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ABSTRACT
IoT devices based on microcontroller units (MCU) provide ultra-low power consumption and ubiquitous com-
putation for near-sensor deep learning models (DNN). However, the memory of MCU is usually 2-3 orders
of magnitude smaller than mobile devices, which makes it challenging to map DNNs onto MCUs. Previous
work separates memory management and kernel implementation for MCU and relies on coarse-grained memory
management techniques such as inplace update to reduce memory consumption.

In this paper, we propose to coordinate memory management and kernel optimization for DNN inference on
MCUs to enable fine-grained memory management. The key idea is to virtualize the limited memory of MCU as a
large memory pool. Each kernel divides the memory pool into kernel-specific segments and handles segment load
and store while computing DNN layers. Memory consumption can be reduced because using the fine-grained
segment-level memory control, we can overlap the memory footprint of different tensors without the need to
materialize them at the same time. Following this idea, we implement vMCU for DNN inference on MCU.
Evaluation for single layers on ARM Cortex-M4 and Cortex-M7 processors shows that vMCU can reduce from
12.0% to 49.5% RAM usage and from 20.6% to 53.0% energy consumption compared to state-of-the-art work.
For full DNN evaluation, vMCU can reduce the memory bottleneck by 61.5%, enabling more models to be
deployed on low-end MCUs.

1 INTRODUCTION

IoT devices based on always-on microconroller units (MCU)
have been widely used in signal processing, environment
monitoring, and robotics. Recently, there has been an in-
creasing trend to deploy deep learning models (DNN) on
IoT devices (Lin et al., 2020; Shafique et al., 2021; Yayla &
Chen, 2022; Yuan et al., 2021; Sheng et al., 2022), which has
enabled various applications including personalized health-
care, unmanned retail, and autopilot. However, it remains
challenging to map the DNN layers to MCU because the
MCU has very limited compute and memory resources. For
example, a STM32-F411RE SoC (stm) with ARM Cortex-
M4 processor only has 128KB RAM, which is 4-5 orders
of magnitudes smaller than that of server-class accelera-
tors (e.g., A100 GPU (a10)) and even 2-3 orders of magni-
tudes smaller than that of mobile devices (e.g., Kirin-990
SoC (kir)). By contrast, even one single convolution layer
(image size = 56× 56, input/channel = 64, Int8 precision)
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from ResNet-50 (He et al., 2016) requires around 401.4KB
RAM storage. This presents huge challenges to model de-
ployment on MCU.

Redesigning DNNs using neural architecture search
(NAS) (Cai et al., 2019) makes it possible to deploy DNNs to
MCUs. NAS can help retrain a new network with much less
parameters according to hardware-specific configurations
(memory size, compute latency, etc.), but the solution is in-
evitable hardware-specific. For example, MCUNet-320KB-
ImageNet, a typical network proposed by MCUNet (Lin
et al., 2020; 2021), can only be deployed to MCUs with
memory larger than 320KB. For smaller devices such as
STM32-F411RE (128KB RAM), this network is not exe-
cutable. As a result, there is an urgent need for post-training
optimizations to further reduce DNN memory consumption
on MCU from a system perspective.

Existing efforts (Lin et al., 2020; 2021; David et al., 2021;
Ahn et al., 2020) mainly rely on a coarse-grained tensor-
level memory management module to schedule the memory
usage of each layer in DNNs. The memory management
module is decoupled from kernel implementation (each ker-
nel implements the computation of one or many layers)
for the ease of development and good maintainability. For
example, TinyEngine (Lin et al., 2020; 2021) maintains a
memory pool for tensors. Before the execution of each ker-
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nel, the input, output, and workspace tensors are allocated
in the memory pool and passed to kernel as parameters. To
save memory, these tensors may overlap with each other at
the granularity of the whole tensor (e.g., for depthwise lay-
ers). When full tensor overlapping is infeasible, no memory
optimization will be performed (e.g., for fully connected lay-
ers). With this method, kernel execution results are always
correct even without awareness of any memory overlapping.
So existing frameworks can use libraries such as CMSIS-
NN (Lai et al., 2018) and CMIX-NN (Capotondi et al., 2020)
or either implement their own kernels without consideration
for memory optimization (Lin et al., 2020).

However, tensor-level memory management misses the
chance to achieve the optimal memory footprint. For most
layers in DNNs, full tensor overlapping is infeasible. For
example, 2D convolution and fully connected layers can’t
inplace update their outputs due to the frequent reuse of the
input data. These layers become the memory bottleneck for
the whole DNN even if we can apply inplace optimizations
to other elementwise and depthwise layers.

To address this issue, in this paper, we propose vMCU to
enable fine-grained memory management. We virtualize
the MCU memory and exploit the chance of partial tensor
overlapping in DNN. In detail, the data elements in input
tensors may have different lifetime, we group elements into
segments and set the lifetime of the segment as the maxi-
mum lifetime of the elements in the segment. After this, we
can schedule memory allocation at the granularity of seg-
ments. When computing layers such as 2D convolution, the
segments of output tensors can overlap with the segments
of input tensors, enabling memory footprint reduction.

