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ABSTRACT
Recent advances in deep learning methods such as LLMs and Diffusion models have created a need for improved
quantization methods that can meet the computational demands of these modern architectures while maintaining
accuracy. Towards this goal, we study the advantages of FP8 data formats for post-training quantization across 75
unique network architectures covering a wide range of tasks, including machine translation, language modeling,
text generation, image classification, generation, and segmentation. We examine three different FP8 representations
(E5M2, E4M3, and E3M4) to study the effects of varying degrees of trade-off between dynamic range and precision
on model accuracy. Based on our extensive study, we developed a quantization workflow that generalizes across
different network architectures. Our empirical results show that FP8 formats outperform INT8 in multiple
aspects, including workload coverage (92.64% vs. 65.87%), model accuracy and suitability for a broader range
of operations. Furthermore, our findings suggest that E4M3 is better suited for NLP models, whereas E3M4
performs marginally better than E4M3 on computer vision tasks.

1 INTRODUCTION

Quantization is the process of reducing the numeric pre-
cision of weights and activations of a neural network to
lower the computation costs of inference. INT8 quantiza-
tion (Vanhoucke et al., 2011; Han et al., 2015a) is the most
widely-accepted choice today due to its ability to deliver
high inference performance on modern deep learning hard-
ware while maintaining reasonable model accuracy. It has
been particularly effective for computer vision tasks such
as object detection and image classification, and has been
widely deployed in production both at the data center scale
and on resource-constrained edge devices. However, INT8
presents several challenges that arise due to its limited dy-
namic range. Several quantization techniques have been
developed to address these challenges. For example, asym-
metric quantization (Jacob et al., 2018; Krishnamoorthi,
2018; Bhalgat et al., 2020) allocates different numbers of
bits for the positive and negative ranges with a non-zero
offset, to better represent the distribution of the original
values. Non-uniform quantization methods (Miyashita et al.,
2016; Zhou et al., 2017; Cai et al., 2017; Fang et al., 2020;
Li et al., 2020) attempt to assign more precision to the parts
of the data that are deemed more important to reduce quan-
tization errors. Methods that use per-group (Zhou et al.,
2016; Mellempudi et al., 2017) or per-channel (Jacob et al.,
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2018; Krishnamoorthi, 2018) scaling extend the effective
dynamic range by using independent scaling factor for each
selected group of elements. The limited dynamic range of
INT8 also results in poor representation of outliers that are
typically found in activations. This is especially prevalent in
Large Language Models (LLMs), where outliers are signifi-
cantly larger when compared to the rest of the activations.
Most common approach for handling outliers is to clip them
using threshold values that are either obtained through cal-
ibration (Sung et al., 2015; Zhao et al., 2019b) or learned
during training (Bhalgat et al., 2020; Choi et al., 2018; Esser
et al., 2020; Zhang et al., 2018a). More recently (Wei et al.,
2022; Xiao et al., 2022) have proposed applying mathemati-
cal transformations to redistribute the magnitude of outliers
between weights and activation tensors to minimize their
impact. Despite these advancements, INT8 methods remain
ineffective for a wide range of language modeling tasks,
where the presence of LayerNorm was shown to amplify
the occurrence of outliers (Wei et al., 2022). Therefore, a
significant percentage of these workloads falls back to using
higher precision to preserve model accuracy.

This paper argues that 8-bit floating-point (FP8) formats
are an efficient and more productive alternative to INT8
for deep neural network quantization. We evaluated three
different representations (E5M2, E4M3, and E3M4) that
offer varying degrees of trade-off between dynamic range
and precision. Table 1 shows the details of the binary for-
mat and special value encoding. The study focused on the
benefits of FP8 formats for post-training quantization as the
preferred approach used in production. We developed quan-
tization workflows that generalized across different network
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Table 1. FP8 binary formats: The EeMm notation represents bit allocation for Exponent (e) and Mantissa (m) respectively. The formats
support a sign-bit and an implicit leading bit in the mantissa. E5M2 follows IEEE-like encoding rules, while E4M3 and E3M4 use
extended encoding to reclaim ±Infinity for useful encoding, a unique bit-sequence of all-ones represents a NaN.

