
COMET: Neural Cost Model Explanation Framework

A MONOTONICITY OF PERTURBATION
FUNCTION

Theorem 1. Π is a monotonically decreasing function.

Proof. Let F1, F2 ∈ ℘(P) such that F1 ⊆ F2.

Π(F1) ={β′ | β′ ∈ B,

F1 ⊆ Pβ′ ,Pβ′ \ F1 are obtained from P \ F1}
={β′ | β′ ∈ B,F2 ⊆ Pβ′ ,

Pβ′ \ F2 are obtained from P \ F2}
∪ {β′ | β′ ∈ B,F1 ⊆ Pβ′ , F2 ̸⊆ Pβ′ ,

Pβ′ \ F1 are obtained from P \ F1}
=Π(F2) ∪ {β′ | β′ ∈ B,F1 ⊆ Pβ′ , F2 ̸⊆ Pβ′ ,

Pβ′ \ F1 are obtained from P \ F1}

Hence, Π(F2) ⊆ Π(F1)

Note that in the above proof, features in feature sets such as
Pβ′ \ F1 are obtained by either retaining or perturbing the
features in P \ F1.

A similar proof can be used to prove the monotonicity of Π̂
as well.

B TYPES OF DATA DEPENDENCIES IN BASIC
BLOCKS

While each instruction is processed sequentially by the dif-
ferent components of the CPU, an instruction instj can get
stalled due to the requirement for a previous instruction
insti to get completed, creating a data dependency haz-
ard (Patterson and Hennessy, 1998). A Read-After-Write
(RAW) data-dependency hazard arises when instj reads the
value in an operand that is written by insti. instj can not
get executed until insti ends to ensure correct execution. A
Write-After-Read (WAR) hazard occurs when instj writes
to an operand that is read by insti. A Write-After-Write
(WAW) hazard arises when instj writes to an operand that
is written to by insti. There can be multiple data depen-
dency hazards, possibly of different kinds, between a given
pair of instructions.

C BASIC BLOCK PERTURBATION
ALGORITHM

Algorithm 1 presents our stochastic perturbation algorithm
Γ to conditionally perturb a given basic block β to β′. The
perturbation algorithm creates the graph G′ of β′ while pre-
serving a set of instructions/their corresponding vertices V ,
a set of data dependencies/their corresponding edges E and

possibly the number of instructions/the number of vertices,
denoted by the boolean preserveη which is set to true when
the number of instructions η is to be kept constant. If the
number of vertices is to be kept constant, then the vertex/in-
struction deletion operation is forbidden [lines 1-1]. The
vertices at the ends of the edges in E are preserved as well
[line 1] by adding them to V . Then each vertex of G is per-
turbed with a probability of (1− pI,ret) if it is not required
to be retained [lines 1-1]. If the deletion perturbation opera-
tion is in vertexPertOps, then a vertex is deleted or replaced
with probabilities of pdel and (1− pdel) respectively. Oth-
erwise, it is replaced with a valid vertex. The replacement
of a vertex/corresponding instruction involves changing its
opcode to another opcode that can take the original operands
and still constitute valid x86 syntax according to the x86 In-
struction Set Architecture. Similarly, each data-dependency
edge is perturbed with a probability of (1− pD,ret) if it is
not required to be retained [lines 1-1], to form G′ [line 1].
The only perturbation of any data dependency is its dele-
tion, which is conducted by the perturbation of the operands
involved in the data dependency.

Algorithm 1 Basic Block Perturbation Algorithm

1: Input: basic block graph G, vertices to preserve V , data-
dependency edges to preserve E , preserveη, pI,ret,
pD,ret, pdel

2: Output: perturbed basic block graph, G′
3: vertexPertOps = {replacement, deletion}
4: if preserveη then
5: vertexPertOps.remove({deletion})
6: end if
7: V ← addV erticesForPreservedDeps(V, E)
8: for v ∈ GetV ertices(β) do
9: if v ̸∈ V and rand([0, 1]) > pI,ret then

10: v ← PerturbV ertex(G, v, vertexPertOps, pdel)
11: end if
12: end for
13: for ε ∈ GetDepEdges(β) do
14: if ε ̸∈ E and rand([0, 1]) > pD,ret then
15: ε← PerturbEdge(G, ε)
16: end if
17: end for
18: G′ ← G

D CASE SPECIFICITY OF PERTURBATION
PROBABILITIES

COMET’s perturbation algorithm Γ consists of primarily
3 probability terms: pI,ret, pD,ret, and pdel as described
in Appendix C. pI,ret and pD,ret are the probabilities of
retention of a given instruction and a given data dependency
respectively, in the perturbed basic block. pdel is the prob-
ability of deletion of an instruction when the deletion per-

COMET: Neural Cost Model Explanation Framework

turbation operation is allowed for instructions. The deletion
perturbation operation will not be allowed for instructions
when the number of instructions is to be kept constant.

