goal is not to revise existing ML/RL
algorithms or modeling approaches that have been proposed
to handle various system management tasks but to improve
existing model training and adaptation in a transparent man-
ner. We introduce FLASH, a general framework that assists
developers in training and deploying ML agents with fast
adaptability to diverse cloud applications and environments
in the context of different system management tasks.

Background. FLASH is in line with the vision of an ML-

'Department of Computer Science, University of Illinois
Urbana-Champaign, Urbana, IL *Department of Electrical and
Computer Engineering, University of Illinois Urbana-Champaign,
Urbana, IL *IBM Research, Yorktown Heights, NY.

Proceedings of the 7*" MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

Human-driven Non-ML-based System

Management Agent

Control
Profiling, param Resource Allocation
tuning

Autoscaling
L. Runnin . —
‘ Application }ﬂ Environment |{¢«Z @ Congestion Control
ML-centric Power Management
Data collection, ML-based System -

model training Management Agent

Control

Figure 1. An ML-centric cloud platform with a mix of non-
ML- and ML-based system management agents.

centric cloud platform (Bianchini et al., 2020) that embeds
ML to handle various system management tasks throughout
the platform by learning from data and automating man-
agement decisions. As shown in Figure 1, a system man-
agement fask (e.g., workload autoscaling in a Kubernetes
cluster) involves three main components: application (e.g.,
the deployed workload), environment (e.g., the underlying
infrastructure), and management agent (i.e., either an ML
agent with a model trained to perform the task or a non-
ML agent based on static heuristics developed with offline
profiling). Independently for each task, FLASH reduces the
model retraining cost when adapting the ML agent across
applications and environments specific to that task.

Our Approach. FLASH is the first general framework that
introduces embedding-based meta-learning (Mishra et al.,
2018; Rusu et al., 2019) for ML-based cloud system manage-
ment. Given a management task (e.g., workload autoscaling)
and an ML agent (originally designed and trained to handle
that task in the context of application A; and environment
E;), FLASH introduces an abstraction of a base learner.
FLASH’s objective is to facilitate fast adaptation (i.e., re-
duced training time) of the base learner to novel (4;, E;)
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Figure 2. Pretrain-finetune workflow in FLASH with the
abstraction of application as A;, environment as F;, and
model as M; in each system management task.

pairs. Toward this goal, we introduce a meta learner trained
to handle a given management task and generalize across
different (A;, E;) pairs. The meta learner captures applica-
tion and environment heterogeneity by explicitly modeling
the unique characteristics of (A;, E;) pairs using learned
embedding representations, and thus benefits adaptation.

FLASH operates in two phases: pretraining and fine-tuning,
as shown in Figure 2. Instead of training a model for each
(A;, E;) pair, FLASH first pre-trains a shared model as the
common basis with meta-learning. To rapidly adapt to a
new (A4;, Ej) pair in a task, the shared model is then further
fine-tuned by conditioning on the embedding generated (by
the meta learner) for the new (A;, E;) pair.

The core design of FLASH originates from this key insight
that existing training datasets of an ML agent inherently
contain spatial-temporal characteristics specific to each
(A;i, E;) pair. However, those characteristics are poorly uti-
lized to generalize across (A;, E;) pairs because the ML
agent’s goal is to specialize for the specific pair that the agent
is lastly trained on. For instance, in resource management,
workload’s performance sensitivities to resource configura-
tions (i.e., spatial characteristics) can be derived from the
labels in supervised learning (Eismann et al., 2021a) or RL
rewards (Qiu et al., 2020). In autoscaling, the time-varying
load patterns (i.e., temporal characteristics) are available
in RL trajectories (Mao et al., 2019a). To utilize available
datasets and learn to generalize across (A;, E;) pairs, we
leverage meta-learning (Hospedales et al., 2022), a family
of techniques known as “learning to learn” (Thrun & Pratt,
1998), which has demonstrated fast model adaptivity in im-
age classification (Rusu et al., 2019), robotics (Mishra et al.,
2018), and cybersecurity (Yang et al., 2023).

Use Cases. We demonstrate the use of FLASH by integrating
it with three independent ML-based system management
agents (as shown in Table 1): (1) a resource configuration
agent (i.e., Sizeless (Eismann et al., 2021a)) that predicts
the performance of a serverless function on various resource
configurations, (2) a workload autoscaling agent (i.e., from
FIRM (Qiu et al., 2020)) that scales workload resources
to achieve application service-level objectives (SLOs) with
high resource utilization, and (3) a power management agent
(i.e., SmartOverclock (Wang et al., 2022a)) that overclocks
CPU cores (by scaling up frequency) only when it benefits

the workloads. All three agents are handled by FLASH in a
unified manner without any changes to the original model
design, regardless of the modeling approach (i.e., supervised
learning or RL), architecture, or optimization constraints.

Results. We present a detailed experimental evaluation of
our agents and show that FLASH provides fast model adap-
tation with lightweight overhead. As an example, to retrain
an RL-based autoscaler (i.e., FIRM model) to convergence
for new applications or environments, FLASH is 5.5x faster
than the state-of-the-art transfer learning-based approach
used in FIRM. Even without retraining, the FIRM agent inte-
grated with FLASH has 71.6% less performance degradation
(regarding RL reward) when testing trained models on new
applications than the original FIRM agent (reduction from
37% reward drop to 10.5%) as we show in §5.2.

Contributions. Our main contributions are:

* The design of FLASH, the first training framework that
systematically introduces meta-learning and a pretrain-
finetune paradigm to ML-based cloud system manage-
ment tasks in a unified manner that can rapidly adapt to
new or updated applications or environments.

* A characterization of the model adaptation cost when
adapting three existing ML-based system management
agents across various applications and environments.

* Demonstration of FLASH with the three representative
agents showing substantial improvements in adaptation.

* A similarity metric to infer performance degradation when
serving ML models for new applications or environments
and the retraining overhead during adaptation.

Putting FLASH in Perspective. To achieve optimal per-
formance customized to any (A;, E;) pair, one approach is
to train one model per pair (e.g., (Qiu et al., 2020; Zhang
et al., 2021c)), but it leads to significant overhead in main-
taining all individualized models. To reduce the number
of models, one can train a shared model with a unique ID
assigned to each application (e.g., (Wang et al., 2022b)),
but it is not scalable to the growing (A4, E;) spaces, and
requires retraining the whole model for any updated or
newly added (A;, E;) pairs. While state-of-the-art transfer-
learning-based approaches are useful in reducing the model
adaptation cost (Qiu et al., 2020), they suffer from the trade-
off between the adaptation cost and model management
overhead (by keeping individual models and identifying the
best one to transfer from). In the systems domain, it is chal-
lenging to classify applications/environments into groups at
an optimal granularity (with careful feature selection) and
then train one model per group to serve as the transfer basis.

FLASH, in contrast, provides a systematic and automatic
way of adapting the model to a new (A;, E;) pair based on
the similarity of the embedding representation of the new
pair with the seen (A;, E;) pairs. In addition, FLASH only
requires maintaining a single pre-trained shared model for
all (A;, E;) pairs while supporting lightweight fine-tuning.



Table 1. FLASH use cases and ML agents developed for cloud system management tasks. See §4 for detailed descriptions.
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We believe that FLASH significantly improves the practical-
ity of applying ML in production cloud systems.

2 BACKGROUND AND MOTIVATION
2.1 ML-Centric Cloud Platforms

Recent advances in ML/RL have driven a shift in cloud
system design and management. Public cloud providers
have strong incentives to replace traditional system manage-
ment agents with ML agents and to build ML-centric cloud
platforms (Bianchini et al., 2020). The need for learning-
augmented management stems from the fact that hetero-
geneous and complex decision-making spans across mod-
ern system lifecycles as cloud platforms become tremen-
dously complex (Bianchini et al., 2020; Liang et al., 2020;
Karthikeyan et al., 2023). These decisions govern how sys-
tems handle applications to satisfy user requirements in a
particular runtime environment or cloud infrastructure (as
shown in Figure 1). Various efforts (Cortez et al., 2017;
Liang et al., 2020; Bianchini et al., 2020; Karthikeyan et al.,
2023; Qiu et al., 2023b) have shown significant benefits
in formulating production cloud system management into
ML/RL-based tasks. We use three example ML agents (sum-
marized in Table 1) to make our discussion concrete:

* Resource configuration search (RCS) is usually mod-
eled as a regression task (Venkataraman et al., 2016; Yad-
wadkar et al., 2017; Klimovic et al., 2018; Eismann et al.,
2021a). A supervised-learning-based predictor is trained
to predict the application performance given the resource
configurations, resource utilization, and other metrics. For
example, Sizeless (Eismann et al., 2021a) leverages a fully
connected neural network to predict the average execu-
tion times of a serverless function given a target function
memory size based on the monitoring data when running
the function with a base memory size'.

* Workload autoscaling (WA) is modeled as a sequen-
tial decision-making problem to scale horizontally and/or
vertically the controlled workload (e.g., the number of
replicas and the size of each replica/pod for a Kubernetes
Deployment) (Qiu et al., 2020; Wang et al., 2022b). RL
is well suited for learning such policies, as it provides a
tight feedback loop to explore the state action space and

'In Sizeless, only the memory size is used because the CPU
allocation is proportional to memory allocation on AWS Lambda.

generate optimal policies without relying on inaccurate as-
sumptions (i.e., heuristics or rules) (Mao et al., 2016; Qiu
et al., 2022). For example, FIRM (Qiu et al., 2020) lever-
ages an RL model DDPG to adjust resources vertically
(e.g., CPU/memory allocation) and scale horizontally (i.e.,
number of replicas). RL agents’ goal is to maximize re-
source utilization while maintaining application SLOs.

