
On Latency Predictors for Neural Architecture Search

A SUPPLEMENTAL MATERIAL

A.1 Best practices for NAS

(White et al., 2020; Li & Talwalkar, 2019; Ying et al., 2019;
Yang et al., 2020) discuss improving reproducibility and fair-
ness in experimental comparisons for NAS. We thus address
the sections released in the NAS best practices checklist by
(Lindauer & Hutter, 2019).

• Best Practice: Release Code for the Training
Pipeline(s) you use: We release code for our Pre-
dictor, CATE, Arch2Vec encoder training set-up.

• Best Practice: Release Code for Your NAS Method:
We do not conduct NAS.

• Best Practice: Use the Same NAS Benchmarks, not
Just the Same Datasets: We use the NASBench-201
and FBNet datasets for evaluation. We also use a sub-
set of Zero Cost Proxies from NAS-Bench-Suite-Zero.

• Best Practice: Run Ablation Studies: We run exten-
sive ablation studies in our paper. We conduct ablation
studies with different supplementary encodings in the
main paper as well as predictor ablations in the ap-
pendix.

• Best Practice: Use the Same Evaluation Protocol
for the Methods Being Compared: We use the
same evaluation protocol as existing works in this field
(HELP (Lee et al., 2021b) and MultiPredict (Akhauri
& Abdelfattah, 2023))

• Best Practice: Evaluate Performance as a Func-
tion of Compute Resources: In this paper, we study
the sample efficiency of latency predictors. We re-
port results in terms of the ’number of trained mod-
els required’. This directly correlates with compute
resources, depending on the NAS space training proce-
dure.

• Best Practice: Compare Against Random Sampling
and Random Search: We propose a end-to-end pre-
dictor design methodology, not a NAS method.

• Best Practice: Perform Multiple Runs with Differ-
ent Seeds: Our appendix contains information on
number of trials and our tables in the main paper are
with standard deviation.

• Best Practice: Use Tabular or Surrogate Bench-
marks If Possible: All our evaluations are done on
publicly available Tabular and Surrogate benchmarks.

Table 9. In our tests, cosine based selection for samplers with
vector encodings outperforms kMeans. Tested on Task N3 with
operation-wise hardware embedding and hardware embedding ini-
tialization.

10 Samples

NB201 ZCP Arch2Vec CATE CAZ

Cosine 0.948 0.949 0.933 0.951
Kmeans 0.729 0.670 0.826 0.892

FBNet ZCP Arch2Vec CATE CAZ

Cosine 0.822 0.803 0.805 0.788
Kmeans 0.412 0.657 NaN 0.718

20 Samples

NB201 ZCP Arch2Vec CATE CAZ

Cosine 0.963 0.960 0.952 0.960
Kmeans 0.786 0.680 0.885 0.948

FBNet ZCP Arch2Vec CATE CAZ

Cosine 0.845 0.839 0.828 0.852
Kmeans 0.818 0.812 NaN 0.835

A.2 Experimental settings for tables

Table 2: Random seeds are used to generate 4 different
device sets for NB201 and FBNet each.
Table 1 uses Random sampler without supplementary en-
coding, 20 samples on the target device. No supplementary
encoding is used.
Table 3: only 5 samples on the test device are used for
transfer to effectively test different samplers under few-shot
conditions. No supplementary encoding is used.
Table 4: CAZ + kMeans was used as the sampler and 20
samples are fetched for transfer to ensure effective training
of baseline predictor.
Table 5: 20 samples are used for transfer with random
sampler, no supplementary encoding.
Table 7: Predictor is trained with the CAZ and CATE
sampler with ZCP and Arch2Vec supplemental encoding
for NASBench-201 and FBNet respectively.
Table 6: ZCP and Arch2Vec supplemental encoding,
CAZ and CATE sampler for NASBench-201 and FBNet
respectively. 20 samples used for transfer to target device.

A.3 NAS Search Spaces

Latency predictors for neural architecture search (NAS) gen-
erally operate on a pre-defined search space of neural net-
work architectures. Several such architecture search spaces
can be represented as cells where nodes represent activa-
tions and edges represent operations. In this paper, we
evaluate a wide range of hardware devices across 11 rep-
resentative platforms described in Table 2 on two neural



On Latency Predictors for Neural Architecture Search

Figure 4. Standard deviation of neural network samplers using supplementary encodings are generally lower than random methods.

5 10 15 20 25 30
Transfer Sample Size

0.02

0.04

0.06

0.08

St
an

da
rd

 D
ev

ia
tio

n 
Of

 R
an

k 
Co

rre
la

tio
n

Device Set N1

5 10 15 20 25 30
Transfer Sample Size

0.020

0.025

0.030

0.035

0.040

0.045

0.050
Device Set N2

5 10 15 20 25 30
Transfer Sample Size

0.02

0.03

0.04

0.05

0.06

0.07

0.08 Device Set N3

Random Params ZCP CAZ

Figure 5. Latency-Accuracy NAS results for different sample sizes (S)

10 15 20 25 30 35
65

66

67

68

69

70

71

72

73

74

Ac
cu

ra
cy

 (%
)

Pixel 2 (mCPU)

12 14 16 18 20 22 24 26 28 30
66

67

68

69

70

71

72

Titan RTX (GPU)