E5M2 E4M3 E3M4

EXPONENT BIAS (b) 15 7 3
MAX VALUE 57344.0 448.0 30.0
MIN VALUE 1.5× 10−5 1.9× 10−3 1.5× 10−2

SUBNORMALS YES YES YES
NANS ALL SINGLE SINGLE
INFINITY YES NO NO

architectures, and conducted experiments on 75 networks
that cover a wide range of application domains. Our re-
sults show that FP8 formats overall provide higher accuracy,
better workload coverage compared to INT8 (92.64% vs.
65.87%) and can handle more operations such as Layer-
Norm and BatchNorm. The data also suggests that E4M3
is better suited for a broad range of NLP models with a
coverage of 96.32% compared to E3M4 (92.11%), while
E3M4 performs slightly better on computer vision models
with 78.95% coverage compared to E4M3 (73.68%). Our
contributions are as follows:

• Propose a unified and scalable FP8 quantization flow
that works across application domains and different
model sizes. To the best of our knowledge, our work
is the first to study this problem across 200+ tasks
and 75+ models demonstrating the scalability of our
approach.

• Demonstrate the advantages of FP8 formats over INT8,
in terms of workload coverage, model accuracy and
suitability for a broader range of operations. Our work
is also the first study to showcase accuracy-driven au-
tomatic model tuning for quantization.

• Suggest that E4M3 is better suited for NLP models,
whereas E3M4 performs marginally better than E4M3
on computer vision tasks.

1.1 Related Work

There is a growing body of research is studying the use of 8-
bit floating-point formats to accelerate deep learning training
and inference tasks. Initial studies by (Wang et al., 2018)
and (Mellempudi et al., 2019) focused on the E5M2 format
for training tasks due to its wider dynamic range which is
necessary for representing gradient values. (Sun et al., 2019)
subsequently proposed using a combination of two binary
formats, E5M2 and E4M3, for training and extended their
research to include inference tasks. They also suggested
using an exponent bias to shift the numeric range of E4M3

format for handling outliers in activations. Later studies by
(Noune et al., 2022) and (Kuzmin et al., 2022) have extended
this scope to include variable exponent bias and formats
with fewer exponent bits, such as E3M4 and E2M5. More
recently, (Micikevicius et al., 2022) presented a generalized
training method that employs per-tensor scaling using E5M2
and E4M3 formats. They also extended the inference studies
to cover large language models such as GPT-3 (6.7B).

The rest of this paper is organized as follows. Section 2 dis-
cusses the advantages of 8-bit floating point representation
in handling outliers. Section .3 introduces the quantization
workflow and components of a standard, extended quantiza-
tion scheme and a framework for tuning model performance.
Section 4 outlines the experimental setup, presents accu-
racy results, and offers discussion on performance tuning.
Section 5 presents the conclusions and future work.

2 BACKGROUND

FP8 Value Distribution and Quantization Error:
Floating-point formats can express a large dynamic range of
values using a combination of a mantissa and an exponent.
A set of floating point numbers in X ∈ R are expressed as
follows:

x = (−1)s × 22
e−b × (1 + f1 × 2−1 + f2 × 2−2

+...+ fm × 2−m)
(1)

where s ∈ {0, 1} is the sign, e is exponent bit width and
fi ∈ {0, 1} is the m-bit mantissa or fraction.

The dynamic range of a floating point format is determined
by the width of its exponent. The exponent value is ex-
pressed in powers of 2 and serves as a scaling factor for the
mantissa. This means that floating-point numbers are not
uniformly spaced, but have a smaller step-size around zero
that increases with the magnitude of the represented value.
This allows floating-point formats to represent smaller val-
ues with better accuracy.

The width of the mantissa determines the number of grid
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Figure 1. (left) Histogram of the tensor X ∼ N (µ = 0.0, σ2 = 0.5), that contains a small number ( 1%) of outliers uniformly distributed
between -6.0 to 6.0. (center) Distribution of quantized values represented by E5M2, E4M3, E3M4 and INT8 data formats. (right) Overall
quantization error as measured by mean-square-error (MSE).

points represented for each incremental step of the expo-
nent, which in turn affects the precision of the format. These
properties allow floating-point formats to support higher dy-
namic range without compromising the accuracy of smaller
values, making them well-suited for representing many fre-
quently occurring data patterns in deep learning workloads
that exhibit long-tailed normal distributions.