Implementing segment-level memory management is chal-
lenging because the kernel computation should be aware of
segment overlapping. To address this challenge, we propose
to coordinate memory management with kernel optimiza-
tion. In detail, for memory management module level, seg-
ments are maintained in a circular buffer, while the segment
size is dependent on each kernel. The memory management
module is responsible for input, output, and workspace ten-
sor allocation in the circular buffer. For kernel optimization
level, each kernel first chooses a kernel-specific segment
size and get input/output/workspace tensors from memory
management module. Then, two-level tiling is applied to
each kernel: the outer level coordinates with segment size,
while the inner level coordinates with compute instruction
lane size. Finally, segment overlapping and replacement is
done for the outer level tiles. When segment pointers are out
of boundary, they will be reset in the circular buffer using
address modular operations.

To reduce the development and maintaining difficulty, we
further provide a Python interface for kernel implementa-
tion with reusable intrinsic and code generation support for

Table 1. Features of accelerators, mobile devices, and MCUs.
Hardware Memory Storage SW Support

A100 40GB TB-PB CUDA runtime
Kirin-990 8GB 256GB OS (Linux)
F411RE 128KB 512KB None

MCU.

In summary, we make the following contributions:

1. We propose to coordinate the memory management
module and kernel optimization to enable segment-
level memory overlapping, which effectively reduce
memory footprint for DNN.

2. We design a segment-level memory management tech-
nique and implement a kernel library for MCU that
supports partial memory overlapping for both single
layer and multiple layers.

3. We effectively reduce the memory footprint of both
single layer and whole network on real MCUs without
any retraining overhead.

A good property of vMCU is that it can reduce the memory
footprint of linear structure DNNs, which is infeasible in pre-
vious work (Ahn et al., 2020; Wang et al., 2022). Evaluation
for single layer on ARM Cortex-M4 and Cortex-M7 pro-
cessors shows that vMCU can reduce from 12.0% to 49.5%
RAM usage and from 20.6% to 53.0% energy consumption
compared to state-of-the-art work. For end-to-end linear
structure DNN evaluation, vMCU can reduce the memory
bottleneck by 61.5%.

2 BACKGROUND AND MOTIVATION

2.1 Architecture Features of Microcontrollers

Microcontroller units (MCU) provide ultra-low energy con-
sumption and cheap computation for near-sensor processing.
We summarize the memory comparison among cloud accel-
erators, mobile devices, and MCUs in Table 1. For cloud
accelerators, we use Nvidia A100 GPU as example; for mo-
bile devices, we use Kirin-990 SoC (with ARM Cortex-A7
processors) as example; and for MCUs, we use STM32-
F411RE (with ARM Cortex-M4 processor). MCUs are
often equipped with limited memory and storage resources
(KB-MB) and their memory hierarchies are specially sim-
plified to meet the low-power and always-on requirements.
The DNN programs cannot run if the footprint exceeds the
capacity. There is no hardware cache or software operating
system on MCUs, and the data mapping can be only handled
statically in programs (by allocating data arrays and operat-
ing directly through pointers). These features make it hard
to deploy DNNs to MCU. When deploying DNN models on
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Figure 1. a) and b): Compare Tensor-level memory management and segment-level memory management. c): Motivational example.

MCUs, the major challenge is to map the enormous amount
of tensor data to the limited memory resource without much
loss of performance.

2.2 Reduce DNN Size With NAS

The most effective approach to reduce the size of DNNs
for MCUs is NAS (Cai et al., 2019; Lin et al., 2020; 2021).
NAS trains a super network and aims to find the optimal
sub-network of the super network that both achieves good
accuracy and conforms to the hardware constraints (e.g.,
memory resource and latency). For example, MCUNet (Lin
et al., 2020; 2021) redesigns a series of CNN models with
smaller convolutions. Usually, the more computing opera-
tions in a network, the higher accuracy it can achieve. As a
result, NAS always produces the largest network possible
for the target hardware for good accuracy results. So the re-
sult networks are hardware-specific and many of them can’t
be deployed to smaller MCUs due to insufficient memory
resources. For example, MCUNet-320KB-ImageNet (Lin
et al., 2020) can’t be deployed to STM32-F411RE SoC
that only has 128KB RAM. This problem is viewed as the
last mile to go for DNN deployment on MCU, which calls
for a post-training solution to further reduce the memory
footprint at a system level.

2.3 Tensor-level Memory Management on MCU

Existing works (David et al., 2021; Lai et al., 2018; Li et al.,
2021; Chen et al., 2018; Lin et al., 2020; 2021; Ahn et al.,
2020; Wang et al., 2022) focus on tensor-level memory
management on MCU. The input, output, and workspace
tensors for each kernel are maintained in a memory pool. To
save memory, the tensors may be overlapped. For example,
depthwise convolution allows input and output overlapping
because the inner computation has no inter-channel data
reuse. The tensor-level management makes it possible to
decouple memory management from kernel implementation.
For example, TensorFlow Lite Micro (David et al., 2021)
uses kernels from CMSIS-NN (Lai et al., 2018) and schd-
ules the tensors for these kernels during code generation;
Serenity (Ahn et al., 2020) uses dynamic programming to

find memory optimal execution order for different kernels
so that some short-lifetime tensors can be freed and reused
for later tensors; HMCOS (Wang et al., 2022) is similar to
Serenity but improves the memory management for local
sub-graph optimization.

