
Q-HITTER: A BETTER TOKEN ORACLE FOR EFFICIENT LLM INFERENCE
VIA SPARSE-QUANTIZED KV CACHE

Zhenyu Zhang * 1 Shiwei Liu * 2 3 Runjin Chen 1 Bhavya Kailkhura 4 Beidi Chen 5 6 Zhangyang Wang 1

ABSTRACT
This paper focuses on addressing the substantial memory footprints and bandwidth costs associated with the
deployment of Large Language Models (LLMs). LLMs, characterized by their extensive context length (e.g.,
≥4096), inherently demands vast memory resource and traffic to store and load the attention key and value
embeddings within self-attention modules, referred to as the KV cache. In an effort to alleviate these resource-
intensive aspects of LLM inference, techniques such as sparsification and quantization for KV cache reduction
have been investigated as separate endeavors within the realm of LLMs. However, this paper illuminates the
critical importance of considering the compound effects of these techniques when employed together, as a
simplistic amalgamation of sparsification and quantization can yield sub-optimal performance. For instance, the
“Heavy Hitter Oracle (H2O)” (Zhang et al., 2023b) has demonstrated that preserving just 20% of the KV cache
attributed to pivotal tokens, denoted as “Heavy Hitters”, can yield substantial memory savings while upholding
the model’s original performance. Furthermore, the KV cache of these “Heavy Hitter” tokens, which are identified
as those with the highest accumulated attention scores, can be further quantized with encouraging throughput
saving. Nevertheless, our investigation uncovers two primary deficiencies in such unrefined post-sparsification
quantization in low-bit scenarios: (1) the application of low-bit KV cache quantization, specifically ≤ 4-bit,
significantly diminishes the accuracy of Heavy Hitter selection during the generation phase, particularly in deeper
layers; (2) tokens selected by the “Heavy Hitter Oracle” are not necessarily well-suited for quantization, and
their quantization can lead to sub-optimal performance. To overcome these challenges, we propose a novel
rule-of-thumb for token selection during LLM generation, termed Q-Hitter. This approach combines both
accumulated attention scores and “Quantization Friendliness” metrics for different layers, identifying tokens
that are not only pivotal for preserving the generalization capabilities of LLMs but are also more amenable to
KV cache quantization. Q-Hitter naturally offers a free lunch of KV cache quantization and can further escalate
the affordability of state-of-the-art LLMs. Additionally, we also demonstrate that Q-Hitter empowers LLMs
to effectively handle inputs of infinite sequence length, enhancing the capacity of LLMs to process a more
extensive range of informations. Extensive experiments conducted across various LLMs and tasks substantiate
the superiority of the proposed Q-Hitter framework over the original H2O framework. Remarkably, Q-Hitter
achieves full model quality preservation while delivering up to a remarkable 20× reduction in memory usage and
up to 33×, 7×, 4× and 1.3× throughput improvements compared with the Hugginface Accelerate, DeepSpeed,
FlexGen and H2O, respectively. Codes are available at https://github.com/VITA-Group/Q-Hitter.

1 INTRODUCTION

Large language models (LLMs) are show-stealers in
modern-day natural language processing applications. As
we consistently push the boundaries of model size and ex-
pand their training datasets, LLMs begin to showcase out-

*Equal contribution 1University of Texas at Austin 2University
of Oxford 3Eindhoven University of Technology 4Lawrence
Livermore National Laboratory 5Carnegie Mellon University
6Meta AI (FAIR). Correspondence to: Zhangyang Wang <at-
laswang@utexas.edu>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

standing performance across a wide spectrum of tasks, as
documented in recent studies (Brown et al., 2020; Thoppilan
et al., 2022; Chowdhery et al., 2022; Chiang et al., 2023)
with unexpected emerging behaviors (Wei et al., 2022; Sri-
vastava et al., 2022).

While LLMs have been demonstrating increasingly remark-
able performance, deploying these colossal models on com-
modity hardware is a daunting challenge, not only due
to their large amount of parameters but also the massive
KV cache memory footprints when performing text genera-
tion with long attention contexts. For example, with a batch
size of 512 and a context length of 2048, the KV cache of

https://github.com/VITA-Group/Q-Hitter

Submission and Formatting Instructions for MLSys 2024

a 500B+ model with multi-head attention accumulates to
3TB in total, which will surpass the model’s parameter size
by three times (Pope et al., 2023). Meanwhile, there has
been a strong prevailingness recently to train LLMs with
longer context windows, which can enhance the capacity
of LLMs to effectively process a more extensive range of
information, leading to better performance when support-
ing extended conversation histories in chat applications,
tackling diverse summarization tasks, and comprehending
longer documents (Touvron et al., 2023). Therefore, finding
ways to reduce KV cache memory footprints is pivotal to
improving the efficiency and performance of LLMs.