Figure 1 illustrates the differences in distribution of quan-
tized values and impact of outliers on both FP8 and INT8
formats. In the center plot, FP8 formats show a greater
concentration of grid points in the middle of the distribution,
indicating a region of higher precision closer to zero. The
high-precision band is wider for formats with more man-
tissa bits, allowing them to represent a greater percentage of
the 3σ region of the original data with higher accuracy. In
contrast, INT8 quantization operates with a fixed step-size
that is determined by the largest value present in the input
data. This means that the outliers can significantly influence
the step-size by stretching the quantization grid, resulting
in fewer grid points under the 3σ region. This is reflected
in the overall quantization error (MSE) shown on the right,
where E4M3 and E3M4 formats have significantly outper-
formed INT8, while E5M2 performed worse because it has
fewer mantissa bits.

3 QUANTIZATION WORKFLOW

There are several challenges in creating a generalized quan-
tization scheme that can be applied to networks across multi-
ple application domains and involves multiple data formats.
The networks may have different requirements for dynamic
range, precision and may contain operations that are sensi-
tive to quantization. To facilitate generalization, the quanti-
zation scheme must be capable of supporting a broad set of
common operations, while also having the ability to adapt to

meet the unique requirements of various applications. Our
framework accomplishes this by incorporating both a stan-
dard quantization scheme that can be broadly applied, as
well as an extended quantization scheme that optimizes spe-
cific operations through an iterative tuning process. Figure 2
depicts the high-level workflow for post-training FP8 quan-
tization. The standard quantization scheme is the default
configuration applied to common set of operators across dif-
ferent architectures, while the extended scheme is specific
to an architecture and is applied incrementally in a feedback
loop.

The flow diagram in Figure 2 also includes an additional
BatchNorm Calibration step applied only to computer vision
models. (Sun et al., 2019) have shown that retuning Batch-
Norm parameters (mean and variance) to compensate for
the variance shift caused by quantization, has significantly
improved the inference accuracy. Additionally, please note
that E5M2 uses direct quantization and does not require
Range Calibration because it has sufficient dynamic range
to handle outliers. For E4M3 and E3M4 formats, we found
simple max scaling to be sufficient for handling outliers. We
also examined more sophisticated range-calibration meth-
ods such as KL divergence (Darvish Rouhani et al., 2020;
Migacz, 2017), MSE error (Choukroun et al., 2019; Zhao
et al., 2019a) and percentile (Gholami et al., 2021) which
did not provide any additional benefits.

3.1 Standard Quantization Scheme

This section outlines the components of the standard quanti-
zation scheme, which is derived from our extensive studies
conducted on several deep learning tasks across multiple
application domains. This scheme is applied to the common
subset of operators including Convolution, Linear and Em-
bedding. This scheme is also identical to INT8 quantization
scheme, allowing a fair accuracy comparison.
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Figure 2. Standard Quantization Scheme: default configuration for broad set of operations across different workloads, Extended Quantiza-
tion Scheme: configuration for additional operator coverage (Ex: LayerNorm, BatchNorm & element-wise), mixed FP8 formats, dynamic
quantization, BatchNorm Calibration: recalibrate mean and variance parameters to recover accuracy lost due to quantization, Range
calibration: max scaling, outlier clipping (more discussions in Appendix A.1).

Weight and Activation Scaling: We recommend using per-
channel scaling for weights across all networks. Although
FP8 formats have sufficient dynamic range to handle com-
mon weight distributions, empirical evidence suggests that
applying per-channel scaling can reduce rounding errors by
effectively utilizing the full encoding space for each channel.
Similarly, we found per-tensor scaling to be adequate for
handling outliers using FP8 formats. The scale factors are
computed as below:

s = (float max/max T ) (2)

where float max is the max representable value of the se-
lected FP8 format, and max T is the calibrated absmax value
of the tensor. Some recent studies (Xiao et al., 2022; Wei
et al., 2022; Dettmers et al., 2022) have indicated that per-
channel activation scaling can benefit INT8 quantization.
However, such methods may require special kernel imple-
mentations that are likely to incur higher compute overheads,
hence they are not included in our study.

First and Last Operator: Previous studies (Han et al.,
2015b; Choi et al., 2018; Micikevicius et al., 2022) on con-
volution networks have shown that the first convolution and
the last fully-connected layers are more sensitive to quan-
tization. These two operators typically constitute < 1% of
the total computation. Therefore, we continue to maintain
these layers in higher precision to preserve model accu-
racy. Please note that this exception is only applicable to
convolutional neural networks.

3.2 Extended Quantization Scheme

This section outlines the quantization scheme that is selec-
tively applied to address the specific needs of an applica-
tion. These methods are applied incrementally to maximize

model efficiency while preserving accuracy.

