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ABSTRACT
Efficient deployment of neural networks (NN) requires the co-optimization of accuracy and latency. For example,
hardware-aware neural architecture search has been used to automatically find NN architectures that satisfy a
latency constraint on a specific hardware device. Central to these search algorithms is a predictive model that is
designed to provide a hardware latency estimate for a candidate NN architecture. Recent research has shown that
the sample efficiency of these predictive models can be greatly improved through pre-training on some training
devices with many samples, and then transferring the predictor on the test (target) device. Transfer learning and
meta-learning methods have been used for this, but often exhibit significant performance variability. Additionally,
the evaluation of existing latency predictors has been largely done on hand-crafted training/test device sets, making
it difficult to ascertain design features that compose a robust and general latency predictor. To address these
issues, we introduce a comprehensive suite of latency prediction tasks obtained in a principled way through
automated partitioning of hardware device sets. We then design a general latency predictor to comprehensively
study (1) the predictor architecture, (2) NN sample selection methods, (3) hardware device representations, and
(4) NN operation encoding schemes. Building on conclusions from our study, we present an end-to-end latency
predictor training strategy that outperforms existing methods on 11 out of 12 difficult latency prediction tasks,
improving latency prediction by 22.5% on average, and up to to 87.6% on the hardest tasks. By utilizing our
latency predictor, we are able to speed up HW-Aware NAS by 5.8× in wall-clock time. Our code is available at
https://github.com/abdelfattah-lab/nasflat latency.

1 INTRODUCTION

With recent advancements in deep learning (DL), neural
networks (NN) have become ubiquitous, serving a wide
array of tasks in different deployment scenarios. With this
ubiquity, there has been a surge in the diversity of hardware
devices that NNs are deployed on. This presents a unique
challenge as each device has its own attributes and the same
NN may exhibit vastly different latency and energy char-
acteristics across devices. Therefore, it becomes pivotal
to co-optimize both accuracy and latency to meet stringent
demands of real-world deployment (Tan et al., 2019; Cai
et al.; Wu et al., 2019; Xu et al., 2020; Cai et al., 2020;
Wang et al., 2020). The simplest way to include latency
optimization is to profile the latency of a NN on its tar-
get device. However, this becomes costly and impractical
when there are multiple small changes performed on the
NN architecture either manually, or automatically through
neural architecture search (NAS) (Benmeziane et al., 2021).
Not to mention that hardware devices are often not even
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available, or their software stacks do not yet support all
NN architecture variants (Elsken, 2023), making it impos-
sible to perform hardware-aware NN optimizations. For
these reasons, much research has investigated statistical la-
tency predictors that can accurately model hardware device
latency with as few on-device measurements as possible.

Early work has used FLOPs as a proxy for latency (Yu
et al., 2020), while others created layerwise latency mod-
els (Cai et al.). However, both of these approaches generally
performed poorly and could not adequately represent end-
to-end device latency. More recent work has used Graph
Convolutional Networks (GCNs) (Dudziak et al., 2020) with
much higher success in predicting the latency of NN archi-
tectures. However, a large number of NN latency samples
needed to be gathered from each device for accurate mod-
eling. To mitigate this, HELP (Lee et al., 2021b) and Mul-
tiPredict (Akhauri & Abdelfattah, 2023) leverage transfer
learning to train latency predictors with only a few NN la-
tency samples. In this paradigm, a predictor is first trained
on a large set of training devices (the training stage), and
then through few-shot meta-learning, fine-tuned to predict
latency on a set of test devices (the transfer stage). This
latter transfer stage can be performed efficiently using only
a few sample measurements thus enabling the creation of
latency predictors for new hardware devices in an inexpen-

https://github.com/abdelfattah-lab/nasflat_latency
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Figure 1. Predictors are central to hardware-aware neural architecture search, as they enable quick evaluation of candidate architectures.
Latency predictors require many training samples, but can be made more sample-efficient through pre-training on a set of training devices.
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sive way. Figure 1 illustrates the training and transfer of
few-shot latency predictors.

This new class of few-shot latency predictors has become
very practical and attractive for use within NAS and other
NN latency optimization flows. However, we have identified
key shortcomings of existing works, as well as open research
questions relating to the design of such predictors. First,
the choice of the few NN latency samples for transferring
a predictor are critical. Prior work has largely chosen this
handful of NN architectures randomly but this often results
in very high variance in predictive ability (Lee et al., 2021b;
Akhauri & Abdelfattah, 2023). Simply put, the predictor
performance is directly linked to the choice of those few
samples. Second, multi-hardware latency predictors require
an additional input that represents the hardware device for
both the pretraining and transfer phases. One-hot encoding
or a vector of latency measurements were used in the past
for this purpose. Third, NN operations were represented in
the same way across different devices even though differ-
ent operations exhibit different properties inherent to each
device’s hardware architecture and software compilation
stack. Finally, the predictor architecture itself was largely
reused from prior work (Dudziak et al., 2020) without ex-
plicit modifications for multi-device hardware predictors.
To address these main points, our work makes the following
contributions:

1. We investigate and empirically test different NN sam-
pling methods for few-shot latency predictors, demon-
strating a 5% improvement compared to random sam-
pling (Lee et al., 2021b), while requiring no additional
samples, unlike uniform latency sampling (Nair et al.,
2022).