The limitation of tensor-level memory management is that,
when full tensor overlapping is infeasible, no memory op-
timization will be performed. For example, as shown in
Figure 1 part a), for a 2D convolution, its input and output
tensor can’t be fully overlapped, so the management mod-
ule allocates different memory spaces for them. For small
devices with insufficient memory resources, out of memory
error will occur. As we will point out in the next section,
we can still exploit memory overlapping to reduce memory
footprint for such scenarios.

2.4 Motivational Example

We use the example in Figure 1 part c) to explain how to
reduce memory footprint by partially overlapping tensors.
This example compares how tensor-level memory manage-
ment and our proposed segment-level memory management
differ in allocating memory for inputs and outputs for a fully
connected layer. We assume the fully connected layer input
tensor can be divided into 2× 3 segments and output tensor
can be divided into 2 × 2 segments. The weight tensor is
constant and is placed in Flash memory, so we don’t con-
sider it in memory management. Fully connected layer is
not suitable for inplace update, so tensor-level memory man-
agement allocates two different memory spaces for input
and output tensors, requring totally 10 segments. On the
contrary, segment-level management only needs 7 segments
to complete the computation. Initially, only input tensor (6
segments) exist in memory. The first segment of output oc-
cupies an empty segment in memory. Start from the second
step, the input tensor fragment at the front is freed and a
newly updated output segment is put to the same place in
memory. After five steps, all the output segments are pro-
duced correctly and the computation of the fully connected
layer ends.
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One important factor in memory management is the num-
ber of empty segments allocated for output tensor. If we
don’t allocate enough segments for output tensor, the newly
updated output segments will incorrectly replace the seg-
ments of input tensor, causing silent error in correctness. If
we allocate too many empty segments, then we will waste
memory space and get suboptimal memory footprint.

The opportunity of further reducing memory footprint using
segment-level memory management motivates us to design
vMCU. In the following sections, we present the details of
vMCU.

3 OVERVIEW OF VMCU
The overview of vMCU is shown in Figure 2. vMCU is
composed of three parts: memory management part, kernel
design part, and compiler support part. Memory manage-
ment part maintains a memory pool of segments. Before
the execution of each kernel, this part determines the start
pointers for input and output tensors according to kernel-
specific segment size as well as the segment arrangement
order in memory. This part is explained in Section 4. Ker-
nel design part provide kernel design methods for DNN
layers, including both single layer and multiple layers. We
mainly focus on 2D convolution and fully connected layers
for single layer and focus on inverted bottleneck module
for multiple layers because they account for the most layers
in DNNs on MCUs. Overall, one kernel is composed of
five steps: segment loading, computation on the segment,
update the output segment to memory, free a used segment,
and boundary check for possible pointer out of boundary.
The details are explained in Section 5. Compiler support
part is designed to reduce the development difficulty with
vMCU. We provide a Python programming interface for
kernel implementation in vMCU. The compiler for vMCU
is composed of two parts: intrinsic and code generation
support, which is explained in Section 6.

4 SEGMENT-LEVEL MEMORY
MANAGEMENT

In this section, we explain how the segment-level mem-
ory management part setups the initial input/output tensor
pointers in memory.

Before we formulate the problem, we need to clarify several
details. First, the order of segment arrangement in memory
is critical to kernel computation correctness. We assume
the segments of different tensors are stored in memory in
row-major order. For example, as shown in the example in
Figure 1, the segments of input and output tensors are in
row-major order, which aligns well with the computation
order in kernel, guaranteeing the correctness of output data.
For cases where column-major order is needed, the memory
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Figure 2. Overview of vMCU.

management method should be similar, so we don’t discuss
it for simplicity. Second, we mainly consider dense work-
loads because most DNNs on MCUs use dense tensors with
quantization (Lin et al., 2020; 2021; Lai et al., 2018; David
et al., 2021). So we can safely assume all the segments are
contiguous in memory.

To formulate the memory management problem, we first
formally define the memory pool with segments. For a
given segment size Seg bytes (determined by kernel imple-
mentation, a tunable hyperparameter) and a given memory
size MemCap bytes of MCU, a memory pool is a circular
buffer array

Pool[
MemCap

Seg
],

where Pool[i] is a vector of Seg bytes, 0 ≤ i <
MemCap

Seg

Pool is circular, which means when accessing Pool, the
address will be calculated using a modulo operation:

Pool[addr] = Pool[addr %
MemCap

Seg
].

Considering that kernel computation is done in the granular-
ity of segment, we can formulate the iteration domain of a
kernel as a set composed of iteration instances S [⃗i]:

{S [⃗i] : H⃗i+ B⃗ < 0}

where H is a matrix and B⃗ is a vector. They are used to
represent the iteration boundaries as affine constraints. i⃗ is
a vector of iteration variables. Each iteration instance S [⃗i]
corresponds to one computation step on a segment.

Each iteration instance S [⃗i] accesses its input/output tensor
data T in the unit of segments, which can be also represented
in affine transformations, we call this access function:

{S [⃗i] → T [u⃗] : u⃗ = Au⃗i+ V⃗u}

where Au is a matrix and V⃗u is a vector. We name them
as access matrices. u⃗ is a vector of access indices. In
Figure 3 we show the iteration domain and access functions
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b) Iteration domain: 
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Figure 3. Problem formulation for GEMM example.

of a GEMM example. The iteration domain is shown in
part b), and the access functions along with their matrix
representations are shown in parts c) and e). There is no
V⃗u vector in the access matrices because there is no index
offsets in GEMM program in part a).

