
QMOE: SUB-1-BIT COMPRESSION OF TRILLION-PARAMETER MODELS

Elias Frantar 1 Dan Alistarh 1

ABSTRACT
Mixture-of-Experts (MoE) architectures offer a general solution to the high inference costs of large language
models (LLMs) via sparse routing, bringing faster and more accurate models, at the cost of massive parameter
counts. For example, the SwitchTransformer-c2048 model has 1.6 trillion parameters, requiring 3.2TB of
accelerator memory to run efficiently, which makes practical deployment challenging and expensive. In this paper,
we present a solution to this memory problem, in form of a new compression and execution framework called
QMoE. Specifically, QMoE consists of a scalable algorithm which accurately compresses trillion-parameter MoEs
to less than 1 bit per parameter, in a custom format co-designed with bespoke GPU decoding kernels to facilitate
efficient end-to-end compressed inference, with minor runtime overheads relative to uncompressed execution.
Concretely, QMoE can compress the 1.6 trillion parameter SwitchTransformer-c2048 model to less than 160GB
(20x compression, 0.8 bits per parameter) at only minor accuracy loss, in less than a day on a single GPU. This
enables, for the first time, the execution of a trillion-parameter model on affordable commodity hardware, like a
single server with 4x NVIDIA A6000 or 8x NVIDIA 3090 GPUs, at less than 5% runtime overhead relative to
ideal uncompressed inference. The anonymized code is available at: github.com/ISTDASLab/qmoe.

1 INTRODUCTION

Generative large language models (LLMs), e.g. (Radford
et al., 2019; Brown et al., 2020; Touvron et al., 2023a;b),
have garnered significant industrial and popular attention
due to their surprising performance across many practical
language and reasoning tasks. Yet, a major obstacle to broad
deployment is given by their extremely high inference costs.
One particularly promising approach for reducing these
costs is the use of Mixture-of-Experts (MoE) architectures,
e.g. (Clark et al., 2022; Du et al., 2022; Zoph et al., 2022),
whose general idea is to replicate certain model components
many times while routing each input only to a small subset
of those replicas. Through expert “specialization” to input
subsets, MoEs achieve faster inference for the same model
quality, but with significantly higher memory requirements
due to components being replicated hundreds or even thou-
sands of times, for the largest and best-performing models.

For example, the popular SwitchTransformer family (Fe-
dus et al., 2022), on which we focus in this study, uses
between 128 and 2048 experts (layer replicas) to signifi-
cantly outperform standard dense T5 models (Raffel et al.,
2020b) in terms of inference and training costs, at equiv-

*Equal contribution 1Institute of Science and Tech-
nology Austria (ISTA). Correspondence to: Elias Frantar
<elias.frantar@ist.ac.at>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

alent model accuracy. Artetxe et al. (2022) report similar
improvements, on different tasks, for 512 experts. However,
these results come at the cost of dramatic increases in model
size: the largest SwitchTransformer has 1.6 trillion parame-
ters, requiring 3.2TB of storage in standard half-precision,
and correspondingly requires a hundred or more expensive
(GPU or TPU) accelerators for efficient usage. This not only
makes practical deployment costly and challenging, but also
strongly limits research on such models.

Challenges. It is natural to ask whether the truly massive
memory costs of such MoEs can be reduced via techniques
for model compression, such as quantization (Gholami et al.,
2021) or sparsity (Hoefler et al., 2021), without significant
accuracy loss. Achieving this would require overcoming
conceptual and technical barriers:

1. Conceptually, existing post-training/one-shot compres-
sion methods, whose costs would be low enough to
execute on such models, are only able to reduce preci-
sion to 3 or 4 bits per parameter (Frantar et al., 2022;
Dettmers & Zettlemoyer, 2022; Wu et al., 2023) or
around 50% sparsity (Frantar & Alistarh, 2023), before
significant accuracy loss occurs. Yet, making trillion-
parameter MoEs practical would require compression
rates between 10× and 20× relative to 16-bit precision,
i.e., on average less than 1 bit per parameter.

2. A key practical issue is scaling: applying state-of-the-
art compression methods, designed for large dense
models, to MoEs that are an order of magnitude larger,

github.com/ISTDASLab/qmoe

QMoE: Sub-1-Bit Compression of Trillion-Parameter Models

while maintaining affordability, runs into a plethora of
memory, performance and reliability roadblocks.

3. Actually achieving sub-1-bit compression in practice
would require a novel customized compression format.
Such a format would also need to come with decoding
algorithms that are highly-efficient on accelerators such
as GPUs, in order to run inference on compressed
models without major processing slowdowns.

Contribution. In this paper, we overcome these chal-
lenges, and introduce QMoE, a framework for accurate
compression and fast inference over massive MoEs, re-
ducing model sizes by 10–20×, to less than 1 bit per pa-
rameter. QMoE is specifically designed to compress and
subsequently inference with models like the 1.6 trillion
parameter SwitchTransformer-c2048, using only modest
computational resources.

Our key technical contributions are a highly scalable com-
pression algorithm implementation and a customized com-
pression format designed together with bespoke GPU-
kernels for fast on-the-fly decoding. Further, we show for
the first time that accurate sub-1-bit compression of tril-
lion parameter MoEs is feasible and can be achieved via
affordable retraining-free compression techniques.

Concretely, we reduce the size of SwitchTransformer-c2048,
the largest openly-available model, from 3.2TB in bfloat16
to less than 160GB in our customized compressed format,
that is, ≈ 0.8 bits per parameter, at only a minor increase in
loss on pretraining validation and zero-shot data. Using our
QMoE kernels, this compressed model can then be executed
fully, without any slow offloading, on commodity hardware
such as 8× NVIDIA RTX 3090 or 4× NVIDIA A6000
GPUs, with < 5% runtime overhead relative to an idealized
version of uncompressed execution, which would require
≈ 20× more GPUs.

In summary, our work enables, for the first time, the perfor-
mant execution of massive-scale MoE models on commod-
ity hardware. This is illustrated by the fact that we are able
to efficiently run the trillion-parameter SwitchTransformer-
c2048 model on a single commodity GPU server, with minor
accuracy loss. This addresses one of the key limitations be-
hind MoE architectures, and should improve their practical
adoption, as well as facilitate further research on understand-
ing and improving such models.

2 BACKGROUND

2.1 Mixture of Expert Models (MoEs)

The core idea behind Mixture of Expert models (MoEs)
is to increase the number of parameters, and thus the net-
work’s modelling power, while at the same time keeping
compute costs near-constant, relative to a standard feed-
forward architecture. This is typically achieved by creating

many copies of certain model components, each of which
is responsible for processing only a subset of all input to-
kens. The corresponding input-to-component assignments
are generally decided by a “router” layer. Probably the most
common MoE design (Fedus et al., 2022; Artetxe et al.,
2022), which we also focus on in this paper, is to replicate
the fully-connected module of a Transformer and route to-
kens to the replica, referred to as an expert, with the highest
assignment score predicted by a linear routing layer; see
Figure 1 for an illustration. This design enables efficient
training and inference of extremely large models, using 100s
or even 1000s of experts, since each token is processed only
by a small subset of the massive overall network.