Γ perturbs a basic block β by essentially perturbing every
instruction while preserving certain tokens of the instruction
from getting perturbed. These preserved tokens correspond
to the features that are required to be preserved by Γ and also
the features that Γ voluntarily does not attempt to perturb.
Γ has voluntary retention of randomly selected basic block
features to output perturbed basic blocks β′ that are very
similar to the original basic block β. Γ attempts to perturb
the other tokens of β to obtain β′.

Γ can delete an instruction in case none of its tokens are
required to be preserved. Otherwise, Γ replaces a token with
another token that can form a basic block with valid x86 syn-
tax alongside the other tokens. Thus, every token has a set
of potential replacements. Perturbations to opcode tokens
are counted as changes to the instruction features, while per-
turbations to the operand tokens are considered as changes
to any data dependency features. As the perturbation space
consists of only valid basic blocks, the overall probabilities
of the primitive perturbation operations (instruction deletion,
instruction replacement, and data dependency deletion) vary
with the target basic block.

Following is an example of this variation. Several tokens of
x86 assembly have no possible replacements resulting in no
probability of replacement, such as the opcode lea. This is a
special opcode that loads the effective memory address of
its source operand into the destination register. There is no
other x86 opcode that shows similar behavior. Hence, the
lea can not be replaced with any other opcode. Such failed
attempts at opcode replacement lead to the retention of the
instruction, thus leading to an increase in the probability of
retention of specific features of the basic block. This change
in probabilities is specific to the basic blocks having the lea
opcode in its instructions.

Another example of basic-block-specific probability settings
occurs due to data dependencies. The data dependencies in
a basic block can be varied with changes in just the opcodes
of the corresponding instructions. Thus, while we keep the
perturbation probability of a data dependency (1− pD,ret)
to be 0.5 in the general case, it can vary with the basic
block. A basic block having all the potential replacements
for the opcodes involved in a data dependency with similar
behavior as the original opcodes will have 0.5 probability of
perturbation of the data dependency, while the opcodes for
which we have potential replacements show variable behav-
iors, the data dependency perturbation probability can be
more than 0.5. (Opcodes add and sub have similar behavior
as they read the value in the source operand and read-write
the value in the destination operand. They have different
behavior from mov that reads the source operand value and

Figure 5. Variation in explanation accuracy with the precision
threshold (1− δ) setting in COMET

writes to the destination operand. All 3 opcodes could be
potential replacements for each other in instructions having
certain pairs of operands.)

E ABLATION AND SENSITIVITY STUDIES

In this section, we study the variations in our results, with
COMET’s hyperparameters and design choices. We use
our explanation accuracy-based evaluation scheme based
on our crude but interpretable cost model that is presented
in Section 6, to study the effects of the different hyperpa-
rameters and design choices. For this study, we have used
the crude cost model for the Haswell microarchitecture. We
have randomly selected 100 basic blocks from the BHive
dataset (Chen et al., 2019) for which we generate COMET’s
explanations with different settings. We have dropped the
error bars for clarity of the results, as we note from Table 2
that the standard deviations in our results are generally low.

E.1 Precision threshold

In this section, we study the variation in the explanations’
accuracy with the precision threshold set in COMET, above
which we consider the explanation feature set to be approxi-
mately faithful to the cost model’s predictions. We want the
precision threshold to be high such that the most precise and
accurate explanations are given as output. Figure 5 presents
the variation in the accuracy of COMET’s explanations with
various values for the precision threshold (1−δ) in COMET.
We observe that 0.7 is the highest precision threshold that
gives the highest accuracy and hence we have set it as the
precision threshold in our experiments.

E.2 Perturbation probabilities for instructions

Γ attempts to perturb a given instruction inst in a basic
block β only when it is not required to be preserved. Γ
retains inst with a probability of pI,ret and perturbs it oth-

COMET: Neural Cost Model Explanation Framework

Figure 6. Variation in explanation accuracy with the probability of
instruction deletion in Γ

erwise. There are 2 potential operations for perturbing inst:
Deletion and Replacement (with valid x86 instruction), each
probabilities pdel and (1 − pdel) respectively. We have
set pdel = 0.33 based on a sensitivity study that we con-
ducted with respect to this hyperparameter, for all of our
experiments. Figure 6 presents our findings. We find that
our choice of pdel = 0.33 leads to the maximum accuracy
among other candidates.