2. We introduce hardware-specific NN operation embed-
dings to modulate NN encodings based on each hard-
ware device, demonstrating a 7.8% improvement in
latency prediction. We additionally investigate the im-
pact of supplemental encodings including unsupervised

(Arch2Vec) (Yan et al., 2020), computationally aware
(CATE) (Yan et al., 2021), and metric based (ZCP)
(Abdelfattah et al., 2021) encodings resulting in 6.2%
improvement in prediction accuracy.

3. Drawing from our evaluations on 12 experimental
settings, we present NASFLAT, Neural Architecture
Sampler And Few-Shot Latency Predictor, a multi-
device latency predictor architecture which combines
our graph neural network with an effective sampler,
supplementary encodings and transfer learning to de-
liver an average latency predictor performance im-
provement of 22.5%.

Our detailed investigation offers insights into effective few-
shot latency predictor design, and results in improvements
up to 87.6% on the most challenging prediction tasks (N2,
FA, F2, F3 in Table 7), compared to prior work. Existing
latency prediction techniques often incur higher NAS costs
owing to their sample inefficiency or complicated second-
order transfer strategies. When evaluating end-to-end NAS,
our approach demonstrates a 5.8× speed-up in wall-clock
time dedicated to latency predictor fine-tuning and predic-
tion, compared to the best existing methods.

2 RELATED WORK

2.1 Hardware Latency Predictors

Latency predictors enable NAS to co-optimize latency and
accuracy (Tan et al., 2019; Cai et al.; Wu et al., 2019; Xu
et al., 2020; Cai et al., 2020; Wang et al., 2020; Chai et al.,
2023). Latency prediction methods have evolved from proxy
based methods such as FLOPs (Yu et al., 2020) to learning-
based methods. This is largely because such proxies often
do not correlate strongly with latency at deployment. To
get better estimates for latency, some works used layer-
wise latency prediction methods by measuring the latency
for each operation and summing up the operations that the
neural network has via a look-up table (Cai et al.). However,
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Figure 2. A few-shot latency predictor training pipeline. (1) We pre-train a predictor on a set of training devices. (2) The trained predictor
can be adapted to any target device with just a few samples, using transfer learning. In this pipeline, the methodology used to sample
neural networks as well as the predictor architecture play a key role.
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this method does not account for operation pipelining or any
compiler optimizations that may take place when multiple
layers are executed consecutively.

BRP-NAS (Dudziak et al., 2020) takes into account such
complexities by learning an end-to-end latency predictor
that is trained on latency samples from the target device.
However, the latency measurements of a large number of
NN architectures are required to train the predictor from
scratch. HELP (Lee et al., 2021b) employs a pool of refer-
ence devices to train its predictor and utilizes meta-learning
techniques to adapt this predictor to a new device. The
transfer of a predictor from some source (training) devices
to a target (test) device significantly improves the sample
efficiency of predictors. MultiPredict (Akhauri & Abdelfat-
tah, 2023) facilitates predictor transfer across search spaces
through unified encodings based on zero-cost proxies or
hardware latency measurements. Furthermore, MultiPredict
investigates learnable hardware embeddings to represent dif-
ferent hardware devices within predictors. In our work, we
extend the idea of a learnable hardware embedding to make
it operation specific. Having a hardware embedding that
explicitly interacts with the operation embeddings of a neu-
ral network architecture can capture intricacies in compiler
level optimizations when executing hardware.

When transferring a predictor from a source device to a
target device, the choice of samples used for few-shot learn-
ing plays a key role in the final performance. MAPLE-
Edge(Nair et al., 2022) investigates the impact of using the
training device set latencies as reference for architecture
to sample from the target device. For very large spaces,
latencies of a sufficient diversity of neural network archi-
tectures may not be available even on the training devices.
To address this, we look at methods of sampling a diverse
set of neural networks from a target device which does not
depend on latency or accuracy.

2.2 Encodings for NN representation

Early research in building predictors for accuracy and la-
tency focused on using the adjacency and operation matrices
to represent the directed acyclic graph (DAG) for the neu-
ral network architecture into a flattened vector to encode
architectures (White et al., 2020). HELP (Lee et al., 2021b)
and MultiPredict (Akhauri & Abdelfattah, 2023) use the
flattened one-hot operation matrix for the FBNet space with
a multi layer perceptron for the latency and accuracy pre-
dictor. BRPNAS (Dudziak et al., 2020) employed a GCN
with the adjacency-operation matrices as an input to build a
latency and accuracy predictor for NASBench-201. More re-
cently, works such as MultiPredict investigated the effect of
capturing broad architectural properties by generating a vec-
tor of zero-cost proxies and hardware latencies to represent
NNs. Additionally, there has been significant work in the
field of encoding neural networks, notably the unsupervised
learned encoding introduced in Arch2Vec (Yan et al., 2020)
which uses a graph auto-encoder to learn compressed latent
representation for an NN architecture. Similarly, CATE
(Yan et al., 2021) leveraged concepts from masked language
modeling to learn encodings for computationally similar
architectures with a transformer. In our work, we leverage
these NN encodings to sample diverse architectures in the
neural architecture search space. We also leverage these
encodings to provide additional architectural information to
our latency predictor as shown in Figure 2.