Attention Block Router

FC Block 1

FC Block 2

FC Block 3

MoE Layer

Tokens

Figure 1. Example of an MoE Transformer block. Each token is
routed to a different fully-connected (FC) block.

2.2 Data-Dependent Quantization

The currently most effective strategy for reducing model size
and corresponding memory costs is quantization, i.e., con-
verting model weights to lower numerical precision. While
simple rounding can suffice for compression to 8 or even 4
bits, accurately quantizing models to extremely low preci-
sion (e.g., lower than 3 bits per parameter) typically requires
more sophisticated data-dependent methods (Nagel et al.,
2020; Wang et al., 2020; Hubara et al., 2021).

Such data-dependent quantization methods use a small set
of calibration data, which is passed through the model. As
this happens, for each linear layer ℓ with weights Wℓ, quan-
tized weights Qℓ are determined one-by-one. Specifically,
one approach to do this is by solving a layer-wise quantiza-
tion problem, stated with respect to Wℓ and the observed
calibration data inputs Xℓ at the current layer:

argminQℓ
||QℓXℓ −WℓXℓ||. (1)

Various solvers for Equation (1) have been proposed, with
some optimized, in terms of speed and accuracy, particularly
for extremely large models, like GPTQ (Frantar et al., 2022)
or ZeroQuant (Yao et al., 2022; Wu et al., 2023). The former
performs quantization using second-order information in the
layer-wise Hessian matrix XℓX

⊤
ℓ , while the latter applies

SGD-optimization with straight-through gradient estimation
(Bengio et al., 2013).

Another noteworthy characteristic of many such methods is
that per-layer quantization can be performed sequentially,

QMoE: Sub-1-Bit Compression of Trillion-Parameter Models

using the input from the already partially quantized model
up to layer ℓ − 1, when quantizing layer ℓ, serving to re-
duce error accumulation. Concretely, this can be efficiently
implemented by using Xℓ to find Qℓ before passing on
Xℓ+1 = QℓXℓ to the next layer.

2.3 MoE Quantization

There are several aspects which make very-low-bit, e.g.
ternary (3 values) quantization promising for MoE models:

• In many architectures, almost all parameters are lo-
cated in the experts, as they are 1000s of them. This
means that, for size reduction, it suffices to focus on
compressing just those experts and leave other layers
in standard precision. This reduces error accumulation
since only a subset of modules involved in a forward
pass are actually quantized.

• Previous work has observed that extremely large dense
models are more resistant to quantization noise than
smaller ones (Frantar et al., 2022; Chee et al., 2023).
Large MoEs can be much larger than some of these
massive dense models, and are thus a prime target for
accurate quantization.

• MoE training involves additional stochasticity through
routing instabilities and strategies like token drop-
ping (Lepikhin et al., 2020), which may inherently
encourage high resistance to noise. Finetuning is also
often performed with high dropout (Fedus et al., 2022).

Our experiments in Section 5.2 confirm that MoEs are in-
deed highly robust to extreme levels of quantization.

3 SCALING UP DATA-DEPENDENT
QUANTIZATION TO MOES

3.1 Challenges

While data-dependent quantization techniques have already
been used to successfully compress large dense models up to
176 billion parameters (Frantar et al., 2022; Wu et al., 2023),
applying them to sparse mixture-of-expert models another
order of magnitude larger brings several new challenges.

Memory Costs. The first major problem we encounter is
a large increase in the memory required to apply such tech-
niques. Not only are the original model weights nearly 10×
larger, but the quantization process itself also needs > 100×
more data. The latter constraint is because accurate data-
dependent quantization methods require a sufficient number
of input samples for each layer that is being compressed.
For very large dense models, a few hundreds of thousands
of “calibration tokens” typically suffice (Frantar et al., 2022;
Yao et al., 2022). However, in MoEs with thousands of
layers, a single expert processes only a small subset of all
inputs, hence we need much more tokens overall to achieve

good coverage of all experts. Further, in encoder-decoder
architecture models, like SwitchTransformers, each token
is processed only by half of the model, again increasing
data requirements. For fast compression, we must maintain
intermediate results for the full calibration dataset, which
requires 100s of GBs of memory for the largest models.

GPU Utilization. The next significant challenge is that
existing large-scale quantization implementations, in par-
ticular for GPTQ and related methods (Frantar et al., 2022;
Chee et al., 2023), are designed to be fast and memory ef-
ficient for the massive individual layers occurring in dense
models. Meanwhile, MoEs typically have smaller layers,
but 100× to 1000×more of them. Current implementations
have poor GPU utilization in this case, and consequently
bad performance. A similar issue occurs if activations and
weights have to be transferred between CPU and GPU with
high frequency, which may be required to cope with the
massive memory requirements discussed previously.

Reliability Requirements. Finally, another issue when
compressing models with tens of thousands of layers is that
running into rare edge cases, which may break the process, is
highly likely. This is includes numerical problems like non-
invertible layer-wise Hessians, as well as model-specific
ones, e.g., extreme routing patterns on particular layers.

3.2 System Design & Optimizations

In this section, we describe system-level design and opti-
mizations to address the challenges in Section 3.1. This
allows us to apply data-dependent compression to massive
MoEs, while preserving the key feature of post-training
compression techniques: the ability to perform effective
compression using only modest computational resources,
e.g., a single NVIDIA A6000 GPU and less than one day of
compute. Although we focus on scaling the popular GPTQ
method, most techniques described below will generalize to
other approaches, like ZeroQuant (Yao et al., 2022), as well.

Optimized Activation Offloading. As discussed before,
a key challenge in compressing MoEs is that we need to
maintain massive activation sets. Yet, it is possible to care-
fully orchestrate model execution in such a way that we
only ever need to perform computation on a small subset
of the intermediate data. This allows us to offload main
storage from GPU, to much less expensive and plentiful
CPU memory.

Concretely, we maintain a single large buffer B which we
update as follows, for the dense part of a Transformer block:

1. Fetch one “sample” X , containing a few hundreds of
tokens, from CPU to GPU.

2. Pass it through the corresponding dense layers to obtain
the result Y .

QMoE: Sub-1-Bit Compression of Trillion-Parameter Models

Q

Token Hidden States

Quantized Expert

GPU

1

2

2

2

1

1

2

Ex
pe

rt
 A

ss
ig

nm
en

ts

Figure 2. Illustration of the offloading execution for the sparse part of a Transformer block. An expert E2 and its corresponding input
tokens XE are fetched to GPU memory to produce E′

2, which together with the corresponding outputs YE are written back to CPU again.