Latency (ms)

NASFLAT (S: 3) NASFLAT (S: 5) NASFLAT (S: 10) NASFLAT (S: 15) NASFLAT (S: 20) NASFLAT (S: 6) NASFLAT (S: 8) HELP (S: 20) BRPNAS (S: 900)

6 8 10 12 14 16 18
62

64

66

68

70

72

74

Ac
cu

ra
cy

 (%
)

Gold 6226 (CPU)

3 4 5 6 7 8 9 10
68

69

70

71

72

73

74
Eyeriss (ASIC)

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

72

73

FPGA

Latency (ms)

NASFLAT (S: 3) NASFLAT (S: 5) NASFLAT (S: 6) NASFLAT (S: 8) NASFLAT (S: 10) NASFLAT (S: 15) NASFLAT (S: 20) HELP (S: 20) BRPNAS (S: 900)

architecture search spaces, NASBench-201 and FBNet. The
hardware latency data-set generated for our tests is collated
from HW-NAS-Bench (Li et al., 2021) and Eagle (Dudziak
et al., 2020).

Micro Cell Space (NASBench-201) (Dong & Yang, 2020)
is a cell-based architecture design with each cell comprising
4 nodes and 6 edges. Edges can have one of five types: zeror-
ize, skip-connection, 1×1 convolution, 3×3 convolution, or
3×3 average-pooling. With 15625 unique architectures, the
entire network is assembled using a stem cell, three stages
of five cell repetitions, followed by average-pooling and a
final softmax layer.

Macro Cell Space (FBNet) (Wu et al., 2019) features a
fixed macro architecture with a layer-wise search space.
It offers 9 configurations of ’candidate blocks’ across 22
unique positions, leading to approximately 1021 potential
architectures. Despite its macro nature, FBNet can be cell-
represented with 22 operational edges. For consistency, we

model both NASBench-201 and FBNet using adjacency and
operation matrices.

A.3.1 GNN Module Design

Despite the improved performance that GCNs can deliver,
they suffer from an over-smoothing problem (Ming Chen
et al., 2020), where this is a gradual loss of discriminative
information between nodes due to the convergence of node
features across multiple aggregation layers. To this end,
GATES (Ning et al., 2023; 2022) introduced a custom GCN
module referred to as Dense Graph Flow (DGF), which
utilizes residual connections within the DGF to improve per-
formance. Additionally, we study another node propagation
mechanism based on graph attention.

Dense Graph Flow (DGF): The Dense Graph Flow (DGF)
module implements residual connections to retain localized,
discriminative features. To describe this mathematically,
consider X l as the input feature matrix for layer l, A as the



On Latency Predictors for Neural Architecture Search

adjacency matrix, and O as the operator embedding. The
corresponding parameters and bias terms for this layer are
represented by W l

o, W l
f , and blf . Using these, the input

feature matrix for the subsequent layer, X l+1, is determined
using the sigmoid activation function, σ, as:

X l+1 = σ(OW l
o)⊙ (AX lW l

f ) +X lW l
f + blf (1)

Graph Attention (GAT): The GAT approach (Veličković
et al., 2018) distinguishes itself from DGF by its attention
mechanism during node information aggregation. Rather
than utilizing a linear transformation W l

o like in DGF for op-
eration features, GAT assesses pairwise interactions among
nodes via its dedicated attention layer. For layer l, node fea-
tures (or input feature matrix) are denoted by X l. A linear
transformation characterized by the projection matrix W l

p

uplifts the input to advanced features. Subsequently, node
features undergo self-attention via a common attentional
mechanism, denoted as a. S refers to SoftMax and L refers
to LeakyReLU. Hence, the output X l+1 is formulated as:

Attnj(X l) = S(L(Aj ·a(W l
pX

l⊙WpX
l
j)))⊙WpX

l
j (2)

X l+1 = LayerNorm

σ(OW l
o)⊙

n∑
j=1

Attnj(X l)

 (3)

Here, Attnj represents the normalized attention coefficients,
and σ is the sigmoid activation function. To enhance GAT’s
efficacy, we integrate the learned operation attention mecha-
nism Wo (as mentioned in Equation 1) with pairwise atten-
tion. This combined attention scheme fine-tunes the aggre-
gated information. Additionally, we incorporate LayerNorm
to ensure training stability.

A.4 Predictor Design Ablation

In this subsection, we conduct an in-depth study of predictor
design inspired by recent research, but from an accuracy
maximization perspective. We use our ablation on accuracy
to design a state-of-the-art predictor that we use for our
latency study. To achieve a fair evaluation, we test each
design improvement on a huge set of neural architecture
design spaces detailed below.