3 LATENCY PREDICTOR DESIGN

3.1 Predictor Architecture

The design of the predictor itself plays a key role in im-
proving the sample efficiency of latency predictors. BRP-
NAS (Dudziak et al., 2020) used a GCN predictor to capture
information about both the NN operations and connectiv-
ity. The same predictor has subsequently been used by
HELP (Lee et al., 2021b). TA-GATES (Ning et al., 2022)
further enhanced this predictor architecture with residual
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Figure 3. Our model architecture maintains separate operation and hardware embeddings which are concatenated and passed to a GNN to
refine and contextualize the embeddings with respect to the overall neural architecture. This serves as the architecture embedding and is
passed to another GNN along with the adjacency and node information. Optionally, supplementary encodings can be concatenated with
the output of the GNN and fed to a prediction head to estimate the latency of the architecture.
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connections in the GCN module and a training-analogous
operation update methodology, by maintaining a backward
graph neural network module. This allows the iterative
refinement of operation embeddings to provide more infor-
mation about the architecture. We investigate the impact
of these and other key components of predictor design in
the Appendix (A.4), and design a latency predictor that ac-
counts for both operation and hardware embeddings. We
subsequently use this predictor for all experiments in this
paper.

Figure 3 shows how we maintain separate embedding tables
for the hardware device and operations. From our ablations
in A.4, we find that a single GNN module to refine the op-
eration embeddings is sufficient. To capture the complex
interactions such as layer pipelining and operation fusion,
we further incorporate the hardware embedding into each
of the operation embeddings via concatenation. This joint
embedding is then passed to a small operation GNN along
with the adjacency and node embedding. Then, the embed-
ding of the output node of the GNN is provided to an MLP
which provides the hardware-operation joint embedding for
the second (main) GNN used for modeling an input NN.
Finally, supplementary encoding (discussed more below)
can be concatenated with the GNN output and provided to a
prediction head that can then output a latency estimate.

3.2 GNN Module Design

Existing Graph Convolutional Networks (GCNs) experience
an over-smoothing challenge, leading to a loss of discrim-
inative information in the node embedding as aggregation
layers increase. Addressing this, GATES (Ning et al., 2023)
introduced the Dense Graph Flow (DGF) module, which
employs residual connections to maintain discriminative
features across nodes. Furthermore, the Graph Attention
(GAT) methodology, distinct from DGF, incorporates an at-
tention mechanism during node aggregation. GAT evaluates
node interactions through an attention layer. An operation
attention mechanism, along with LayerNorm, refines infor-

mation aggregation and ensures stable training, respectively.
Further details of their implementation are in A.3.1. In our
latency predictor, we use an ensemble of DGF and GAT
modules.

3.3 Supplementary Encodings

Supplementary encodings are different ways to represent
the input NN, and therefore may help contextualize the rela-
tions between a NN with respect to the entire search space.
This can be useful for few-shot transfer of latency predic-
tors. Learned encodings like Arch2Vec (Yan et al., 2020),
ZCP (Akhauri & Abdelfattah, 2023) and CATE (Yan et al.,
2021) provide distinct representations that allows them to
effectively distinguish between various neural network (NN)
architectures. For example, CATE (Yan et al., 2021) cap-
tures computational characteristics of NNs through its latent
representations formed by computational clustering. Si-
multaneously, ZCP offers insights at the architectural level,
acting as proxies that might correlate with accuracy.

To enhance the robustness and accuracy of our latency
predictor, we integrate these encodings into its structure.
Specifically, Arch2Vec, CATE, and ZCP encodings are in-
troduced as supplementary inputs to the predictor head of
our latency predictor. As illustrated in Figure 3, these en-
codings are fed into the MLP prediction head subsequent
to the node aggregation phase. This augmentation not only
incorporates the rich structural and computational charac-
teristics of NN architectures but also helps the predictor
to make better-informed latency estimates. In our experi-
ments, we observed that incorporating architectural-level
information from encodings can boost the sample-efficiency
of our latency predictors. We also introduce the CAZ en-
coding, a combined representation formed by concatenating
CATE, Arch2Vec, and ZCP, aiming to leverage the com-
bined strengths of all three representations.
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3.4 Transfer Of Pre-Trained Predictor

To pretrain the predictor, we form a large dataset from a
number of source devices. This conventional training step
is the same as prior work (Lee et al., 2021b; Akhauri & Ab-
delfattah, 2023). Once this pre-training phase is concluded,
the subsequent step is the adaptation to a target hardware
device. In alignment with the methodology described in
MultiPredict (Akhauri & Abdelfattah, 2023), the predictor
undergoes a fine-tuning process using the samples from the
target device. The learning rate is re-initialized and fine-
tuning of the predictor is conducted on the target device. We
find that this is sufficient to calibrate the predictor to offer
accurate latency estimates on the unseen device.

4 NEURAL NETWORK SAMPLERS

One of the key aspects of latency predictor training, espe-
cially in the low-sample count regime is choosing diverse
neural networks. If all the samples profiled on the target
device have similar computational characteristics, the pre-
dictor may not gather enough information to generalize. As
depicted in Figure 2, one of the key aspects of predictor
training and transfer is the sampler, which needs to select a
diverse set of neural architectures to benchmark for few-shot
learning. MAPLE-Edge (Nair et al., 2022) uses latencies
on a set of reference devices to identify architectures with
distinct computational properties. While this is a very ef-
fective strategy to identify computationally distinct neural
networks, this requires a very large number of on-device
latency measurements—a key parameter that we would like
to minimize.

In this section, we investigate methods of encoding NN ar-
chitectures. We look at the impact of these encodings in
helping us sample more diverse architectures. One key ben-
efit of using these encodings to sample diverse architectures
is that we no longer depend on reference device latency mea-
surements in the sampling process, thus improving overall
predictor training efficiency.

