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ABSTRACT

Deep learning (DL) models have revolutionized numerous domains, yet optimizing them for computational
efficiency remains a challenging endeavor. Development of new DL models typically involves two parties: the
model developers and performance optimizers. The collaboration between the parties often necessitates the
model developers exposing the model architecture and computational graph to the optimizers. However, this
exposure is undesirable since the model architecture is an important intellectual property, and its innovations
require significant investments and expertise. During the exchange, the model is also vulnerable to adversarial
attacks via model stealing.

This paper presents PROTEUS, a novel mechanism that enables model optimization by an independent party
while preserving the confidentiality of the model architecture. PROTEUS obfuscates the protected model by
partitioning its computational graph into subgraphs and concealing each subgraph within a large pool of generated
realistic subgraphs that cannot be easily distinguished from the original. We evaluate PROTEUS on a range of
DNNs, demonstrating its efficacy in preserving confidentiality without compromising performance optimization
opportunities. PROTEUS effectively hides the model as one alternative among up to 1032 possible model
architectures, and is resilient against attacks with a learning-based adversary. We also demonstrate that heuristic
based and manual approaches are ineffective in identifying the protected model. To our knowledge, PROTEUS is
the first work that tackles the challenge of model confidentiality during performance optimization. PROTEUS will
be open-sourced for direct use and experimentation, with easy integration with compilers such as ONNXRuntime.

1 INTRODUCTION

Deep learning (DL) has emerged as a highly effective ap-
proach with a wide range of use cases. The remarkable
performance achieved by DL models in domains like com-
puter vision, natural language processing, and recommenda-
tion systems has immensely fueled their popularity. Models
for ChatGPT, stable diffusion (Rombach et al., 2021), and
vision transformers (Dosovitskiy et al., 2021), all demon-
strate the potential of DL models in solving complex tasks.
This has led to widespread interest in the generation of new
models and DL innovations for novel and more powerful
capabilities in both academia and industry.

A major challenge with DL models is the significant compu-
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tational overhead for training and inference. DL models may
have millions to hundreds of billions of parameters (Labs,
2023), requiring significant memory resources and compute.
Thus, training DL models and deploying trained models for
inference can be extremely expensive and time-consuming.
This issue is expected to be exacerbated in the future, as
model sizes continue to grow. For example, OpenAl reports
a daily cost of $700K to run ChatGPT (Insider, 2023).

Performance optimizations using ML compilers have thus
become crucial to efficient training and inference to re-
duce latency, computational expenses, and energy consump-
tion. Recently developed optimizing compilers/tools in-
clude TVM (Chen et al., 2018), TASO (Jia et al., 2019),
ONNXRuntime (developers, 2021), and Hidet (Ding et al.,
2023) and is an active area of research and development.
Existing tools are already proven to be highly effective in
generating significant speedups and are thus widely used.
For example, TVM can provide up to 3.8 x speedup on
model inference (Chen et al., 2018).
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Model optimization and model creation/development are
typically not done at the same time by the same party.
Model development and optimization each requires different
expertise and domain knowledge. For example, while model
developers are good at designing neural network architec-
tures, they often do not possess the domain skills necessary
for performance optimization. This has led to the emergence
of companies offering model optimization as a service such
as OctoML (oct, a) and MosaicML (mos) to fill in the gap.

Several existing compilers (Chen et al., 2018; developers,
2021; Ding et al., 2023; NVIDIA Corporation, 2022) can
be used to automatically optimize the model, potentially en-
abling model developers to directly produce performant im-
plementations without a second party for optimization. How-
ever, solely relying on automatic compilers has limitations
and does not eliminate the need for additional optimization
expertise. First, effectively optimizing tensor computations
is still challenging even when using an automatic compiler
and often requires significant domain expertise and interven-
tion. For example, correctly configuring the tensor compiler
(e.g., selecting search space, using the correct floating point
precision), adding previously-unsupported operators (TVM,
2023), or implementing scheduling templates for novel oper-
ators (Ding et al., 2023) requires systems expertise. Second,
they are less effective at optimizing for proprietary hardware
or at leveraging hardware features that are not fully exposed
by hardware vendors (Zheng et al., 2020), and thus may
require specialized expertise from hardware vendors about
their hardware. For example, the optimizations/libraries
specific to Google’s TPUs in XLA and NVIDIA GPUs are
closed source and require support from the hardware ven-
dors when the provided tools are not effective (tfx). Third,
the developers of novel optimizing tools may not provide
open-source implementations or the entire toolset for auto-
matic use due to proprietary optimizations or the need for
manual intervention. For example, OctoML (oct, a) applies
proprietary optimizations manually for customers(oct, b), a
process which requires manual insight.

The necessity of two parties to effectively develop and opti-
mize new DL models leads to an important novel challenge:
ensuring confidentiality of the DL architecture. Highly effec-
tive performance optimizations include graph-level transfor-
mations which involve optimizing the computational graph
(i.e. the graph of operators). Possible transformations in-
clude techniques such as operator fusion, constant folding,
and functional approximations (ort). Graph level perfor-
mance optimizations typically require providing the optimiz-
ing party direct access to the entire computational graph of
the model. However, the model architecture itself is expen-
sive intellectual property to the model developers, as inno-
vating novel DL architectures requires domain experts and
extensive resources for neural architecture search and train-
ing. For example, NASNet (Zoph et al., 2018) is discovered

through thousands of GPU days spent on neural architecture
search, and a single training of GPT-3 costs $4.6M(Labs,
2023). Additionally, exposing the model architecture exac-
erbates the threat of adversarial attacks (Goodfellow et al.,
2014) by model stealing approaches that can then be used
to perform gradient-based adversarial attacks (Goodfellow
etal., 2015).

In this work, we present PROTEUS, an obfuscation mech-
anism that aims to preserve the confidentiality of the pro-
tected model during graph optimizations. PROTEUS ef-
fectively enables an independent party with a proprietary
optimization tool such as a machine learning compiler to op-
timize a novel model architecture with no direct knowledge
of the original model architecture. PROTEUS is largely ag-
nostic to the optimizations themselves and can be generally
used by any optimization tool.

The key idea behind PROTEUS is twofold. First, we propose
to generate sentinel graphs, which are artificially generated
graphs that resemble real world DL computational graphs.
These sentinel graphs are provided alongside the original
graph to the optimizing party such that the optimizing party
cannot distinguish which graph is the profected graph. This
approach alone, however, still involves providing the opti-
mizing party with the protected graph in its entirety.