3. Calculate and store expert assignment for tokens in Y .

4. Send Y back to CPU and overwrite X in B.

and respectively for the sparse part, looping over experts:

1. Fetch all individual tokens in B that have been assigned
to expert E, denoted by XE , from CPU to GPU.

2. Use them to produce compressed expert E′ (for exam-
ple, with GPTQ).

3. Run XE through E′ to get YE′ .

4. Send YE′ back to CPU and overwrite XE in B.

This process, which is visualized in Figure 2, minimizes
both memory consumption and transfer cost: we need only
a single copy of B and each token is only read and written
twice per Transformer block.

List Buffer. To efficiently support per-sample access
for evaluating dense model components, as well as fully-
vectorized querying of expert tokens, we store B as a list
buffer data structure. This can be seen as a huge contiguous
buffer of all token hidden states, together with delimiter
indices denoting boundaries between individual samples.
Figure 3 illustrates this storage format. This datastructure
is crucial for efficiency; naively iterating over samples and
fetching relevant tokens via masking is unusably slow for
large sample counts.

1 3

4 7

8 8

B
ou

nd
s

To
ke
ns

Figure 3. List buffer example with 3 samples, indicated by hue.

Lazy Weight Fetching. Since the weights of the 1.6 tril-
lion parameter model consume 3.2 TB of storage, they can-
not even be stored in CPU RAM. Thus, we lazily fetch them
directly from disk storage as they are required. If we follow
the inference procedure outlined previously, this would be
exactly once. Afterwards, their memory is released again.

Expert Grouping. Additionally, in order to avoid GPU
underutilization (see Section 3.1), we group multiple experts
together and apply a joint batched variant of the GPTQ algo-
rithm. Concretely, we extract the inputs XE corresponding
to all experts E ∈ E in group E (the XE will generally have
different sizes) and compute Hessians HE . These matrices,
together with the weight matrices WE , are then stacked to
3-dimensional tensors, on which our modified GPTQ al-
gorithm operates, compressing all experts simultaneously.
We can also compute HE = XEX

⊤
E directly with a single

matmul as the XE are generally small enough, avoiding
the slow per-sample accumulation employed by prior imple-
mentations. Our default expert groupsize |E| is 16, which
we find to bring a good trade-off between GPU memory
consumption and utilization.

Table 1 demonstrates the impact of expert grouping via
GPTQ batching, when compressing a sparse encoder layer
of switch-base-128 using 10k samples; |E| = 16 yields
about ≈ 6× speedup over standard per-expert computation.

|E| = 1 |E| = 4 |E| = 16

174.1s 54.4s 28.8s

Table 1. Sparse layer compression time for different |E|.

Robustness Modifications. To achieve sufficiently high
robustness for successfully quantizing trillion parameter
models with tens of thousands of layers, we need to em-
ploy various numerical and memory adjustments. The most
important are listed below:

• We use 10× higher relative Hessian dampening δ =
0.1, avoiding breakdowns with inf-values.

• Very few layer Hessians are not invertible even after
high dampening; we skip GPTQ for those and simply
perform vanilla rounding.

• Sometimes an expert receives a number of tokens that
is much larger than average, leading to out-of-memory
situations when these are fetched to GPU. We avoid
this by capping the maximum number of tokens used
for compression at 4× the mean and use multiple itera-
tions for computing and updating YE in such cases.

QMoE: Sub-1-Bit Compression of Trillion-Parameter Models

3.3 Accuracy Improvements

In addition to implementing a highly efficient compression
system, we also make new discoveries about applying GPTQ
in our particular context, i.e., for models trained for masked-
language-modelling, MoEs and ternary quantization.

Premasking Special Tokens. First, we find that results
can be improved if the various special separator tokens
inserted by the masked-language-modelling task (Raffel
et al., 2020b) are excluded from the calibration data used for
compression. Concretely, in the encoder, we mask out those
“mask-tokens” during the Hessian computation. Meanwhile,
in the decoder, we skip the token directly before such a
special token as this is the one used to predict the latter.

As shown in Table 2 for switch-base-128 with 10k samples,
this brings noticeably lower loss at no additional compute
cost. We think that because those tokens are very common
during training, the model is so robust in their prediction
that any error compensation on them during quantization is
unnecessary, while worsening correction for other tokens.

mask BF16 2bit tern

no 1.73 1.86 2.16
yes 1.73 1.76 1.99

Table 2. Impact of special token masking; validation loss.

4 REALIZING SUB-1-BIT COMPRESSION

Using our system discussed in Section 3, we can accurately
quantize extremely large SwitchTransformers to very low
bit-widths: 2-bit and even ternary (3 possible values). Yet, in
practice, this falls still short of our compression goal of less
than 1 bit per parameter. We find that compression rates can
be pushed significantly further by taking advantage of the
low entropy in the quantized weights. Next, we co-design
an encoding scheme and a CUDA kernel which realize sub-
1-bit per weight compression in practice, at minimal cost in
terms of GPU execution overhead for inference.

4.1 Natural Sparsity

We pick quantization grids in standard fashion: row-wise
around the min and max weights values (Dettmers et al.,
2022; Frantar et al., 2022), e.g., for ternary: {wmin, 0, wmax}.
These rather wide grids combined with the fact that weights
are typically close to normally distributed, naturally lead to
high sparsity after quantization, i.e., a large number of zeros.
We demonstrate this in Table 3, averaged over all layers. For
ternary weights, the largest model achieves close to 90%
natural sparsity; the standard deviation is also quite low, at
< 5%. Seen another way, the quantized weights have low
entropy, meaning that, on average, significantly less bits per
weight should be required for lossless storage.

model 2-bit ternary

base128 72.2% 85.7%
large128 73.1% 86.4%

c2048 76.5% 88.6%

Table 3. Natural sparsity for different compressed models.

4.2 From Sparsity to Entropy

The direct way of utilizing these high zero proportions
would be in form of a joint sparse & quantized represen-
tation (Kurtic et al., 2022; Yu et al., 2023): storing only
the quantized values of non-zero weights, together with
necessary position metadata. However, as our base quantiza-
tion levels are already very low, standard sparsity metadata
formats (Elsen et al., 2020; Lin et al., 2023) would only
allow limited additional compression. A bitmask indicating
non-zero locations requires 1 bit per weight, while 10-13
bit (depending on layer size) column indices are even less
memory efficient at the sparsity levels we encounter. There-
fore, we take a different approach: we do not utilize sparsity
directly but rather the low entropy, which is implied by the
fact that a single value (0) occurs very frequently.

4.2.1 Fast GPU Decoding Challenges

In principle, we could group multiple consecutive ternary
weights into super-symbols and then apply a code which
assigns variable length codewords to those super-symbols,
based on their probability of occurrence, for example, via a
Huffman approach (Huffman, 1952). If the quantized weight
values were close to independent, this would achieve strong
compression rates; in fact, for actual independence, they
would be essentially Shannon-optimal (MacKay, 2003).

At the same time, our primary goal is to use compressed
models for fast and space-efficient inference. Thus, it is
critical not only that our encoding scheme achieves good
compression, but also that it can be decoded fast on GPU
hardware. This is challenging for a number of reasons:

Challenge 1: Entropy-based codes generally possess se-
quential decoding dependencies: symbol i can only be de-
termined if the length, which is variable, of all (i− 1) prior
symbols is known. Hence, processing consecutive symbols
simultaneously leads to high synchronization overhead.