4.1 Neural Network Encodings

A foundational aspect of hardware-aware NAS is to opti-
mize an objective function ℓ : A → R, where ℓ can quantify
several performance metrics such as accuracy, latency, en-
ergy (Dudziak et al., 2020). A represents the NN search
space, and architectures a ∈ A can be represented as ad-
jacency - operation matrices (White et al., 2020). There
are several methods that introduce alternative methods to
represent a (Yan et al., 2020; 2021; Akhauri & Abdelfattah,
2023). In this section, we look at some of these methods of
encoding neural networks.

Learned encodings aim to represent the structural prop-
erties of a neural architecture in a latent vector without

utilizing accuracy. Arch2Vec (Yan et al., 2020) uses a varia-
tional graph isomorphism autoencoder to learn to regenerate
the adjacency-operation matrix. CATE (Yan et al., 2021)
introduces a transformer that uses computationally similar
architecture pairs (clustered by similar FLOPs or parameter
count) to learn encodings. Naturally, the CATE encoding
clusters architectures that have similar computational prop-
erties.

Zero-Cost Proxies (ZCP) encode neural networks as a vec-
tor of metrics. Each of these metrics attempt to encode
properties of a neural network that may correlate with accu-
racy. Distinct connectivity patterns and operation choices
(via varying adjacency-operation matrices) would initialize
NNs that exhibit varied accuracy and latency characteristics.
Thus, ZCP can implicitly capture architectural properties
of neural networks, but does not contain explicit structural
information.

4.2 Encoding-based Samplers

Encodings like ZCP, Arch2Vec, and CATE condense a broad
spectrum of architectural information into a latent space.
While Arch2Vec compresses the adjacency-operation ma-
trix, capturing its intrinsic structure, CATE identifies and
groups computationally similar architectures. In contrast,
ZCPs capture global properties of the neural network that
may correlate with accuracy or may encode operator level
information about the architecture. Such encodings, col-
lectively contain a rich representation of the entire neural
architecture design space which can be used to decide which
architectures to obtain the latency for on the target device.

For the ZCP encoding, we use 13 zero cost proxies, and gen-
erate 32-dimensional vectors for the Arch2Vec and CATE
encodings. We further introduce an encoding “CAZ”, which
combines the CATE, Arch2Vec and ZCP. Given the rich-
ness and diversity of the encoded representation of neural
architectures, a systematic approach to selection becomes
essential. We thus investigate two methodologies of using
the encoding to identify architectures to sample for few-shot
transfer to a target device.

Cosine Similarity and KMeans Clustering: Through our
framework, we leverage cosine similarity (Lahitani et al.,
2016)—an intuitive metric of vector similarity—to discern
architectures that may have distinct properties. Focusing on
structures with reduced average cosine similarities ensures a
wider design space coverage, potentially identifying ‘outlier’
architectures. Concurrently, utilizing the KMeans clustering
algorithm (MacQueen et al., 1967), we categorize encoded
vectors into distinct groups, and opt for the one closest to
the centroid of each cluster. The rationale is that these archi-
tectures are most representative of their respective clusters
and hence provide a good spread across the design space.
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Table 1. The impact of operation-wise hardware embedding (OPHW) and hardware embedding initialization (INIT) on latency predictor
performance. Both optimizations consistently demonstrate an improvement.

OPHW ND N1 N2 N3 N4 NA FD F1 F2 F3 F4 FA

✗ 0.8040.026 0.7010.056 0.7630.044 0.6800.042 0.7570.061 0.6600.030 0.8390.010 0.7530.031 0.7450.081 0.6850.085 0.8130.030 0.5660.081
✓ 0.8060.038 0.7190.050 0.7950.034 0.7040.058 0.7530.052 0.6640.059 0.8450.009 0.7570.048 0.7690.076 0.6940.076 0.8320.026 0.6280.103

INIT ND N1 N2 N3 N4 NA FD F1 F2 F3 F4 FA

✗ 0.7940.038 0.7010.046 0.7910.036 0.7180.055 0.7500.050 0.6580.080 0.7070.158 0.6090.119 0.7540.064 0.6550.084 0.6590.158 0.5590.118
✓ 0.8060.038 0.7190.050 0.7950.034 0.7040.058 0.7530.052 0.6640.059 0.8450.009 0.7570.048 0.7690.076 0.6940.076 0.8320.026 0.6280.103

Table 2. Device sets for NASBench-201 and FBNet. S, T indicate
source and target device pools respectively. Each device pool may
contain more than one device, full details in the Appendix. Unless
otherwise specified, we report the average correlation and standard
deviation across trials and target (T) devices.

Devices NB201 FBNet

ND N1 N2 N3 N4 NA FD F1 F2 F3 F4 FA

DSP - - T - - - - - - - - -
CPU ST - - S S ST ST S S - S T
GPU ST T S T T S ST S T T ST S

FPGA T - - - - - - T S S - -
ASIC T S - S S T - T - - S -

eTPU - S T - S T - - - - - -
eGPU - - T S S - - - - - - -
eCPU T - T - - - S T - - S -

mGPU - S - S S - - - - - - -
mCPU S S - - S S - S S S ST T
mDSP - - - S S - - - - - - -

5 HARDWARE EMBEDDINGS

HELP and MultiPredict (Lee et al., 2021b; Akhauri & Ab-
delfattah, 2023) investigate different methods of represent-
ing hardware, as an assigned device index, a vector of archi-
tectural latency measurements, or as a learnable hardware
embedding table, which is relayed to the predictor for iden-
tifying devices. However, such an approach potentially
oversimplifies the intricate dynamics of neural network de-
ployment on hardware, thereby introducing the need for an
interaction between the operation and hardware embedding.
In this section, we discuss a methodology to initialize and
utilize hardware embeddings to better model the dynamics
of the target hardware.