To address this challenge, our second idea leverages graph
partitioning. Graph partitioning first partitions the protected
graph into smaller subgraphs. We then generate sentinel
subgraphs for each protected subgraph. The optimizing
party is now provided with a bucket of sentinel subgraphs
and protected subgraphs for optimization that are indistin-
guishable from each other. This approach requires that the
adversary would have to correctly identify every protected
subgraph to recover the protected model. At the same time,
the optimizing party can optimize each of the subgraphs
flexibly. The model owners can then trivially reconstruct
the original model from the optimized subgraphs.

We demonstrate that with sentinel generation and graph
partitioning, it would be infeasibly expensive to correctly
identify the original protected graph. We illustrate the major
steps of PROTEUS in Figure 1. At a high level, PROTEUS
accepts a model to be optimized by the optimizer party.
The obfuscation mechanism converts the graph that needs
to be optimized (hereafter referred to as the “protected”
graph) into a set of subgraphs that contain both parts of
the protected graph (the “protected subgraphs”) as well as
artificially generated subgraphs (the “sentinel subgraphs”).
The optimizer-party then performs optimizations on the col-
lection of obfuscated subgraphs (indistinguishably includes
both the original and artificial subgraphs). The optimized
subgraphs are returned to the model owner who can trivially
assemble the optimized protected graph.
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Figure 1. System Overview of PROTEUS

There are several major criteria that need to be met in design-
ing PROTEUS. First, it is crucial that the generated sentinel
subgraphs are difficult to differentiate from the protected
subgraphs, while still ensuring that no general information
regarding the protected graph can be inferred. Second, it
is important to perform graph partitioning such that opti-
mization opportunities are not lost, while generating enough
subgraphs to sufficiently obfuscate the protected graph. We
discuss how PROTEUS addresses these challenges in Sec-
tion 4 and develop a mechanism that allows trading off
obfuscation quality for less optimization overhead.

We evaluate PROTEUS using a range of common image and
language models to evaluate the effectiveness of PROTEUS’s
obfuscation mechanism, we devise an adversarial attack us-
ing a learned classifier model to distinguish between real
subgraphs and the generated sentinels. We demonstrate
that such an attack is unable to distinguish the real pro-
tected model from a pool of 107 to 1032 potential model
architectures, making recovery computationally infeasible
using this method. Across all the evaluated models, PRO-
TEUS retains the ability of the optimizer to provide signifi-
cant speedups via graph-level optimization, with an average
speedup within 10% of the maximum attainable by the op-
timizer. We demonstrate PROTEUS’s overall use and effec-
tiveness using two case studies., which show that PROTEUS
remains within 1% and 10% of the speedup of the opti-
mizer. In both cases, our method requires a learning-based
adversary to evaluate more than 1022 models in which the
original model is hidden. We will provide an open-source
implementation of the tool that can be directly used with
modern optimizing compilers and can serve as basis for
future research on this topic.

To summarize, this work makes the following contributions:

(a) We motivate the need for a mechanism that effectively
decouples model innovation and model optimization by

preserving the confidentiality of the model architecture.
Such a mechanism would flexibly enable model devel-
opment and performance optimization to be performed
by independent parties, without the optimization party
having full knowledge of the confidential model archi-
tecture.

(b) We propose PROTEUS, the first mechanism to tackle
this challenge of preserving confidentiality of any arbi-
trary DL model during performance optimization. PRO-
TEUS partitions the protected DL model into subgraphs,
and hides them within sentinel graphs. PROTEUS also
effectively preserves the efficacy of various graph-level
optimizations performed by optimizers.

(c) We propose a novel subgraph generation tool that is
able to produce realistic artificial subgraphs to obfus-
cate the original subgraph. To demonstrate the robust-
ness of our approach, we devise a learning-based attack
attempting to identify the sentinels and demonstrate
that it is ultimately ineffective in recovering the pro-
tected DL model. We also demonstrate that heuristic
based and manual approaches are ineffective in identi-
fying the protected model.

2 BACKGROUND AND RELATED WORK
2.1 Graph-Level Optimizations for DL Models

Deep learning (DL) compilers (Chen et al., 2018; Jia et al.,
2019; Ding et al., 2023; Sabne, 2020; Rotem et al., 2018;
Cyphers et al., 2018; Ye et al., 2023) provide graph-level
and operator-level optimizations for DL models to accel-
erate their deployment and system performance. To apply
these optimizations, the DL compiler operates on the graph
representation of the model, i.e., the architectural structure
of the model that determines how the layers and connec-
tions are organized to process input data and generate the
desired outputs. A DL model is typically expressed as a
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directed acyclic graph (DAG), hereafter named as computa-
tional graph, in which the nodes represent the DL operators
(e.g., convolution, pooling, activation) and the edges repre-
sent the dependencies between the nodes, i.e., the tensors
given as inputs/outputs to the operators (Bengio et al., 2009).
DL compilers first apply graph-level optimizations on the
computational graphs and then perform operator-level op-
timizations. The graph-level optimizations are rule-based
transformations: they simplify executed computations, and
they are either manually designed or automatically gener-
ated using heuristics algorithms. For instance, TVM (Chen
et al., 2018), TensorRT (NVIDIA Corporation, 2022), and
ONNXRuntime (developers, 2021) integrate generic rule-
based transformations that assist in finding and applying
optimizations. ONNXRuntime supports specific graph-level
optimizations, such as Identity Elimination and Reshape
Fusion. TASO (Jia et al., 2019), on the other hand, auto-
matically generates rule transformations for a given set of
operators and verifies their correctness. Recently, compa-
nies (such as OctoML and MosaicML (oct, a; mos)) have
emerged that provide such optimizations as a service, i.e.,
developing DL compilers, tools, and services that accelerate
the performance of emerging DL models.

2.2 Data Privacy Solutions

Differential Privacy. Differential Privacy (DP) (Dwork,
2006; Dwork et al., 2014) provides privacy-preserving data
analysis and learning, i.e., extracting useful statistics and
information from a dataset, while protecting the identity and
privacy of individuals in the dataset. Typical DP methods,
e.g., Laplace mechanism (Dwork et al., 2006), inject con-
trolled noise or randomness to the data or statistical analysis
process to protect the privacy of individuals, while preserv-
ing the overall utility of the data. DP approaches (Song
et al., 2013) have been proposed to protect user data that
is used to train models. However, it is unclear how these
approaches can protect confidentiality of DL model archi-
tecture as adding noise to it damages functional correctness
of the model.

Homomorphic Encryption. Homomorphic Encryption
(HE) (Gentry, 2009) allows computations to be per-
formed on encrypted data without the need for decryp-
tion. Homomorphism-based transformations are structure-
preserving transformations, i.e., HE-based schemes preserve
the additive and multiplicative structures of the data. There-
fore, even though HE-based methods encrypt the parameters
(Gilad-Bachrach et al., 2016; Hesamifard et al., 2017) of
DL models (e.g., weights of matrices, tensor values), they
do not encrypt operators and topology of the model. During
performance optimization, HE-based methods can ensure
the privacy of model parameters, but they cannot protect the
model’s structure.