Challenge 2: Binary words in storage (e.g., INT32 blobs)
may contain different numbers of decoded symbols. Conse-
quently, even if rows/blocks are encoded independently, par-
allel decoding will happen non-uniformly, while all threads
in a GPU-warp must always execute the same instruction.
This would result in many wasted operations.

Challenge 3: Variable-length low-bit decoding involves a
large number of binary operations like shifts, which are not
particularly efficient on GPUs.

QMoE: Sub-1-Bit Compression of Trillion-Parameter Models

Challenge 4: Individual matrices of MoEs are typically
not very large, making it difficult to split them into enough
separately decoded segments to achieve good GPU utiliza-
tion without having to store additional data to break sequen-
tial dependencies, which would harm compression rates.

In contrast, uncompressed half-precision matrix-vector prod-
ucts, which are the primary operation underlying generative
inference, easily achieve close to ideal memory-bandwidth
utilization and thus present a very strong baseline.

4.3 Compression Scheme & Kernel Co-design

To achieve our goal, we need to design a compression
scheme and its GPU decoding kernel jointly, and poten-
tially trade off compression for faster decoding. We begin
with an overview of the main ideas behind our approach,
followed by an in-depth discussion of key details.

4.3.1 Overview

Instead of a code with variable length codewords (see Sec-
tion 4.2.1) mapping to fixed length data, we will use a
dictionary-based code with fixed length codewords mapping
to a variable number of symbols. Such LZW-based schemes
(Welch, 1984) are popular for general purpose compression
like ZIP, as they are particularly effective for text data with
long repeated segments. While a dictionary code is not ideal
in terms of compression rate for the case of almost-random
data in our application, it will be key for fast GPU decoding.

First, our kernel design uses one warp, that is 32 consecutive
threads, to handle a row of a weight matrix, each of which is
encoded independently. This addresses Challenge 4 in Sec-
tion 4.2.1, yielding reasonable GPU utilization for relevant
matrix sizes, with negligible metadata overhead. Further,
we use a fixed-to-variable code with a large dictionary. This
allows us to use a full warp to process one codeword at-a-
time, extracting all data, while maintaining good efficiency,
thus working around Challenges 1 and 2. This way, slow
bit and base-3 operations (for ternary) can also be kept at a
minimum, resolving Challenge 3.

4.3.2 Dictionary Design and Implementation

In general, assume that the values of a ternary weight matrix
(denoted by 0, 1, 2) are distributed close to independently
according to the distribution:

P (0) = p0, P (1) = P (2) =
1− p0

2
, (2)

where p0 denotes the probability of sampling 0, e.g., 0.885
as per Table 3. As we plan to use a rather large dictionary, it
should be shared between many weight matrices to not cause
substantial storage overheads. We find that such a static
dictionary works well enough, while simplifying memory
efficient compression (see Section 3.2) as we do not have to
collect statistics over many yet uncompressed experts.

Next, we consider pairs of ternary values t = (t1, t2), whose
corresponding probability is P (t) = P (t1)P (t2). We gen-
erate the 216 highest probability sequences containing at
most 14 such pairs. This dictionary can be generated using a
max-priority queue on probability, as shown by Algorithm 1.

Algorithm 1 Generate decoding dictionary sequences.

Q← max priority queue containing (1.0, ())
while |D| < 216 do
p, s← pop(Q)
append s to dictionary if 0 < |s| < 28
for t ∈ {(t1, t2) | t1, t2 ∈ {0, 1, 2}} do

push((p · P (t), cat(s, t)), Q)
end for

end while

To briefly understand the procedure, notice that upon the
first iteration, it will push all individual pairs t = (t1, t2) to
the priority queue, sorting them by decreasing probability,
after which they will be expanded in this order.

We have exactly 216 codewords as this allows us to store
them in the native UINT16 datatype, avoiding any slow bit-
extractions at this decoding level. Each of those codewords
maps to two consecutive UINT32 values containing up to 7
pairs each, stored using 2 bits per ternary value, followed by
the total number of pairs in the sequence; see also Figure 4.
This format dictates our maximum chosen pair count of 14.
Further, we consider pairs, rather than individual weights, to
fit the maximum count into 4 bits. The 2-bit-per-weight for-
mat is used as there is enough space, while a more compact
ternary encoding would involve slow modulo and division
operations for extraction. We store the pair-count twice so
that each thread can work with only half of the data, stored
in a fast INT32 type.

01 10 00 00 01 00 00 00 01 10 00 00 10 00 1100

2 bits 4 bits

1 weight 1 pair pair count

4 bits

0110 0000 01 00 000010 10 00 00 00 00 1100

unfilled

Figure 4. Data format of a dictionary entry; here of 24 weights.

Overall, mapping 16-bit codewords to 64-bit data blobs
strikes a good balance between several goals: (a) Having
codewords map to, on average, more uncompressed values
than their bitwidth, a necessary condition for achieving < 1-
bit compression. (b) Minimizing the overall storage cost of
the dictionary to fit into the L2-cache of the GPU, which
is critical for good decoding performance. (c) Utilizing
as many threads in a warp as possible for simultaneously
extracting plain weights from the decoded data; usually,
> 16 will do useful work and only 4 out of 32 threads are

QMoE: Sub-1-Bit Compression of Trillion-Parameter Models

never active in this step. (d) Avoiding as many conditionals
and extra operations necessary for dealing with non-uniform
data storage as possible, which slow down parallelization.

Finally, we note that while dictionary lookups are in princi-
ple random access, keeping it sorted from highest to lowest
probability ensures very favorable caching behavior. Since
each lookup also automatically prefetches several subse-
quent elements, and most lookups are for frequently occur-
ring codewords, there are many fast L1-cache hits.

Validation. To assess the effectiveness of our scheme,
we compute achieved compression rates, both on a real
ternary quantized c2048 model as well as on weight matrices
sampled directly from distribution (2), yielding 20.07× and
21.11×, respectively. This gap of only ≈ 5% suggests that
our simplifying independence assumption is indeed quite
close for large models. We also note that our rates are
only ≈ 20% away from the distribution’s (with p = 0.885)
theoretical compression limit of 25.40×, which we consider
a reasonable trade-off for enabling fast GPU decoding.

4.3.3 GPU Kernel

Having defined the dictionary format, we now discuss the
design of the actual decoding kernel. We focus on the most
important operation for inference, decompression fused with
a matrix-vector-product. However, our techniques can easily
be adapted to other use-cases, e.g., pure decompression.

Listing 1 provides CUDA-like pseudocode for our kernel,
computing the matrix-vector-product of compressed matrix
w comp (with metadata row off and ter minmax, using
dictionary dec) and BF16 vector x, into output buffer y. The
handling of various edge cases and some index calculations
have been removed for readability. Please see our source
code for the fully functional implementation.