A.4.1 Neural Architecture Design Spaces

In this study, we examine various unique neural architecture
design domains. We delve into NASBench-101 (Ying et al.,
2019) and NASBench-201 (Dong & Yang, 2020), both of
which are cell-based search spaces encompassing 423,624

and 15,625 architectures, respectively. While NASBench-
101 is trained on CIFAR-10, NASBench-201 benefits from
training on CIFAR-10, CIFAR-100, and ImageNet16-120.
NASBench-301 (Zela et al., 2020) acts as a surrogate NAS
benchmark with an impressive count of 1018 architectures.
Meanwhile, TransNAS-Bench-101 (Duan et al., 2021) of-
fers both a micro (cell-based) search area featuring 4096
architectures and a broader macro search domain with 3256
designs. For the scope of our study, we focus on the
TransNASBench-101 Micro due to its cell-based nature.
Each of these networks undergoes training across seven
distinct tasks sourced from the Taskonomy dataset. The
NASLib framework brings coherence to these search ar-
eas. NAS-Bench-Suite-Zero (Krishnakumar et al., 2022)
expands the landscape by introducing two datasets from
NAS-Bench-360 and four more from Taskonomy. It’s worth
noting that the NDS dataset features ‘FixWD’ datasets,
signifying that the architectures maintain consistent width
and depth.

A.4.2 Training analogous predictor training

Given a DAG, the TA-GATES(Ning et al., 2022) encod-
ing begins by obtaining the initial operation embedding for
all operations based on their types. For T time steps, an
iterative process updates the operation embeddings, mim-
icking architecture parameter updates in training. Each
step involves computing information flow via GCNs on
the architecture DAG, and calling an MLP using the pre-
vious operation embedding; the output is then used in a
backward GCN pass and then computing the operation em-
bedding update. The last step concatenates the previous
operation embedding with the forward and backward prop-
agated information, feeds this to an MLP, and yields the
updated operation embedding for the next step. The final
architecture encoding uses the output of the T -th iterative
refinement. In Figure 6 we study the impact of changing the
number of time-steps on the over-all kendall tau correlation
(KDT). The trend is inconsistent, and therefore we attempt
to investigate the utility of the backward GCN.

To conduct a deeper investigation of this phenomenon, we
study several aspects of training analogous predictor train-
ing. We look at BMLP, which is where we replace the
backward ’GCN’ with a small MLP. Further, the backward
GCN pass uses the output of the ’forward’ GCN along with
the transposed adjacency matrix. This is then passed to an
’operation update MLP’ that takes as input BYI, which is
the output of the backward GCN, BOpE, which is the op-
eration embedding itself. In Table 14, Table 12, Table 15,
Table 13 we can see that in all cases, BMLP outperforms
having a backward GCN. Additionally, in many cases the
BYI information does not add much value. However, it does
not harm performance. Therefore, for further tests we will
use BMLP with BYI,BOpE.



On Latency Predictors for Neural Architecture Search

Space Amoeba DARTS ENAS ENAS fix-w-d NASNet PNAS nb101 nb201
All Node Encoding False True False True False True False True False True False True False True False True
Samples

8 0.100 0.078 0.079 0.076 0.075 0.078 0.183 0.154 0.135 0.122 0.082 0.089 0.395 0.370 0.445 0.533
16 0.202 0.157 0.178 0.184 0.165 0.186 0.322 0.302 0.155 0.127 0.124 0.127 0.448 0.350 0.647 0.656
32 0.287 0.293 0.246 0.251 0.295 0.277 0.319 0.301 0.223 0.223 0.246 0.251 0.543 0.532 0.709 0.715
64 0.375 0.367 0.416 0.411 0.364 0.357 0.374 0.372 0.347 0.331 0.348 0.330 0.652 0.623 0.771 0.762
128 0.455 0.419 0.476 0.474 0.463 0.442 0.386 0.388 0.432 0.398 0.505 0.494 0.703 0.698 0.818 0.808

Table 10. Investigating the impact of whether we should use the features of every node for the backward MLP (True) or not (False).

1 2 3 4 5 6 7 8 9 10
Timesteps

0.25

0.00

0.25

0.50

0.75

1.00

1.25

0-
1 

No
rm

al
zie

d 
KD

T

0-1 Normalized KDT vs Timesteps (samples=16)

PNAS
nb101
nb201
ENAS

1 2 3 4 5 6 7 8 9 10
Timesteps

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0-
1 

No
rm

al
zie

d 
KD

T

0-1 Normalized KDT vs Timesteps (samples=32)

PNAS
nb101
nb201
ENAS

1 2 3 4 5 6 7 8 9 10
Timesteps

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0-
1 

No
rm

al
zie

d 
KD

T

0-1 Normalized KDT vs Timesteps (samples=64)
PNAS
nb101
nb201
ENAS

1 2 3 4 5 6 7 8 9 10
Timesteps

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0-
1 

No
rm

al
zie

d 
KD

T

0-1 Normalized KDT vs Timesteps (samples=128)

PNAS
nb101
nb201
ENAS

Figure 6. Testing the impact of time-steps in the training-analogous operation update regime. 0-1 normalized KDT for each space.