* CPU frequency scaling (CFS) requires the agent to bal-
ance the workload performance improvements with the
extra power cost when increasing the core frequency (Is-
lam & Lin, 2017). SmartOverclock (Wang et al., 2022a)
leverages an RL model, Q-Learning, to decide when and
how much to scale the CPU core frequency.

2.2 Motivation: Why Existing Models Fail to Adapt?

Similar to traditional non-ML-based agents that require re-
peated profiling and parameter tuning, the trained models in
ML-based agents require costly retraining to adapt to new
applications or environments in heterogeneous and dynam-
ically evolving (or even multi-cloud) datacenters (Mars &
Tang, 2013; Hazelwood et al., 2018; Sriraman & Dhanotia,
2020; Stoica & Shenker, 2021; Qiu et al., 2023c¢):

» Environment diversity and infrastructure dynamics. Het-
erogeneity exists in various types of datacenter infras-
tructure (Mars & Tang, 2013; Hazelwood et al., 2018).
Compute or storage hardware upgrades can potentially
alter the behavior of the existing system (Patterson, 2008;
Liang et al., 2020). Network updates affect many factors,
such as available link capacities, packet loss rates, and
delay (Zheng et al., 2014; Singh et al., 2015).

 Application diversity and workload dynamics. Prior work
has shown that there can be non-trivial differences among
cloud applications (Kanev et al., 2015; Sriraman & Dhan-
otia, 2020; Wang et al., 2022b). In addition, cloud applica-
tions have increasingly adopted tighter and more frequent
software update cycles (Neamtiu & Dumitras, 2011; Gan
et al., 2019), including changes in architectures, bug fixes
or patches, and even payload data.

Such application/environment heterogeneity or dynamics
could invalidate model assumptions (e.g., the optimal au-
toscaling policy changes with resource sensitivity) and cause
the trained model to be suboptimal. Re-training models can
be costly and requires a large amount of training data (Liang
et al., 2020; Banerjee et al., 2020). To characterize such
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Figure 3. Testing trained Sizeless model on datasets collected from unseen cloud platforms or new applications.
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Figure 4. Testing trained FIRM model on unseen applications or application updates.

adaptation requirements, we take the open-source imple-
mentation of Sizeless (for RCS) and FIRM (for WA) models,
train them in the original setup described in their papers,
and study the model performance degradation in new setups.
Detailed descriptions of the model architecture, training,
and datasets are deferred to appendices A.2 and A.3.

In RCS, we quantify the model performance degradation
and show in Figure 3(a) and (b) the CDFs of the absolute
percentage error (APE). The baseline (labeled as “Sizeless™)
is the CDF of the Sizeless model tested using the original
Sizeless dataset, which has an average APE of 0.04 (consis-
tent with the original paper (Eismann et al., 2021a)). When
testing the trained model on unseen applications, the CDF
(labeled as “New App”’) shows a 7.2x increase in the median
APE. When testing the trained model (using data from cloud
vendor A, identity hidden) on the same applications but run-
ning on vendor B/C, the CDFs show a 1.9-2.1x increase in
median APE. Figure 3(c) shows an example of testing on
an unseen application (i.e., Airline Booking). With different
base memory configurations, the prediction can be under-
/over-estimated, leading to either application performance
degradation or unnecessarily higher deployment costs.

For WA, Figure 4(a) shows the per-episode reward degrada-
tion of FIRM’s RL agents when encountering new applica-
tions (36.8% lower in median reward) or application updates
(15.8% lower in median reward). We then further investi-
gate the degradation regarding container CPU utilization
and the 99th percentile application end-to-end latency. Fig-
ure 4(b) and (c) show that the RL reward degradation comes
from both (1) over-allocation which leads to low utilization
(e.g., median utilization when serving new applications is
39% compared to the FIRM baseline’s 64%) and (2) under-
allocation which leads to SLO violations (e.g., more than
25% agents have at least 5.8x higher 99th percentile end-

to-end latency than the FIRM baseline). The degradation is
primarily due to application workloads’ heterogeneous be-
havior regarding resource utilization/demands and varying
performance sensitivity to resource allocations (Qiu et al.,
2020). The learned mapping (i.e., the RL policy network)
between RL states and the optimal actions is no longer valid
and thus requires retraining.

In addition to RCS and WA, we also find that fast model
adaptation is required in other system management tasks
(e.g., CFS) as shown in Appendix A.5.

2.3 Meta-learning Background

Meta-learning has been demonstrated (in fields like robotics
control) to adapt well or generalize to new, previously un-
seen samples during training (Mishra et al., 2018). In the
meta-learning training stage, rather than training the learner
on a single environment to generalize to unseen “intra-
environment” samples from a similar data distribution, a
meta learner is trained on different distributions of environ-
ments, with the goal of learning a strategy that generalizes to
unseen environments (i.e., “inter-environment”). Note that
even though the new environment has never been encoun-
tered, adaptation is still possible when the new environment
shares patterns similar to the ones encountered (Mishra et al.,
2018; Hospedales et al., 2022).

Why Meta-learning? First, compared to meta-learning,
training on a narrow distribution of (A;, E;) pairs results
in poor generalization while simply training on a wide
range of (A;, E;) pairs leads to average or suboptimal per-
formance (Qiu et al., 2020; Xia et al., 2022). For exam-
ple, resource autoscaling policies vary with resource con-
sumption characteristics, workload sensitivity to different
resource allocations, and heterogeneous service-level objec-
tives. An alternative technique is called curriculum learning



(CL) (Narvekar et al., 2020; Xia et al., 2022). In our context,
the ML agent can be trained with a sequence of (4;, E;)
pairs ordered in terms of “difficulty” (which can be chal-
lenging to define and quantify). However, the goal of CL is
to optimize the performance in the final task of the whole
learning sequence (Narvekar et al., 2020). Meta-learning,
in contrast, is to optimize for fast adaptability to a new task
within a small number of model update steps.

Second, training one model per (A;, E;) pair entails signifi-
cant training cost and model management overhead (Vartak
& Madden, 2018; Sun et al., 2020), while there is a lack of a
principled and systematic approach for clustering (A4;, E;)
pairs into groups and training one model per group. Even
with transfer learning (Qiu et al., 2020), non-trivial retrain-
ing is still needed to adapt to a new (4,, E;). Meta-learning
enables each ML agent to adapt to new (A;, E;) pairs in a
systematic manner by identifying similar pairs through the
learned representations of each (A;, E;) pair and leveraging
shared knowledge and patterns from those similar pairs.

3 FLASH DESIGN

3.1 Overview and Architecture

Instead of developing and training one model per (4, E;)
pair, we design FLASH as a general framework that assists
developers in developing ML agents with fast adaptability to
new applications or deployment environments. Specifically,
we focus on supervised learning (SL) and reinforcement
learning (RL) because of their wide adoption in cloud sys-
tem management tasks (Maas, 2020). FLASH’s API (§3.4)
guides agent developers through the agent-specific logic
needed to facilitate fast model adaptation while remaining
highly extensible to different use cases (as we show in §4).
Figure 5 presents an architecture overview of FLASH.

Base Learner. FLASH models the ML agent (i.e., SL/RL
agent) as a base learner with no model design changes.

* An SL model is trained with labeled data samples, mean-
ing that each data point contains a feature vector and an
associated label. The goal is to learn a function that maps
from feature vectors to labels (prediction) with minimal
error based on example input-output pairs in the training
dataset. As an example, in Sizeless (Eismann et al., 2021a),
an SL agent gets the features (e.g., resource consumption
and execution time under a certain function memory size)
for a serverless function and outputs the predicted function
execution time for a target function memory size.

* In RL, an agent learns an optimal policy in a task modeled
as a discrete-time Markov decision process (MDP). At time
step ¢, the agent perceives a state s; € .S and takes an action
a; € A. The agent receives a reward r; € R (as feedback
on how good the decision is) and a new state s;+;. The
entire sequence of transitions {(s¢, a¢, 7¢)} << is called a
trajectory or episode of length T'. The agent’s goal is to learn
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Figure 5. FLASH’s architecture and integration between the
meta learner and base learners (either with SL or RL).

a policy mp that maximizes the expected cumulative rewards
in the future, i.e., E[ZtT:O 4t - 7;], where the discount factor
v € (0, 1) progressively de-emphasizes future rewards. As
an example, an RL agent for workload autoscaling (Qiu
et al., 2020) takes states (i.e., system metrics and application
performance measurements) from Kubernetes and takes
actions to determine the optimal scaling action.

Data Buffer. FLASH collects training and inference data
from the SL or RL agents and stores the data selectively in
a database. The selection criteria are based on SL and RL
logic as described in §3.2. In SL, the data buffer consists of
labeled data samples with both feature vectors and the label.
In RL, the data buffer consists of a set of trajectories, each
of which records the (s, at, ;) transition sequences when
the RL agent interacts with the system.