1 template <int num_warps, int w_width>
2 __global__ void Sub1MatVec(
3 int* dec,
4 ushort* w_comp, int* row_off, __nv_bfloat162* ter_minmax,
5 __nv_bfloat16* x, __nv_bfloat16* y
6) {
7 __shared__ float x_shared[w_width];
8 for (int i = thread; i < w_width; i += 32 * num_warps)
9 x_shared[i] = __bfloat162float(x[i]);

10
11 __shared__ float deq[3][32 * num_warps];
12 deq[0][thread] = 0;
13 deq[1][thread] = __bfloat162float(ter_minmax[row].x);
14 deq[2][thread] = __bfloat162float(ter_minmax[row].y);
15
16 __syncthreads();
17 __shared__ w_comp_block[32][num_warps];
18
19 float res = 0;
20 int idx = 0;
21
22 for (int i = 0; i < row_off[row + 1] - row_off[row]; i += 32) {
23 w_comp_block[warp][lane] = w_comp[i + lane];
24
25 if (lane < 28) {
26 for (int j = 0; j < 32; j++) {
27 int enc = w_comp_block[warp][j];
28 int wx14 = dec[2 * enc + (lane / 14)];
29 int ter = (wx14 >> (4 + 2 * (lane % 14))) & 0x3;
30 float w = deq[ter][thread];
31 res += w * x_shared[idx + lane];
32 idx += 2 * (wx14 & 0xf);

33 }
34 }
35 }
36
37 for (int i = 16; i > 0; i /= 2)
38 res += __shfl_down_sync(0xffffffff, res, i);
39 if (lane == 0)
40 y[row] += __float2bfloat16(res);
41 }

Listing 1. Simplified kernel pseudocode for a fused decompress +
matrix-vector-product operation.

Parallelization. Overall, each threadblock will han-
dle multiple consecutive rows, each of which is pro-
cessed by a single warp. We use exactly one thread-
block per GPU Streaming Multiprocessor (SM) with
min(#rows in block, 32) warps; if there are more than 32
rows in a block, (some) warps sequentially process multiple
rows (note that this part is omitted in Listing 1 for simplic-
ity). This avoids any bad wave quantization effects. We
find this strategy to be an effective heuristic that yields good
performance for all matrix shapes we consider.

Execution. Our kernel starts by loading the entire input
vector to shared memory (x shared, lines 7-9), using all
warps in a threadblock. This enables fast element access in
the subsequent per-row product-sum accumulations.

Next, each warp processes its corresponding row by
first fetching (up to) 32 codewords into shared memory
(w comp block, line 23) using a single coalesced transac-
tion. It then loops over those symbols, processing one-at-
a-time (lines 26-33). First, using 28 of its 32 threads (line
25), it fetches the corresponding decoding data from the
dictionary where the first UINT32 is assigned to threads
0-13 and the second to threads 14-27 (wx14, line 27). Then,
each thread extracts its corresponding ternary weight (lines
29-30) and adds the corresponding input product into its
own partial result accumulator (res, line 31). We note that
the input reads from shared memory are contiguous and do
not cause bank conflicts. Afterwards, each thread advances
the offset index (idx, line 32) into the input vector by the
total number of weights encoded in the current symbol.

Finally, after the full row has been scanned, a warp-
reduction (lines 37-38) over the partial results of each thread
yields the output (y, lines 39-40).

Ternary Decoding. Another relevant detail is that ternary
weights are stored as 0, 1, 2 (line 29) but need to be dequan-
tized to 0, wmin, wmax for multiplication with inputs. We
found that the most efficient way of performing this con-
version is via a shared memory lookup table (lines 11-14).
Crucially, this table needs to be replicated 32 times across
the column-dimension to avoid very frequent bank conflicts,
which would otherwise occur every time not all 28 threads
dequantize the same value (line 30). Fortunately, there are
only 3 input values and so its overall size is tolerable.

QMoE: Sub-1-Bit Compression of Trillion-Parameter Models

5 EXPERIMENTS

5.1 General Setup

Models. We focus our experiments on the SwitchTrans-
former (Fedus et al., 2022) family of models. Our primary
target is the very largest variant, c2048, with around 1.6
trillion parameters, but we also consider the comparatively
small base128 (7B params) and large128 (26B params) ver-
sions for testing and ablations. We chose the SwitchTrans-
former family as it contains the largest publicly-available
model, which also features a similar or higher number of
training tokens to parameters ratio than potential alternatives
like Artetxe et al. (2022). Further, those models are also
among the most popular massive MoEs, with several imple-
mentations across frameworks (Wolf et al., 2019; Shazeer
et al., 2018; Google, 2023).

Framework. As accessibility is a major goal of our work,
we build our code-base around the PyTorch-backend of the
highly popular HuggingFace (Wolf et al., 2019) framework,
which brings a number of additional challenges. First, we
find that the largest model variants require a handful of bug-
fixes, primarily configuration and model setup changes, in
order to run properly. We suspect that this is because their
enormous sizes have rendered extensive testing very diffi-
cult. Second, we observed a major inefficiency in the context
of generative inference for models with a large number of
experts: the HuggingFace implementation will perform sev-
eral (empty) CUDA calls for potentially 1000s of experts
to which no token is routed, accumulating large overheads.
We modify the implementation (also for baselines) to skip
such unnecessary calls, leading to > 10× speedup for large
models. We apply all changes to the HuggingFace frame-
work only dynamically at runtime, so that our code can be
run directly with an official installation.

Datasets. SwitchTransformers have been trained for a
Masked-Language-Modelling (MLM) objective (Raffel
et al., 2020b) on the C4 dataset (Raffel et al., 2020a). Similar
to most works in the area of LLM quantization (Yao et al.,
2022; Frantar et al., 2022; Dettmers & Zettlemoyer, 2022),
we focus on general upstream compression directly on this
pretraining task/dataset combination. Consequently, our
evaluation focuses on validation performance for C4/MLM,
where we use the public reproduction of C4 on HuggingFace
as well as their replication of the original masking proce-
dure. Calibration data for compression is taken, in order,
from the first two shards of the training set. For efficiency,
we primarily evaluate on 128 samples (corresponding to the
average loss over > 10K tokens, which is quite stable) from
the first shard of the validation set, but we also perform
some evaluations other datasets.

Hardware. All compression experiments, including those
for the very largest models, can be performed in less than a
day on a single NVIDIA A6000 with 48GB of GPU memory.

However, efficiently compressing trillion parameter models
using a large number of calibration samples requires a few
100GBs of (CPU) RAM; the original 1.6T model itself also
occupies > 3 TB disk storage.

5.2 Compression Results

Accuracy. We begin by quantizing all SwitchTransformer
models to 2-bit and ternary precision, and evaluating their
validation loss. Our default number of calibration samples is
10K for 128 experts and 160K for 2048, but we also consider
using 0.5× and 2× as many samples. In addition to using
our efficient QMoE framework discussed in Section 3, we
also consider a standard round-to-nearest (RTN) baseline
(Dettmers et al., 2022). We simulate the latter by fixing
Hessians to the identity matrix, thus applying precisely the
same quantization settings and evaluation protocol. Table 4
summarizes our results.