Table 11. Sample Size 64 (left), 128 (right)
Space DOpEmbUnrolled BMLP Default DOpEmbUnrolled GCN

PNAS 0.3244 0.3 0.3395
ENAS 0.409 0.3929 0.3764
nb201 0.7831 0.7795 0.7640
nb101 0.6055 0.6283 0.6041

DOpEmbUnrolled BMLP Default DOpEmbUnrolled GCN

0.4779 0.4684 0.4481
0.4925 0.4958 0.4498
0.7953 0.8007 0.7838
0.7122 0.7013 0.6993

A.4.3 Inputs to backward MLP and gradient flow

From Figure 6, we have observed that 2 timesteps generally
help but more timesteps are not useful for predictor perfor-
mance. Additionally, we have replaced the entire backward
GCN with a backward MLP. We now investigate which

gradients need to be detached during iterative refinement.
In the ’def’ (default) TA-GATES case, the BYI is not de-
tached, whereas the BOpE is detached. In our tests, in ’all’,
we detach BYI,BOpE and in ’none’, we do not detach any
inputs to the BMLP. We find no clear pattern over 8 tests (3
trials each) in detach, except that it is better to either use the



On Latency Predictors for Neural Architecture Search

Figure 7. More latency samples from training (source) devices may degrade predictor performance for difficult latency prediction tasks.
We use 20 samples for the target device.

32 128 512

0.7

0.8

0.9

Sp
ea

rm
an

 R
an

k 
Co

rre
la

tio
n Task N1

32 128 512

0.6

0.7
Task N2

32 128 512

0.7

0.8

0.9
Task N3

32 128 512

0.9

Task N4

Number Of Samples From Each Source Device

Random Params GeoMean (Arch2Vec, CATE, ZCP, CAZ)

default rule or detach none of the gradients. For simplicity,
we will detach none of the gradients. We again see that BYI
is important for the BMLP, but the utility of BOpE is unclear.
Further, In Table 10, we test whether we need to pass only
the encoding at the output node of the forward GCN, or
should we concatenate encodings at all nodes to pass to the
backward MLP/GCN. Here, we find that there is no clear
advantage of passing all node encodings and thus we only
use the output node encoding.

A.4.4 Unrolled backward MLP computation

Here, we investigate different ways to unroll the backward
computation to simplify the encoding process even further.
In Table 11, we introduce two methods of unrolling the
computation. We only unroll for 2 time-steps, which gives
us a computational graph very similar to Figure 3. In the
case of DOpEmbUnrolled BMLP, (Direct Op-Emb Un-
rolled to BMLP) we directly take the output of the forward
GNN along with the operation embedding, pass it to an
MLP and use that as the encoding for the next GNN. In
the case of DOpEmbUnrolled GCN (Direct Op-Emb Un-
rolled to GCN) we directly take the output of the forward
GNN along with the operation embedding and pass it to the
backward-GCN instead of the BMLP, and use the output as
an encoding for the next GNN. We find that unrolling the
computation further improves predictive performance.

A.4.5 Final Predictor Architecture Design

Finally, this leads us to our own architecture design. In our
architecture, we significantly simplify the predictor archi-
tecture. Firstly, we maintain a smaller GNN which refines
the operation and hardware embedding. This refind em-
bedding is passed to an MLP which maps the embedding
back to the original dimensions. This refined embedding is
passed directly to the larger GNN along with the adjacency
matrix and node embeddings. We find that this simplified
architecture performs better in most of our tests.



On Latency Predictors for Neural Architecture Search

Table 12. ENAS Sample Size 64 (left), 128 (right). Ablation for backward pass. BMLP indicates that instead of replicating network, we
do a simple 2 layer MLP for backward pass. BYI indicates whether we use the output of the forward pass network or not. BOpE indicates
whether we use the output of the operation embedding itself or not. PM indicates that num params are approximately matched wrt TS > 1.
w / d indicates whether the matching happens by adjusting width or depth in forward gcn architecture. 2R implies that we simply use a
small random perturb vector for operation update to ’regularize’ the network.

TS BMLP BYI BOpE KDT Dev

2R ✗ ✗ ✗ 0.3397 0.0018
1d
PM ✗ ✗ ✗ 0.3832 0.0027
2 ✓ ✓ ✗ 0.3941 0.0061
3 ✓ ✗ ✓ 0.3973 0.0008

1w
PM ✗ ✗ ✗ 0.3983 0.006
3 ✓ ✓ ✗ 0.3988 0.0054

2 ✓ ✗ ✓ 0.4142 0.0009

TS BMLP BYI BOpE KDT Dev

2R ✗ ✗ ✗ 0.4611 0.0010
1wPM ✗ ✗ ✗ 0.4635 0.0027
1dPM ✗ ✗ ✗ 0.4684 0.0007

2 ✓ ✗ ✗ 0.4686 0.0005

3 ✗ ✓ ✗ 0.4847 0.0007
3 ✓ ✗ ✓ 0.4888 0.0039
2 ✓ ✗ ✓ 0.4975 0.0021

Table 13. NB201 Sample Size 64 (left), 128 (right). Ablation for backward pass.
TS BMLP BYI BOpE KDT Dev

1d
PM ✗ ✗ ✗ 0.7472 0.0005

1w
PM ✗ ✗ ✗ 0.7475 0.0005
2R ✗ ✗ ✗ 0.7521 0.0002
3 ✓ ✗ ✗ 0.7835 0.0002
2 ✓ ✓ ✓ 0.7845 0.0001
3 ✓ ✗ ✓ 0.7856 0.0001