Meta Learner. To rapidly adapt to a new/updated (4;, E;)
pair in a system management task, the meta learner selects
SL samples or RL trajectories from the data buffer and gen-
erates an embedding that accurately represents this (A4;, E;)
pair. The embedding is then fed to the base learner (i.e., the
SL or RL agent) as part of its feature vector or state vector.
The base learner leverages the embedding to adapt (fine-
tune) its model or policy by differentiating heterogeneous
applications and environments. See §3.2 and §3.3 for more
details about the design, training, and inference.

3.2 Meta Learner Design

We introduce embedding-based meta-learning that is de-
signed to explicitly model the individuality of each (A;, E;)
pair in a system management task. Instead of meta-learning
the architectural or algorithmic level configurations (e.g.,
parameter initialization, learning rate, or neural network
architecture), FLASH’s meta learner learns to generate an
embedding that projects the application- and environment-
specific characteristics to a vector space. On this projected
vector space, (A;, E;) pairs with similar characteristics are
projected to neighboring locations, while those different



ones are projected to locations far from each other.

As shown in Figure 5, the meta learner (per task and thus
per SL/RL base learner)’s network architecture consists
of (1) an input layer, (2) a recurrent neural network (RNN)
layer, and (3) a fully connected neural network (FCNN)
layer (i.e., the embedding layer).

Input Layer. The input layer selects what kind of infor-
mation the meta learner retrieves from the data buffer for
embedding generation. Based on the insight that the training
datasets of the developed ML models already contain spatial-
temporal characteristics of each (A;, E;) pair, labeled data
samples (in SL) and trajectories (in RL) are used as inputs to
the meta learner. However, for RL, simply using all trajec-
tories is computationally intensive in practice. Instead, we
choose M /2 trajectories with the highest rewards and M /2
trajectories with the lowest rewards, excluding lower-reward
trajectories generated during the initial training stage due to
their lack of representativeness.

RNN Layer. We use a bidirectional GRU (a special class of
RNN5s) (Schuster & Paliwal, 1997; Sutskever et al., 2011)
that maintains a high-dimensional hidden state with nonlin-
ear dynamics to acquire, process, and memorize knowledge
about the current environment. In an RNN, hidden layers
are recurrently used for computation. Compared to memory-
less models such as autoregressive models and feed-forward
neural networks, RNNs store information in hidden states
for a long time. Hence, they are effective in capturing both
spatial and temporal patterns. In addition, a unidirectional
RNN has the limitation that it processes inputs in strict tem-
poral order, so the current input has the context of previous
inputs only (not the future). Bidirectional RNNs, on the
other hand, duplicate the processing chain so that the inputs
are processed in both forward and backward orders to in-
clude future contexts as well. It should be noted that we do
not use the memory augmentation technique (Santoro et al.,
2016) for our RNN-based meta learner because we find that
the feature space in system management tasks is not as high-
dimensional as those of computer vision tasks, and the RNN
hidden states suffice to provide good representations.

Embedding (FCNN) layer. The output from the RNN layer
of the meta learner is fed to a fully connected two-layer
neural network to generate an embedding (i.e., a fixed-size
vector) that is used to fingerprint or represent the (A4;, E;)
pair with which the base learner is dealing. As shown in
Figure 5, the generated embedding is finally concatenated
by the base learner as part of the SL feature vector or RL
state vector at each time step.

3.3 Pre-training and Fast Adaptation

FLASH is pre-trained on a pool of (A4;, E;) pairs (i.e., a
pretraining pool of applications or environments) and fine-
tuned to novel (A;, E;) pairs in the adaptation pool, as
shown in Figure 6.
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Figure 6. FLASH’s pre-training and adaptation workflow.

Pretraining. FLASH is exposed to a pretraining pool of
(A;, E;) pairs and trained to discriminate the individuality
of each pair with meta-learning. The loss value generated
from the base learner is backward-propagated to update the
model parameters of both the base learner and the meta
learner. FLASH uses an ordinary gradient descent update
of RNN-based networks (inspired by SNAIL (Mishra et al.,
2018)) with a hidden state reset at a switch of (A;, E;) pairs.
After convergence, the model checkpoint of the meta learner
and the base learner (which is called the pretrained shared
model) is then served as a common basis to fine-tune cus-
tomized models for different (A;, E;) pairs in the adaptation
stage. In addition to individuality, FLASH also captures the
commonality across (A;, E;) through the shared model (or
shared policy in RL) that is conditioned on the embeddings,
which allows a base learner to adapt to different pairs with
the same shared model parameters. The resultant shared
model in FLASH is analogous to a pre-trained “foundation
model” for a given cloud system management task.

Adaptation. Since the pretrained shared model is condi-
tioned on application-/environment-specific embeddings,
the adaptation process only requires limited exposure (i.e.,
a few SL samples or RL trajectories to feed to the meta
learner) for embedding generation. Note that even though
the new (A;, E;) pair has never been encountered, adap-
tation is still possible when the new pair shares similar
patterns with the encountered ones (Mishra et al., 2018;
Hospedales et al., 2022). For the pairs with quite dissim-
ilar patterns (identifiable based on the distance in the em-
bedding space as we describe in §5.5), the shared mod-
el/policy conditioned on the embedding can be further fine-
tuned to adapt to the optimal customized model/policy. The
model parameters of the meta learner are fixed. Overall,
the pretrain-finetune paradigm provides an efficient way to
balance pre-training cost with the need for fast adaptation
for heterogeneous cloud applications and environments.

Interpreting Embeddings from a Systems Perspective.
Figure 7 visualizes the key idea of embedding in the work-
load autoscaling task. From a systems perspective, both the
spatial and temporal characteristics of the applications are
encoded and mapped onto a low-dimensional latent vector
space. Applications with similar characteristics are pro-
jected to locations that are close to each other on that vector
space. By calculating the cosine similarity and the Eu-
clidean distance between any two generated embedding vec-
tors, we can get a two-dimensional similarity measurement.
In Figure 7 (left), the sensitivity of application performance
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Figure 7. An example illustrating how embedding encodes spatial and temporal characteristics from a systems perspective.

to different resource allocations is shown in the heatmaps to
illustrate the spatial characteristics, with the X -axis being
CPU cores and the Y -axis being allocated RAM. Darker
colors represent worse performance in terms of application
request-serving latency. In Figure 7 (right), the applica-
tion load-per-second time series can represent the temporal
characteristics. Applications with similar spatial-temporal
patterns are projected to adjacent locations in the output
vector space. We show in §5.5 how the defined similarity
metric can be used for adaptation predictability.

3.4 FLASH Programming Interface

FLASH exposes a unified API to ML agent developers that
supports both SL and RL as shown in Listing 1. Each
interface has four operations that the developers need to
implement for integration with FLASH.

(1) Register the SL or RL base learner by providing
the name of the system management task (there will be
one meta learner per task) and the input shapes. The
meta learner then starts to initialize the meta-learning net-
work by configuring the dimensions. The input dimen-
sion is numSamples~* (F.shape+P.shape) for SL
and numTrajs* (S.shape+A.shape+1) for RL.

(2) Insert the data samples (for SL) or trajectory samples
(for RL) into the data buffer. The meta learner will update
the data buffer based on the selection criteria in §3.2.

(3) Get the current embedding. The base learner will take
the embedding generated by the meta learner and concate-
nate it to the feature vector in SL or the state vector in RL.
(4) Turning on and off the meta learner model parameter
update. This function transitions between the meta-learning
training and inference stages. When turned off, the shared
model (i.e., pre-trained meta learner and base learner) pa-
rameters will not be updated. Practically, developers can
retrain the meta learner every week or so to incrementally
minimize out-of-distribution probabilities based on the fre-
quency that new (A;, E;) pairs are added to the task.

4 FLASH USE CASES

We study three use cases of FLASH, each of which corre-
sponds to a different system management task. The three
chosen ML agents differ in input data, ML models they use,
and the output they produce (i.e., prediction or action).

// For supervised learning agents

interface SLModel<F: Feature, P:
void RegisterBaselearner (string,
void InsertDataSamples (List [<F,
Embedding<E> GetEmbedding() ;
void ToggleMetaModelUpdate (bool) ;

Label> {
F, P);
P>1);

}
// For reinforcement learning agents
interface RLModel<S:State, A:Action, R:
Reward> {
void RegisterBaselearner (string, S, A);
void InsertTrajSamples (List[<S, A, R>]);
Embedding<E> GetEmbedding () ;
void ToggleMetaModelUpdate (bool) ;
}

Listing 1. FLASH APIs for SL and RL agents. SLModel
is parameterized by the feature and label type of the data
samples. RLModel is parameterized by the state, action,
and reward type of the RL trajectories.

Resource Configuration Search. In this case study, we
focus on the most recent work, Sizeless (Eismann et al.,
2021a), which applied supervised learning in predicting the
optimal memory size of serverless functions based on moni-
toring data for a single memory size. As mentioned in §2.2,
the diversity of application workloads and compute infras-
tructure requires model adaptation. We take the open-source
implementation of the Sizeless model as the base learner
and integrate it with FLASH meta learner. The resultant
agent is referred to as FLASH-Sizeless.