Perhaps surprisingly, vanilla rounding (RTN) does not lead
to a complete model collapse even at ternary precision, em-
phasizing the high robustness of large MoEs to quantization.
Nevertheless, the loss increases are quite significant for
smaller models at 2-bit and far too large to be useful at
ternary precision. In contrast, using data-dependent quanti-
zation, 2-bit is achievable at minimal loss (1.7% relative on
c2048) and ternary at only a small increase (6.7% relative
on c2048). This demonstrates not only the effectiveness
of such advanced quantization methods in this context, but
also shows that extremely low-bit compression is indeed
practical for massive MoEs.

method base128 large128 c2048
2bit tern 2bit tern 2bit tern

BF16 1.73 1.55 1.18

RTN 2.27 4.54 1.96 2.79 1.33 2.15

QMoE 0.5x 1.78 2.11 1.54 1.70 1.22 1.27
QMoE 1.0x 1.76 1.99 1.56 1.69 1.20 1.26
QMoE 2.0x 1.76 1.93 1.57 1.64 1.21 1.26

Table 4. Comparing C4 validation losses for 2-bit and ternary (tern)
quantized SwitchTransformers. “QMoE 0.5x” indicates that only
half of the default number of calibration samples are used.

Additionally, we conduct evaluations on Arxiv, GitHub,
StackeEchange and Wikipedia data sampled from RedPa-
jama (Computer, 2023). Even though only < 0.01% of our
C4 calibration data originates from those websites, the com-
pressed model still preserves performance almost as well as
on the core of the distribution (see Table 5).

In terms of calibration data, we see that increasing the
amount of samples generally improves performance slightly,
most noticeably for ternary quantization, but there is also
some noise in the process, especially at 2-bit.

QMoE: Sub-1-Bit Compression of Trillion-Parameter Models

bits arxiv github stackexch. wiki

BF16 1.31 0.99 1.15 1.20

2-bit 1.34 1.05 1.17 1.24
tern 1.42 1.13 1.22 1.32

Table 5. Additional evaluations for the c2048 model.

Compression. Next, we investigate the actual compres-
sion rates that are achieved by further compressing ternary
models using our scheme introduced in Section 4. We con-
sider both compression relative to just the MoE modules
(the model parts we quantize) as well as to the full model
and all its metadata. The compression rates and overall
checkpoint sizes are listed in Table 6.

model moe-only full size [GB]
bf16 ours

base128 17.06× 11.76× 14.9 1.27
large128 18.34× 13.32× 52.7 3.96

c2048 20.07× 19.81× 3142 158.6

Table 6. Compression rates and sizes for ternary models.

In general, measuring only relative to parts we compress
(moe-only), all sizes achieve > 16× compression rate and
thus < 1 bits per parameter storage. On c2048, even the
overall rate, including all uncompressed dense layers, re-
mains at 19.81×, corresponding to 0.807 bits per parameter,
reducing the checkpoint size from 3142GB to 158.6GB. One
can also observe that compression rates increase with model
size, which is for two reasons: (a) natural sparsity increases
while our encoding dictionary is also optimized for c2048
(see Section 4), and (b) weight distributions become closer
to independent for larger layer sizes.

Runtime. Finally, we evaluate how long it takes to pro-
duce compressed models on a single A6000 GPU, for dif-
ferent amounts of calibration data. The results are shown in
Table 7. Smaller models can be compressed in less than an
hour and even c2048 in less than a day, confirming the high
efficiency of QMoE. The runtime increase from large128
to c2048 is roughly proportional to the difference in size,
despite the latter using 16× more samples. This is because
the number of samples per expert stays constant and the
expert size increases only slightly. Finally, we note that
simply (iteratively) loading the original 1.6T model into
RAM takes close to 5 hours on our slow disk storage.

model 5K/80K 10K/160K 20K/320K

base128 8.4min 14.0min 21.6min
large128 22.0min 30.2min 45.2min

c2048 13.3h 16.0h 20.8h

Table 7. Compression runtime for different calibration data size.

5.3 Runtime Results
Individual Layers. Our kernel performance evaluation
starts with a direct (isolated) comparison of our compressed
matrix-vector product kernels (see Section 4) against Py-
Torch’s standard (uncompressed) bfloat16 cuBLAS kernels.
Figure 5 (Left) shows the time taken by our compressed
kernels relative to bfloat16, for the matrix shapes found in
our MoEs, on two different GPUs. While our kernels have
to perform a lot less slow (global) memory reads than the
bfloat16 baseline due to lower storage costs, they need to
spend much more compute for complex unpacking of the
heavily-compressed weights. Nevertheless, executing our
compressed kernels takes less time than the close to ideal
bfloat16 baseline in all cases, with up to 35% speedup on
specific matrix shapes. We note that these are very low-
latency operations, with the smallest matrix taking < 0.02
milliseconds and the largest < 0.05.

End-to-End Execution. Finally, we also benchmark our
kernels end-to-end in HuggingFace on the real weights of
our compressed MoE models. We consider an individual
user application, like (Frantar et al., 2022; Leviathan et al.,
2023; Park et al., 2022), where a single prompt (sampled
from C4) should be processed to generate a 128-token re-
sponse. As actually running the bfloat16 version of the
c2048 model would require > 65 A6000 and > 130 3090
GPUs (versus 4 and 8, respectively, for sub-1-bit com-
pressed weights) we have to estimate its runtime. We do
this by having all experts in a layer point to the same weight
data (resolving memory issues), which allows us to col-
lect timings with precisely the same overheads as for our
compressed models. However, this is a highly optimistic
estimate since real execution would require close to 20×
more GPUs, with corresponding communication overheads,
and our numbers should thus be viewed as a lower bound.

The results, shown in Figure 5 (Right), demonstrate that
end-to-end execution of compressed models is only < 5%
slower than standard (uncompressed) execution. This slight
slow-down despite faster per-layer timings is due to the fact
that the encoder may sometimes route multiple tokens to
the same expert. Our current implementation naively exe-
cutes a separate matrix-vector product for each token, while
the baseline performs a much more efficient joint matrix
multiplication. For applications where this is a significant
bottleneck, one could easily introduce an inner loop over to-
kens into our kernel (Listing 1, line 30), or fully decompress
first, followed by a standard matmul, for large token counts.