3 ✓ ✓ ✓ 0.7882 0.0003
2 ✓ ✗ ✓ 0.7894 0.0002

TS BMLP BYI BOpE KDT Dev

1wPM ✗ ✗ ✗ 0.7682 0.0
2R ✗ ✗ ✗ 0.7718 0.0001

1dPM ✗ ✗ ✗ 0.7765 0.0005
2 ✓ ✗ ✓ 0.7918 0.0003
2 ✓ ✓ ✓ 0.7927 0.0004

3 ✓ ✓ ✓ 0.7953 0.0005
2 ✓ ✓ ✗ 0.7956 0.0001
3 ✓ ✗ ✓ 0.7971 0.0004

Table 14. PNAS Sample Size 64 (left), 128 (right). Ablation for backward pass.
TS BMLP BYI BOpE KDT Dev

1d
PM ✗ ✗ ✗ 0.3387 0.008
2R ✗ ✗ ✗ 0.3494 0.0165

1w
PM ✗ ✗ ✗ 0.3635 0.011
2 ✗ ✓ ✗ 0.364 0.0145

2 ✓ ✗ ✓ 0.3641 0.0055
3 ✗ ✓ ✗ 0.378 0.0106
2 ✓ ✓ ✗ 0.382 0.0092
3 ✓ ✓ ✗ 0.3852 0.0104

TS BMLP BYI BOpE KDT Dev

1dPM ✗ ✗ ✗ 0.4352 0.012
2R ✗ ✗ ✗ 0.4507 0.0063
2 ✓ ✗ ✗ 0.4625 0.0035

2 ✓ ✓ ✗ 0.4684 0.0033
3 ✓ ✓ ✗ 0.4709 0.0041

1wPM ✗ ✗ ✗ 0.4779 0.003
3 ✗ ✓ ✗ 0.4841 0.0005
2 ✗ ✓ ✗ 0.4897 0.0006

Table 15. NB101 Sample Size 64 (left), 128 (right). Ablation for backward pass.
TS BMLP BYI BOpE KDT Dev

1d
PM ✗ ✗ ✗ 0.6211 0.0007

1w
PM ✗ ✗ ✗ 0.6273 0.0003
2 ✓ ✗ ✗ 0.6346 0.0001

2R ✗ ✗ ✗ 0.6421 0.0063
2 ✓ ✓ ✗ 0.6466 0.0008
2 ✓ ✗ ✓ 0.6502 0.0004

3 ✓ ✓ ✗ 0.6515 0.0006
2 ✓ ✓ ✓ 0.6537 0.0003

TS BMLP BYI BOpE KDT Dev

1wPM ✗ ✗ ✗ 0.6591 0.0003
2R ✗ ✗ ✗ 0.6886 0.0063

1dPM ✗ ✗ ✗ 0.7008 0.0001
2 ✓ ✓ ✗ 0.707 0.0004
2 ✓ ✓ ✓ 0.7075 0.0001
2 ✓ ✗ ✗ 0.7089 0.0002

2 ✓ ✗ ✓ 0.7194 0.0001
3 ✓ ✓ ✗ 0.7276 0.0002



On Latency Predictors for Neural Architecture Search

Table 16. ENAS Sample Size 64 (left), 128 (right). Ablation for backward pass. BMLP is always True. BYI indicates whether we use
the output of the forward pass network or not. BOpE indicates whether we use the output of the operation embedding itself or not. DM
indicates detachment mode. 2 timesteps fixed.

BYI BOpE DM KDT STD

✓ ✗ def 0.4012 0.0062
✓ ✗ none 0.4042 0.0044
✗ ✓ none 0.4058 0.0013
✓ ✗ all 0.4074 0.0053
✗ ✓ def 0.4142 0.0009

BYI BOpE DM KDT STD

✓ ✓ none 0.4694 0.0025
✗ ✗ none 0.4716 0.0005
✗ ✓ all 0.4958 0.003
✗ ✓ def 0.4975 0.0021
✗ ✓ none 0.511 0.0018

Table 17. NB201 Sample Size 64 (left), 128 (right). Ablation for backward pass.

BYI BOpE DM KDT STD

✗ ✓ def 0.7795 0.0001
✓ ✗ none 0.7853 0.0002
✓ ✓ def 0.7859 0.0003
✗ ✓ none 0.7871 0.0002
✓ ✓ none 0.7949 0.0004

BYI BOpE DM KDT STD

✓ ✓ def 0.7875 0.0003
✓ ✗ none 0.7888 0.0002
✓ ✓ none 0.7936 0.0005
✗ ✓ none 0.7944 0.0002
✗ ✓ def 0.8007 0.0002

Table 18. PNAS Sample Size 64 (left), 128 (right). Ablation for backward pass.

BYI BOpE DM KDT STD

✓ ✓ def 0.3184 0.0011
✓ ✗ none 0.3304 0.0067
✓ ✗ all 0.333 0.006
✓ ✗ def 0.3459 0.0074
✓ ✓ none 0.3538 0.0045

BYI BOpE DM KDT STD

✓ ✗ none 0.4388 0.0037
✓ ✗ def 0.456 0.0036
✗ ✓ none 0.4675 0.0039
✗ ✓ all 0.4684 0.0042
✗ ✓ def 0.474 0.0042

Table 19. NB101 Sample Size 64 (left), 128 (right). Ablation for backward pass.