2.3 Model Stealing Attacks

Model stealing consists of creating a functionally-equivalent
model and carrying out gradient-based adversarial attacks
on the model. Prior works (Oh et al., 2019; Papernot et al.,
2017; Tramer et al., 2016) design algorithmic-level analysis
to create functionally-equivalent models. The initial phase
of important adversarial attacks involves the extraction of
the network architecture (topology) of the DL model : given
the topology (network architecture) of a DL model is known,
stealing attacks can infer the values of model parameters,
hyper-parameters, and even training data (Tramer et al.,
2016; Wang & Gong, 2018). There are also several model
topology extraction attacks, including DeepSniffer (Hu et al.,
2020) and ReverseCNN (Hua et al., 2018), which extract
the model architecture by leveraging architectural hints.

3 OUR PROPOSAL: PROTEUS
3.1 Threat Model

PROTEUS aims to protect the model architecture from ex-
posure to third parties, where the risk of model exposure is
incurred when the model leaves the model owner and is:

1. intercepted by a third party in transit from the model
owner to the optimizer through conventional wiretapping
techniques, or

2. leaked by the optimization party to a malicious third-
party. This includes the possibility where the optimizer
party is also the party performing the attacks.

At the same time, implementations of the optimizing com-
piler remain as crucial intellectual properties of the opti-
mization service. Release of the optimizing compiler to the
model owner incurs the risk of software piracy.

3.2 Goals

Our goal in this work is to effectively decouple model in-
novation/development and performance optimization by en-
abling performance optimization while protecting the con-
fidentiality of the model architecture. Ensuring privacy of
the model architecture enables an independent party/service
to optimize DL models. Specifically, we aim to achieve the
following goals with our proposed mechanism:

1. Model Confidentiality. Given a mechanism that obfus-
cates the graph to prevent the retrieval of the original
architecture: an adversary with access to both the ob-
fuscating algorithm used and the obfuscated graphs pro-
duced by the confidentiality mechanism should not be
feasibly able to retrieve the initially protected graph.

2. Agnosticity and Independence of Performance Op-
timizations. An effective confidentiality mechanism
should not constrain the optimizations that can be per-
formed on the protected graph. This additionally enables
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the potential for preserving the confidentiality of the
model optimizations and the compilers themselves.

3. High Performance Efficiency. Since the key goal of the
optimizer is to improve the runtime performance of DL
models, the confidentiality mechanism needs to preserve
the performance benefits and ensure similar speedups as
that achieved without the obfuscation mechanism.

4. Low Compilation Overhead. The confidentiality mech-
anism should not cause a significant compilation over-
head to the optimizer party or make the optimization
process more challenging. In this work, we focus our
efforts on making the overhead of confidential optimiza-
tion by machine learning compiler feasible.

3.3 Overview

In this work, we propose PROTEUS, the first obfuscation
mechanism for DNN computational graphs for performance
optimization. PROTEUS involves optimization in three inde-
pendent steps. First, the obfuscation step where the original
computation graph is “obfuscated” such that an adversary
cannot feasibly identify the original model, thus providing
confidentiality. Second, the optimization step is carried out
flexibly and independently by the optimizer party on the
obfuscated computational graph, providing performance
speedups. Finally, the de-obfuscation step where the origi-
nal model is retrieved by the model owner in its optimized
form.

3.4 Obfuscation: Key Ideas

The key ideas behind PROTEUS are twofold: sentinel gener-
ation and graph partitioning. We detail each below.

3.4.1 Sentinel Generation.

We propose to obfuscate the original graph by hiding the
protected DL graph among a set of sentinel graphs, i.e.,
artificially generated realistic graphs. The idea behind this
approach is that an adversary will be unable to distinguish
the real graph from the sentinel models. As the set of sen-
tinel graphs grows larger, it is more challenging to identify
the protected graph. This approach enables the optimiz-
ing party to optimize the obfuscated graph — by essentially
optimizing all the sentinel graphs.

However, directly applying this approach has important lim-
itations. First, the original protected graph is still directly
exposed in its entirety. Second, this approach adds signif-
icant overhead to the optimizing party as all the sentinel
graphs need to be optimized. Generating k sentinel graphs
requires the both optimizer and the adversary to carry out
O(k) work, either to perform optimizations or to attempt re-
covery of the protected model. To address these limitations,
we first perform graph partitioning as described below.

3.4.2  Graph Partitioning.

We observe that most graph-level transformations performed
by tensor compilers are local: graph-level substitutions per-
formed by compilers operate on an operator and its neighbor-
ing nodes. We leverage this observation to partition the com-
putational graph into smaller subgraphs. These subgraphs
are independently optimized and then reassembled to gener-
ate the entire optimized graph. We evaluate the implications
on performance speedup in Section 5.2 and demonstrate that
this only incurs small losses in performance speedups from
optimizations. With graph partitioning, the sentinel graphs
are now generated for subgraphs rather than the entire graph.
Thus, our solution can be broken down into two steps: (i)
we partition the protected model into smaller subgraphs and
(ii) hide the protected subgraphs within a set of & sentinel
subgraphs.

The use of sentinel subgraphs makes the recovery of the
original model significantly more challenging for the adver-
sary because every subgraph has to be correctly classified
and identified to reconstruct the original protected graph.
Thus, we can use fewer sentinel graphs while still making it
infeasible to recover the original model (we quantitatively
demonstrate this in Section 4). At the same time, the model
architecture in its entirety is never exposed to the optimizer.

3.4.3 Design Challenges

There are two major challenges in effectively obfuscating
the protected graph as described above:

(i) Effective partitioning strategy: The number of subgraphs
in the graph plays a key role in our ability to retain the op-
timization performance benefits. If the subgraphs are too
small or if the partitioning eliminates optimization oppor-
tunities, the optimization schemes may be rendered less
effective. At the same time, increasing the number of sub-
graphs obfuscates the graph more effectively and would thus
require fewer sentinel graphs.

(ii) Generating sentinel graphs: It is crucial to generate
sentinel subgraphs that are difficult to identify as artificial.
Thus, they must be realistic, syntactically accurate, and
resemble real world subgraphs in terms of operations, topol-
ogy, etc. In other words, the sentinels cannot be arbitrarily
generated. We next describe PROTEUS’s detailed design
where we aim to address the above challenges.

4 PROTEUS: DETAILED DESIGN

We describe the three key steps of PROTEUS in more detail.
Section 4.1 describes the obfuscation mechanism of PRO-
TEUS. Section 4.2 describes the optimization step needed
to be performed by the optimizer party on the obfuscated
subgraphs produced by PROTEUS. Section 4.3 describes
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the de-obfuscation step performed by PROTEUS to retrieve
the original model in its optimized form, returning it to the
model owner.