5.1 Operation Specific Hardware Embedding

From a hardware perspective, the location of an operation
in relation to its preceding and succeeding layers can con-
siderably influence overall latency. This can be attributed
to optimizations such as layer pipelining, where operations
are organized in a staggered manner to maximize hardware
utilization. Additionally, optimizations such as layer fusion
which combine adjacent layers to streamline computations
further underscore the importance of operation placement.

The latency predictor accepts the adjacency matrix, node,

Algorithm 1 Methodology to partition device sets.
Input: Graph G (negative correlations), integers m, n
Output: Modified graph B
b m, b n = kernighan-lin(G)
{Initialize bipartite graph with correlations}
B = initBipartite(b m, b n,correlations)
while len(B[0]) ̸= m or len(B[1]) ̸= n do

{Identify disjoint device sets U and V }
l, r = B[0], B[1]
{Remove node with highest correlation.}
if len(B[0]) > m then
removeMaxWeightNode(B, l)

end if
if len(B[1]) > n then
removeMaxWeightNode(B, r)

end if
end while

and operation indices as its inputs. The operation index is
utilized to retrieve a learnable operation embedding from an
embedding table, which encodes the properties and behav-
iors of the respective operation, however, when modeling
latencies for various hardware devices, this singular oper-
ation embedding might not fully capture the nuances of
each hardware. As depicted in Figure 3, we concurrently
incorporate hardware-specific embeddings into our predic-
tor, such that we are able to model the interaction between
an operation and the hardware depending on its nature and
position. Thus, the operation-specific hardware embedding
introduces a more granular approach wherein each operation
within the neural network is concatenated with a specific
hardware embedding from an embedding table. Such a strat-
egy not only encapsulates the intrinsic characteristics of the
operation but also embeds information regarding how that
specific operation would behave on the given hardware.

5.2 Hardware Embedding Initialization

When adding a new target device, a good initialization for
its hardware embedding is critical. For this, we gauge the
computational correlation of the target device latency with
each of the training devices. By identifying the training
device with the highest correlation, we can use its learned



On Latency Predictors for Neural Architecture Search

Table 3. On 10 out of 12 device sets, there is a benefit in using learned or zero-cost encodings for training-transfer sample selection.

Sampler ND N1 N2 N3 N4 NA Geometric Mean

Latency (Oracle) 0.9290.027 0.9600.011 0.7930.078 0.9510.021 0.9190.055 0.8510.039 0.898

Random 0.9110.038 0.9460.026 0.7570.052 0.9340.032 0.9400.026 0.7900.070 0.876
Params 0.8980.068 0.9340.038 0.7670.068 0.9180.033 0.9400.032 0.8010.095 0.873
Arch2Vec 0.9120.045 0.9310.046 0.7410.073 0.9300.036 0.9070.069 0.8490.035 0.875
CATE 0.8930.045 0.9370.036 0.7610.090 0.9350.032 0.9450.038 0.7670.136 0.869
ZCP 0.8830.075 0.9560.039 0.6360.170 0.9240.051 0.8830.071 0.7290.212 0.826
CAZ 0.9250.046 0.9570.028 0.7610.107 0.9350.025 0.8660.091 0.6800.336 0.847

Sampler FD F1 F2 F3 F4 FA Geometric Mean

Latency (Oracle) 0.7550.048 0.7070.052 0.8320.035 0.8490.022 0.6990.077 0.6240.112 0.740

Random 0.6650.187 0.6420.121 0.8010.063 0.8090.050 0.6580.113 0.6150.115 0.694
Params 0.7350.073 0.6890.070 0.7940.078 0.7910.062 0.6040.239 0.5510.146 0.687
Arch2Vec 0.7540.071 0.6990.046 0.7900.065 0.7820.083 0.7390.054 0.6310.169 0.730
CATE 0.6630.132 0.6920.079 0.7780.078 0.7800.076 0.6450.118 0.5520.147 0.680
ZCP 0.7440.060 0.6650.111 0.7890.069 0.8010.055 0.7340.051 0.5860.161 0.715
CAZ 0.6960.107 0.6350.105 0.8080.040 0.7320.097 0.6260.127 0.5570.141 0.670

hardware embedding as the starting point for the target
device. This method harnesses latency similarities between
devices, providing a good initialization for predictions on
the target device. In addition, it avoids a cold start when
using the predictor for a new device, allowing the predictor
to be functional with just a small number of latency samples
on the new device.

6 EXPERIMENTS

In this section, we systematically investigate key design
considerations for predictor design. We begin by looking
at the effectiveness of our proposed operation specific hard-
ware embedding as well as hardware embedding initializa-
tion. We further investigate the impact that graph neural
network module design has on predictor efficacy, looking
at graph convolutional networks, graph attention networks
and their ensemble. We then study the impact of neural
network encoding strategies on selection of neural network
architectures for transferring predictors to a target device.
By supplementing our predictor with additional NN en-
codings, we provide additional information coveying the
relative performance of NNs within a search space—our ab-
lation shows improved prediction. Finally, we combine our
empirically-driven optimizations on sampling, encodings,
hardware embeddings, and predictor architecture to design
a state-of-the-art latency predictor. Our evaluation encom-
passes both the Spearman Rank Correlation coefficient of
predicted latency and ground truth on multiple device sets,
in addition to end-to-end HW-Aware NAS.