Expanded Operator Coverage: Neural networks spend
significant fraction of their execution time in memory-bound
operations such as LayerNorm, BatchNorm1 and element-
wise operators such as Add and Mul. Previous attempts
Bhandare et al. (2019); Kim et al. (2021) to quantize these
operators using integer approximation were unsuccessful in
maintaining the model accuracy. Our experiments show that
FP8 formats are capable of handling these operators without
sacrificing model accuracy.

Mixed FP8 Formats: The data distributions of weights and
activations can vary depending on the architecture of the
model and the dataset it is trained on. Figure 3 shows typical
distributions of weight and activation tensors in NLP and
computer vision workloads. The weight distributions in both
classes of models tend to follow normal distributions with
lots values near zero. These tensors require more mantissa
bits in the data format to represent the distribution accurately.
In contrast, activations of NLP models show a lot of outliers
which demand a larger dynamic range in the data format to
ensure the outliers are accurately represented. We balance
this trade-off by assigning E5M2 or E4M3 format for range-
bound tensors and E3M4 for precision-bound tensors.

Static vs. Dynamic Quantization: We use static quantiza-
tion as the default method throughout our study because it
is computationally more efficient. However, we studied the
accuracy impact of dynamic quantization on all FP8 formats
and found that it offers no additional benefits to E5M2 but
observed a noticeable improvement in accuracy for E4M3
and E3M4 formats on selected models.

1Ones that cannot be folded into Convolution layers, Ex:
Densenet
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Figure 3. Tensor Distributions: (left) activations in NLP workloads contain outliers, hence they are range-bounded, (center) Activation in
CV workloads tend to be precision-bounded, (right) Weight tensors from both CV & NLP networks tend to be precision-bounded.

4 RESULTS

4.1 Experimental Setup

We demonstrate the FP8 quantization results using a soft-
ware emulation framework which contains two major com-
ponents, data type emulation and model quantization. For
data type emulation, we utilized the FP8 Emulation Toolkit,
which provides a reference implementation that runs FP32
hardware. We leverage Neural Compressor to perform
model quantization by incorporating both standard and ex-
tended quantization schemes, along with FP8 specific quanti-
zation methods such as BatchNorm calibration and support
for mixed FP8 formats. Our framework supports a wide
range of quantized operators, including compute operators
such as Convolution, Linear, MatMul, BatchMatMul and
memory operators such as Embedding, BatchNorm, Layer-
Norm, Add and Mul.

We evaluated our quantization methods on more than 200
different tasks, using 75 unique model architectures and over
20 different datasets. The models were selected randomly
from a pool of a combination of diversity and popularity
from mainstream hubs such as Hugging Face Models and
Torch Vision, as well as individual models from Github
based on their popularity. The following is a partial list
of workloads that are broadly categorized under Natural
Language Processing (NLP) and Computer Vision (CV).

Text and Natural Language Processing: We have evalu-
ated 38 different networks in this category on a wide range
of NLP tasks, which can be further subdivided as follows:

• Generative language modeling. We evaluated
Bloom (Scao et al., 2022) and LLaMA (Touvron et al.,
2023), two representative open-source LLMs, and eval-
uate the accuracy using lambada-openai.

• Text classification. We evaluated over 30 different
networks (e.g, Bert-Large (Devlin et al., 2018), Dis-

tilBert (Sanh et al., 2019), Longformer (Beltagy et al.,
2020)) on a wide variety of tasks (e.g., mrpc, cola,
sts-b, sst2).

• Summarization. We measured the accuracy of pega-
sus (Zhang et al., 2020) on samsum dataset.

• Other NLP tasks. Few other selected models such as
MarianMT (Junczys-Dowmunt et al., 2018) for neu-
ral machine translation and DialogGPT (Zhang et al.,
2019) for language modeling on WMT EN RO and
wikitext datasets.

Image and Computer Vision: We evaluated 34 different
networks on various computer vision tasks from the follow-
ing categories.

• Image generation. We evaluated Stable Diffusion, an
open-source state-of-the-art latent text-to-image dif-
fusion model and evaluate using FID (Heusel et al.,
2017).