4.1 Obfuscation

PROTEUS is an effective obfuscation mechanism that pre-
serves confidentiality in DL models consisting of two major
steps: (i) graph partitioning splits the protected model into
smaller subgraphs, and (ii) sentinel graph generation hides
the protected subgraphs within a set of k& sentinel graphs.
Specifically, given an arbitrary DL model, PROTEUS gen-
erates 1 smaller subgraphs and hides each subgraph within
a set of k sentinel (artificially generated) subgraphs. This
way PROTEUS hides the given protected DL model within a
set of O((k + 1)™) possible computational graphs.

4.1.1 Graph Partitioning

PROTEUS splits the protected model into n subgraphs of
similar sizes. Our key goal is to generate many subgraphs,
such that the adversary cannot feasibly identify the original
model, while at the same time not affecting the graph-level
optimizations performed by the optimizer party. Note that
with PROTEUS the optimizer applies graph-level transfor-
mations at each subgraph individually, and cannot perform
optimizations that span across multiple subgraphs. How-
ever, given that we do not have any information in advance
on which graph-level transformations will be performed by
the optimizer, we employ a randomized graph partitioning
algorithm to split the computational graph to n subgraphs.

We develop a graph partitioning algorithmic scheme inspired
by the Karger-Stein (K-S) algorithm (Karger, 1993). K-S
is a randomized algorithm that solves the minimum-cut
problem on a graph. At each step, it selects a random edge
from the graph and merges the two nodes connected by the
selected edge into a single node. This step is called “edge
contraction”, and it is iteratively repeated until n nodes
remain in the graph. When the algorithm terminates, each
of the n remaining nodes represents a subgraph of the initial
graph.

However, since K-S algorithm is randomized, the result-
ing n subgraphs may significantly vary in size. Creating
subgraphs with high disparity in their sizes brings two key
issues. First, very large subgraphs may cause confidentiality
issues, since they can potentially reveal many useful infor-
mation to the adversary related to the initial protected graph.
Second, small subgraphs might cause performance issues,
since optimizers cannot perform very efficient graph-level
transformations on small graphs. Therefore, we enhance
the K-S algorithm to create n subgraphs of almost equal
sizes. Specifically, we perform multiple iterations of the
K-S algorithm and at each iteration we evaluate the stan-
dard deviation of the sizes of the subgraphs created. Then,

: T i
Figure 2. Examples of topologies sampled by PROTEUS
(red: the original topologies)

we keep the graph partitioning scheme that minimizes the
disparity in the sizes of the subgraphs, to provide a more
balanced and less informative graph partitioning.

4.1.2 Sentinel Graph Generation

In the sentinel graph generation step, PROTEUS hides the
protected subgraphs within a set of k sentinel subgraphs.
The generated sentinels must be syntactically correct to
avoid immediate detection. Moreover, the sentinel graphs
should resemble real world ones, so that the adversary can-
not differentiate between real subgraphs (extracted from the
initial protected model) and the sentinel subgraphs (artifi-
cially generated using PROTEUS).

In this step, we generate k sentinel graphs for each of the
n subgraphs. We denote the n subgraphs extracted from
the original protected model with Gy, ...,G,,. For each
subgraph G;, we generate k sentinel graphs denoted with
Ggl), cey ng). In other words, PROTEUS creates a bucket
of k + 1 subgraphs, one of them is the real subgraph G;,
and the remaining k subgraphs are sentinel (artificially gen-
erated) subgraphs. Therefore, the total search space for
subgraphs has a size of approximately O((k + 1)™).

The k generated sentinel subgraphs GEI), . ,Gl(-k) should
resemble the original real subgraph G, such that the adver-
sary should not be able to differentiate among them. We can
categorize two types of metrics, which an adversary could
use to identify the real subgraph G:

(a) Topological Information. A subgraph can be identi-
fied by the topological connections of its nodes. Specif-
ically, computational DL graphs are acyclic graphs that
describe the dataflow of DL operators, and their nodes
typically have a small number of incoming edges.

(b) Operator Information. A subgraph can be identified
by the patterns of computations performed at its nodes.
In a computation DL graph, nodes represent the op-
eration applied to a tensor. Therefore, real subgraphs
follow similar computational patterns: e.g., a convolu-
tion operator is commonly followed by an activation.
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Based on the two types of metrics listed above, PROTEUS
generates sentinel graphs in two stages. First, in the ropology
selection stage, we generate the connections between the
nodes in the computation graph. Second, we fill in operators
into the graph in the operator population stage.

Topology Selection. We first generate the topologies of the
sentinel graphs. The topology refers to the “shape” of the
computation graph, i.e., how the nodes are connected. The
topology selection process for sentinel subgraphs has two
major steps: graph generation and sampling.

First, during the graph generation step, we generate a pool
of realistic graph topologies with GraphRNN (You et al.,
2018), an autoregressive graph generation model. However,
a key limitation of this GraphRNN-based approach is that
it will generate undirected graphs, while DL graphs are
directed. To resolve this limitation, we transform the undi-
rected graphs to directed graphs using the algorithm shown
in Algorithm 3 in appendix section A.l, which traverses
the undirected graph and assigns a direction to each edge,
resulting in a DAG.

Next, we sample sentinel topologies from the previous step
that are similar to the provided real subgraph. Specifically,
we approximate the similarity measure by comparing vari-
ous graph- and node-level statistics of the sentinel subgraphs
with that observed of real-world subgraphs. The evaluated
similarity metrics are the following: average degree, cluster-
ing coefficient, diameter, and graph size.

In algorithm 1, the SAMPLETOPOLOGIES function takes as
input a protected subgraph G; and generates a set of similar
graph topologies that are statistically indistinguishable from
G;. This is achieved by ensuring that the graph statistics
form a uniform distribution around the protected subgraph
G,, effectively adding random noise resulting in uncertainty.
In other words, by observing the distribution of these sub-
graph statistics, each subgraph would have an equal chance
of being the protected subgraph. Here, we extract a set of
GraphRNN-generated graph topologies, denoted as D, and
control the range of the uniform distribution with /.

In algorithm 1, we establish bounds for uniform distribution
in lines 2 — 8, sample from this uniform distribution in lines
15 — 17. Notably, if we sample graphs from D uniformly
at random, the resulting distribution would follow that of
D rather than being uniform. To tackle this, we employ
importance sampling which applies a weight of 1/p to each
sample where p describes the density of the topology under
D. This “corrects” the uneven densities under D and makes
the resulting samples uniform.