Using the access functions and the assumption that all seg-
ments are arranged in row-major order in memory, we can
derive the segment access address for each iteration instance
S [⃗i]:

{S [⃗i] → T [u⃗] → Pool[addr] : addr = L⃗addru⃗+ boff}

where L⃗addr is a vector used to map multi-dim indices u⃗
to linear address according to row-major order, we call it
mapping vector; boff is an address offset. Using Figure 3
as an example, we show its mapping vectors and offsets in
part d) and f). The mapping vector of tensor In is [K, 1]
because tensor In is of shape [M,K], so its row-major
memory strides are [K, 1]. Similarly, the mapping vector of
tensor Out is [N, 1]. Their offsets bIn and bOut determine
their initial addresses in memory pool. Note that all the
addresses and memory accesses in this example are in the
unit of segment.

Using our formulation, the distance between the offsets bIn
and bOut determines how many empty segments we need to
allocate for output tensor at the beginning of kernel execu-
tion. We aim to minimize the peak memory usage without
damaging the correctness of computation (i.e., without data
race between output and input segments), which equals to
minimize bIn − bOut. This defines the problem formulation
for memory management:

min. bIn − bOut s.t. ∀⃗j ≤ i⃗

L⃗In(AIn⃗i+ V⃗In) + bIn ≥ L⃗Out(AOutj⃗ + V⃗Out) + bOut

(1)
The constraint in the formulation means that for any it-

eration instance i⃗ in the iteration domain, its read address

from In is no less than the write address to Out of all the
iteration instances before i⃗ (represented as j⃗ ≤ i⃗), which
aligns with the row-major order of segment arrangement and
computation. We can solve the optimization problem by in-
teger linear programming. Using the solution, we can setup
the inital pointers for input and output tensors. The input
tensor initial pointer address is determined by the previous
layer in DNN (the first layer can choose arbitrary address in
memory). The output tensor initial pointer address is set by
shifting the input tensor pointer towards the memory pool
head by bIn − bOut segments.

Using Figure 3 as an example, the optimization problem for
GEMM is

min. bIn − bOut

s.t. (K −N)m− n+ k ≥ bOut − bIn,

∀ 0 ≤ m < M, 0 ≤ n < N, 0 ≤ k < K

The solution to this example is

MinFootprint = max(MN,MK) + bIn − bout

= max(MN,MK) +min(N,K)− 1

which means that when N ≤ K, the minimal footprint is
MK + N − 1; when N > K, the minimal footprint is
MN +K − 1. This result coincides with the result of the
example in Figure 1 part c) (K = 3, N = 2), where we only
allocate one empty segment (N − 1 = 1) to minimize the
peak footprint.

5 SEGMENT-AWARE KERNEL DESIGN

5.1 Kernel Design for Single Layer

For a kernel for single layer, a two-level tiling is applied for
optimization. The outer level performs data access in unit
of segments, while the inner level performs computation on
the segments. Specifically, we explain how to design ker-
nels for 2D convolution and fully connected layers because
they account for the most of the layers in DNNs for MCUs.
Although we only discuss two specific layers, the kernel de-
sign paradigm is general because the two-level tiling sketch
and inner reusable functions are similar for different layers.

We start from the fully connected layer. For a fully con-
nected layer with input tensor In[M,K], weight tensor
Weight[K,N ] (in Flash), and output tensor Out[M,N ],
when the segment size is set as Seg, the kernel pseudo
code is shown in Figure 4. The pseudo code shows a two-
level tiling sketch. The inner level tiling factors KI,NI
are hardware-specific parameters, determined by the vector
instruction lane length provided by MCU instruction set.
There are five specific functions used in the code: RegAl-
loc, RAMLoad, FlashLoad, RAMStore, and RAMFree. As
the weight tensor is stored in Flash memory (read-only),
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for m=0 to M step 1: //Outer level tiling
for n=0 to N step Seg:
Accum = RegAlloc(Seg,0) //Zero Register array of size Seg
for k=0 to K step Seg:
ValueA = RAMLoad(In[m,k:k+Seg])
ValueB = FlashLoad(Weight[k:k+Seg,n:n+Seg])
for ki=0 to Seg step KI: //Inner level tiling
for ni=0 to Seg step NI:
Res = Dot(ValueA[ki:ki:KI],ValueB[ki:ki+KI,ni:ni+NI])
Accum[ni:ni+NI] += Res

RAMStore(Out[m,n:n+Seg], Accum) 
for k=0 to K step Seg:
RAMFree(In[m,k:k+Seg])

Figure 4. Pseudo code for the kernel of fully connected layer

for n=0 to N step 1: //Outer level tiling
for p=0 to P step 1:
for q=0 to Q step 1:
for k=0 to K step Seg:
Accum = RegAlloc(Seg,0) //Register array of size Seg
for r=0 to R step 1:
for s=0 to S step 1:
for c=0 to C step Seg:
ValA = RAMLoad(In[n,p+r,q+s,c:c+Seg])
ValB = FlashLoad(Weight[r,s,c:c+Seg,k:k+Seg])
for ci=0 to Seg step CI: //Inner level tiling
for ki=0 to Seg step KI:
Res = Dot(ValA[ci:ci+CI],ValB[ci:ci+CI,k:ki+KI])
Accum[ki:ki+KI] += Res

