
PROTEUS: Preserving Model Confidentiality during Graph Optimizations

A APPENDIX

A.1 GraphRNN Induce Orientation

The function INDUCEORIENTATION takes as input a graph
G = (V,E) and returns a directed graph G′ = (V,E′),
replacing undirected edges of E with directed edges in E′.
In line 2, we first find the endpoints u, v ∈ V of the diameter
of the graph. Next, we traverse G with BFS beginning from
the endpoint node u (line 3), and record the order in which
nodes are accessed in the graph traversal, which is stored in
the array ord. Using ord, we determine the orientation of
each edge e ∈ E: we orient the edges to point from the node
with smaller ord to the one with greater ord. The directed
edges are collected in E′, and the resulting acyclic directed
graph G′ = (V,E′) is returned.

Algorithm 3 Induce Orientation on GraphRNN Graphs
1: function INDUCEORIENTATION(G = (V,E))
2: Find diameter endpoints
3: u, v ← DIAMETER(G)
4: Record BFS traversal order
5: ord[]← BFS(G, u)
6: Set of directed edges
7: E′ ← ∅
8: for e := (u′, v′) ∈ E do
9: if ord[u′] < ord[v′] then

10: Add u′ → v′ to E′

11: else
12: Add v′ → u′ to E′

13: G′ is an acyclic orientation
14: return G′ := (V,E′)

A.2 Parameterization

PROTEUS provides a number of tunable parameters to the
model owner outlined in figure 8. These parameters allow
for tradeoffs between (a) the complexity of recovery by an
adversary, (b) the computational overhead for the optimizer,
and (c) the quality of model optimizations (in particular, the
slowdown compared to optimizing without partitioning).

Name Description
n Number of graph partitions generated from

the protected graph
k Number of sentinel subgraphs generated

per protected subgraph

Figure 8. List of tunable parameters provided by PROTEUS

We tabulated the precise tradeoffs as a result of these param-
eters in Figure 9. These tunable parameters allow the model
owner to tradeoff some potential speedups for additional
and stronger obfuscation.

For the DNNs in our evaluation, optimizing the original
model takes 6s on average and up to 22s with Hidet on an

Item Cost
Recovery cost of adversary O((k + 1)n)
Computational overhead of optimizer O(k)
Quality of model optimizations See figure 10

Figure 9. Tradeoffs resulted from PROTEUS’s tunable parameters

AMD EPYC 7282 CPU. If Proteus produces 50 sentinel
graphs, thus optimizing both the original as well as sentinels
would take 5 minutes on average and up to 18 minutes.
PROTEUS results in a k-fold increase in compilation time,
where k is the number of sentinels generated per partition,
and as demonstrated above this cost is not prohibitive.

A.3 Subgraph Size vs. Slowdown

As suggested in section 5.2, many optimizations would
be ineligible due to the small graph size (as optimizations
cannot be applied across partitions). PROTEUS provides the
number of subgraphs n as a tunable parameter to the user.
In this section we evaluate the correlation between subgraph
size and slowdown compared to optimal (where the entire
graph is optimized as a whole).

101 102

Average Partition Size

−20

0

20

Pe
rc

en
tS

pe
ed

up
sL

os
t

Figure 10. Average Subgraph Size vs. % Performance Loss with
PROTEUS

Figure 10 evaluates the trade-off between the size of the
subgraphs and potential performance loss across all our
evaluated DL models. We normalize performance loss as
percentage over Best Attainable. Each point in the figure
represents the inference latency for a model and one of
the three setups above. We observe that with very small
subgraph sizes, PROTEUS incurs small performance losses.
However, when the average subgraph size becomes large,
PROTEUS achieves negligible performance losses.

A.4 Graph Metrics of Generated Sentinels

Let us considerD to be the distribution of generated sentinel
graphs, and let G be the real subgraph. The distribution
of various graph characteristics for D ∪ {G} should not
be significantly different from the original distribution D.
Otherwise, an adversary could distinguish the protected
subgraph by learning the characteristics of the generated



PROTEUS: Preserving Model Confidentiality during Graph Optimizations

sentinels. For this, it is necessary that the sentinel subgraphs
are realistic and similar to real world subgraphs.