• Image classification. We evaluate a wide range of con-
volutional neural networks (CNNs) such as VGG (Si-
monyan & Zisserman, 2014), GoogleNet (Szegedy
et al., 2015), ResNet (He et al., 2016), Shuf-
fleNet (Zhang et al., 2018b), EfficientNet (Tan & Le,
2019), and Transformer-based vision models such as
ViT (Dosovitskiy et al., 2020) on ImageNet ILSVRC
2012 and CIFAR-10.

• Image segmentation & object detection. We select typ-
ical models such as U-Net (Ronneberger et al., 2015)
for image segmentation using the dataset from Kaggle
Carvana Image Masking Challenge (Shaler et al., 2017)
and YoloV3 (Redmon & Farhadi, 2018) for object de-
tection using COCO2014 (Lin et al., 2014).

Audio and Speech Processing. We evaluated two models
HuBERT (Hsu et al., 2021) and wav2vec 2.0 (Baevski et al.,

https://github.com/IntelLabs/FP8-Emulation-Toolkit
https://github.com/intel/neural-compressor
https://huggingface.co/models
https://github.com/pytorch/vision
https://github.com/EleutherAI/lm-evaluation-harness
https://huggingface.co/datasets
https://www.image-net.org/challenges/LSVRC
https://www.image-net.org/challenges/LSVRC
https://www.cs.toronto.edu/~kriz/cifar.html
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Table 2. Workload Pass Rate. The bold shows the overall highest pass rate where E4M3 is 92.64% and INT8 is 65.87%. In particular,
E4M3 shows the promising workload coverage 96.32% on NLP.

Data Type Quantization Approach Pass Rate (CV) Pass Rate (NLP) Pass Rate (All)

E5M2 Direct 55.26% 78.42% 74.89%
E4M3 Static 73.68% 96.32% 92.64%
E4M3 Dynamic 71.05% 92.11% 88.74%
E3M4 Static 78.95% 92.11% 90.04%
E3M4 Dynamic 78.95% 92.11% 90.04%
INT8 Static CV | Dynamic NLP 57.89% 67.65% 65.87%
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Figure 4. Variability in accuracy loss: INT8 shows higher variability for CV models than E4M3 and E3M4 due to its ineffectiveness on
models such as EfficientNet, MobileNetV3, and ViT. Quantization-aware training may partially mitigate this issue, but it is out of scope of
this paper. E4M3 and E3M4 show better accuracy & less variability with very few outliers compared to INT8.

Table 3. Model Accuracy. The bold shows the best accuracy is less than 1% loss against FP32 baseline.

Model Dataset/Task FP32 E5M2 E4M3 E3M4 INT8

ResNet-50 ImageNet 2012 0.7615 0.7544 0.7592 0.7604 0.7595
DenseNet-121 ImageNet 2012 0.7444 0.7435 0.7451 0.7459 0.7253
Wav2Vec2 LibriSpeech 0.9660 0.9632 0.9661 0.9658 0.9552
DLRM Criteo Terabyte 0.8027 0.8016 0.8025 0.8025 0.8024
Bert-Base STS-B 0.8975 0.8934 0.8979 0.8966 0.8809
Bert-Large COLA 0.6257 0.6238 0.6257 0.6282 0.6389
DistilBert MRPC 0.8916 0.8897 0.8943 0.895 0.9042
Bloom-7B1 Lambada-openai 0.5764 0.5424 0.5748 0.5824 0.5977
Bloom-176B Lambada-openai 0.6777 0.6753 0.6757 0.6938 0.6899
LLaMA-65B Lambada-openai 0.7908 0.7840 0.7914 0.7778 0.7155

2020) for speech recognition and evaluate the accuracy us-
ing LibriSpeech (Panayotov et al., 2015).

Recommendation System. We evaluated Deep Learning
Recommendation Model (DLRM) (Naumov et al., 2019)
and measured the accuracy on Criteo Terabyte.

4.2 Quantization Results

4.2.1 Accuracy

Note that the pass rate in Table 2 is the percentage of work-
loads that meet the accuracy criterion of 1% relative loss
against FP32 baseline. SmoothQuant Xiao et al. (2022) is
enabled on NLP models with the default smoothing alpha

https://ailab.criteo.com/ressources/criteo-1tb-click-logs-dataset-for-mlperf
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Figure 5. Accuracy Loss by Size on CV (top) and NLP (bottom). The model size is represented by the ball size in the scale of
log10(model size), where tiny/small/medium/large is defined by the size range in MB <= 32, (32, 384], (384, 512], and > 512
respectively. Note that some points are overlayed due to the similar accuracy (e.g., E4M3 in blue and E3M4 in green on NLP models).

value (alpha tuning is out of scope in this paper). Figure 4
illustrates the variability of accuracy loss for different data
formats across CV and NLP workloads.