In Sizeless, the task of predicting the execution time of a
serverless function is formulated as a regression problem.
The input includes a target memory size and monitoring data
(e.g., heap usage) when running at base memory size(s), and
the output is the estimated execution time (see Table 1).
The users can then decide which memory configuration to
choose, given the cost and estimated performance when
running with that configuration. Sizeless trains a fully con-
nected neural network with ReLU as the activation function
based on the average execution time and monitored resource
consumption metrics when running with the base memory
size(s). More details are shown in Appendix A.2. The fea-
tures and labels are recorded to the data buffer by calling
InsertDataSamples (). The embedding is retrieved
with GetEmbedding () and then appended to the original



feature vector used in the fully connected neural network.

Workload Autoscaling. We integrate FLASH with an
open-sourced state-of-the-art RL-based autoscaler from
FIRM (Qiu et al., 2020). The resultant agent is referred to
as FLASH-FIRM. FIRM uses an actor-critic RL algorithm
called DDPG (Lillicrap et al., 2016). The RL agent moni-
tors the system- and application-specific measurements and
learns how to scale the allocated resources vertically and hor-
izontally. Table 1 shows the model’s state and action spaces.
The goal is to achieve high resource utilization (RU) while
maintaining application SLOs (if there are any). SLO preser-
vation (S P) is defined as the ratio between the SLO metric
and the measured metric. If no SLO is defined for the work-
load (e.g., best-effort jobs) or the measured metric is smaller
than the SLO metric, SP = 1; otherwise, 0 < SP < 1. The
reward function is then defined the same as in FIRM (Qiu
etal, 2020), 7y = a - SP; - [R| + (1 —a) - > ;. RU;,
where R is the set of resources. The RL algorithm is trained
in an episodic setting. In each episode, the agent manages
the autoscaling of the application for a fixed number of RL
time steps. The resulting state-action-reward series is called
a trajectory. More details are shown in Appendix A.3.

FLASH receives an RL trajectory when the base learner calls
InsertTrajSamples () after each episode. To handle
variable-length trajectories, each trajectory in the buffer
is padded with Os to have equal lengths. Then, the state,
action, and reward tensors along the last dimension are con-
catenated to create the input for the RNN layer. The same
trajectory padding is also done for the last case study (CFS).
The embedding is retrieved by calling Get Embedding ()
and then appended back to the RL state vector.

CPU Frequency Scaling. Our last agent, SmartOverclock,
is an intelligent on-node overclocking agent proposed by
Microsoft (Wang et al., 2022a). We adopt SmartOverclock
as the base learner to integrate with FLASH, and the resul-
tant agent is referred to as FLASH-SmartOverclock. CPU
frequency scaling presents opportunities for substantial per-
formance improvements or saving of CPU cores on different
sets of workloads (Chen & Marculescu, 2015; Jalili et al.,
2021). Despite the benefits of overclocking, it significantly
increases node power consumption and can shorten proces-
sor lifetimes. SmartOverclock learns to balance application
workload performance improvements with extra power cost
by using RL to decide when and how much to scale the CPU
core frequency.

SmartOverclock uses an RL model, Q-Learning (Baseline3,
2023). At each time step ¢ (every 1 second), the agent moni-
tors the average Instructions Per Second (IPS) performance
counter across the cores of each VM and learns when to ad-
just the core frequency. Table 1 shows the RL model’s state
and action spaces. Since the goal is to increase the frequency
only when the workload benefits from it, e.g., (a) higher
CPU frequencies increase the IPS, or (b) the SLO preser-

vation ratio (S FP;) is high, the reward function is defined as
ry = B-(IPS¢—IPS;_1)/IPS{)Afreq>0+(1—08)-SP,.
More details of the model and this case study are deferred to
Appendix A.4. Similarly to the base learner implemented for
FIRM, the base learner calls InsertTrajSamples ()
after each RL episode to save trajectories and retrieves
the embedding by calling GetEmbedding (). The em-
bedding is then appended to the state vector taken by the
Q-Network (in Q-Learning) to complete the value function.

5 EVALUATION

In each case study, we evaluate (a) the performance degra-
dation of the ML agent with FLASH when testing for new
applications/environments, and (b) the efficacy of FLASH’s
meta learner in fast model adaptation (in §5.1-§5.3). We
then evaluate the overhead of FLASH (§5.4) in both training
and inference. In addition, we show that a similarity metric
derived from the generated embeddings can be leveraged to
enhance the predictability of adaptation cost (§5.5).

5.1 FLASH-Sizeless

Setup. Three datasets are used for evaluation: (a) the orig-
inal Sizeless dataset (Eismann et al., 2021a) consisting of
2000 serverless applications, (b) the OpenWhisk dataset,
which we collected on a local OpenWhisk cluster following
the same methodology as Sizeless but with CPU allocation
added as the resource configuration in addition to function
memory size, and (c) the CloudBandit dataset (Lazuka et al.,
2022) for 30 VM-based applications which covers resource
configuration (e.g., VM type and vCPU count), performance
metrics, system metrics on three public cloud platforms. We
run ten iterations of five-fold cross-validation with a 50/50
training/testing split for each dataset. Datasets (a) and (b)
are used to evaluate the model’s robustness across different
applications, while dataset (c) is used to evaluate the ro-
bustness across different cloud infrastructures (i.e., environ-
ments). Details of the dataset are deferred to Appendix A.2.

Prediction Error without Adaptation. Table 2 shows the
model performance comparison where the evaluation metric
is mean absolute percentage error (MAPE). We evaluate the
model performance on unseen applications (for Sizeless and
OpenWhisk datasets) and environments (for CloudBandit
dataset) with X-shot (X € [1,2, 3]) settings, where X is
the number of data samples Sizeless agent uses as the base
configuration(s) to predict the application performance un-
der the target configuration. The Sizeless dataset leads to
the lowest testing MAPE (on average 0.37 for the vanilla
Sizeless model and 0.04 for FLASH-Sizeless) because func-
tion memory size is the only configuration being considered.
The OpenWhisk dataset contains CPU allocation in addi-
tion to function memory size, and thus the average testing
MAPE is higher (0.64 for the Sizeless model and 0.3 for
FLASH-Sizeless). The CloudBandit dataset results in the



Table 2. Sizeless agent prediction error (i.e., MAPE) with and without FLASH. The number of samples used as the base
configuration in the task of resource configuration search is indicated as X-shot as in few-shot learning.

Dataset Sizeless OpenWhisk CloudBandit
# of Samples 1-shot 2-shot 3-shot 1-shot 2-shot 3-shot 1-shot 2-shot 3-shot
Sizeless (training) 0.040 0.036 0.035 0.316 0.258 0.236 0.610 0.439 0.424
Sizeless (testing) 0.360 0.400 0.336 0.823 0.552 0.540 0.985 0.889 0.798
FLASH-Sizeless (training) ~ 0.038 0.036 0.032 0.321 0.247 0.259 0.624 0.416 0.435
FLASH-Sizeless (testing) 0.046 0.038 0.034 0.357 0.263 0.275 0.649 0.424 0.497
Improved (testing) 87.22% 90.50% 89.88% 56.62% 52.36% 49.07% 34.11% 52.31% 37.72%
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Figure 8. Comparison of the performance and retraining cost of the FIRM model with FLASH.

highest testing MAPE because the collected data is across
both heterogeneous workloads and three different cloud
providers. Lastly, the testing MAPE drops when the number
of samples used as the base configurations for prediction
increases from 1-shot to 3-shot since the agent can leverage
more runtime information. FLASH-Sizeless achieves up to
90.5%, 56.6%, and 52.31% lower MAPE compared to the
original Sizeless model in datasets Sizeless, OpenWhisk,
and CloudBandit, respectively. The improvement on the
CloudBandit dataset is the lowest because both the Sizeless
and OpenWhisk datasets contain detailed system metrics
(e.g., user/system CPU time, heap used, and cache misses),
which helps generate more expressive embeddings.

5.2 FLASH-FIRM

Setup. We leverage the open-source application genera-
tors and representative serverless benchmarks from Sizeless
to generate 1000 synthetic applications (as described in
Appendix A.3) because serverless workloads are highly dy-
namic (and thus require autoscaling) and rely on the provider
to manage the resources. For RL agent training and infer-
ence, we use real-world datacenter traces (Zhang et al.,
2021b) released by Microsoft Azure, collected over two
weeks in 2021. Next, we deploy the selected workloads as
Deployments in a five-node Kubernetes cluster in a public
cloud and ran an RL-based multi-dimensional autoscaler
with each Deployment, controlling both the number of repli-
cas (horizontal scaling) and the container sizes (vertical
scaling). All nodes run Ubuntu 18.04 with four cores, 16
GB memory, and a 200 GB disk.

In the evaluation, we repeat five experiment runs wherein
each run, the pretraining of FLASH-FIRM is done on 200
randomly selected applications (i.e., the pretraining pool
in Figure 6), and the adaptation evaluation is done on the
remaining 800 applications (i.e., the adaptation pool). A
sensitivity study on the pretraining pool sizes is deferred to

Appendix A.7.

Reward Drop without Adaptation. To evaluate the per-
formance degradation without retraining, we design an au-
toscaler A/B test where FLASH-FIRM agent and the original
FIRM agent are the two variants controlling the autoscal-
ing for the same set of traces. We repeat the A/B test 100
times. In each test, we randomly select an application from
the adaptation pool and train the agent until convergence.
We then randomly select ten other different applications
from the pool for reward drop evaluation (i.e., in RL policy-
serving). Figure 8(a) shows the CDF of the per-episode
reward, and we find that FLASH-FIRM reduces the average
reward drop percentage from the baseline (i.e., the agent
trained to convergence on the testing application), labeled
as “Converged” in Figure 8(a), from 37% to 10.5%.