BYI BOpE DM KDT STD

✓ ✓ none 0.6329 0.0006
✓ ✓ all 0.6432 0.0014
✗ ✓ none 0.6436 0.0013
✗ ✗ all 0.6552 0.0
✓ ✓ def 0.6588 0.0

BYI BOpE DM KDT STD

✗ ✗ def 0.7139 0.0001
✓ ✓ all 0.7177 0.0001
✗ ✗ none 0.7206 0.0002
✓ ✗ def 0.728 0.0
✓ ✗ none 0.735 0.0

Hyperparameter Value Hyperparameter Value

Learning Rate 0.001 Weight Decay 0.00001
Number of Epochs 150 Batch Size 16
Number of Transfer Epochs 40 NB201, 30 FBNet Transfer Learning Rate 0.003 NB201, 0.001 FBNet
Graph Type DGF+GAT ensemble Op Embedding Dim 48
Node Embedding Dim 48 Hidden Dim 96
Op-HW GCN Dims [128, 128] Op-HW MLP Dims [128]
GCN Dims [128, 128, 128] MLP Dims [200, 200, 200]
Number of Trials 3 Loss Type Pairwise Hinge Loss (Ning et al., 2022)

Table 20. Hyperparameters used in the experiments. We run Optuna hyper-parameter optimization for 80 iterations.

NASBench201 ND Train-Test Correlation Latency Correlation between Test and Train devices
1080ti 1 1080ti 32 1080ti 256 silver 4114 silver 4210r samsung a50 pixel3 essential ph 1 samsung s7

titan rtx 256 0.772 0.792 0.812 0.947 0.982 0.975 0.878 0.897 0.854
gold 6226 0.958 0.956 0.776 0.912 0.927 0.894 0.711 0.898 0.920

fpga 0.828 0.841 0.888 0.943 0.974 0.959 0.872 0.924 0.888
pixel2 0.807 0.817 0.777 0.873 0.894 0.874 0.761 0.856 0.832
raspi4 0.654 0.669 0.735 0.844 0.878 0.875 0.967 0.808 0.758
eyeriss 0.415 0.434 0.893 0.586 0.618 0.625 0.722 0.624 0.521



On Latency Predictors for Neural Architecture Search

NASBench201 N1 Train-Test Correlation Latency Correlation between Test and Train devices
e tpu edge tpu int8 eyeriss m gpu sd 675 AD 612 int8 m gpu sd 855 AD 640 int8 pixel3

1080ti 1 0.167 0.415 0.594 0.551 0.591
titan rtx 32 0.127 0.403 0.595 0.547 0.599
titanxp 1 0.163 0.405 0.594 0.551 0.589
2080ti 32 0.174 0.424 0.603 0.560 0.601
titan rtx 1 0.113 0.362 0.554 0.504 0.547

NASBench201 N2 Train-Test Correlation Latency Correlation between Test and Train devices
1080ti 1 1080ti 32 titanx 32 titanxp 1 titanxp 32

e gpu jetson nano fp16 0.514 0.509 0.517 0.510 0.513
e tpu edge tpu int8 0.167 0.172 0.171 0.163 0.170

m dsp sd 675 HG 685 int8 0.593 0.594 0.599 0.591 0.596
m dsp sd 855 HG 690 int8 0.587 0.583 0.592 0.585 0.589

pixel3 0.591 0.611 0.598 0.589 0.607

NASBench201 N3 Train-Test Correlation Latency Correlation between Test and Train devices
d gpu gtx 1080ti fp32 e gpu jetson nano fp16 eyeriss m dsp sd 675 HG 685 int8 m gpu sd 855 AD 640 int8

1080ti 1 0.362 0.514 0.415 0.593 0.551
2080ti 1 0.356 0.512 0.405 0.586 0.538
titanxp 1 0.356 0.510 0.405 0.591 0.551
2080ti 32 0.371 0.519 0.424 0.598 0.560
titanxp 32 0.370 0.513 0.423 0.596 0.564

NASBench201 N4 Train-Test Correlation Latency Correlation between Test and Train devices
d cpu i7 7820x fp32 e gpu jetson nano fp32 e tpu edge int8 eyeriss m cpuSD 855 kryo 485i8 m dspSD 675 HG 685i8 m dspSD 855 HG 690i8 m gpuSD 675 AD 612i8 m gpuSD 855 AD 640i8 pixel2

1080ti 1 0.360 0.739 0.167 0.415 0.645 0.593 0.587 0.594 0.551 0.807
2080ti 1 0.353 0.730 0.168 0.405 0.635 0.586 0.581 0.581 0.538 0.791

titan rtx 1 0.313 0.703 0.113 0.362 0.600 0.547 0.541 0.554 0.504 0.775

NASBench201 NA Train-Test Correlation Latency Correlation between Test and Train devices
titan rtx 1 titan rtx 32 titanxp 1 2080ti 1 titanx 1 1080ti 1 titanx 32 titanxp 32 2080ti 32 1080ti 32 gold 6226 samsung s7 silver 4114 gold 6240 silver 4210r samsung a50 pixel2

eyeriss 0.362 0.403 0.405 0.405 0.409 0.415 0.418 0.423 0.424 0.434 0.503 0.521 0.586 0.609 0.618 0.625 0.609
d gpu gtx 1080ti fp32 0.315 0.346 0.356 0.356 0.362 0.362 0.369 0.370 0.371 0.376 0.438 0.450 0.488 0.507 0.511 0.513 0.501

e tpu edge tpu int8 0.113 0.127 0.163 0.168 0.166 0.167 0.171 0.170 0.174 0.172 0.221 0.246 0.243 0.268 0.256 0.261 0.299

Table 21. NASBench-201 task train-test correlations. HG: Hexagon; AD: Adreno; m: Mobile; SD: Snapdragon; e: Embedded; i8: int8.
Rows are test devices, Column headers are training devices.