E.3 Perturbation probabilities for data dependencies

Similar to the case for instructions, Γ attempts to perturb
a given data dependency δ in a basic block β with proba-
bility (1 − pD,ret). As discussed in Section D, the exact
probabilities of the retention/deletion of data dependencies
are basic-block-specific. However, we vary these proba-
bilities by varying the probability of explicit retention of
a data dependency, i.e. the probability by which a data
dependency will be retained for sure. This probability is
a lower bound for pD,ret and higher values of this lower
bound imply higher values for pD,ret for any given basic
block. Figure 7 shows our findings. We have shown the
variation in explanation precision as well, as we observe pre-
cision to have a trend different from explanation accuracy
in this case. We find that a value of 0.1 for this probability
parameter leads to optimum values for both explanation
accuracy and precision. Thus, we have selected the explicit
data dependency retention probability to be 0.1 in COMET.

E.4 Replacement of instructions

Γ considers only the changes to an instruction’s opcode
as changes to the feature corresponding to the instruction.
However, another possibility could be to consider operand
changes (such that their types and sizes are preserved) as
well as changes to the instruction feature. We analyze the
effects of the two instruction changing/replacement schemes
in Figure 8. We observe that the accuracy of the explana-
tions is higher with just the opcode replacement method,

Figure 7. Variation in explanation accuracy and precision with the
probability of explicit data dependency retention

Figure 8. Variation in explanation accuracy with just opcode and
whole instruction replacement schemes.

justifying our choice of this instruction replacement scheme.

An important hyperparameter that we have set according
to our intuitive understanding is the ϵ error, which marks
the radius of the ball of acceptable cost predictions around
the prediction of cost modelM for basic block β (M(β)).
For our crude cost model C, we have kept ϵ to be a quarter
of one unit of its cost prediction, as the least change in its
cost prediction can be a quarter unit (∆n

4 = 0.25). For the
practical cost models such as Ithemal and uiCA, we have set
ϵ as 0.5 cycles of throughput prediction, as that is the least,
significant change in practically-useful throughput values.

F PERTURBATION FUNCTION OUTPUT
SIZES

The perturbation function, Πβ : ℘(Pβ) → ℘(B) maps a
given set of basic block features F to the set of basic blocks
BF that have F and where the other features are obtained
from perturbations to the features in Pβ \ F . In this section,
we provide estimates of cardinalities of BF for some basic

COMET: Neural Cost Model Explanation Framework

blocks β and feature sets F . With this analysis, we allude
to the practical intractability of generating ideal black-box
explanations for cost models.

Note that, as Pβ is the set of all features (all basic features
and all of their functions) of β, it can be an infinite set
itself. P̂β ⊂ Pβ , hence for F ⊆ P̂β , Π̂β(F) ⊆ Πβ(F).
Hence, |Π̂β(F)| ≤ |Πβ(F)|. Thus, we provide estimates
for |Πβ(F)| by reporting the rough values for |Π̂β(F)|.

First, consider the basic block β1 in Listing 4, for F = ∅.
|Π̂β1(∅)| ≈ 1.94 × 1038. As we add more elements to
F , the size of |Π̂β1

(F)| will reduce due to the constraints
introduced to the perturbations.

1 v d i v s s xmm0, xmm0, xmm6
2 vmulss xmm7, xmm0, xmm0
3 v xo rp s xmm0, xmm0, xmm5
4 v ad ds s xmm7, xmm7, xmm3
5 vmulss xmm6, xmm6, xmm7
6 v d i v s s xmm6, xmm3, xmm6
7 vmulss xmm0, xmm6, xmm0

Listing 4. Basic block β1 for perturbation function size estimation

Next, for F = {inst1} i.e. with no perturbations to instruc-
tion 1 in β1, |Π̂β1(F)| ≈ 6.58× 1029.

Similarly, consider the basic block β2 in Listing 5, for F =
∅. |Π̂β2(∅)| ≈ 1.63 × 1032. For F = {inst2} i.e. with
no perturbations to instruction 2 in β2, |Π̂β2

(F)| ≈ 2.77×
1028.