Table 3 shows the accuracy of a few representative sam-
ples from all CV and NLP workloads. Figure 5 shows the
accuracy loss of all workloads sorted by the model size in
ascending order.

4.2.2 Generation Quality

Figure 6 shows the image generated by Stable Diffusion
with the prompt ”A photo of an astronaut riding a horse
on Mars”. Our subjective analysis reveals that FP8 formats
achieve superior image quality compared to INT8, as indi-
cated by the green arrow. Additionally, E4M3 and E3M4
produce smoother images and generate more intricate de-
tails, particularly on the astronaut. We employ FID score to
compare the quality of generated images (lower is better)
and see that FID score aligns with our subjective evaluation.
More samples on Stable Diffusion are shown in Appendix
A.2.

Table 4 shows the sample text generated by Bloom on the
prompt with 32 input tokens using beam search size 4. Given
the prompt as the input, you can see E3M4 shows better
response than INT8 with more comprehensive content and
few repeated tokens (e.g., saw many strange). Appendix
A.3 shows the full output on different data format and quan-
tization approach.

4.3 Discussion

4.3.1 Standard Quantization Scheme

Quantizing First and Last Operators : For convolutional
networks, quantizing the first and last operators reduced
the Pass Rate for E5M2 and E4M3 formats by 25% and
15% respectively. However, E3M4 can maintain a Pass
Rate of 70% even with the first and last operators quantized.
Therefore, we recommend the enabling of first and last
operators for FP8 quantization as a tuning option.

BatchNorm Calibration: We use data augmentation to
enhance the feature diversity of the calibration data which
impacts the quality of BatchNorm statistics and model ac-
curacy. Figure 7 compares the effectiveness of training and
inference data augmentation methods in preserving model
accuracy at different calibration data sample sizes. We found
training transform to be more effective even at smaller sam-
ple sizes (<3K). However, we recommend sample size of
3K with training transform for achieving best results across
a wide range of networks.

4.3.2 Extended Quantization Scheme

Mixed FP8 Formats: Figure 8 illustrates how using mixed
FP8 formats on the input can impact the quantization error
of the output of a Linear operator from BERT-base (MPRC)
model. Our experiments show that using E4M3 for activa-
tions and E3M4 for weights produced best accuracy results
on a range of NLP workloads. The accuracy improvements
achieved by this scheme for Bert, Funnel, and Longformer
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Figure 6. Stable Diffusion with Prompt ”A photo of an astronaut riding a horse on Mars”
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Figure 7. CV Models with BatchNorm Operation

56132.15

11842.60

30809.80

E5M2 E4M3 E3M4
0

10k

20k

30k

40k

50k

60k 1.70

0.16 0.13

E5M2 E4M3 E3M4
0

0.5

1

1.5

2

6173.55

982.59

22108.65

919.70

E5M2 E4M3 E3M4 Mixed
0

5k

10k

15k

20k

25k

M
SE

 V
al

ue

Input Tensor Weight Tensor Ouput Tensor

Figure 8. MSE of FP8 Quantization with Mixed Formats vs. Single Format on Bert-Base (MRPC)



Efficient Post-training Quantization with FP8 Formats

Table 4. Generated Text of Bloom on 32 Input Tokens

Prompt: Once upon a time, there existed a little girl, who liked to have adventures. She wanted to go to places and meet
new people, and have fun.

Output (FP32): One day, she decided to go on a trip. She packed her suitcase and went to the airport. When she got
there, she found out that there was no flight to her destination, so she decided to take a bus. When she got there, she
found out that there was no bus to her destination...

Output (INT8): This little girl was very adventurous. One day she decided to go on a trip to a faraway country. When
she got there the little girl saw many strange things. She saw many strange people. She saw many strange animals. She
saw many strange sights. She saw many ...

Output (E3M4): One day, she decided to go on an adventure. She packed her suitcase and went to the airport. She
boarded a plane and flew to New York City. There, she met a man, and they had a great time together. They went to a
restaurant and ate delicious food. Then, they went to...

Table 5. Model Accuracy of FP8 Format (Single vs. Mixed). Mixed FP8 formats (in bold) show higher accuracy than all the other single
FP8 formats on the below NLP workloads.