On Latency Predictors for Neural Architecture Search

FBNet FD Train-Test Correlation Latency Correlation between Test and Train devices
1080ti 1 1080ti 32 1080ti 64 silver 4114 silver 4210r samsung a50 pixel3 essential ph 1 samsung s7

fpga 0.226 0.419 0.605 0.674 0.679 0.865 0.906 0.700 0.713
raspi4 0.256 0.524 0.719 0.641 0.649 0.841 0.957 0.660 0.678
eyeriss 0.247 0.527 0.757 0.624 0.633 0.864 0.976 0.678 0.690

FBNet F1 Train-Test Correlation Latency Correlation between Test and Train devices
2080ti 1 essential ph 1 silver 4114 titan rtx 1 titan rtx 32

eyeriss 0.238 0.678 0.624 0.249 0.442
fpga 0.206 0.700 0.674 0.217 0.350

raspi4 0.241 0.660 0.641 0.251 0.450
samsung a50 0.310 0.646 0.686 0.317 0.429
samsung s7 0.293 0.650 0.649 0.312 0.352

FBNet F2 Train-Test Correlation Latency Correlation between Test and Train devices
essential ph 1 gold 6226 gold 6240 pixel3 raspi4

1080ti 1 0.258 0.207 0.536 0.249 0.256
1080ti 32 0.338 0.241 0.459 0.555 0.524
2080ti 32 0.312 0.214 0.449 0.519 0.492
titan rtx 1 0.268 0.184 0.536 0.253 0.251
titanxp 1 0.286 0.222 0.568 0.270 0.276

FBNet F3 Train-Test Correlation Latency Correlation between Test and Train devices
essential ph 1 pixel2 pixel3 raspi4 samsung s7

1080ti 1 0.258 0.300 0.249 0.256 0.307
1080ti 32 0.338 0.409 0.555 0.524 0.372
2080ti 1 0.240 0.287 0.243 0.241 0.293

titan rtx 1 0.268 0.296 0.253 0.251 0.312
titan rtx 32 0.313 0.369 0.471 0.450 0.352

FBNet F4 Train-Test Correlation Latency Correlation between Test and Train devices
1080ti 64 2080ti 1 eyeriss gold 6226 gold 6240 raspi4 samsung s7 silver 4210r titan rtx 1 titan rtx 32

1080ti 1 0.439 0.944 0.247 0.207 0.536 0.256 0.307 0.653 0.948 0.846
pixel2 0.496 0.287 0.767 0.747 0.678 0.747 0.629 0.653 0.296 0.369

essential ph 1 0.414 0.240 0.678 0.670 0.663 0.660 0.650 0.608 0.268 0.313

FBNet FA Train-Test Correlation Latency Correlation between Test and Train devices
1080ti 1 1080ti 32 1080ti 64 2080ti 1 2080ti 32 2080ti 64 titan rtx 1 titan rtx 32 titan rtx 64 titanx 1 titanx 32 titanx 64 titanxp 1 titanxp 32 titanxp 64

gold 6226 0.207 0.241 0.323 0.178 0.214 0.297 0.184 0.209 0.274 0.232 0.270 0.344 0.222 0.250 0.303
essential ph 1 0.258 0.338 0.414 0.240 0.312 0.395 0.268 0.313 0.388 0.300 0.379 0.427 0.286 0.362 0.406
samsung s7 0.307 0.372 0.421 0.293 0.349 0.406 0.312 0.352 0.404 0.347 0.402 0.435 0.337 0.388 0.416

pixel2 0.300 0.409 0.496 0.287 0.388 0.485 0.296 0.369 0.466 0.328 0.449 0.512 0.318 0.425 0.486

Table 22. FBNet task train-test correlations. Rows are test devices, Column headers are training devices.



On Latency Predictors for Neural Architecture Search

Device Type NB201 FBNet

HELP & HW-NAS-Bench (Lee et al., 2021b; Li et al., 2021)

1080ti 1 GPU ✓ ✓
2080ti 1 GPU ✓ ✓
1080ti 32 GPU ✓ ✓
2080ti 32 GPU ✓ ✓
1080ti 256 GPU ✓ ✓
2080ti 256 GPU ✓ ✓
titan rtx 1 GPU ✓ ✓
titanx 1 GPU ✓ ✓
titanxp 1 GPU ✓ ✓
titan rtx 32 GPU ✓ ✓
titanx 32 GPU ✓ ✓
titanxp 32 GPU ✓ ✓
titan rtx 256 GPU ✓ ✓
titanx 256 GPU ✓ ✓
titanxp 256 GPU ✓ ✓