6.1 Designing Evaluation Sets

One of the key challenges in evaluating HW-Aware NAS
is the lack of standardized evaluation sets and hardware
latency data-sets. HW-NAS-Bench (Li et al., 2021), HELP
(Lee et al., 2021b) and EAGLE (Dudziak et al., 2020) col-
lectively open-source latencies for a wide range of hardware
on the NASBench-201 and FBNet design spaces, making
HW-Aware NAS evaluation easier. However, current de-
vice sets showed high training-test correlation (Akhauri &
Abdelfattah, 2023). For NASBench-201 and FBNet, high
training-test correlation device sets are denoted as ‘ND’ and
‘FD’, respectively. A key shortcoming in these existing
works is that the devices that the predictor is evaluated on
is hand-picked, exhibiting a high correlation between the
training devices and test devices, a property that is not guar-
anteed in practice. To circumvent this limitation, we employ
an automated algorithmic strategy to design training and
test devices to maintain low mutual correlation. Initially, we
compute the Spearman correlation coefficient of latencies
between all available devices to construct a graph wherein
correlations between devices are used as edge weights. As
Algorithm 1 shows, we then leverage the Kernighan-Lin
(Kernighan & Lin, 1970) bisection method to bisect the
graph, aiming to group devices with minimal intra-group
correlation. We iteratively trim the bipartite graph to main-
tain a specified number of devices in each set. By algorith-
mically partitioning device sets, we ensure an objective and
unbiased selection process. With this strategy, we introduce
four device sets for NASBench-201 and FBNet, identified
by (N1, N2, N3, N4) and (F1, F2, F3, F4) in Table 2. We
also show “NA” and “FA” introduced by MultiPredict in the
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Table 4. Over three device sets on two NAS spaces, there is a benefit in using supplementary encodings for representing neural networks.

Encoding ND N1 N2 N3 N4 NA Geometric Mean

AdjOp 0.9590.018 0.9710.010 0.8480.063 0.9660.006 0.9650.012 0.8930.029 0.932

(+ Arch2Vec) 0.9610.010 0.9720.007 0.8160.065 0.9680.005 0.9650.009 0.8950.035 0.927
(+ CATE) 0.9540.022 0.9620.029 0.8330.072 0.9670.007 0.9670.008 0.9070.024 0.930
(+ ZCP) 0.9550.024 0.9680.014 0.8550.026 0.9630.009 0.9620.011 0.8960.018 0.932
(+ CAZ) 0.9600.014 0.9720.005 0.8610.036 0.9650.005 0.9660.006 0.8990.012 0.936

Encoding FD F1 F2 F3 F4 FA Geometric Mean

AdjOp 0.7830.035 0.7440.032 0.8550.021 0.8500.026 0.7500.066 0.6940.060 0.777

(+ Arch2Vec) 0.8810.016 0.7880.027 0.8780.020 0.8900.012 0.8480.020 0.7230.034 0.832
(+ CATE) 0.8370.031 0.7440.037 0.8390.022 0.8450.037 0.8050.023 0.6780.055 0.788
(+ ZCP) 0.9600.008 0.8420.020 0.8950.018 0.8990.019 0.8430.028 0.7760.038 0.867
(+ CAZ) 0.8990.021 0.7830.033 0.8420.036 0.8520.029 0.7610.056 0.6830.077 0.800

Table 5. On NB201, GAT outperforms DGF. The difference is less
evident on FBNet, we thus use an ensemble of DGF and GAT.

GNN Module ND N1 N2 N3

DGF 0.8140.026 0.7410.032 0.8020.021 0.7100.042
GAT 0.9650.005 0.8480.038 0.6120.032 0.7620.039

Ensemble 0.9650.011 0.8290.046 0.6340.029 0.7890.054

GNN Module FD F1 F2 F3

DGF 0.8440.004 0.7400.055 0.7520.076 0.6210.120

GAT 0.8230.019 0.7490.042 0.7000.114 0.5890.083
Ensemble 0.8350.007 0.7330.059 0.7660.013 0.6090.106

same table (A signifying the adversarial nature of the device
set) in Table 2.

6.2 Experimental Setup

In each of our experiments, we pretrain our predictor on
many samples from multiple source devices, then we fine-
tune the predictor on only a few samples from the target
devices as defined by our evaluation sets. We report the
Spearman Rank Correlation Coefficient of predicted latency
relative to ground-truth latency values as a measure of pre-
dictive performance. In Table 5, we investigate the GAT and
DGF GNN module. In all our experiments, we decide to use
the DGF-GAT ensemble as the GNN module. The appendix
(Table 20) details the precise experimental settings for each
of our results.

6.3 Hardware-aware Operation Embeddings

Instead of representing operations with a fixed embedding,
we modulate embeddings based on each hardware device
as described in Section 5. Table 1 evaluates the impact of
this optimization on the predictive ability using our latency

predictor. We find that on 11 out of 12 device pools, there
is a positive impact of introducing the operation-wise hard-
ware embedding. Additionally, we evaluate the impact of
initializing the hardware embedding of the target device
with the embedding of the most closely-correlated source
device. Our results show consistent improvement from this
initialization scheme as shown in Table 1. These two op-
timizations have empirically demonstrated their efficacy
in utilizing hardware-specific operation embeddings, and
mitigating new device cold start in our predictor.