RAMStore(Out[n,p,q,ki:ki+KI], Accum)
for c=0 to C step Seg:
RAMFree(In[n,p,q,c:c+Seg])

Figure 5. Pseudo code for the kernel of 2D convolution layer

we don’t consider it in memory management. RAMLoad
and RAMStore all require boundary check. As we are us-
ing circular buffer, the check is done by modulo operation
(addr = addr%MemCap

Seg ). As the pseudo code shows, the
store of output segments are more frequent than the free
of input segments. Allocating enough empty segments in
memory pool guarantees that the behavior of this kernel is
correct (as explained in Section 4).

Then, we show the pseudo code for 2D convolution in
Figure 5, which is a bit more complex than that of fully-
connected layer. The input tensor is In[N,H,W,C],
weight tensor is Weight[R,S,C,K], and the output tensor
is Out[N,P,Q,K], where P = H−R+1, Q = W−S+1.
N represents batch, H,W represent image size, C,K are
input and output channels. R,S are convolution window
size. The two-level tiling sketch is similar to that of fully
connected layer. We also use the five functions mentioned
above to implement this kernel.

5.2 Kernel Design for Multiple Layers

Segment-level memory management is not restricted to a
single layer but also applicable to multiple layers. The
benefit of memory footprint reduction for a single layer
is bounded by 50% because we can ideally eliminate the
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memory overhead of either input or output tensor. But
considering multiple layers provides additional optimiza-
tion possibility: we can eliminate the memory overhead of
both input and output tensors for intermediate layers (layer
fusion), enabling us to achieve better memory footprint re-
duction beyond 50%. Designing a fused kernel for multiple
layers is about deciding the scheduling of intermediate data
(workspace) and the scheduling of input and output tensors.

Formally, this problem is a generalization of that of single
layer (Section 4). A multi-layer module in DNN can be
represented as a graph G = (V,E), V is a set of layers, E
is a set of edges between operators, representing the data
producer-consumer relationships in the graph. For memory
scheduling, the main constraint is to make sure that any
output data write address of a consumer layer will never be
used by a input data read access from its producer layer. This
constraint should be conformed by all the operators in the
graph. As a result, for any two layers op1, op2 ∈ V that have
producer-consumer relationship (op1 is producer), for any
iteration j⃗ from the iteration domain of op2 and any iteration
i⃗ from the iteration domain of op1, if j⃗ ≤ i⃗ (lexicographical
order), then the following constraint C(op1, op2) holds

C(op1, op2) : ∀⃗j ≤ i⃗, i⃗ ∈ domain of op1, j⃗ ∈ domain of op2

L⃗op1
In (Aop1

In i⃗+ V⃗ op1
In ) + bop1In ≥ L⃗op2

Out(A
op2
Outj⃗ + V⃗ op2

Out) + bop2Out

And the optimization problem is defined as

min. bIn∗ − bOut∗

s.t. C(op1, op2) holds, ∀(op1, op2) ∈ E
(2)

where In∗ and Out∗ are input and output tensors for the
whole graph.

The optimization problem is usually hard to be generally
solved because there exist multiple valid solutions with non-
trivial memory footprint and latency to tradeoff. But for a
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specific case, we can design an efficient kernel. Considering
that DNNs on MCUs are usually composed of variants of
inverted bottleneck modules (Sandler et al., 2018), we show
how to design efficient kernels for inverted bottleneck in
this section.

Inverted bottleneck module is composed of four layers: two
pointwise convolution layers, one depthwise convolution
layer, and one add layer, as shown in Figure 6 left part.
We show all the five tensors in inverted bottleneck (weight
tensors are not considered as they are in Flash). For each
step of computation, the kernel first loads 3× 3 segments
from tensor A and produces 3 × 3 segments for tensor B,
which are stored in workspace; these 3 × 3 segments are
used to produce one segment of tensor C after depthwise
convolution; then, the second pointwise convolution uses
the segment of tensor C to produce a segment of tensorD,
and the segment of tensor D is added with the corresponding
segment of tensor A loaded previously, producing a segment
of the final output tensor E. The output segment for tensor
E is updated back to the memory pool, which is handled
by vMCU memory management part. The output segment
can be placed at the memory address of a previously freed
input segments, enabling memory footprint reduction just
as what vMCU does for single layer. Overall, the kernel for
inverted bottleneck needs additional 11 (= 3× 3 + 1 + 1)
segments as workspace for intermediate data, which is a tiny
overhead compared to the eliminated memory overhead of
intermediate layers.

5.3 Segment Size Selection

Different segment size selection may affect the memory foot-
print and performance. For memory footprint, the smaller
the segment size, the less the memory footprint is. This
is because memory management is based on segments. If
a segment contains only one element, then the achieved
memory footprint is minimal. However, small segment size
may cause high latency in execution because in our kernel
design, we need to perform address modulo operations for
data load and store. The smallest segment size (an element)
requires modulo operations for each element loaded and
stored, which will significantly reduce performance. As a
result, we take a compromise. For fully connected layer, the
segment size is the minimum of the row size of input and
output tensor; for 2D convolution and inverted bottleneck
module, the segment size is the minimum of the input and
output channel size.