Operator Population. After generating graph topologies,
PROTEUS assigns a DL operator at each node in the gen-
erated graph. A DL operator describes the computations
that will be applied to tensor given as input (e.g., matrix

Algorithm 1 Sampling similar topologies

1: function SAMPLETOPOLOGIES(G, D, [3)
2: Estimate the density p from the GraphRNN graphs

3 p(x) < ESTIMATEDENSITY (D)
4 Sample the random position of G
5: Sample o ~ Unif ([0, 5]™)
6: Compute the range of the uniform distribution
7 L+ p(x) —
8 r«{+0
9: Initialize the set of similar topologies
10: T« 0
11: for each graph G € D do
12: Transform G into a directed graph G’
13: G’ + INDUCEORIENTATION(G)
14: Apply importance sampling
15: x < COMPUTEFEATURES(G")
16: P p(x)
/ /
7 T%TU{{G} W prob 1(x & [£,])/p
0 otherwise

18: return T

multiplication, convolution, activation). The DL operators
assigned to nodes need to be (i) syntactically correct, i.e.,
they need to have correct configurations (e.g., the number
of input and output arguments, the tensor dimensions) that
are consistent with specifications of DL operators, and (ii)
semantically consistent, i.e., the sequence (order) of opera-
tors within the generated graph needs to resemble realistic
DL operator sequences.

To ensure syntactic correctness, we can convert this prob-
lem into one of constraint satisfaction, i.e., given a set of
constraints we need to find a solution that satisfies them.
In our context, given a set of syntactic constraints for DL
operators, we need to find an assignment of DL operators to
the nodes of the graph, which satisfies the given syntactic
constraints. We use Z3 (De Moura & Bjgrner, 2008), an
SMT solver to produce the assignment of the operators to
the sentinel nodes.

73 takes as inputs (i) the graph topology, (ii) the list of
operators, and (iii) their syntactic constraints, searches the
solution space and returns a syntactically correct assignment
of the operators to the nodes of the graph. For convolution
and pooling, along with the operator we also need to spec-
ify the operator’s kernel shape and number of input/output
channels (for 2D convolutions).

To ensure semantic consistency, we need to quantify the like-
lihood of an operator assignment. If the likelihood is high,
the operator assignment is more likely to be semantically
similar to real-world DL operator assignments. To com-
pute the likelihood, we calculate probabilities of operator
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sequences generated by traversing the graph.

Algorithm 2 Generating opcode specifications
1: function ASSIGNOPERATORS(G, pct, max_solns)
2: Rules «— GENERATERULESET(G)
: Solver <— Z3SOLVER

3
4 S« 0

5: Loop until no new solutions or maximum reached
6: while satisfiable(S) and |Solns| < max_solns do
7: S + GETSOLUTION(Solver, Rules)

8 Find logprob for solution S

9: p + logprob(S)

10 Solns < Solns U {(S,p)}

11: Prevent S from being returned again
12: Rules < Rules A (—.5)
13: return TOPPERCENTILE(Solns, pct)

Algorithm 2 describes the operator assignment process. The
ASSIGNOPERATORS procedure takes as input the graph
topology and returns a set of operator assignments. Specif-
ically, we repeatedly query the solver to find syntactically
valid operator assignments. For each solution, we compute
its likelihood, and record it (line 8). We also exclude the
solution from being returned in a subsequent iteration. We
repeat this procedure until either the solver claims that there
are no other solutions (i.e. unsatisfiable) or when the num-
ber of solutions exceeds a predefined limit (line 5). We
return the operator assignments that are both syntactically
valid and semantically likely.

Minor Modifications over Popular Models. To handle
the scenarios where the original protected model is struc-
turally very similar to commonly-used popular DL models,
e.g., the protected model is a ResNet-like model, PROTEUS
also generates graph topologies by modifying the topologies
of popular DL models. Specifically, PROTEUS generates
new DNN-like graph topologies by adding and/or removing
nodes in the existing graph topologies of popular DL mod-
els. Then, PROTEUS fills DL operators to the newly added
nodes using the process described above. In these cases, the
opcodes of unperturbed nodes, except for the ones that are
immediately adjacent to the perturbed nodes, are preserved.

4.2 Optimization

After obfuscation, the set of n(k + 1) obfuscated subgraphs
(including the original and generated sentinels) are given to
the optimizer party. The optimizer applies graph transfor-
mations to each of the provided subgraphs to minimize their
runtime behavior and provide performance speedups.

The optimization step is carried independently by the opti-
mizer party on the obfuscated subgraphs. Note that PRO-
TEUS is largely agnostic to the optimizer, since it does not
make any assumptions about the the optimizer’s implemen-
tation other than that it preserves functional correctness.

The optimizer will then return an optimized version of each
obfuscated subgraph.

4.3 De-obfuscation

Upon receiving the optimized subgraphs from the optimizer,
PROTEUS reconstructs the original model in its optimized
form. It does so by extracting and concatenating the opti-
mized “real” subgraphs.

Assuming that the optimization procedure performed by the
optimizer is functionally correct, the optimized subgraphs
are functionally equivalent to the original subgraphs (up
to numerical differences). Thus, when we reassemble the
model using the optimized subgraphs, we obtain a computa-
tion that is defined by the composition of these subgraphs.
If the subgraphs are functionally correct, their composition
would also be functionally correct. In our implementation,
the obfuscation step generates the optimized graph graph
by connecting the input and output edges of each adjacent
subgraph. This can be done using information about sub-
graph connections tracked when the graph was partitioned.
Finally, the de-obfuscated graph is returned to the model
owner as the optimized version of his original model.

4.4 Parameterization

PROTEUS provides a number of tunable parameters to the
model owner outlined in figure 8. These parameters allow
for tradeoffs between (a) the complexity of recovery by an
adversary, (b) the computational overhead for the optimizer,
and (c) the quality of model optimizations (in particular, the
slowdown compared to optimizing without partitioning).

Name | Description

n Number of graph partitions generated from
the protected graph
k Number of sentinel subgraphs generated

per protected subgraph
Figure 3. List of tunable parameters provided by PROTEUS

We tabulated the precise tradeoffs as a result of these param-
eters in Figure 9. These tunable parameters allow the model
owner to tradeoff some potential speedups for additional
and stronger obfuscation.

Manual Optimization. We note that while a O(k)-fold
increase is acceptable for an automatic optimizer or ten-
sor compiler. However, if each subgraph requires manual
engineering efforts to optimize, this overhead would be pro-
hibitive, and PROTEUS would be ineffective for these cases.
However, we observe that most manual efforts are spent
on development and tuning of the machine learning com-
piler instead of manually applying optimizations on each
subgraph.
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S EVALUATION
5.1 Methodology

Runtime Environment. PROTEUS uses ONNX (ONNX
Contributors, 2023) for intermediate model representation,
i.e., the initial DL model, its intermediate computational
graph representation, and the optimized version of the given
DL model are represented using the ONNX format.