Adaptation Cost. FIRM (Qiu et al., 2020) leverages trans-
fer learning (TL) to retrain an RL agent for a new appli-
cation based on previous RL experience gained for known
applications. In the TL-based approach, the model parame-
ters (weights) are shared between the agents managing the
known workload and the new workload. We measure the
retraining time, CPU utilization, and SLO preservation of
FIRM and FLASH. Results are shown in Figure 8(b) — (c).
We find that, on average, FLASH-FIRM adapts 5.5x faster
than FIRM, resulting in 77.6% less performance degrada-
tion and 5.1x less CPU utilization deficit (i.e., the utilization
gap from the converged RL policy) during adaptation.

5.3 FLASH-SmartOverclock

Setup. The application workloads in training and testing for
this case study are the same as in evaluating FLASH-FIRM
(see §5.2) and are deployed in Docker containers on three
different types of processors: Intel Xeon E5-2683 v3, Intel
Xeon CPU E5-2695 v4, and AMD EPYC 7302P. There-
fore, the cross-application/processor settings require model
adaptation across both applications and environments.
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Figure 9. Comparison of the performance and retraining
cost of the SmartOverclock model with FLASH.

Reward Drop without Adaptation. Similar to §5.2, we
design and repeat the A/B test 100 times, comparing FLASH-
SmartOverclock with the vanilla SmartOverclock agent. In
each test, we randomly select a processor type and an ap-
plication from the application pool and then train the agent
until convergence. We then randomly select ten other differ-
ent applications from the pool, each running on a randomly
selected processor, for reward drop evaluation. Figure 9(a)
shows the CDF of the per-episode reward, and we find that
FLASH-SmartOverclock improves the average reward drop
percentage from the baseline (i.e., labeled as “Converged”
in the figure) from 39% to 7.1%.

Adaptation Cost. Similar to §5.2, we evaluate the retraining
cost by comparing FLASH with TL regarding the number
of RL episodes needed to converge. Figure 9(b) shows the
CDF of the RL retraining cost and, on average, FLASH-
SmartOverclock adapts 9.2x faster than TL.

5.4 FLASH Overhead

We evaluate the training and inference overhead of FLASH
introduced to each ML agent (as shown in Table 3). At
the inference stage, generating embeddings and including
the embedding in the forward pass process of the original
neural network introduce additional latency. The inference
overhead can be up to 3.9x (i.e., from 1.5 ms to 5.9 ms for
SmartOverclock). However, compared to the second (s)-
level RL time steps, such sub-10 ms overhead did not affect
the RL training convergence or policy-serving performance.
At the training stage (including the meta learner), the model
update latency overhead is up to 4.1x (from 1.21 s to 4.95 s
for FIRM), leading to a pre-training time of ~5.2 hours with
an NVIDIA Tesla V100 (16 GB) GPU. Model update of
the RNN/GRU layer accounts for 75% of the total model
update latency. Therefore, after meta learner training and
meta learner model parameters are fixed, the model update
overhead of the base learner can be negligible compared to

Table 3. Training and inference overhead of FLASH. In-
ference overhead (ms) includes the latency of generating
the embedding, and model update overhead (s) includes the
latency of updating the meta learner during pretraining.

Model Inference Latency (ms) Model Update Latency (s)
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Figure 10. Correlation between the embedding similarity
and (a) the reward drop percentage without retraining (in
blue) and (b) the retaining cost with FLASH (in red).

the model update latency of the original ML/RL agent (a
3% increase, i.e., 1.25 s compared to 1.21 s).

5.5 FLASH Adaptation Predictability

The embedding generated by the meta learner not only en-
ables fast model adaptation to novel cloud applications or
environments but also provides predictability regarding both
(a) performance drop and (b) retraining overhead. Given two
embeddings e; and e;, we found that the embedding similar-
ity defined as S(@i, ej) = (1 — ED(ei, ej) +C’S(ei, 6j))/2
can be a good indicator, where ED(e;, e;) is the normalized
Euclidean distance and C'S(e;, e;) is the Cosine similarity
between the two embeddings. Figure 10 illustrates the cor-
relation between embedding similarity and (a) the reward
drop percentage (in blue) and (b) the number of RL episodes
needed for retraining (in red) with FLASH in the example
task of workload autoscaling. Performance and retraining
cost prediction help understand the cost before deploying
ML agents for new applications or to new environments.

6 RELATED WORK

Meta-learning for Systems. ResTune (Zhang et al., 2021a)
leverages meta-learning to optimize hyperparameters that
boost Bayesian optimization on database performance tun-
ing knobs. Xue et al. (2022) employ neural processes, a
meta-learning model, to train a fully connected neural net-
work to predict workload CPU utilization. However, neural
processes cannot adapt the model parameters on the fly dur-
ing inference based on the current task or context (Rusu
et al., 2019). Other examples of meta-learning model pa-
rameter initialization include PSO (Leka et al., 2023) and
DMRO (Qu et al., 2021), which do not explicitly and ad-
equately model the individuality of tasks as FLASH does
through its interpretable embedding generation.

Zero/Few-shot Learning for Systems. Hilprecht & Bin-
nig (2021) first propose the idea of zero-shot learning for
databases (e.g., query cost estimation and index selection).
By encoding database queries with transferable features,
an ML-driven model can generalize across databases since
feature representations remain consistent. Zero/few-shot
learning has also been applied in intrusion attack detection



in networks (Zhang et al., 2020) and microservices (Liang
et al., 2022). Meta-learning can be complementary by learn-
ing a good representation that can generalize well to help
with zero/few-shot learning (Verma et al., 2020).

Curriculum Learning for RL. We consider curricu-
lum learning (Narvekar et al., 2020) (e.g., Genet (Xia
et al., 2022)) in the networking domain) as an orthogo-
nal technique for meta-learning. In our context, the ML
agent can be trained with a sequence of (application,
environment) pairs ordered in terms of “difficulty”.
While curriculum learning aims to optimize the asymp-
totic performance in the final task of the learning se-
quence (Narvekar et al., 2020), meta-learning provides the-
oretically proved generalizability across tasks.

7 DISCUSSION AND LIMITATIONS

Meta Learner Model Size/Complexity. Our experiments
show that a two-layer bidirectional GRU (RNN) followed by
a fully connected layer already provides 5.5x faster model
adaptation compared to transfer learning (in the task of work-
load autoscaling). We plan to conduct larger-scale experi-
ments to investigate the necessity of an extreme-size model
or a more complex model architecture (e.g., Transform-
ers (Vaswani et al., 2017)). However, a larger model may
lead to unnecessarily higher pre-training costs and inference
overhead, which could be detrimental to latency-sensitive
online system management tasks (e.g., job scheduling (Mao
et al., 2019b) or autoscaling (Qiu et al., 2021)).

Feasibility. There have been rich monitoring or profiling
data in modern datacenters that enables pre-training across
(A;, E;) pairs with meta-learning. For instance, Google-
Wide Profiling (GWP) (Ren et al., 2010; Kanev et al., 2015)
and Monarch (Adams et al., 2020) are profiling infrastruc-
tures for datacenters, providing performance insights for
machines and cloud applications. Cluster managers such
as Borg (Verma et al., 2015) monitor a full range of appli-
cations and generate task-event (e.g., kill and pending) and
resource usage monitoring (e.g., CPU usage, memory usage,
and disk I/O time) that provide rich characteristics about
running application workloads (Kanev et al., 2015).

Amortization of Pretraining Overhead. Pretraining across
a distribution of (A;, E;) pairs can require a large amount
of training overhead (e.g., pretraining on 200 pairs costs
5.2 hours as mentioned in §5.4). However, adapting for po-
tentially larger-scale novel (A;, E;) pairs requires substan-
tially fewer model update iterations. This trade-off allows
us to reduce the per-pair training cost (i.e., amortization, as
shown in Appendix A.7), especially for diverse or constantly
evolving (A;, E;) pairs in cloud environments.

Meta Learner Retraining. The base learner and meta
learner abstractions in FLASH enable an ML-for-systems
base learner model to be used with no changes to the base

learner model design or training algorithms. Base learner
inputs/outputs (see Table 1) are used as inputs to the meta
learner. Therefore, substantial feature changes (adding new
features or removing existing features) in the base learner
can lead to retraining the meta learner from scratch.

Cross-Task Model Adaptation. FLASH enables fast model
adaptation to new (A;, E;) pairs within each task so one
meta learner is trained per task. Therefore, the learned
embeddings are bound to a particular task. An exception
could be that if applications are the same but simply the
tasks are different (e.g., for the same containers, task A
is to allocate the initial resource configuration, and task
B is autoscaling), they might be able to share the same
embeddings because the embeddings essentially represent
the application features. Future work has to be done for
general cross-task adaptation (Qiu et al., 2023a).