6 RELATED WORK

Mixture-of-Expert (MoE) Models. Mixture-of-expert
models are a popular approach for creating large-scale mod-
els that are more efficient for inference (Fedus et al., 2022;
Artetxe et al., 2022; Clark et al., 2022). At the core of
MoEs lie (sparse) routing mechanisms, of which many vari-

QMoE: Sub-1-Bit Compression of Trillion-Parameter Models

768 × 3072 3072 × 768 1024 × 4096 4096 × 1024 2080 × 6144 6144 × 20800.0

0.2

0.4

0.6

0.8

1.0

1.2
Ti

m
e

re
la

tiv
e

to
 B

F1
6

Per-layer performance of compressed matrix-vector kernels
BF16 RTX3090 A6000

base128 large128 c20480

1

2

3

4

5

6

Se
co

nd
s t

o
ge

ne
ra

te
 1

28
 to

ke
ns

End-to-end performance of compressed models
3090-BF16* 3090 A6000-BF16* A6000

Figure 5. (Left) Per-layer compressed kernel performance relative to uncompressed execution. (Right) End-to-end runtimes of compressed
models and estimates (∗, would require 65/130 GPUs) for bloat16 baselines. c2048 is run on 4×A6000 and 8×3090 GPUs, respectively.

ants have been proposed. Those range from static assign-
ment based on input token IDs (Roller et al., 2021), over
dynamic token-to-expert matching (Zhou et al., 2022), to
“soft” routing of linear input combinations (Puigcerver et al.,
2023). Since MoEs can feature rather different computa-
tional profiles from standard dense models, there is also
significant research on optimizing inference and training
systems (Barham et al., 2022; Gale et al., 2023; Hwang
et al., 2023). Among the most critical problems in this area
are data-exchanges between accelerators during routing and
dealing with uneven compute-loads for different experts.

LLM Quantization. Quantization is a very popular com-
pression technique, which has seen a vast amount of
work (Gholami et al., 2021), especially in the context
of LLMs. Specifically, the ability to perform accurate
weight quantization for billion-parameter models has greatly
boosted their accessibility: it has been shown that extremely
large dense models can be quantized to 8- or even 4-bit pre-
cision at little accuracy loss (Dettmers et al., 2022; Yao et al.,
2022; Frantar et al., 2022; Dettmers & Zettlemoyer, 2022).
Pushing towards even lower bitwidths via more sophisti-
cated compression formats, like multi-level grouping cou-
pled with higher-precision outliers (Dettmers et al., 2023;
Ashkboos et al., 2023), or new quantization techniques, like
incoherence preprocessing (Chee et al., 2023), is an active
area of research. Currently, accurate quantization to 2 or
less bits appears to be a major barrier for post-training quan-
tization of standard LLMs. By contrast, in this work we
show that massive MoE models appear to be significantly
more compressible, as we achieve sub-1-bit compression at
comparable loss increases to 3-bit or 4-bit quantization of
standard LLMs.

MoE Compression. There has also been work on com-
pressing MoE models in particular. Chen et al. (2022) and
Koishekenov et al. (2022) perform compression via spe-
cialization of MoEs to specific “downstream” finetuning
datasets by pruning components not relevant to the par-
ticular task. In contrast, we focus on general “upstream”
compression of the pretrained model, via extremely low-bit
quantization. Other works (Kim et al., 2022b; Yi et al., 2023;
Kim et al., 2023) also perform MoE quantization, but focus

on noticeably higher bit-widths, like 8 or 4 bits per weight.
This is accomplished primarily via simple rounding, which,
as shown by our experiments, is not accurate enough for full
2-bit or lower compression. Kim et al. (2022a) achieve 2-bit
quantization on a 5 billion parameter MoE, which is con-
sidered relatively small in this area, by further optimization
of the model via Quantization-Aware Training (Nagel et al.,
2021). Applying such an approach for trillion-scale models
would be extremely resource intensive. They also do not
provide any mechansims for exploiting low-bit quantization
and its corresponding natural sparsity in practice, which is
challenging and constitutes a key contribution of our work.

Relative to prior work, we are particularly focused on scal-
abilty and practicalty. While existing works study models
with at most tens of billions of parameters, we demonstrate
all our techniques at trillion parameter scale.

7 DISCUSSION AND LIMITATIONS

We have presented QMoE, an end-to-end compression
and inference framework for massive MoEs. We showed,
for the first time, that models like the trillion-parameter
SwitchTransformer-c2048 can be accurately compressed to
less than 1 bit per parameter, close to 20× compression rate,
in a custom format that enables the first efficient execution
of such a model on a single commodity GPU server. QMoE
is open-source and built around the popular HuggingFace
framework, making deployment and research for massive
MoEs significantly cheaper and more accessible.

Our study is limited in terms of models, as only very few
massive and accurate MoEs are available publicly. Addition-
aly, due to their size, most MoEs are trained and deployed in
different bespoke framework, requiring complex manual in-
tegrations to use for further research. A natural extension of
our work would be to apply our QMoE techniques to other
MoE models or variants, such as Artetxe et al. (2022) or
SoftMoEs (Puigcerver et al., 2023). It would also be interest-
ing to further finetune a compressed model for specialized
down-stream tasks. Zoph et al. (2022) report strong results
when finetuning only non-expert layers, which QMoE leaves
uncompressed, suggesting that this could be a promising
direction for future work.

QMoE: Sub-1-Bit Compression of Trillion-Parameter Models

REFERENCES

Artetxe, M., Bhosale, S., Goyal, N., Mihaylov, T., Ott, M.,
Shleifer, S., Lin, X. V., Du, J., Iyer, S., Pasunuru, R., et al.
Efficient large scale language modeling with mixtures
of experts. In Empirical Methods in Natural Language
Processing (EMNLP), 2022.

Ashkboos, S., Markov, I., Frantar, E., Zhong, T., Wang, X.,
Ren, J., Hoefler, T., and Alistarh, D. Towards end-to-
end 4-bit inference on generative large language models.
arXiv preprint arXiv:2310.09259, 2023.

Barham, P., Chowdhery, A., Dean, J., Ghemawat, S., Hand,
S., Hurt, D., Isard, M., Lim, H., Pang, R., Roy, S., et al.
Pathways: Asynchronous distributed dataflow for ml. In
Conference on Machine Learning and Systems (MLSys),
2022.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In Conference on Neural Information Processing Systems
(NeurIPS), 2020.

Chee, J., Cai, Y., Kuleshov, V., and De Sa, C. Quip: 2-bit
quantization of large language models with guarantees.
arXiv preprint arXiv:2307.13304, 2023.

Chen, T., Huang, S., Xie, Y., Jiao, B., Jiang, D., Zhou, H.,
Li, J., and Wei, F. Task-specific expert pruning for sparse
mixture-of-experts. arXiv preprint arXiv:2206.00277,
2022.

Clark, A., De Las Casas, D., Guy, A., Mensch, A., Paganini,
M., Hoffmann, J., Damoc, B., Hechtman, B., Cai, T.,
Borgeaud, S., et al. Unified scaling laws for routed lan-
guage models. In International Conference on Machine
Learning (ICML), 2022.

Computer, T. RedPajama: An open source recipe
to reproduce llama training dataset, 2023. URL
https://github.com/togethercomputer/
RedPajama-Data.

Dettmers, T. and Zettlemoyer, L. The case for 4-bit pre-
cision: k-bit inference scaling laws. arXiv preprint
arXiv:2212.09720, 2022.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
LLM.int8(): 8-bit matrix multiplication for transformers
at scale. arXiv preprint arXiv:2208.07339, 2022.