To demonstrate optimizer agnosticism, we use ONNXRun-
time and Hidet for model optimizations and inference. ON-
NXRuntime is a performant optimizer and inference engine
and Hidet (Ding et al., 2023) is a state of the art machine
learning compiler.

We conduct our experiments on a a2-highgpu-1g instance
on Google Cloud with 85GiB of RAM and an NVIDIA
A100 GPU.

Models. We evaluate PROTEUS using representative widely-
used convolutional neural networks (CNNs) that perform
image classification as well as BERT-like language mod-
els (listed in figure 6). We obtained their implementations
through the torchvision package (PyTorch, 2017) and
HuggingFace Model Hub (Huggingface, 2023).
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Figure 4. Execution time of DL models achieved by all evaluated
schemes. The slowdown of Proteus over Best Attainable is labelled
above each model.

5.2 Performance Efficiency

We first explore the ability of PROTEUS to retain the ef-
fectiveness of optimizations that generate performance

speedups. ONNXRuntime performs a series of graph-level
optimizations, from basic techniques such as constant fold-
ing to more complex operator fusion. Figure 4 depicts the
resulting runtime for different DNNs, measured using the
ONNXRuntime profiling tool across 500 iterations and com-
puting the geometric mean of a single iteration. We evaluate
three different mechanisms: (i) Unoptimized: without en-
abling any graph-level optimizations in the baseline graph,
(ii) Best Attainable: enabling the best-performing graph-
level optimizations available for the initial graph, and (iii)
PROTEUS: using PROTEUS to protect confidentiality of the
model by partitioning into subgraphs, and then enabling
the best-performing graph-level optimizations available for
each subgraph.

We observe that on average PROTEUS enables performance
speedups close to the speedup of the optimizer without
the confidentiality protection (within 8% of the maximum
speedup on average and at most 12%). The small loss in
performance speedups is due to the partitioning approach
which reduces the effectiveness of some optimization tech-
niques. For example, if a conv operator is following by
an add operator in the original graph but the two are parti-
tioned into different subgraphs, then fusion cannot be done
between them. Performance loss due to graph partitioning
is also dependent on the choice of the optimizer, i.e., the
graph-level substitutions enabled by each particular opti-
mizer. However, we argue that since various tensor compil-
ers typically perform local graph transformations, we see
similar behaviours with Hidet (Ding et al., 2023) and expect
similar performance trends for other optimizers.

Loss of performance optimization opportunities is correlated
with the average size of the subgraphs and this is further
investigated in appendix A.3. We provide subgraph size as
a tunable parameter as larger subgraph sizes would require
more sentinels and thus, higher overheads for optimization.
A subgraph size of 8 — 16 offers a sweet spot where per-
formance loss is less than 10% on average and incurs only
small optimization overheads and is what we use in the
remaining evaluations for PROTEUS.

The optimization overhead is also correlated with the num-
ber of sentinels generated per real partition. We include
specifics of the tradeoff in appendix A.2.

5.3 Protection of Confidentiality

We demonstrate that PROTEUS generates sentinel subgraphs
that are difficult to differentiate from real subgraphs by
(i) evaluating graph statistics of sentinel subgraphs (Sec-
tion 5.3.1), (ii) devising a learning-based adversarial attack
on sentinel subgraphs (Section 5.3.2), and (iii) evaluating the
feasibility of manual and expert intervention (Section 5.3.3).
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Figure 5. Comparing distributions of graph statistics between real
and PROTEUS-generated subgraphs

5.3.1 Statistical Quality of Sentinel Subgraphs

We evaluate the quality of generated sentinel graphs with
PROTEUS by comparing their distributions on various graph
statistics with that of real graphs. Figure 5 compares the
distributions between real and PROTEUS-generated graphs
of their (a) average degree and (b) clustering coefficient.
Appendix A.4 evaluates two additional metrics. We observe
that sentinel subgraphs of PROTEUS have very similar dis-
tributions to that of real graphs in all evaluated metrics and
would not distinguish sentinels from real graphs. We con-
clude that PROTEUS is robust against mechanisms that may
leverage graph heuristics or employ statistical distributions
of various metrics to identify the protected graph.

We note that even when using fewer metrics in algorithm
1, we still observe distributional similarities in other graph
metrics. This is due to GraphRNN’s ability to learn complex
edge dependencies by observing real topologies, then imi-
tating it to generate realistic sentinel topologies and leads to
robustness across metrics.

5.3.2 Learning-Based Adversarial Attack

Given the mechanism proposed in this work, adversaries
with the objective to recover the original protected graph
fundamentally need to decide if a particular subgraph in the
bucket is a PROTEUS-generated sentinel graph or part of the
original protected graph.

In this section, we put ourselves into the position of one such
adversary who attempts this task with a learning-based ap-
proach. Particularly, we evaluate the effectiveness of using a
graph neural network (GNN) to perform such differentiation
and investigate if the classifier helps to reduce the search
space to one that compromises the model architecture.

Classifier Architecture. The classifier network accepts a
graph as an input and outputs its confidence that the given
graph is a sentinel. We depict the architecture of the clas-
sifier in Figure 7, and we elaborate further in Appendix
AS.

Datasets. During the training and evaluation of this learning-
based adversary, we task the GNN-based adversary to dif-

ferentiate real model subgraphs with the following:

1. Random opcodes on PROTEUS-generated topologies. We
use the GraphRNN topologies with random operators.

2. Sentinel graphs from PROTEUS. We run the entire
pipeline, using both GraphRNN and Z3.

In our experiments, we task PROTEUS with protecting one
model at a time. To do so, we test the adversary on the
protected model after training the classifier model on the
remaining models.

Attack Mechanism. The GNN classifier outputs a confi-
dence y € [0, 1] of the graph being sentinel. The adversary
would fix a decision boundary 7y such that a graph is elimi-
nated as fake when y > . We make a pessimistic assump-
tion that the adversary obtains . We note that the adversary
must not erroneously eliminate any real subgraphs.

Metrics. We can measure the sensitivity (how many real
subgraphs are correctly classified) and its specificity (how
many fake subgraphs are correctly classified) of the adver-
sary. Specifically, for each of the protected models we test
and our choice of n, k and y, we can measure the classifier’s
sensitivity (denoted o) and specificity (denoted /3).

As established earlier, we must have o« = 1 such that all
real subgraphs are correctly classified. In this case, for
each of the n real subgraphs, approximately (1 — 8)k of its
sentinel graphs are misidentified, resulting in a total number
of 14 (1 — )k candidates for this particular subgraph. This
results in a search space with size:

[1+(1—B)k]"
within which the protected graph is hidden.