6 VMCU COMPILER SUPPORT

We provide a Python programming interface for vMCU to
reduce the development difficulty. The Python code will be
translated into intermediate representations (IR) and the IR
is translated to low-level C++ code for MCU. To achieve the

best performance on MCU, we need to leverage the vector
instruction set. To expose the special instructions to Python
programming interface, we provide one level of instruction
wrapper called intrinsic (inlined functions).

6.1 Vector Intrinsic Support

We provide six types of intrinsic for programming: RegAl-
loc, RAMLoad, FlashLoad, Dot, RAMStore, RAMFree, and
Broadcast. We mainly explain three of them. The rest of
them can be translated to standard C++ semantics in code
generation.

Dot. This intrinsic implements a fixed size matrix multipli-
cation for problem size 2× 2× 16 with Int8 input data type
and Int32 accumulator data type. It will be translated as a
sequence of instructions using SADD16 and SMLAD on
ARM MCU.

RAMLoad. This intrinsic implements vector load. This
intrinsic will be translated into memcpy operations on MCU.

Broadcast. Broadcast intrinsic is useful for quantization op-
erations on MCU. This intrinsic is translated into PKHBT
instruction on ARM MCU.

6.2 Library Generation

The generated code of vMCU is compiled using ARM GCC
toolchain for deployment. To deploy the machine binary to
target MCUs, we use ARM Mbed command line tools. We
pack the generated code of vMCU for fully connected layers,
2D convolution layers, and inverted bottleneck modules
into a light library for MCU. The library support dynamic
input shapes so that the code size won’t grow with input
configurations.

7 EVALUATION

7.1 Evaluation Setup

We use two platforms in evaluation: STM32-F411RE SoC
(with Cortex-M4 processor, 128KB RAM) and STM32-
F767ZI SoC (with Cortex-M7 processor, 512KB RAM).
For single layer evaluation, our baseline is TinyEngine (Lin
et al., 2020; 2021). The memory management strate-
gies of TensorFlow Lite Micro (David et al., 2021), mi-
croTVM (Chen et al., 2018), and CMSIS-NN (Lai et al.,
2018) are similar to TinyEngine, but TinyEngine pro-
vides state-of-the-art latency as reported in MCUNet (Lin
et al., 2020; 2021), so we only compare to TinyEngine.
TinyEngine uses code generation with templates for convo-
lutions and inverted bottleneck module. It supports inplace
operations for depthwise convolution. But for other layers,
it allocates different memory spaces for both inputs and out-
puts. For multi-layer evaluation, we compare to TinyEngine
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Table 2. Configurations of inverted bottlenecks.
Name H/W C in C mid C out R/S strides

MCUNet-5fps-VWW
S1 20 16 48 16 3 1,1,1
S2 20 16 48 16 3 1,1,1
S3 10 24 144 16 3 1,1,1
S4 10 24 120 24 3 1,1,1
S5 5 40 240 40 3 1,1,1
S6 5 48 192 48 3 1,1,1
S7 3 96 480 96 3 1,1,1
S8 3 96 384 96 3 1,1,1

MCUNet-320KB-ImageNet
B1 176 3 16 8 3 2,1,1
B2 88 8 24 16 7 1,2,1
B3 44 16 80 16 3 1,1,1
B4 44 16 80 16 7 1,1,1
B5 44 16 64 24 5 1,1,1
B6 44 16 80 24 5 1,2,1
B7 22 24 120 24 5 1,1,1
B8 22 24 120 24 5 1,1,1
B9 22 24 120 40 3 1,2,1

B10 11 40 240 40 7 1,1,1
B11 11 40 160 40 5 1,1,1
B12 11 40 200 48 7 1,2,1
B13 11 48 240 48 7 1,1,1
B14 11 48 240 48 3 1,1,1
B15 11 48 288 96 3 1,2,1
B16 6 96 480 96 7 1,1,1
B17 6 96 384 96 3 1,1,1
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Figure 7. RAM usage evaluation on STM32-F411RE.

and HMCOS (Wang et al., 2022). HMCOS is designed to
schedule irregular graphs to reduce peak memory footprint.
It doesn’t support inplace operations. In evaluation, we
mainly report the RAM usage and energy consumption.

7.2 Single Layer Evaluation Results

For single layer evaluation, we use pointwise convolution
with nine different input shapes. We use pointwise convolu-
tion because the current CNNs deployed on MCU mainly
use pointwise convolution and depthwise convolution. For
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Figure 8. Energy consumption and latency evaluation on STM32-
F767ZI.

depthwise convolution, our memory management technique
gives the same results compared to the inplace optimization
in TinyEngine.