gold 6240 CPU ✓ ✓
silver 4114 CPU ✓ ✓
silver 4210r CPU ✓ ✓
gold 6226 CPU ✓ ✓

samsung a50 mCPU ✓ ✓
pixel3 mCPU ✓ ✓
samsung s7 mCPU ✓ ✓
essential ph 1 mCPU ✓ ✓
pixel2 mCPU ✓ ✓

fpga FPGA ✓ ✓
raspi4 eCPU ✓ ✓
eyeriss ASIC ✓ ✓

Device Type NB201 FBNet

EAGLE(Dudziak et al., 2020)

core i7 7820x fp32 CPU ✓ ✗

snapdragon 675 kryo 460 int8 mCPU ✓ ✗
snapdragon 855 kryo 485 int8 mCPU ✓ ✗
snapdragon 450 cortex a53 int8 mCPU ✓ ✗

edge tpu int8 eTPU ✓ ✗

gtx 1080ti fp32 GPU ✓ ✗

jetson nano fp16 eGPU ✓ ✗
jetson nano fp32 eGPU ✓ ✗

snapdragon 855 adreno 640 int8 mGPU ✓ ✗
snapdragon 450 adreno 506 int8 mGPU ✓ ✗
snapdragon 675 adreno 612 int8 mGPU ✓ ✗

snapdragon 675 hexagon 685 int8 mDSP ✓ ✗
snapdragon 855 hexagon 690 int8 mDSP ✓ ✗

Table 23. Devices used in our paper and their categories (type). Note that we are referring to latency measurements on the same device
with different batch sizes as a new device as well, this is because in some cases, there is a low correlation between these measurements.



On Latency Predictors for Neural Architecture Search

Task Index Type Devices

ND

Train 1080ti 1
1080ti 32
1080ti 256
silver 4114
silver 4210r
samsung a50
pixel3
essential ph 1
samsung s7

Test titan rtx 256
gold 6226
fpga
pixel2
raspi4
eyeriss

N1

Train embedded tpu edge tpu int8
eyeriss
mobile gpu snapdragon 675 adreno 612 int8
mobile gpu snapdragon 855 adreno 640 int8
pixel3

Test 1080ti 1
titan rtx 32
titanxp 1
2080ti 32
titan rtx 1

N2

Train 1080ti 1
1080ti 32
titanx 32
titanxp 1
titanxp 32

Test embedded gpu jetson nano fp16
embedded tpu edge tpu int8
mobile dsp snapdragon 675 hexagon 685 int8
mobile dsp snapdragon 855 hexagon 690 int8
pixel3

N3

Train desktop gpu gtx 1080ti fp32
embedded gpu jetson nano fp16
eyeriss
mobile dsp snapdragon 675 hexagon 685 int8
mobile gpu snapdragon 855 adreno 640 int8

Test 1080ti 1
2080ti 1
titanxp 1
2080ti 32
titanxp 32

Table 24. Hardware devices for NASBench-201



On Latency Predictors for Neural Architecture Search

Task Index Type Devices

N4

Train desktop cpu core i7 7820x fp32
embedded gpu jetson nano fp32
embedded tpu edge tpu int8
eyeriss
mobile cpu snapdragon 855 kryo 485 int8
mobile dsp snapdragon 675 hexagon 685 int8
mobile dsp snapdragon 855 hexagon 690 int8
mobile gpu snapdragon 675 adreno 612 int8
mobile gpu snapdragon 855 adreno 640 int8
pixel2

Test 1080ti 1
2080ti 1
titan rtx 1

N2

Train titan rtx 1
titan rtx 32
titanxp 1
2080ti 1
titanx 1
1080ti 1
titanx 32
titanxp 32
2080ti 32
1080ti 32
gold 6226
samsung s7
silver 4114
gold 6240
silver 4210r
samsung a50
pixel2

Test eyeriss
desktop gpu gtx 1080ti fp32
embedded tpu edge tpu int8

Table 25. Hardware devices for NASBench-201



On Latency Predictors for Neural Architecture Search

Table 26. Hardware devices for FBNet

Task Index Type Devices

FD

Train 1080ti 1
1080ti 32
1080ti 64
silver 4114
silver 4210r
samsung a50
pixel3
essential ph 1
samsung s7

Test fpga
raspi4
eyeriss

F1

Train 2080ti 1
essential ph 1
silver 4114
titan rtx 1
titan rtx 32

Test eyeriss
fpga
raspi4
samsung a50
samsung s7

F2

Train essential ph 1
gold 6226
gold 6240
pixel3
raspi4

Test 1080ti 1
1080ti 32
2080ti 32
titan rtx 1
titanxp 1

F3

Train essential ph 1
pixel2
pixel3
raspi4
samsung s7

Test 1080ti 1
1080ti 32
2080ti 1
titan rtx 1
titan rtx 32

Task Index Type Devices

F4

Train 1080ti 64
2080ti 1
eyeriss
gold 6226
gold 6240
raspi4
samsung s7
silver 4210r
titan rtx 1
titan rtx 32

Test 1080ti 1
pixel2
essential ph 1

FA

Train 1080ti 1
1080ti 32
1080ti 64
2080ti 1
2080ti 32
2080ti 64
titan rtx 1
titan rtx 32
titan rtx 64
titanx 1
titanx 32
titanx 64
titanxp 1
titanxp 32
titanxp 64

Test gold 6226
essential ph 1
samsung s7
pixel2