Search Space Reduction. In Figure 6, we compared the
sizes of reduced search spaces with the learning-based ap-
proach. For each model type, we plotted the specificity (5)
as well as the minimum decision threshold () such that
no real subgraphs are incorrectly identified. Using the cost
computed above, we also tabulated the number of candidates
in the reduced search space. The above is done for both the
baseline (random opcode population) and PROTEUS.

We find that the resulting search space for differentiating
PROTEUS-generated graphs from real graphs is orders-of-
magnitude larger than that of the baseline (random opcodes).
In many cases, a single candidate remains for the baseline,
therefore making recovery trivial. Thus, such attacks are
effective when the sentinels are not appropriately generated,
as addressed by PROTEUS.

5.3.3  User Survey on Sentinel Graphs

To evaluate the realism of the graphs and the possibility of
manually intervention by experts to identify sentinels, we
conducted a survey amongst researchers in ML (details of
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Random Opcodes PROTEUS (Ours

Protected Model | n k Speciﬁcityp min(y)  Candidates Speciﬁcity( rr)lin(w) Candidates

densenet 19 20 | 0.000 1.000 1.32 x 10%° | 0338 0.757 8.33 x 102!
googlenet 11 20 | 0.990 0.356 7.00 0.346 0.899 4.30 x 102
inception 19 20 | 0970 0.784 7.69 x 103 0.229 0.910 1.23 x 1023
mnasnet 11 20 | 1.000 0.019 1.00 0.117 0.944 9.59 x 103
resnet 10 20 | 1.000 0.100 1.00 0.451 0.908 6.12 x 10'°
mobilenet 1120 | 0.607 1.000 2.66 x 10'° | 0.135 0.977 7.72 x 1013
bert 16 20 | 0.99 0.474 3.00 0.910 0.653 1.37 x 107
roberta 16 20 | 0.990 0.634 2.00 x 10! 0.862 0.799 1.54 x 10°
xlm 25 20 | 1.000 0.300 1.00 0.906 0.816 2.99 x 10!

Figure 6. Search space reduction for learning-based adversary

) 0
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Graph o—Q
/\ °°
Information List
Embedding
Node :

Figure 7. Architecture of GNN classifier

the methodology are in Appendix A.8). The survey contains
20 computational graphs and asks the participants to classify
them as either real (i.e., taken from a real popular ML model)
or fake (i.e., generated by PROTEUS). Out of 13 participants,
the average accuracy is 52%, similar to that of random
guesses. The survey can be accessed here and contains
randomly chosen sample sentinel graphs that demonstrate
the infeasibility of distinguishing sentinels simply by visual
inspection from experts.

6 CASE STUDIES

We present two archetypal scenarios of graph-level model
optimization: in the first case, the proposed model is unique
and dissimilar to existing ones; and in the second, the pro-
posed model largely resembles one that is widely used. In
appendix A.7, we also evaluate the potential of GNN ad-
versary presented in Section 5.3.2 in these case studies and
present some visual examples of misclassified graphs.

6.1 Optimizing NAS Model

In the first scenario, the user optimizes a more “exotic”
model that is very dissimilar to existing ones. For this pur-
pose, we sample a model from NATSBench’s (Dong et al.,
2021) search space. Optimizing this model with ONNXRun-
time results in a slowdown of 2.15x. This is potentially
due to some optimizations that are typically beneficial but
turned out harmful for this particular exotic model. When
this model is optimized with PROTEUS, a similar outcome
(slowdown of 2.164 x) can be observed. Furthermore, the
search space size is 1.18 x 10%! for the GNN adversary.

6.2 Optimizing a ResNet-like Model

In the second case study, the user attempts to optimize
a model that resembles ResNet, SEResNet (Hu et al.,
2019). The main difference lies in the addition of squeeze-
excitation blocks. In the ideal case of optimizing the model
directly, the maximum attainable speedup is 1.663 x. With
PROTEUS, we obtain a speedup of 1.494x, representing
a ~ 10% penalty. Furthermore, the search space size is
1.22 x 1087 for the GNN adversary.

7 CONCLUSION

In this paper, we introduce and motivate a novel and un-
explored research question of confidential compiler graph-
level optimization for deep learning models. Our proposed
solution, PROTEUS, obfuscates the original model within
realistic artificially generated computational graphs. PRO-
TEUS is largely agnostic to the optimization approach and is
thus generally applicable. The incurred computational over-
head is trivial when using modern graph-level compilers.
We demonstrate PROTEUS’s robustness against learning-
based, heuristic-based, and manual approaches, that are un-
able to distinguish the sentinel and protected subgraphs. A
limitation of PROTEUS is that the additional sentinels make
manual intervention more expensive (but still not infeasible
when k£ = 20). The graph partitioning used in PROTEUS
could also undermine optimization opportunities. Reducing
the number of sentinels and partitioning more effectively
are areas for future exploration. We hope that our work
provides a first step for future work on confidential compiler
optimization in deep learning.

8 ARTIFACT INSTRUCTIONS

Our artifact provides the code to reproduce two of our
main results - those in figure 4 demonstrating the partition-
optimize-reassemble routine preserves the optimization
speedups and figure 6 showing the difficulty of graph recov-
ery by a learning based adversary.

The PROTEUS source code and scripts are available at
github.com/proteus-mlsys24/mlsys24-artifact.

For the full artifact appendix, please refer to appendix B.



PROTEUS: Preserving Model Confidentiality during Graph Optimizations

REFERENCES

Mosaicml — brave new cloud. https://www.mosaicml.
com/. Accessed: 2022-12-01.

Model optimization and automated deployment by the oc-
toml platform. https://octoml.ai/, a. Accessed:
2022-12-01.

How 4x speedup on generative video model (film)
created huge cost savings for wombo. Oc-
toML, b. URL https://octoml.ai/blog/
how-4x-speedup-on-generative-video-model-\
film-created-huge-cost-savings-for-wombo/.
Accessed on May 21, 2023.

Graph optimizations. ONNX Runtime website. URL
https://onnxruntime.ai/docs/performance/
model-optimizations/graph-optimizations.html.

Accessed on May 21, 2023.

Issues - tensorflow/tensorflow - github. GitHub Issues. URL
https://github.com/tensorflow/tensorflow/
issues?q=is%3Aissue+is%3Aopen+XLA. Accessed on
May 21, 2023.

Bengio, Y. et al. Learning deep architectures for ai. Foun-
dations and trends® in Machine Learning, 2(1):1-127,
2009.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan,
M., Shen, H., Wang, L., Hu, Y., Ceze, L., Guestrin, C.,
and Krishnamurthy, A. Tvm: An automated end-to-end
optimizing compiler for deep learning, 2018. URL https:
//arxiv.org/abs/1802.04799.