Model Task FP32 E5M2 E4M3 E3M4 Mixed

Bert-Base MRPC 0.9069 0.9040 0.9050 0.9050 0.9069
Bert-Large RTE 0.7256 0.6968 0.7329 0.6931 0.7365
Funnel MRPC 0.9225 0.9215 0.9207 0.3704 0.9233
Longformer MRPC 0.9146 0.8374 0.9113 0.9084 0.9143

Table 6. Model Accuracy of Quantization Approach (Static vs. Dynamic)

Model Task FP8 Format Dynamic Static Improvement

Bert-Base MRPC E4M3 0.9151 0.9072 +0.87%
Bert-Base COLA E4M3 0.6058 0.6033 +0.41%
Bert-Large RTE E4M3 0.7401 0.7329 +0.98%
Xlm-Roberta-Base MRPC E3M4 0.8962 0.8919 +0.48%

models are presented in Table 5.

Expanded Operator Coverage: Figure 9 has the results
from our quantization studies extended to a wider range of
operators such as BatchMatMul, MatMul, Embedding and
LayerNorm. Our results show that E4M3 achieves over-
all better accuracy and smaller variability in accuracy loss
across a broad range of NLP tasks. Static vs. Dynamic
Quantization: While static quantization is the default ap-
proach in our recipes, we also studied the impact of dynamic
quantization on model accuracy. The results indicate that
dynamic quantization can improve the accuracy of NLP
models when quantizing with E4M3 and E3M4 formats as
shown in Table 6.

5 SUMMARY AND FUTURE WORK

We present a set of post-training quantization recipes for
FP8 inference and demonstrate the effectiveness across 75
unique network architectures covering a wide range of tasks
such as language modeling, text generation, image classifi-
cation and generation. We recommend E3M4 and E4M3 as
the default FP8 format for CV and NLP models respectively,
while additional recipes such as mixed FP8 formats and ex-
panded FP8 operator coverage are worthwhile exploring to
produce an optimal FP8 model. As our future work, we plan
to apply FP8 quantization recipes to more diverse LLM mod-
els (e.g., BioGPT (Luo et al., 2022), Llama2 Chat (Touvron
et al., 2023), Code Llama (Rozière et al., 2023)), and con-
tribute our recipes and implementation to the open source
community.
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to help make sure all data is recorded in E4M3 data range.
Mainly, there are three classic scale algorithms used in INT8
quantization. Percentile and KL can help INT8 clip the min-
max of observed data range to skip outliers and improve the
accuracy of data representation(Jiang, 2021). However, they
may have different behavior on FP8 due to the special data
distribution of FP8.

In Figure 10, we show a demo to explain the shortage of KL
when using FP8. The demo uses a tensor with some outliers
around 6 and after KL process, the clipped max value is 2.
The lines at the bottom show FP8 mapped data with different
max values. The upper line have a large data range from
0-6 while the other line have more representations for small
values. We expect the lower line have a better representation
than the upper one, but it actually have a large MSE than
the upper one. We can observer that the density of the last
block in the lower line is much sparse than the upper one,
while the enhanced small value representations do not help
a lot in MSE.

As mentioned early, the FP8 has advantages of representing
larger range of values and obtaining better accuracy at lower
range because of denser representation on the contrary to
the uniform representation at the whole range of INT8. FP8
format is represented by exponent bits (e) and mantissa
bits (m). Here, we use E(e)M(m) as FP8 representation to
demonstrate our point. To calculate the density of number
for E(e)M(m), we choose a simplified method that uses the
differentials between two points with exact same mantissa of
value 1 but with a difference of 1 in exponent as [1×2n, 1×
2n+1). We know that for any range with such endpoints, the
number of values being represented is always 2m. Therefore,
we can calculate the density on this range is as:

DE(e)M(m) = 2m/(2n+1 − 2n) = 2m−n (3)

As is well known, any decimal number N can be represented
by binary number with exponent Floor[log2N ]. Hence, the
density of E(e)M(m) representation in decimal system is:

DE(e)M(m) = 2m−Floor[log2N ] (4)

It’s clearly shown that the smaller the number N the denser
the number of values being represented. On the contrary,
the larger the number N the sparser the number of values
being represented. Therefore, we always prefer to examine
the histogram of our tensor’s value and make sure always to
represent the high frequency part of our tensor on the lower
range on FP8 with higher density, which is in sharp contrast
to INT8 with uniform density. Also shown in the density
expression, the more the mantissa the denser the number of
values being represented as expected.