8 CONCLUSION

This paper explored the challenges of model adaptation to-
ward ML-centric cloud platforms in practice. We presented
FLASH, a general and extensible framework for develop-
ing ML agents that can rapidly adapt to new, previously
unseen cloud applications or environments. To demon-
strate FLASH, we implemented three agents and experimen-
tally showed how FLASH improves model adaptation with
meta-learning and a pretrain-finetune paradigm. FLASH is
open-sourced at https://gitlab.engr.illinois.
edu/DEPEND/flash.
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A APPENDICES
A.1 Meta Learner Architecture in FLASH

In this section, we introduce the neural network architec-
ture of FLASH’s meta learner (as shown in Figure 11) and
the embedding generation process. In FLASH, embeddings
are used to explicitly represent and differentiate cloud ap-
plication and environment pairs (i.e., (4;, F;)), and meta-
learning enables learning to generate such embeddings in a
way that the individuality of each pair can be modeled and
extracted. As mentioned in §3.2, the meta learner consists
of the input layer, RNN layer, and embedding layer.

Input Layer. The input layer unifies different formats of
data samples into a sequence vector to be taken by the RNN
layer. Let us denote the embedding generation function in
meta learner by f : D — R¢ where d is the size of the
embedding. For supervised learning (SL), the data samples
D include a vector of feature variables [z] and labels (i.e.,
predictions) [y]. Each element X, in the input sequence
vector contains the concatenation of x; and y;. For rein-
forcement learning (RL), the data samples D include a set
of M RL trajectories generated by the agent interacting with
the environment. Each trajectory contains characteristics
of the (A;, E;) pair in the system management task that
the agent is currently managing. Each element X, in the
input sequence vector concatenates the state, action, and
reward in each trajectory at time step ¢ € [0,7] where
T is the trajectory length. For instance, as shown in Fig-
ure 11, X, contains [So(m), Ag(m), Ro(m)] from trajec-
tories m € [1, M|, where Sy, A;, and R; refer to the state,
action, and reward at time step ¢ in each trajectory.

RNN Layer. As mentioned in §3.2, FLASH uses a bidi-
rectional GRU (Gated Recurrent Unit), a special class
of RNN (Schuster & Paliwal, 1997), that maintains a
high-dimensional hidden state with nonlinear dynamics
to acquire, process, and memorize knowledge about each
(A;,E;) pair. An RNN is a type of neural network
that is specialized for processing a sequence of data
Xo, X1,..., X7 where each indexed element X; corre-
sponds to one pre-processed variable in the input layer. In
particular, we applied a multi-layer, bidirectional gated re-
current unit (GRU) RNN (PyTorch, 2023) to the input se-
quences. Two unidirectional RNN hidden layers are chained
together in opposite directions and act on the same input (as
shown in Figure 11). For the forward RNN hidden layer,
the first input is X, and the last input is X7, but for the
backward RNN hidden layer, the first input is X7, and the
last input is X. The output of the bidirectional RNN layer
is generated by concatenating together the corresponding
outputs (i.e., the hidden states) of the two underlying uni-

Time Step t € [0,T]
Trajectory m € [1, M]
Agent Trajectories
from Episode Buffer

Input Layer

Forward Hidden Layer

Backward Hidden Layer

Fully Connected Layer

Output Embedding

Figure 11. Neural network architecture of FLASH’s RNN-
based meta learner for embedding generation. Each variable
X in the input layer corresponds to a vector of indexed
training data samples. In reinforcement learning, X; =
[st(i),ae(i), 4 (0)],i € {1..M} where M is the number of
trajectories in the selected episodes buffer. In supervised
learning (not shown in the figure), Xy = [x4,y:| where x;
and y; are features and predictions for the t-th sample.

directional RNN hidden layers. Mathematically, given M
input sequences (i.e., RL trajectories), we have the output
Or = ﬁ Zn]\le H?™, where H]" is the intermediate output
for the m-th trajectory in the i-th (A;, E;) pair.

As mentioned in §3.2, we do not explicitly use the popular
memory augmentation technique (Santoro et al., 2016) for
the meta learner as the features of our application workloads
are not as high-dimensional as those of computer vision
tasks (Santoro et al., 2016). We also leave the usage of
more advanced sequence models such as long short-term
memory (LSTM) (Van Houdt et al., 2020; Hochreiter &
Schmidhuber, 1997) and attention-based techniques (e.g.,
Transformers (Vaswani et al., 2017)) to our future research.

Embedding (FCNN) layer. The output (i.e., a fixed-size
vector) from the bidirectional RNN layer is fed to a fully
connected neural network (FCNN) layer to generate an em-
bedding that is used to fingerprint/represent the ((4;, E;))
pair with which the base learner is dealing. The input size
is equal to the size of the hidden RNN layer, and the out-
put size is equal to d, which is the embedding size. ReLU
is used as the activation function. The generated embed-
ding from the FCNN layer will be concatenated by the base
learner as part of the feature vector (in the SL case) or the
state vector at each time step (in the case of RL).

We implement FLASH’s meta learner with PyTorch, and the
hyperparameters are shown in Table 4.

A.2 Details of Case Study on Sizeless

Model. Sizeless (Eismann et al., 2021a) uses a fully con-
nected neural network as the predictor for the regression



Table 4. FLASH training hyperparameters.

Parameter Value

Trajectory Buffer Size 32
Trajectory Expiration Time 300 time steps

Learning Rate 3x107*
RNN Input Size 256
RNN Hidden Layers 2

RNN Hidden Layer Size 256
Dropout 0.05
Embedding Size 32

task. The features (after feature engineering) and label used
in the Sizeless model are shown in Table 5, which are con-
sistent with the original paper (Eismann et al., 2021a). After
a grid search to tune the hyperparameters of the model (as
shown in Table 6), the final model uses the Adam optimizer,
a MAPE loss function, 200 epochs, an L2 regularization of
102, and four 256-neuron layers in the neural network.

Applications and Sizeless Dataset. We adopt the 16 rep-
resentative production cloud workloads selected in Size-
less (Eismann et al., 2021a) based on a survey of 89 industry
use cases of serverless computing applications (Eismann
et al., 2021b). The selected production workloads include
CPU-intensive tasks (e.g., floating-point number computa-
tion), image manipulation, text processing, data compres-
sion, web serving, ML model serving, and I/O services
(e.g., read, write, and streaming). The Sizeless dataset (re-
leased by the original paper) is collected by running 2000
synthetic AWS Lambda applications generated by random
sampling with replacement from the segment pool (consist-
ing of the 16 selected representative production application
segments) and combining the selected segments together.
Each segment represents the smallest granularity of com-
mon workloads in cloud datacenters.

The original Sizeless dataset includes measurements on
the execution time and resource consumption metrics (see
(Eismann et al., 2021a) for a full table of dataset columns)
for all applications across six different memory sizes (128
MB, 256 MB, 512 MB, 1024 MB, 2048 MB, 3008 MB)
for ten minutes each at 30 requests per second with an
exponentially distributed inter-arrival time. In the future,
the number of implemented segments can easily be extended
if specific workload profiles are missing.

To study the model prediction accuracy degradation when
encountering new applications or compute platform changes,
we constructed two new datasets, OpenWhisk and Cloud-
Bandit. We first implemented a synthetic application gener-
ator based on the open-sourced AWS Lambda application
generator from Sizeless (Eismann et al., 2021a). Overall,
we generated 1000 unique applications that are deployable
on both OpenWhisk (for evaluation of the resource con-
figuration search task) and Kubernetes (for evaluation of
the workload autoscaling task in Appendix A.3 and CPU
frequency scaling task in Appendix A.4).

Table 5. Features and labels in Sizeless.

Features (X)
Base memory, Execution time under the base memory,
Heap used, User CPU time, System CPU time, Voluntary
context switches, Bytes written to file system, and Bytes
received over network, Target memory
Label (y)
Execution time under the target memory

Table 6. Sizeless training hyperparameters.

Parameter Parameter Range Selected
Optimizer SGD, Adam, Adagrad Adam
Loss MSE, MAE, MAPE MAPE
Epochs 200, 500, 1000 200
Neurons 64, 128, 256 256

L2 0, 0.0001, 0.001,0.01 0.01
Layers 2,3,4,5 4

OpenWhisk Dataset. Following the same dataset collec-
tion methodology as Sizeless (Eismann et al., 2021a), we
deployed each generated synthetic application on a 50-VM
OpenWhisk cluster setup on IBM Cloud. In addition to
the memory size of the function container (which is the
only resource configuration considered in Sizeless), we also
consider CPU allocation (i.e., cpu . shares used in Open-
Whisk) as another resource configuration. The collected
metrics remain the same as in the Sizeless dataset.

CloudBandit Dataset. The CloudBandit dataset (Lazuka
et al., 2022) covers application resource configuration (i.e.,
number of nodes, CPU family type, number of vCPUs, and
VM type), performance metrics, and system metrics on three
different public cloud platforms. The CloudBandit dataset
was originally collected by running 30 production workloads
on a variety of different resource configurations across three
different cloud providers: Amazon Web Services, Microsoft
Azure, and Google Cloud Platform. We preprocessed the
dataset to align it with the Sizeless model training dataset
by replacing the target memory size (used in the Sizeless
dataset) with the target resource configurations, such as the
VM type and vCPU count (used in the CloudBandit dataset).

Datasets OpenWhisk and CloudBandit are used to evaluate
the ML model’s generalizability across different applica-
tions, while the dataset CloudBandit is also used to evaluate
the model’s generalizability across different computing in-
frastructures. Results are presented in §2.2 and §5.1.