Cyphers, S., Bansal, A. K., Bhiwandiwalla, A., Bobba, J.,
Brookhart, M., Chakraborty, A., Constable, W., Convey,
C., Cook, L., Kanawi, O, et al. Intel ngraph: An inter-
mediate representation, compiler, and executor for deep
learning. arXiv preprint arXiv:1801.08058, 2018.

De Moura, L. and Bjgrner, N. Z3: An efficient smt
solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’ 08, pp. 337-340, Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 3540787992.

developers, O. R. Onnx runtime. https://onnxruntime.
ai/, 2021. Version: x.y.z.

Ding, Y., Yu, C. H., Zheng, B., Liu, Y., Wang, Y., and Pekhi-
menko, G. Hidet: Task-mapping programming paradigm
for deep learning tensor programs. In Proceedings of the
28th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
Volume 2, pp. 370-384, 2023.

Dong, X., Liu, L., Musial, K., and Gabrys, B. NATS-
bench: Benchmarking NAS algorithms for architecture
topology and size. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, pp. 1-1, 2021. doi:
10.1109/tpami.2021.3054824. URL https://doi.org/
10.1109%2Ftpami.2021.3054824.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale, 2021.

Dwork, C. Differential privacy. In Automata, Lan-
guages and Programming: 33rd International Collo-
quium, ICALP 2006, Venice, Italy, July 10-14, 2006, Pro-
ceedings, Part Il 33, pp. 1-12. Springer, 2006.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cal-
ibrating noise to sensitivity in private data analysis. In
Halevi, S. and Rabin, T. (eds.), Theory of Cryptography,
pp- 265-284, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg. ISBN 978-3-540-32732-5.

Dwork, C., Roth, A., et al. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theo-
retical Computer Science, 9(3—4):211-407, 2014.

Gentry, C. Fully homomorphic encryption using ideal lat-
tices. In Proceedings of the forty-first annual ACM sym-
posium on Theory of computing, pp. 169-178, 2009.

Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. Cryptonets: Applying
neural networks to encrypted data with high throughput

and accuracy. In International conference on machine
learning, pp. 201-210. PMLR, 2016.

Goodfellow, L. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples, 2014. URL https:
//arxiv.org/abs/1412.6572.

Goodfellow, 1. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples, 2015.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs, 2018.

Hesamifard, E., Takabi, H., and Ghasemi, M. Cryptodl:
Deep neural networks over encrypted data. arXiv preprint
arXiv:1711.05189, 2017.

Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. Squeeze-
and-excitation networks, 2019.

Hu, X, Liang, L., Li, S., Deng, L., Zuo, P, Ji, Y., Xie, X.,
Ding, Y., Liu, C., Sherwood, T., et al. Deepsniffer: A dnn
model extraction framework based on learning architec-



PROTEUS: Preserving Model Confidentiality during Graph Optimizations

tural hints. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 385-399,
2020.

Hua, W., Zhang, Z., and Suh, G. E. Reverse engineering
convolutional neural networks through side-channel infor-
mation leaks. In Proceedings of the 55th Annual Design
Automation Conference, pp. 1-6, 2018.

Huggingface. Hugging face — the ai community building
the future. https://huggingface.co, 2023.

Insider, B.  Chatgpt could cost over $700,000 per
day to operate. microsoft is reportedly trying to
make it cheaper. https://www.businessinsider.
com/how-much-chatgpt-costs-openai-to-run-\
estimate-report-2023-4, 2023.

Jia, Z., Padon, O., Thomas, J., Warszawski, T., Zaharia, M.,
and Aiken, A. Taso: Optimizing deep learning compu-
tation with automatic generation of graph substitutions.
In Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles, SOSP ’19, pp. 47-62, New York,
NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450368735. doi: 10.1145/3341301.3359630.
URL https://doi.org/10.1145/3341301.3359630.

Karger, D. R. Global min-cuts in rnc, and other ramifications
of a simple min-out algorithm. In ACM-SIAM Symposium
on Discrete Algorithms, 1993.

Labs, L. Demystifying gpt-3. https://lambdalabs.com/
blog/demystifying-gpt-3, 2023. Blog post.

NVIDIA Corporation. TensorRT: Programmable Inference
Accelerator, 2022. https://developer.nvidia.com/
tensorrt.

Oh, S. J., Schiele, B., and Fritz, M. Towards reverse-
engineering black-box neural networks. Explainable Al:
Interpreting, Explaining and Visualizing Deep Learning,
pp. 121-144, 2019.

ONNX Contributors. ONNX: Open Neural Network Ex-
change. https://onnx.ai/, 2023. Accessed: May 21,
2023.

Papernot, N., McDaniel, P., Goodfellow, L., Jha, S., Celik,
Z.B., and Swami, A. Practical black-box attacks against
machine learning. In Proceedings of the 2017 ACM on

Asia conference on computer and communications secu-
rity, pp. 506-519, 2017.

PyTorch. torchvision: datasets, transforms and models
specific to computer vision. https://pytorch.org/
vision/, 2017.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models, 2021.

Rotem, N., Fix, J., Abdulrasool, S., Catron, G., Deng,
S., Dzhabarov, R., Gibson, N., Hegeman, J., Lele, M.,
Levenstein, R., et al. Glow: Graph lowering com-

piler techniques for neural networks. arXiv preprint
arXiv:1805.00907, 2018.

Sabne, A. Xla: Compiling machine learning for peak per-
formance. 2020.

Song, S., Chaudhuri, K., and Sarwate, A. D. Stochastic
gradient descent with differentially private updates. In
2013 IEEE Global Conference on Signal and Information
Processing, pp. 245-248, 2013. doi: 10.1109/GlobalSIP.
2013.6736861.

Tramer, F., Zhang, F., Juels, A., Reiter, M. K., and Risten-
part, T. Stealing machine learning models via prediction
apis. In USENIX security symposium, volume 16, pp.
601-618, 2016.

TVM. Adding an operator to relay — tvm 0.13.dev0
documentation. https://tvm.apache.org/docs/dev/
how_to/relay_add_op.html, 2023.

Wang, B. and Gong, N. Z. Stealing hyperparameters in
machine learning. In 2018 IEEE symposium on security
and privacy (SP), pp. 36-52. IEEE, 2018.

Ye, Z., Lai, R., Shao, J., Chen, T., and Ceze, L. Sparsetir:
Composable abstractions for sparse compilation in deep
learning. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pp. 660—
678, 2023.

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models, 2018.

Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C. H., Haj-Ali,
A., Wang, Y., Yang, J., Zhuo, D., Sen, K., et al. Ansor:
Generating high-performance tensor programs for deep
learning. In Proceedings of the 14th USENIX Conference
on Operating Systems Design and Implementation, pp.
863-879, 2020.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition,
2018.