6.4 Encoding-based Samplers

Here, we evaluate different sampling methods, specifically
those based on uniformly sampling NNs based on different
encodings. Our findings in Table 3 present a somewhat
varied pattern. While encodings-based samplers were ad-
vantageous in 10 out of 12 device pools, determining the
optimal sampler became a complex task dependent on the
each device pool. Notably, CATE’s performance was sub-
par, especially on FBNet. A potential reason for this could
be the disparity between the FBNet search space, which
possesses 922 unique architectures, and the latency dataset
available in HWNASBench, restricted to only 5000 archi-
tectures. Consequently, when training the CATE encoding
on this limited set, computationally similar architectures do
not carry much meaning with respect to the entire FBNet
search space. Arch2Vec is trained similarly, but since com-
putationally similar architectures are not required, it is able
to learn a representation on a smaller space.

Delving deeper into the selection strategy used for cluster-
ing the encodings, we observed a pronounced inclination
towards the cosine similarity approach. As detailed in the
appendix (Table 9), Cosine similarity consistently demon-
strated superior performance over KMeans. Additionally,
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Table 6. We study the impact of different design choices on the performance of predictors. Each row adds a feature and also inherits the
design choices above it.

F1 F2 F3 F4 N1 N2 N3 N4

Baseline Predictor 0.6030.104 0.8000.050 0.7920.058 0.5020.142 0.9380.034 0.7810.084 0.9070.019 0.9220.021
(+ HWInit) 0.5730.114 0.7700.072 0.8220.053 0.5660.127 0.9380.031 0.7760.039 0.8870.087 0.8980.046
(+ OpHW ) 0.6100.076 0.8010.045 0.8240.025 0.5490.078 0.9490.017 0.8210.045 0.9380.021 0.9550.015
(+ Sampler) 0.6390.069 0.8130.042 0.8100.053 0.6160.116 0.9620.012 0.8030.067 0.9200.034 0.9610.007

(+ Supp. Encoding) 0.7270.048 0.8440.031 0.8160.057 0.7960.045 0.9360.033 0.8120.059 0.9300.028 0.9400.017

Table 7. We train our predictor with our proposed sampler, GAT+GCN ensemble architecture, operation-wise hardware embedding,
hardware embedding initialization, and report our end-to-end predictor transfer result (Spearman Rank Correaltion). On 11 out of 12 tasks,
our predictor works best for NASBench-201 and FBNet respectively. Standard deviations are reported for results we produce in our paper.

Source Target ND NA N1 N2 N3 N4 GMSamples

HELP 900 20 0.9480.006 0.4100.037 0.6040.044 0.5090.007 0.7290.027 0.7460.042 0.634
MultiPredict 900 20 0.9300.012 0.8200.019 0.9070.003 0.7570.045 0.9470.012 0.9520.011 0.882
NASFLAT 25 20 0.9590.007 0.8930.036 0.9670.007 0.8570.029 0.9620.008 0.9590.012 0.931

FD FA F1 F2 F3 F4 GM

HELP 4000 20 0.910 0.37 0.7930.028 0.5430.036 0.4130.015 0.7990.004 0.602
MultiPredict 4000 20 0.960 0.45 0.7560.026 0.5670.075 0.4340.040 0.7630.011 0.627
NASFLAT 800 20 0.9610.007 0.5770.079 0.8090.019 0.8710.024 0.8140.046 0.7340.142 0.784

KMeans was occasionally unable to segment the space ade-
quately to yield architectures (as evidenced by NaN entries).

6.5 Supplementary NN Encodings

By using supplementary NN encodings in our predictor (as
shown in Figure 3), we can better represent the relative
performance of NNs, especially when only a few samples
are used for predictor training. From Table 4, we see that
the impact of these supplementary encodings revealed an
almost universal benefit: 11 out of 12 device pools displayed
improved performance. This is likely due to the fact that
these encodings contextualize the few target samples with
respect to the broader search space more effectively.

6.6 Impact of Pre-Training Samples

Focusing on the pre-training phase, we delve into how vary-
ing sample sizes from source devices influence the Spear-
man rank correlation. Notably, the end-to-end performance
does not consistently improve with an increasing number
of samples; quite the opposite, it occasionally diminishes.
This counter-intuitive phenomenon can be ascribed to a sit-
uation where the model, encountering a multitude of source
devices that share high correlation, ends up overfitting to
the specifics of this source device set. For instance, in “Task
N4”, where the training set already has a relatively low aver-
age correlation between devices, degradation of predictive
performance with more samples isn’t observed. However,

in “Task N2”, which comprises solely of GPUs, this ten-
dency becomes more clear. These findings indicate that the
diversity in the training pool is important to benefit from
larger source sample training sets. Merely increasing the
number of samples without assuring their diversity can hin-
der predictor pre-training. We perform an ablation in the
appendix (Figure 7) to select a reasonable number of pre-
training samples for use with our predictor in subsequent
experiments.

6.7 Combining our Optimizations and a Comparison
to Prior Work

Table 6 lists the effect of combining all of our optimiza-
tions including the hardware-aware operation embeddings,
embedding initialization, encoding-based samplers, and sup-
plementary encodings, all performed on our predictor ar-
chitecture. We call our final predictor NASFLAT: Neural
Architecture Sampler And Few-Shot Latency Predictor. On
average, our first 3 optimizations bring marked improve-
ments to the predictor performance. We also found that
using our encoding-based samplers generally reduced vari-
ance, making predictor construction more reliable. This is
further quantified in the appendix.