A.3 Details of Case Study on FIRM

Model. FIRM (Qiu et al., 2020) uses an actor-critic RL
algorithm, DDPG (Lillicrap et al., 2016). The RL agent
monitors the system- and application-specific measurements
and learns how to scale the allocated resources vertically
and horizontally. Table 7 shows the agent’s state and action
spaces. Table 8 shows the model hyperparameters. The goal
is to achieve high resource utilization (RU) while maintain-



Table 7. RL state-action space and reward function in
FIRM (Qiu et al., 2020) for the workload autoscaling task.

Table 9. RL state-action space and reward function in Smar-
tOverclock (Wang et al., 2022a) for CPU frequency scaling.

State Space (s;)

Resource Limits (CPU, RAM), Resource Utilization
(CPU, Memory), SLO Preservation Ratio (Latency,
Throughput), Observed Load Changes

Action Space (a;)
Resource Limits (CPU, RAM), Number of Replicas

Reward Function (r;)

re=a- -SSP+ (1 —a)  (RUcpy + RUnemory)/2

Table 8. FIRM training hyperparameters.

Value

100 x 64 mini-batches

Parameter

# Time Steps per Episode

Replay Buffer Size 108

Learning Rate Actor (3 x 10™%), Critic (3 x 1073)
Discount Factor 0.99

Soft Update Coefficient 3 x 1073

Random Noise
Exploration Factor

u(0), 0 (0.2)
€ (1.0), e-decay (107%)

ing application SLOs (if there are any). SLO preservation
(SP) is defined as the ratio between the SLO metric and
the measured metric. If no SLO is defined for the workload
(e.g., best-effort jobs) or the measured metric is smaller than
the SLO metric, SP = 1. The reward function is then de-
finedas 7, = - SP; - |R|+ (1 —a)- >, RU;, where R
is the set of resources (i.e., container CPU limit and memory
capacity in our case). The RL algorithm is trained in an
episodic setting. In each episode, the agent manages the
autoscaling of the application workload for a fixed period
of time (100 RL time steps in our experiments).

Applications and Traces. As mentioned in Appendix A.2,
we generated 1000 synthetic applications (deployable on
both OpenWhisk and Kubernetes) using the selected 16
representative production cloud serverless workloads as ap-
plication segments (same as in the resource configuration
search task mentioned in Appendix A.2). We reuse these
application segments in the task of workload autoscaling
as well because serverless workloads are highly dynamic
(and thus require autoscaling) and rely on the provider to
manage the resources. For RL agent training and inference,
we use real-world datacenter traces (Zhang et al., 2021b)
released by Microsoft Azure, collected over two weeks
in 2021. Next, we deploy the selected workloads as De-
ployments in a five-node Kubernetes cluster on IBM Cloud
Virtual Private Cloud (VPC) and run an RL-based multi-
dimensional autoscaler with each Deployment, controlling
both the number of replicas (horizontal scaling) and the con-
tainer sizes (vertical scaling). All nodes run Ubuntu 18.04
with four cores, 16 GB memory, and a 200 GB disk.

Application Updates/Patches. We introduce, in total, seven
scenarios to explore model performance degradation when
facing application patches, service payload size changes, or

State Space (s;)

Instructions per second (IPS), CPU usage, Measured core
frequency, SLO Preservation Ratio (Latency, Throughput)
Action Space (a;)

CPU core frequency (every second)
Reward Function (r;)
Ty = Oz-((IPSt—IPSt_l)/IPSt)AfTeq>0+(1—Oz)-SPt

Table 10. SmartOverclock (Q-Learning) training hyperpa-
rameters (adopted from Stable Baseline3 (Baseline3, 2023)).

Parameter Value
Learning Rate 1x 1074
Learning Starts 50000
Buffer Size 1000000
Batch Size 32
Discount Factor 0.99
Target Network Update Rate 1.0
Exploration Fraction 0.1

load pattern variations: (1) For I/O services to a backend file
system (e.g., AWS S3) and the compression/decompression
services, the size of files being read, written, or streaming
is changed from [128 KB, 256 KB, 384 KB] to [512 KB,
768 KB, 1024 KB]. (2) For database services, the size of the
database table being scanned is changed from 1024 items
to 10240 items. (3) For floating-point number calculation,
the number of operations is changed from 108 to 208. (4)
For image manipulations, the image dimension is changed
from 40x40 to 160x160. (5) For text processing, the JSON
file size is changed from [250 B, 500 B, 1 KB] to [2 KB,
3 KB, 5 KB]. (6) For ML model serving, we change the
matrix multiplication dimension from 50 to 150. (7) For
load pattern changes, we divide the Azure workload traces
into two parts, one half with a higher daily load (> 10° per
day) and the other half with a lower load (< 10° per day).

A.4 Details of Case Study on SmartOverclock

Model. SmartOverclock (Wang et al., 2022a) is an on-node
learning-based agent developed by Microsoft to adjust the
CPU core frequency of a running VM dynamically. Smar-
tOverclock uses an RL algorithm called Q-Learning (Base-
line3, 2023). At each time step ¢ (every 1-second inter-
val), the agent monitors the average Instructions Per Second
(IPS) performance counter across the cores of each VM and
learns when to adjust the core frequency. Table 9 shows the
model’s state and action space. Table 10 shows the model
training hyperparameters.

The state vector includes IPS, CPU usage, and current
core frequency that are measured at each time step ¢. For
VMs with SLOs or measurable application-level metrics,
the same variable SLO preservation ratio (SF;) is also
considered. Based on the state, the agent picks the fre-



quency for the next time epoch. To balance the perfor-
mance improvements with the extra power cost (of increas-
ing the core frequency), the reward function is defined as
Tt = a'((IPS,:—IPStfl)/IPSt)Afreq>0+(1—Oé)'SPt,
with the assumption that workload benefits from a higher
frequency when (a) higher CPU frequencies increase the
IPS, or (b) the SLO preservation ratio is high.

Applications and Environments. We reuse the applica-
tion workloads and application patches described in Ap-
pendix A.3 to evaluate model adaptability for new applica-
tions or application updates. To evaluate the model adapt-
ability on heterogeneous compute infrastructures, we run
experiments on three types of processors: (1) an Intel Xeon
E5-2683 v3 2.0 GHz processor, which is capable of running
up to 3.0 GHz, (2) an Intel Xeon CPU E5-2695 v4 2.1 GHz
processor, which is capable of running up to 3.1 GHz, and
(3) an AMD EPYC 7302P 3.0 GHz processor, which is
capable of running up to 3.3 GHz.

A.5 Additional Motivating Examples

Congestion control agents at the transport layer adjust the
sending rate based on the measured network statistics. Prior
work (Tessler et al., 2022; Jay et al., 2019; Ma et al., 2022;
Tian et al., 2022) has proposed RL-based solutions. For
instance, Aurora (Jay et al., 2019) decides the sending rate
at the beginning of each time step (of length proportional
to RTT) to maximize the reward (a combination of through-
put, latency, and packet loss rate). RL agent trains a policy
to optimize the reward over a given distribution of train-
ing network environments (e.g., network connections with
certain bandwidth patterns, delay, and queue length). It is
hypothesized that local history contains information about
patterns in traffic and network conditions and thus can be
exploited for better rate selection by learning the mapping
from experience via a deep RL approach. For example, the
learned RL agent is able to distinguish non-congestion loss
from congestion-induced loss, while TCP CUBIC halves
the sending rate upon any occurrence of loss, and thus fails
to fully utilize the link’s bandwidth (Jay et al., 2019).

However, training in a wide range of network environments
leads to suboptimal performance, whereas training in a nar-
row distribution of environments results in poor general-
ization. For the distributions spanning a wide variety of
network environments (e.g., a large range of possible band-
width or link delay), an RL policy may perform poorly
when tested in a different environment than the set of en-
vironments seen during training. We generate simulated
training environments with various network condition pa-
rameters following prior work (Mao et al., 2019a; Jay et al.,
2019; Xia et al., 2022) (in total 625 environments). The pa-
rameters are used as configurations in the network simulator
to specify the network condition, such as bandwidth range,
link delay, queue size, random loss rates, and delay noises.
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Figure 12. Reward degradation in Aurora. X-axis represents
different testing scenarios of network environment changes.
In “Base”, the RL agent is trained and tested in the same
environment. In “BW”, “Delay”, “Size”, and “Loss”, the
RL agent is tested in different environments regarding band-
width, link delay, queue size, and loss rate, respectively. In
“All”, the RL agent is tested in all different scenarios.

We take the open-source implementation of the RL model
in Aurora to explore the RL agent performance degradation
when encountering network environments different from
the one used for training. Figure 12 shows the per-episode
reward of the Aurora agent in different scenarios of network
environment changes. We find that the performance degra-
dation of the RL agents (regarding the reward) can be up to
32.8% at the 90th percentile and have a median degradation
of 27%. In addition, we find that among all configurations,
changes in queue size have the least effect on the agent per-
formance (with an average of 12.5% reward degradation),
while link delay changes have the highest (40.2%).