In Figure 7, we show the image size (H/W ), input chan-
nel size (C), and output channel size (K) in the name of
each case. For example, H/W80, C16,K16 means that the
convolution input image is 80× 80 with 16 input channels,
and the output channel is 16. We use STM32-F411RE in
evaluation, which only has 128KB RAM storage. As the
results show, vMCU reduces memory footprint for all the
nine cases compared to TinyEngine. The memory reduction
ratio ranges from 12.01% to 49.45%. For three cases (case
1, 2, 4), TinyEngine fails to run because it exceeds the RAM
limit, while vMCU successfully deploy all the convolutions
to our target platform. The memory reduction ratio for the
first three cases are better than the others because these lay-
ers have larger activation size, which are common in the
initial layers of a DNN graph (e.g., in ResNet (He et al.,
2016) and MobileNet (Sandler et al., 2018)). In addition,
these layers’ output activation sizes are the same as the input
activation sizes, which makes the reduction ratio close to
50%. This means that we can eliminate about half of the
memory consumption (the actual results are less than 50%
because we need extra memory space for output activation
data as shown in Figure 3). When the output activation
size is different from that of input size, we can only elim-
inate the cost of the minimal one between them, resulting
less memory reduction ratio as shown in Figure 7 case 4-9.
But overall, the memory usage of vMCU is still less than
TinyEngine.

Besides RAM usage, we also compare the energy consump-
tion of vMCU and TinyEngine. We measure the energy
consumption of processing a single image for all the nine
cases and show the results in Figure 8. vMCU reduces
from 20.6% to 53.0% energy compared to TinyEngine.
The energy consumption of MCU is highly related to the
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total number of memory accesses and execution latency.
TinyEngine consumes more energy mainly for two reasons.
First, TinyEngine uses im2col algorithm to pre-process the
input image of convolution. Although im2col is not nec-
essary for pointwise convolution, TinyEngine doesn’t by-
pass the pre-processing step, which results in more RAM
accesses compared to vMCU. Second, TinyEngine only un-
rolls loops to a predefined depth (e.g., 16), while vMCU
can fully unroll the innermost reduction loops to reduce
processor pipeline stalls. We also plot the latency of each
case in the secondary axis in Figure 8. Overall, vMCU can
reduce the latency by from 18.5% to 40.0% compared to
TinyEngine.

7.3 Multi-layer Evaluation Results

For multi-layer evaluation, we use the inverted bottleneck
modules from two real network: MCUNet-5fps-VWW and
MCUNet-320KB-ImageNet (Lin et al., 2020). The back-
bone of MCUNet-5fps-VWW is mainly composed of 8 in-
verted bottleneck modules, and MCUNet-320KB-ImageNet
is composed of 18 inverted bottleneck modules. We measure
all the modules except for the last one for MCUNet-320KB-
ImageNet because the last one uses a kernel size (7×7) that
is larger than the image size (6× 6), which is not suitable
for fusion (but this module is not the memory bottleneck, so
it doesn’t affect the evaluation results). The configurations
of all the modules are shown in Table 2. H/W indicates
the input images size, C in is the input image channel size,
C mid is the output channel size of the intermediate depth-
wise convolution, C out is the output channel size of the
module, R/S is the kernel size of the depthwise convolution,
and strides are the strides of the three convolutions in the
module.

The evaluation results of MCUNet-5fps-VWW are shown
in Figure 9. This network is small and can be deployed
to STM32-F411RE. Although TinyEngine, HMCOS, and

Table 3. Latency results of inverted bottlenecks in MCUNet-5fps-
VWW.

Name Latency Throughput TinyEngine’s
(ms) (image/s) Latency(ms)

S1 37 27 37
S2 37 27 37
S3 33 30 35
S4 28 35 29
S5 22 45 24
S6 20 50 19
S7 34 29 36
S8 27 37 28

vMCU all successfully deploy the network to target MCU,
vMCU’s memory usage is the minimal. Compared to HM-
COS, vMCU reduces RAM usage by 28.8% − 71.6%;
compared to TinyEngine, vMCU reduces RAM usage by
13.0% − 61.5%. The memory bottleneck of this network
is the first module. For this module, compared to HMCOS,
vMCU reduces the memory bottleneck by 71.6%; compared
to TinyEngine, vMCU reduces the memory bottleneck by
61.5%. We also evaluate the latency of each inverted bottle-
neck module for MCUNet-5fps-VWW. The results are listed
in Table 3. Overall, the latency of vMCU is comparable to
that of TinyEngine (1.03×).

The evaluation results for MCUNet-320KB-ImageNet are
shown in Figure 10. MCUNet-320KB-ImageNet is larger
than MCUNet-5fps-VWW and can’t be deployed to STM32-
F411RE by HMCOS or TinyEngine. By contrast, vMCU
can reduce the RAM usage by 26.5% − 89.6% compared
to HMCOS. Compared to TinyEngine, vMCU can reduce
11.2%− 78.5% RAM usage. HMCOS fails to reduce mem-
ory space for such linear structure DNNs. Compared to HM-
COS, TinyEngine can use inplace depthwise convolution to
reduce memory footprint. But the memory footprint of point-
wise convolutions is not reduced. When deploying the whole
network, the memory bottleneck of HMCOS is 464.6KB
(B3); the bottleneck of TinyEngine is 247.8KB (B2); while
the bottleneck of vMCU is 102.7KB (B1). We reduce the
bottleneck by 58.6% compared to TinyEngine. As a result,
we can successfully deploy this network to a more resource-
constrained platform STM32-F411RE (128KB RAM).