1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

average degree
torchvision
generated

0.0 0.2 0.4 0.6
0

10

20

30

clustering coe�cient

0 10 20
0.00

0.02

0.04

0.06

0.08
diameter

0 20 40 60
0.00

0.01

0.02

0.03

num nodes

Figure 11. Comparing distributions of graph statistics between real
and PROTEUS-generated subgraphs

Figure 11 presents the distributions of (i) the real-world
subgraphs extracted from torchvision models, and (ii)
the sentinel (artificially) generated subgraphs produced by
PROTEUS (algorithm 1) using different graph statistics. We
use the set of graph statistics explained in Section 4.1.2,
i.e., (a) average degree, (b) clustering coefficient, (c) graph
diameter and (d) number of nodes.

The X axis represents the value for the particular metric and
the Y axis represents the probability density. From the fig-
ures we observe very little statistical difference between the
two groups. Thus, we conclude that the sentinel subgraphs
produced using our approach are highly realistic, resem-
bling real world subgraphs and it would be very difficult for
a potential adversary making use of these graph statistics
from to differentiate real graphs from the sentinels.

A.5 Classifier Architecture

The classification network performs graph convolutions us-
ing SAGEConv (Hamilton et al., 2018) with the objective
to learn features of the local neighborhood for each node
in the graph. After that, aggregation is done across the
nodes with mean reduction. This step essentially generates
a hidden representation for the entire graph from the node
representations after the GNN. The final classification is
generated with linear layers acting on the reduced graph
representation.

A.6 Adversary Cost

The adversary attempts to shrink its search space by elim-
inating fake graphs from the obfuscated bucket so as to
narrow down on the “possibly-real” graphs. We especially
note that it must not classify any real subgraphs as being
sentinels, as that would eliminate the actual protected graph
from its search space. Therefore it must fix some decision
boundary γ, such that a graph is eliminated as fake when
the classifier’s confidence exceeds γ.

The value of γ defines how conservative the adversary is in
eliminating potential sentinel graphs. Decreasing γ would
reduce the number of “potentially-real” graphs, resulting in
a smaller search space. However, by doing so the adversary
also risks incorrectly eliminating a real subgraph.

In practice, it would be difficult for an actual adversary to
obtain the minimum value of γ without a priori knowledge
of the protected graphs, since it would not have access to
the confidences of the classifier on them. However, we wish
to establish an approximate lower bound for the cost of
attack by assuming the pessimistic case where the adversary
obtains the optimal (i.e. lowest possible) γ through some
(perhaps statistical) means.

A.7 Case Studies

For both cases, we use our standard configuration, setting
n = ⌊N/8⌋ (where N is the total size of the original model,
such that subgraphs on average have 8 nodes) and k = 50.

A.7.1 Optimizing a NAS model

In addition to faithfully recreating the effects of optimizing
the model directly, the obfuscation mechanism also is effec-
tive in protecting the model against recovery. In this case,
the GNN classified many real graphs as being fake (in many
cases concluding which with a 99% certainty). Shown in
Figure 12 are two examples incorrectly classified subgraphs
from NATSBench.

Setting γ accordingly resulted in a sensitivity of 84.9%.
With n = 24 and k = 50, this resulted in [50(1 −
0.849)]24 ≈ 1.18 × 1021 candidates which the adversary
would need to evaluate.

A.7.2 Optimizing a ResNet-like Model

Due to the similarity between SEResNet with ResNet, we
expect most of the real subgraphs to be classified correctly,
but some fake graphs are classified as real. Setting γ = 0.79,
the sensitivity of the classifier is 44%. Using n = 83 and
k = 20, the number of potential candidates is [20(1 −
0.44)]83 ≈ 1.22× 1087.

We show a few examples of incorrectly classified SEResNet
examples in figure 13.



PROTEUS: Preserving Model Confidentiality during Graph Optimizations

A.8 Survey Study

We evaluate the possibility of manual identification by ex-
perts to eliminate sentinels produced by PROTEUS. To do so,
we conducted an internel survey amongst ML researchers
from the authors’ primary institute. The survey contains 20
subgraphs consisting of 10 real subgraphs extracted models
taken from torchvision and HuggingFace, and also an-
other 10 subgraphs, which are PROTEUS-created sentinels
using the aforementioned real models.

To generate graphs for the survey, PROTEUS is configured to
partition reals graphs into subgraphs of sizes 8− 16 nodes.
Next, we use PROTEUS to generate fake graphs from each
of the real partitions. This way we create a pool of real
subgraphs and another pool of PROTEUS sentinel subgraphs.
The 20 graphs are selected from the aforementioned pools
at random with some small graphs filtered out.

For each of the 20 graphs, we ask the participants to select
between two options: (i) real and (ii) fake subgraph.