1 s h l eax , 3
2 imul rax , r15
3 xor edx , edx
4 add rax , 7
5 shr rax , 3
6 l e a rax , [rbp + r a x − 1]
7 div rbp
8 imul rax , rbp
9 mov rbp , qword ptr [r s p + 8]

10 sub rbp , r a x

Listing 5. Basic block β2 for perturbation function size estimation

Thus, we find that the perturbation function’s output set can
have very high cardinality, posing a challenge for generating
desirable explanations.

G CRUDE INTERPRETABLE COST MODEL
DETAILS

We define costinst(inst) as the throughput of the instruc-
tion inst on actual hardware. We obtain the throughputs

of instructions over actual hardware from https://www.
uops.info/table.html. We define costdep(δij) as
in (10). Our intuition behind keeping the costs of WAR
and WAW type of dependencies to be 0 is that these de-
pendencies are not true dependencies and can be generally
resolved by the compiler by register renaming (Patterson
and Hennessy, 1998). The RAW data dependency, on the
other hand, is a true dependency. As the two instructions
forming a RAW dependency will be executed sequentially
on hardware, the addition of their individual costs would be
a good proxy for the actual throughput cost brought in by
the data dependency.

costdep(δij)

=

{
0, δij = WAR/WAW
costinst(insti) + costinst(instj), δij = RAW

(10)

We define the costη(n) = η/4 as the cost for having n
number of instructions (denoted by η) in a given basic block
β. We derive the expression for the cost of number of
instructions from the simple baseline model presented in
(Abel and Reineke, 2022).

Our choice of C is microarchitecture-specific as the costs
of individual instructions vary across microarchitectures.
We have developed C models for the Haswell and Sky-
lake microarchitectures, only for the purposes of evaluating
COMET’s explanations.

H STUDIED DATASET AND COST MODELS

H.1 BHive dataset

BHive dataset1 (Chen et al., 2019) is a benchmark suite of
x86 basic blocks. It contains roughly 300,000 basic blocks
annotated with their average throughput over multiple execu-
tions on actual hardware for 3 microarchitectures: Haswell,
Skylake, and Ivy Bridge. We have generated explanations
for basic blocks in this dataset.

The dataset can be partitioned by 2 criteria: by source and by
category of its basic blocks. Partition by source annotates
each block with the real-world code base from which it
has been derived. Examples of BHive sources are Clang
and OpenBLAS. Partition by category annotates each basic
block by its type, characterized by the semantics of the
instructions in the block. There are 6 types of blocks: Scalar,
Vector, Scalar/Vector, Load, Store, and Load/Store.

H.2 Ithemal

Ithemal2 (Mendis et al., 2019a) is an ML-based cost model,
which predicts the throughput of input x86 basic blocks for

1https://github.com/ithemal/bhive
2https://github.com/ithemal/Ithemal

COMET: Neural Cost Model Explanation Framework

a given microarchitecture. It is open-source and is currently
trained for the Haswell, Skylake, and Ivy Bridge microar-
chitectures on the BHive dataset. A separate instance of
Ithemal needs to be trained for every microarchitecture, due
to the difference in the actual throughput values obtained
over different hardware. Ithemal’s throughput prediction is
a floating point number, as it is trained on the BHive dataset.

Ithemal consists of a hierarchical multiscale RNN structure.
The first RNN layer takes embeddings of tokens of the input
basic block and combines them to create embeddings for
the instructions in the basic block. The second RNN layer
takes the instruction embeddings as input and combines
them to create an embedding for the basic block. The basic
block embedding is passed through a linear regressor layer
to compute the throughput prediction for the basic block.

Ithemal exhibits roughly 9% Mean Absolute Percentage Er-
ror for the Haswell microarchitecture on the BHive dataset.
As Ithemal outputs only its throughput prediction and no
insights into why the prediction was made, it can not be
reliably deployed in mainstream compiler optimizations.

H.3 uiCA

uiCA3 (Abel and Reineke, 2022) is an analytical simulation-
based cost model for several latest microarchitectures re-
leased by Intel over the last decade. uiCA’s simulation
model is hand-engineered to accurately match the model of
each Intel microarchitecture and must be manually tuned
to reflect new microarchitectures. It can output detailed
insights into its process of computing its throughput predic-
tion of input x86 basic blocks, such as where in the CPU’s
pipeline its simulator identified a bottleneck for the execu-
tion of the basic block.

3https://github.com/andreas-abel/uiCA