Operator level means we have to fallback some operators to
high precision to let the quantized model meed the accuracy

Figure 10. A KL Demo for FP8 mapping

goal. Theoretically, the more operators converted to low
precision, the worse the precision will be. Usually, there are
special operator types that have a big impact on accuracy,
such as LayerNorm. Also, there are some individual opera-
tors that have the most impact on accuracy, such as the first
and last operators.

The tuning strategy we proposed allows an automatic tuning
for the best accuracy, performance or Pareto optimal. The
search space is based on the combination of all tune-able
parameters by default. Typically, a customized search space
based on our experiment result can help narrow down the
search space.

A.2 More Image Generation Samples from Stable
Diffusion

Besides the sample generated with the prompt ”A photo of
an astronaut riding a horse on Mars”, we also generate two
another images with different prompts as shown in Figure 11
and 12.

A.3 Text Generation Samples from BLOOM

Table 7 shows generated text of BLOOM on different data
formats and quantization approaches.
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Figure 11. Stable Diffusion with Prompt: ”A delicious ceviche cheesecake slice”
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Figure 12. Stable Diffusion with Prompt: ”The spirit of a tamagotchi wandering in the city of Paris”
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Table 7. Generated Text of BLOOM (32 Input Tokens and 100 Output Tokens)

Prompt: Once upon a time, there existed a little girl, who liked to have adventures. She wanted to go to places and meet
new people, and have fun.

Output (FP32): One day, she decided to go on a trip. She packed her suitcase and went to the airport. When she got
there, she found out that there was no flight to her destination, so she decided to take a bus. When she got there, she
found out that there was no bus to her destination, so she decided to take a train. When she got there, she found out that
there was no train to her destination, so she decided to take a car. When she got

Output (INT8): This little girl was very adventurous. One day she decided to go on a trip to a faraway country. When
she got there the little girl saw many strange things. She saw many strange people. She saw many strange animals. She
saw many strange sights. She saw many strange smells. She saw many strange sounds. She saw many strange sights. She
saw many strange smells. She saw many strange sounds. She saw many strange sights. She saw many strange smells.
She saw many

Output (E5M2): One day, she decided to go on a trip with her parents. They took her to the seaside, where they had a
wonderful time. After that, they went on a trip to the mountains, where they had a wonderful time. Then they went on a
trip to the city, where they had a wonderful time. After that, they went on a trip to the countryside, where they had a
wonderful time. Then they went on a trip to the zoo, where they had a wonderful time

Output (E4M3 Dynamic): One day, she decided to go on a journey. She packed her suitcase, and set off on her journey.
She was very excited about her trip, and she had a lot of things to do. First, she went to the supermarket, and bought a lot
of food. Then, she went to the bakery, and bought a lot of bread. Then, she went to the butcher, and bought a lot of meat.
Then, she went to the florist, and bought

Output (E4M3 Static): One day, she decided to go on a trip. She packed her suitcase and went to the airport. When she
got there, she found out that her flight was delayed. She waited for a long time, and when she finally got on the plane, she
found out that it was going to take a long time to get to her destination. When she finally got to her destination, she found
out that her flight had been canceled. She waited for a long time, and when she

Output (E3M4 Dynamic): One day, she decided to go on a trip with her parents. They took her to the zoo, where she
saw a lion, a tiger, a bear, and a monkey. The lion was the biggest, the tiger was the fiercest, the bear was the strongest,
and the monkey was the smartest. The lion ate the tiger, the tiger ate the bear, the bear ate the monkey, and the monkey
ate the lion. The lion, the tiger, the bear, and

Output (E3M4 Static): One day, she decided to go on an adventure. She packed her suitcase and went to the airport.
She boarded a plane and flew to New York City. There, she met a man, and they had a great time together. They went to a
restaurant and ate delicious food. Then, they went to the park and had a great time together. They went to the zoo and
had a great time together. They went to the beach and had a great time together. They went to

Output (FP8 Mixed): One day, she decided to go on a trip. She packed her suitcase and went to the airport. When she
got there, she took a taxi to her hotel. When she got to her room, she unpacked her suitcase and went to the bathroom.
She washed her face, brushed her teeth, and put on her makeup. When she was done, she put on her clothes and went to
the restaurant. When she got there, she sat down at a table and ordered a