CPU frequency scaling also benefits from RL-based solu-
tions (Wang et al., 2022a; Zhang et al., 2022; Yeganeh-
Khaksar et al., 2021; Chen & Marculescu, 2015; Islam
& Lin, 2017) where the agent adjusts the frequency of
CPU cores to balance application performance improve-
ments with the extra power cost. For example, Smar-
tOverclock (Wang et al., 2022a) leverages an RL model
Q-Learning to pick the frequency at each time step based
on the average Instructions Per Second (IPS) performance
counter and the current frequency across the cores of each
VM. However, heterogeneous workloads have different scal-
ing factors (i.e., the sensitivity of performance benefit given
frequency increase), and various processors offer quite dif-
ferent scaling ranges and turbo performance. We explore the
effect of changes in both workloads and processor types (as
described in Appendix A.4) on the RL agent performance.
Figure 13 shows that the per-episode reward degradation
of the RL agents can be up to 44.2% at the 90th percentile
when testing on a different set of workload changes and
17.3% when testing on a different processor.

A.6 Additional Case Study on Congestion Control

We also integrate FLASH with a congestion control agent at
the transport layer selecting the sending rate based on the
sender’s observations of the real-time network conditions.
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Figure 13. Reward degradation in SmartOverclock.

As mentioned in Appendix A.5, in RL-based congestion
control, the agent is trained to learn a policy to optimize
performance over a given distribution of training network
environments. If the distribution changes for new network
environments, the RL agent can fail to adapt quickly because
it is not trained to generalize.

RL Formulation and Implementation. We take the open-
source implementation of Aurora, an RL-based congestion
control agent from prior work (Jay et al., 2019), as the base
learner to integrate with FLASH. In Aurora’s RL formula-
tion, the agent maps a locally perceived history of feedback
from the traffic receiver, which reflects past traffic and net-
work conditions, to the next choice of sending rate at the
traffic sender. Aurora (Jay et al., 2019) uses an actor-critic
RL algorithm, PPO (Schulman et al., 2017). Table 11 shows
the state and action spaces of the RL model. Table 12 shows
the model training hyperparameters.

In the RL formulation of the congestion control task, the
RL agent is on the traffic sender side, and its actions trans-
late to changes in sending rates. At each time step ¢, the
sender can adjust its sending rate x;, which then remains
fixed throughout the time window until time step ¢ + 1.
RL states are bounded histories of network statistics that
are observed by sending packets at a rate x; and receiv-
ing packet acknowledgments. In summary, the network
statistics vectors consist of (a) latency gradient/inflation,
the derivative of latency with respect to time; (b) latency
ratio, the ratio of the current mean latency to the minimum
observed mean latency in the connection’s history; and (c)
sending ratio, the ratio of packets sent to packets acknowl-
edged by the receiver. The reward function is defined as
re = a - Throughput; + B - Latency; + v - Loss; where
throughput is measured in packets per second, latency in
seconds, and loss is the proportion of all packets sent but
not yet acknowledged at time step ¢.

We adopt the same model design and hyperparameters as
used in the open-source implementation of Aurora. The
resultant agent is referred to as FLASH-Aurora. Sim-
ilar to the base learner implemented for FIRM (as de-
scribed in §4), the base learner sends RL trajectories by
calling InsertDataSamples ([<S, A, R>]) after
each RL episode. The embedding is then retrieved by call-
ing GetEmbedding () and appended to the state vector

Table 11. RL state-action space and reward function in
Autora (Jay et al., 2019) for the congestion control task.

State Space (s;)
Sending/receiving rate, Sending/receiving duration, avg
RTT in a time window, min RTT, RTT inflation, RTT ratio,
Ack/Sent latency inflation, Loss/Sent ratio
Action Space (a;)

Sending rate in the current time window

Reward Function (r;)
ry = a - Throughput; + B - Latency; + v - Loss

Table 12. Aurora training hyperparameters.

Parameter Value

# Time Steps per Episode 2048 x 64 mini-batches
Learning Rate 3x 1074

Discount Factor 0.99

GAE Lambda 0.95

CLIP Range 0.2

Entropy Coefficient 0.005

Value Function Coefficient 0.5

(which is then taken by the actor network of PPO to generate
the final actions) in the base learner.

Evaluation Setup. We train and test FLASH-Aurora in a
network environment simulator (Jay et al., 2019) that can
simulate network links with a wide variety of network sce-
narios. The simulator comes with a range of configurations:
link bandwidth (in Mbps), link latency or RTT (in ms),
packet queue size, and package loss rate. In the original
paper, the configuration of the training environment is se-
lected uniformly at random from ranges of parameters that
are set to [1.2 Mbps, 6 Mbps] for link bandwidth, [50 ms,
500 ms] for link latency, [0%, 5%] for loss rate, and [2,
2981] for queue size. To train and evaluate RL agents in a
wider variety of network scenarios, we expand the ranges
of configuration parameters to [0.1 Mbps, 128 Mbps] for
link bandwidth, [1 ms, 512 ms] for link latency, [0%, 10%]
for loss rate, and [1, 10240] for queue size. We then divide
the range for each configuration into five sub-ranges, and
each simulation environment is constructed by randomly
selecting the configuration parameter range from the five
sub-ranges, resulting in 625 environments in total. In the
evaluation, we repeat five experiment runs wherein each
run, the pre-training of FLASH-Aurora is carried out in 200
randomly selected environments (i.e., the “pre-training pool”
in Figure 6), and the adaptation evaluation is done on the
remaining 425 environments (i.e., “adaptation pool”).

Reward Drop without Adaptation. To evaluate the perfor-
mance degradation without retraining, we design a conges-
tion control A/B test where FLASH-Aurora agent and the
original Aurora agent are the two variants controlling the
congestion control for the same set of traces in the simulator.
We repeat the A/B test 100 times. In each test, we randomly
select an environment from the adaptation pool and train
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Figure 14. Comparison of the performance and retraining
cost of the Aurora model with FLASH.

the agent until convergence. We then randomly select ten
other different environments from the adaptation pool for re-
ward drop evaluation (i.e., RL policy-serving). Figure 14(a)
shows the CDF of the per-episode reward, and we find that
FLASH-Aurora reduces the average reward drop percentage
from the baseline (i.e., the agent trained to convergence on
the testing environment), labeled as “Converged” in Fig-
ure 14(a), from 28% to 5.6%.

Model Adaptation Cost. We compare FLASH with the
transfer learning (TL)-based approach to retrain an RL agent
for a new network environment based on previous RL ex-
perience gained for known environments. In the TL-based
approach, the model parameters (weights) are shared be-
tween the agents managing the known environments and
the new environment. We measure the retraining time (to
convergence) of Aurora (TL) and FLASH-Aurora. The re-
sults are shown in Figure 14(b). We find that, on average,
FLASH-Aurora adapts 2.4x faster than TL, with a 58.3% re-
duction in RL episodes required to convergence (on average
112 episodes compared to 46.7 episodes).

A.7 Amortized Training Cost Analysis

As discussed in §7, pre-training across a distribution of
(A;, ;) pairs can require a large amount of training over-
head (e.g., pre-training on 200 pairs costs 5.2 hours with
an NVIDIA Tesla V100 (16 GB) GPU). However, the re-
training/adaptation of a base learner for each novel (4, E;)
pair from a potentially larger-scale adaption pool only re-
quires no or fewer model update iterations. In addition,
such lightweight fine-tuning at scale can amortize the ini-
tial pretraining cost and thus reduce the per (A;, E;) pair
training cost. This trade-off allows us to reduce the overall
training effort, especially in scenarios where the application
or environment is dynamic or constantly evolving.

To understand the amortization of the training cost for differ-
ent scales of adaptation pool of (A;, E;) pairs, we take the
workload autoscaling task as an example, pre-train FLASH
on different sizes of the pretraining pool of applications
(i.e., 50, 100, 150, and 200 applications), and evaluate the
adaptation cost (i.e., number of RL training episodes) when
adapting to different number of novel applications. We
compare FLASH with transfer learning (TL). In FLASH,
the randomly initialized model is pre-trained on the pre-
training pool and then used for adaptation to each novel
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Figure 15. Training cost analysis of transfer learning (TL)
and meta-learning with various sizes of pretraining appli-
cation pool in the task of workload autoscaling. Y -axis is
in log scale and shows the per-application adaptation cost
regarding RL episodes and X -axis shows the number of
applications that the model has been adapted to.

application. In TL, the randomly initialized model (i.e.,
FIRM) is continuously being trained on each novel applica-
tion (without any pre-training). We show in Figure 15 the
training cost analysis of FLASH and TL with different sizes
of the pretraining application pool in the task of workload
autoscaling. X -axis represents the number of applications
that have been adapted to, and Y -axis represents the average
per-application RL training episodes across all applications
that have been adapted to.

We find that with the size of the initial pretraining pool grow-
ing, the initial pretraining cost increases (but the increase
rate slows down), while the adaptation cost in fine-tuning
decreases. For instance, pre-training FLASH on 200 and
100 applications costs 6900 and 5800 episodes, respectively,
while the average adaption cost for fine-tuning is 41.8 and
83.5 episodes, respectively. In terms of per-application adap-
tation cost, compared to transfer learning (labeled as “TL”
in Figure 15), FLASH has a higher cost when only using it
to adapt to a smaller number of unseen applications. How-
ever, when FLASH has been used to adapt to more than 60
applications, the per-application adaptation cost starts to be
lower than TL, due to the amortization of the pre-training
cost with the benefits of lightweight fine-tuning.