Finally, Table 7 incorporates all our optimizations to deliver
state-of-the-art end-to-end latency predictor performance on
11 out of 12 device sets. We show that, especially on chal-
lenging tasks, our optimizations improve predictor accuracy
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Table 8. Performance comparison of different latency estimators combined with MetaD2A for latency-constrained NAS, on CIFAR-100
dataset with NAS-Bench-201 search space. For the building time and the total NAS cost of MetaD2A+HELP, we report only time and cost
during the meta-test time. The meta-training time of HELP is 25 hours, NASFLAT is 25 minutes and the time to meta-train the MetaD2A
is 46 GPU hours, which is conducted only once across all unseen devices. We report averages over 10 trials. S indicates number of new
samples on target device.

Device Model Const Latency Accuracy Latency Model Total NAS Cost Speed Up
(ms) (ms) (%) Sample Building Time (Wall Clock)

MetaD2A + BRP-NAS (Dudziak et al., 2020) 14 14 66.9 900 1120s 1220s 0.1×
MetaD2A + HELP (Lee et al., 2021b) 13 67.4 20 25s 125s 1×
MetaD2A + NASFLAT 14.43.41 68.533.04 20 25s 29.1s 4.3×

Unseen Device MetaD2A + BRP-NAS (Dudziak et al., 2020) 22 34 73.5 900 1120s 1220s 0.1×
Google Pixel2 MetaD2A + HELP (Lee et al., 2021b) 19 70.6 20 25s 125s 1×

MetaD2A + NASFLAT 22.26.46 72.080.91 20 25s 29.1s 4.3×

MetaD2A + BRP-NAS (Dudziak et al., 2020) 34 34 73.5 900 1120s 1220s 0.1×
MetaD2A + HELP (Lee et al., 2021b) 34 73.5 20 25s 125s 1×
MetaD2A + NASFLAT 340.0 73.50.0 20 25s 29.1s 4.3×

MetaD2A + Layer-wise Pred.
18

37 73.2 900 998s 1098s 0.1×
MetaD2A + BRP-NAS (Dudziak et al., 2020) 21 67.0 900 940s 1040s 0.1×
MetaD2A + HELP (Lee et al., 2021b) 18 69.3 20 11s 111s 1 ×
MetaD2A + NASFLAT 17.102.65 69.922.35 20 11s 15.4s 7.2×

Unseen Device MetaD2A + Layer-wise Pred.
21

41 73.5 900 998s 1098s 0.1×
Titan RTX MetaD2A + BRP-NAS (Dudziak et al., 2020) 19 71.5 900 940s 1040s 0.1×

(Batch Size 256) MetaD2A + HELP (Lee et al., 2021b) 19 71.6 20 11s 111s 1 ×
MetaD2A + NASFLAT 20.472.46 71.450.45 20 11s 15.4s 7.2×

MetaD2A + Layer-wise Pred.
25

41 73.2 900 998s 1098s 0.1×
MetaD2A + BRP-NAS (Dudziak et al., 2020) 23 70.7 900 940s 1040s 0.1×
MetaD2A + HELP (Lee et al., 2021b) 25 71.8 20 11s 111s 1 ×
MetaD2A + NASFLAT 26.614.84 71.90.87 20 11s 15.4s 7.2×
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by 22.5% on average, and up to 87.6% for the hardest (F3)
task when compared to HELP (Lee et al., 2021b).

6.8 Neural Architecture Search

To assess the performance on end-to-end NAS, our predictor
is used within the hardware-aware NAS system presented
in HELP (Lee et al., 2021b). We use the same NAS system
with Metad2a (Lee et al., 2021a) as the NN search algorithm
for accuracy, and our predictor to find latency. We evaluate
our results using multiple metrics. Primarily, we consider
the number of architecture-latency pair samples taken from
the target device. These samples are crucial for constructing
the latency predictor, which encompasses the total time
span of sample acquisition, architecture compilation on the
device and the latency measurement process. While this
metric remains the same between our method and HELP,
we also evaluated the total NAS cost, a combination of the

time taken for few-shot transfer of predictor to the NAS
experiment device, and the time spent on latency prediction
during NAS. The results in Table 8 (and companion plots)
demonstrate a consistent improvement in the discovered
NNs, with the latency-accuracy Pareto curve dominating
that of prior works in most cases. Additionally, our predictor
is faster to invoke when compared to HELP, making fast
NAS methods—such as Metad2a—around 5× faster.

7 CONCLUSION

In this paper, we systematically examined several design
considerations inherent to hardware latency predictor design.
We studied the influence of operation-specific hardware em-
beddings, graph neural network module designs, and the
role of neural network encodings in enhancing predictor
accuracy. Our exhaustive empirical evaluations across mul-
tiple device sets yielded key insights, such as the importance
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of sample diversity during pre-training and the significant
impact of supplemental encodings based on their correlation
with test devices. By adopting an algorithmic partitioning
strategy for device set selection, we achieved a less biased
evaluation of latency predictor performance. Leveraging
these insights, we developed and validated NASFLAT, a
latency predictor that outperformed existing works in 11 of
12 device sets. Future endeavors to refine predictors could
involve exploring sophisticated transfer learning techniques
akin to HELP (Lee et al., 2021b), deepening our understand-
ing of neural network encodings’ mechanisms as samplers,
and investigating different sampling methodologies. Our
work paves the way for more reliable and efficient use of
predictors, both within NAS, and more generally in the
optimization of NN architectures.
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