Out of 13 participants, the average accuracy is 52%, which
demonstrates that the average guess of a participant is the
same effective as guessing randomly. We conclude that
the sentinel graph generation is robust against identification
using expert knowledge and manual intervention through
visual inspection. The survey can be accessed here and pro-
vides visual examples of sentinel and real graphs, demon-
strating the realism of the sentinel graphs.

B ARTIFACT INSTRUCTIONS

B.1 Abstract

Our artifact provides the code to reproduce two of our main
results, that (a) the partition-optimize-reassemble workflow
preserves the efficacy of optimizations, and (b) our graph
obfuscation pipeline makes it difficult for a learning-based
adversary to distinguish real graphs from sentinel ones.

B.2 Artifact check-list (meta-information)
• Data set: Deep learning models in ONNX format from open

source libraries such as torchvision

• Hardware: Machine with NVIDIA A100 GPU

• How much disk space required (approximately)?: 100GB

• How much time is needed to prepare workflow (approxi-
mately)?: < 1 hour

• How much time is needed to complete experiments (approxi-
mately)?: < 10 hours (significantly less if fast path is taken)

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache-2.0

• Data licenses (if publicly available)?: Apache-2.0

• Workflow framework used?: PyTorch, ONNX, ONNXRun-
time, Hidet

• Archived (provide DOI)?: 10.5281/zenodo.10977142

B.3 Description

B.3.1 How delivered

The source code and scripts are available in the GitHub repository:
https://github.com/proteus-mlsys24/mlsys24-artifact.

You can also find the archival version hosted on Zenodo at
10.5281/zenodo.10977142.

B.3.2 Hardware dependencies

Requires an NVIDIA A100 GPU to run the runtime-related ex-
periments. Many CPU cores (≈ 32) is recommended to run the
adversary experiment (figure 5).

B.3.3 Software dependencies

Since our experiments run inside Docker, Docker with NVIDIA
GPU support (through nvidia-docker) is required.

B.4 Installation
1. Docker. Install Docker by following instructions at

https://docs.docker.com/engine/install/.

2. nvidia-docker. To use Docker with NVIDIA GPUs, we need
to install nvidia-docker. To do so, follow the instructions
at https://docs.nvidia.com/datacenter/cloud-native/container-
toolkit/latest/install-guide.html.

3. Artifact Code. Clone the repository to obtain the source code:

$ git clone https://github.com/proteus-mlsys24/mlsys24-artifact

B.5 Experiment workflow
• Figure 3a: ONNXRuntime Speedup

Navigate to figures/fig3a-ort-speedup and run run.sh.

• Figure 3b: Hidet Speedup

Navigate to figures/fig3b-hidet-speedup and run run.sh.

• Figure 5: GNN Classifier Adversary

Navigate to figures/fig5-gnn-classifier and follow the
instructions in README.md.

B.6 Evaluation and expected result
• Figure 3a/b: Speedups

These experiments should generate a figure named
speedups.pdf similar to those in the paper.

• Figure 5: GNN Classifier Adversary

For each model m, the number of candidates should be large.
We further expect the number of candidates for m to be much
larger than m randop (the baseline with random opcodes).



PROTEUS: Preserving Model Confidentiality during Graph Optimizations

B.7 Experiment customization

The proteus Python package is available as a standalone package
for model obfuscation.

Mul

Mul

AddAdd

Constant

Add

Mul

Constant

Mul Relu

Add

Constant

(a) NATSBench: Sentinel incorrectly classified as real

Constant

Mul

Add

AveragePool
kernel shape: 3

strides: 1
padding: 1

Add

Mul

Constant

Mul Relu

Add

Constant

Conv
kernel shape: 3

strides: 1
padding: 1

(b) NATSBench: Real incorrectly classified as sentinel

Figure 12. NATSBench Examples



PROTEUS: Preserving Model Confidentiality during Graph Optimizations

Conv
kernel shape: 1

strides: 1
padding: 0

ReduceMean

Mul

Relu

Conv
kernel shape: 1

strides: 2
padding: 0

HardSigmoid

(a) SEResNet: Sentinel incorrectly classified as real

Relu

Conv
kernel shape: 3

strides: 1
padding: 1

Relu

Conv
kernel shape: 1

strides: 1
padding: 0

Mul

Conv
kernel shape: 1

strides: 1
padding: 0

Sigmoid

(b) SEResNet: Real incorrectly classified as sentinel

Figure 13. SEResNet Examples