Dettmers, T., Svirschevski, R., Egiazarian, V., Kuznedelev,
D., Frantar, E., Ashkboos, S., Borzunov, A., Hoefler, T.,
and Alistarh, D. SpQR: A sparse-quantized representation
for near-lossless llm weight compression. arXiv preprint
arXiv:2306.03078, 2023.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D.,
Xu, Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O.,
et al. GLaM: Efficient scaling of language models with
mixture-of-experts. In International Conference on Ma-
chine Learning (ICML), 2022.

Elsen, E., Dukhan, M., Gale, T., and Simonyan, K. Fast
sparse convnets. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple
and efficient sparsity. The Journal of Machine Learning
Research, 23(1):5232–5270, 2022.

Frantar, E. and Alistarh, D. SparseGPT: Massive language
models can be accurately pruned in one-shot. In Interna-
tional Conference on Machine Learning (ICML), 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh,
D. GPTQ: Accurate post-training compression for
generative pretrained transformers. arXiv preprint
arXiv:2210.17323, 2022.

Gale, T., Narayanan, D., Young, C., and Zaharia, M.
MegaBlocks: Efficient sparse training with mixture-of-
experts. In Conference on Machine Learning and Systems
(MLSys), 2023.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W.,
and Keutzer, K. A survey of quantization methods
for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

Google. T5x, 2023. URL https://github.com/
google-research/t5x.

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and
Peste, A. Sparsity in deep learning: Pruning and growth
for efficient inference and training in neural networks.
arXiv preprint arXiv:2102.00554, 2021.

Hubara, I., Nahshan, Y., Hanani, Y., Banner, R., and Soudry,
D. Accurate post training quantization with small cal-
ibration sets. In International Conference on Machine
Learning (ICML), 2021.

Huffman, D. A. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–
1101, 1952.

https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/google-research/t5x
https://github.com/google-research/t5x

QMoE: Sub-1-Bit Compression of Trillion-Parameter Models

Hwang, C., Cui, W., Xiong, Y., Yang, Z., Liu, Z., Hu, H.,
Wang, Z., Salas, R., Jose, J., Ram, P., et al. Tutel: Adap-
tive mixture-of-experts at scale. In Conference on Ma-
chine Learning and Systems (MLSys), 2023.

Kim, Y. J., Fahim, R., and Awadalla, H. H. Mixture of
quantized experts (MoQE): Complementary effect of low-
bit quantization and robustness. OpenReview, 2022a.

Kim, Y. J., Henry, R., Fahim, R., and Awadalla, H. H.
Who says elephants can’t run: Bringing large scale
moe models into cloud scale production. arXiv preprint
arXiv:2211.10017, 2022b.

Kim, Y. J., Henry, R., Fahim, R., and Awadalla, H. H.
Finequant: Unlocking efficiency with fine-grained
weight-only quantization for llms. arXiv preprint
arXiv:2308.09723, 2023.

Koishekenov, Y., Nikoulina, V., and Berard, A. Memory-
efficient NLLB-200: Language-specific expert pruning
of a massively multilingual machine translation model.
arXiv preprint arXiv:2212.09811, 2022.

Kurtic, E., Campos, D., Nguyen, T., Frantar, E., Kurtz,
M., Fineran, B., Goin, M., and Alistarh, D. The Op-
timal BERT Surgeon: Scalable and accurate second-
order pruning for large language models. arXiv preprint
arXiv:2203.07259, 2022.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang,
Y., Krikun, M., Shazeer, N., and Gshard, Z. Scaling
giant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Interna-
tional Conference on Machine Learning (ICML), 2023.

Lin, B., Zheng, N., Wang, L., Cao, S., Ma, L., Zhang,
Q., Zhu, Y., Cao, T., Xue, J., Yang, Y., et al. Efficient
GPU kernels for n:m-sparse weights in deep learning. In
Conference on Machine Learning and Systems (MLSys),
2023.

MacKay, D. J. Information theory, inference and learning
algorithms. Cambridge University Press, 2003.

Nagel, M., Amjad, R. A., Van Baalen, M., Louizos, C., and
Blankevoort, T. Up or down? Adaptive rounding for
post-training quantization. In International Conference
on Machine Learning (ICML), 2020.

Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko,
Y., van Baalen, M., and Blankevoort, T. A white pa-
per on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

Park, G., Park, B., Kwon, S. J., Kim, B., Lee, Y., and Lee,
D. nuQmm: Quantized matmul for efficient inference of
large-scale generative language models. arXiv preprint
arXiv:2206.09557, 2022.

Puigcerver, J., Riquelme, C., Mustafa, B., and Houlsby, N.
From sparse to soft mixtures of experts. arXiv preprint
arXiv:2308.00951, 2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21
(140):1–67, 2020a.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the
limits of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research (JMLR),
21(1):5485–5551, 2020b.

Roller, S., Sukhbaatar, S., Weston, J., et al. Hash layers for
large sparse models. In Conference on Neural Informa-
tion Processing Systems (NeurIPS), 2021.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A.,
Koanantakool, P., Hawkins, P., Lee, H., Hong, M., Young,
C., et al. Mesh-tensorflow: Deep learning for supercom-
puters. Conference on Neural Information Processing
Systems (NeurIPS), 2018.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Wang, P., Chen, Q., He, X., and Cheng, J. Towards accurate
post-training network quantization via bit-split and stitch-
ing. In International Conference on Machine Learning
(ICML), 2020.

Welch, T. A. A technique for high-performance data com-
pression. Computer, 17(06):8–19, 1984.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019.

QMoE: Sub-1-Bit Compression of Trillion-Parameter Models

Wu, X., Yao, Z., and He, Y. ZeroQuant-FP: A leap forward
in llms post-training w4a8 quantization using floating-
point formats. arXiv preprint arXiv:2307.09782, 2023.

Yao, Z., Aminabadi, R. Y., Zhang, M., Wu, X., Li, C., and
He, Y. ZeroQuant: Efficient and affordable post-training
quantization for large-scale transformers. arXiv preprint
arXiv:2206.01861, 2022.

Yi, R., Guo, L., Wei, S., Zhou, A., Wang, S., and Xu,
M. Edgemoe: Fast on-device inference of moe-based
large language models. arXiv preprint arXiv:2308.14352,
2023.

Yu, C., Chen, T., and Gan, Z. Boost transformer-based
language models with gpu-friendly sparsity and quanti-
zation. In Findings of the Association for Computational
Linguistics: ACL 2023, 2023.

Zhou, Y., Lei, T., Liu, H., Du, N., Huang, Y., Zhao, V.,
Dai, A. M., Le, Q. V., Laudon, J., et al. Mixture-of-
experts with expert choice routing. Conference on Neural
Information Processing Systems (NeurIPS), 2022.

Zoph, B., Bello, I., Kumar, S., Du, N., Huang, Y., Dean, J.,
Shazeer, N., and Fedus, W. ST-MoE: Designing stable
and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