7.4 Impact on Accuracy and NAS

The optimizations in vMCU do not change the original
correctness of the computation and thus the same DNNs can
be deployed to MCUs without any accuracy loss. Moreover,
vMCU enables a larger optimization space for NAS because
the memory usage of each layer and multi-layer module can
be significantly reduced and the memory constraints in the
NAS process (Lin et al., 2020) can be relaxed. For example,
when using exactly the same amount of memory resources
as TinyEngine, vMCU allows the network MCUNet-5fps-
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VWW to increase its image size (both height and width)
by from 1.29× to 2.58× or increase its channel size (both
input channel and output channel) by from 1.26× to 3.17×
as shown in Figure 11 and Figure 12, which means that
more compute operations (OPs) are allowed in deployment
and the network accuracy can be potentially increased by
retraining.

8 RELATED WORK

8.1 Hand-tuned Libraries for MCU

Hand-tuned libraries for MCU focus on optimizing the la-
tency of single operators through tiling and instruction se-
lection. CMSIS-NN (Lai et al., 2018) implements various
operators including matrix multiplication, convolution, and
softmax. It optimizes these operators by using small tiling
factors (e.g., compute 2 rows for convolution at a time)
and use the SIMD instructions provided by MCU. CMix-
NN (Capotondi et al., 2020) implements low-precision op-
erators (2bit, 4bit, 8bit) for matrix multiplication and con-
volution. Deep learning frameworks such as TensorFlow
Lite Micro (David et al., 2021) rely on these libraries for
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Figure 12. The increase ratio for channel size (both input and out-
put channel) of vMCU compared to TinyEngine when using the
same amount of RAM.

deployment. These libraries focus on latency optimization
or bit-width optimization without consideration for memory
footprint reduction.

8.2 Machine Learning Compiler

Machine learning compilers such as Halide (Ragan-Kelley
et al., 2013), TVM (Chen et al., 2018), MLIR (Lattner et al.,
2020), FlexTensor (Zheng et al., 2020b), Ansor (Zheng
et al., 2020a), AMOS (Zheng et al., 2022), TensorIR (Feng
et al., 2023), and Chimera (Zheng et al., 2023) provide
the abilities to generate high-performance code on a wide
range of hardware backends. Among them, compilers for
MCUs focus on both latency optimization and memory
reduction. TinyEngine (Lin et al., 2020; 2021) provides code
generation support for CNNs and support in-place memory
optimization at tensor level. MAGIS (Chen et al., 2024)
uses fission optimization to reduce memory footprint for
DNN graphs. Compared to them, vMCU uses segment-level
memory management to deploy DNNs on MCU and uses
high-level programming model help operator development.

8.3 Memory Optimization with Model Redesign

NAS (Cai et al., 2019) is used to find an optimized model
architecture that gives the best accuracy, latency, and peak
memory footprint for MCU. MCUNet (Lin et al., 2020) uses
NAS to design CNNs with extremely small memory require-
ments on MCU. The result networks only need hundreds of
kilobytes RAM resources for execution. MCUNet-V2 (Lin
et al., 2021) splits the initial convolution layers of CNNs into
partial convolutions to further reduce memory requirements
at the cost of re-computation. To alleviate the overhead of
re-computation, NAS is used to redesign convolution kernel
sizes. Besides NAS, TREC-based (Liu et al., 2023) methods
retrains the DNNs to eliminate redundant computation from
input data. These approaches need to retrain or fine-tune
existing networks. Compared to them, vMCU doesn’t need
any modification of the original DNN model parameters.



vMCU: Coordinated Memory Management and Kernel Optimization for DNN Inference on MCUs

8.4 Tensor-level Memory Management

Tensor-level memory management reduces the memory foot-
print by overlapping different tensors in memory space.
Serenity (Ahn et al., 2020) searches the optimal execution
order through dynamic programming and overlaps tensor
with different lifetime. HMCOS (Wang et al., 2022) im-
proves the searching method by first finding the sub-graph
that is memory bottleneck and then optimizing only the sub-
graph instead of the whole graph. Tensor compilers such as
Relay (Roesch et al., 2019), nGraph (Cyphers et al., 2018),
and TASO (Jia et al., 2019) mainly optimize the execution
order using fusion. They lack optimizations for memory
footprint reduction. Moreover, the scheduling techniques
are only effective for irregular network structure. For lin-
ear structure, there is little or no benefit from scheduling.
TinyEngine (Lin et al., 2020; 2021) only overlaps input and
output tensors for depthwise convolution and can’t apply
overlapping for fully connected layers or 2D convolution
layers. Compared to them, vMCU can reduce the memory
footprint of networks with linear structure by segment-level
memory management.

9 CONCLUSION

Deploying DNN models to IoT devices that are based on
microcontrollers (MCU) is becoming prevalent. To fully uti-
lize the constrained storage resource of MCUs, we propose
vMCU, which uses segement-level memory management
techniques to reduce memory footprint for both single layer
and multi-layer scenarios. The evaluation shows that our
technique can reduce from 12.0% to 49.5% RAM usage
and from 20.6% to 53.0% energy consumption compared to
state-of-the-art work for single layer; for end-to-end graph
evaluation, our technique can reduce memory bottleneck by
61.5%.
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