Recently, Zhang et al. (2023b) observed that a small portion
of tokens (dubbed as Heavy-Hitters) contributes most of
the value when computing attention scores. Based on this
observation, they proposed Heavy-Hitter Oracle (H2O), a
low-cost framework that achieves a significant reduction of
KV cache memory footprints by dynamically maintaining
only 20% KV cache of these Heavy-Hitters. At each genera-
tion step, Heavy-Hitters tokens are dynamically selected by
identifying the top-K tokens with the highest accumulated
attention scores. Furthermore, H2O demonstrates appeal-
ing compatibility with quantization, achieving throughput
improvement when quantizing the sparsified KV cache into
low bit. While demonstrating good compatibility with quan-
tization, we argue that directly applying quantization on the
top of KV cache sparsification without carefully considering
their interaction can easily lose critical information, result-
ing in undesirable damage to LLM’s generalization ability.
This issue is expected to be amplified for the low-bit quanti-
zation scenario where the limited precision is insufficient to
represent complex relationships in the data.

Our preliminary exploration verifies our concerns and de-
livers very intriguing phenomena, which are summarized as
the following:

#1. The critical Heavy Hitter tokens identified by H2O in the
generation phase exhibit a notable shift after quantization.
Remarkably, post-4-bit quantization, more than 50% of
the originally deemed important tokens are reclassified as
having minimal utility. This shift in attention becomes
increasingly conspicuous in deeper layers. Such attention
shift serves as the root cause of the performance loss in low-
bit quantization scenarios where LLMs suffer from notable
perplexity increase, as shown in Section 4.2.

#2. Furthermore, it is imperative to acknowledge that not
all tokens designated by H2O are amenable to quantization,
ultimately resulting in suboptimal performance after quan-
tization. In our empirical investigation, expounded in Sec-
tion 4.3, we find that merely the top 1% of tokens preserved
by the “Heavy Hitter Oracle” exhibit quantization-friendly
attributes, which is way smaller than the least amount of
tokens required by H2O, i.e., 20%. Consequently, it be-

comes important to identify tokens that fulfill a dual role:
preserving essential generalization capabilities while also
being amenable to the quantization process.

In order to overcome these hurdles, this paper introduces
a new token selection framework, Q-Hitter, for KV cache
compression associated with an additional metric named
as “Quantization Friendliness”. Combining this metric with
the accumulated attention scores, Q-Hitter is designed to
pinpoint tokens that play a crucial role in preserving the
generalization abilities of LLMs while also being particu-
larly well-suited for the quantization of KV cache, provid-
ing a natural bonus of KV cache quantization for free. With
extensive experiments across a range of LLMs and tasks,
we demonstrate that our approach consistently improves
the quantization performance of H2O, achieving near loss-
less performance with up to 20× memory saving and 33×
throughput improvement.

Our key contributions are summarized as follows:

• We first investigate into the naive combination of spar-
sification and quantization for KV cache compression.
Two main hurdles exhibit: (1) utilizing low-bit quan-
tization for KV cache, specifically when employing ≤
3 bits, leads to a notable reduction in the accuracy of
the Heavy-Hitter selection during the generation phase,
particularly within deeper layers. (2) The tokens iden-
tified by the H2O do not consistently exhibit compati-
bility with quantization, and the quantization of these
tokens often results in less-than-optimal performance.

• To tackle these issues, we introduce Quantization-
aware Heavy-Hitter Oracle (Q-Hitter), a rule-of-
thumb for identifying crucial tokens that are also
highly quantization-compatible within KV cache. Q-
Hitter seamlessly incorporates KV cache quantization,
achieving lossless 4-bit quantization on complex tasks
like text summarization and multi-document question
answering, all while drastically cutting down memory
needs for efficient LLM deployment.

• Additionally, Q-Hitter empowers LLMs to tackle
infinite-length input sequences, a notable challenge
for current LLMs, by dynamically preserving signifi-
cant and quantization-friendly tokens as attention sinks.
Combined with the position rolling, Q-Hitter allows
for effective token generation up to 4 million in length.

• Extensive experiments validate the effectiveness of our
methods. With only a 5% to 12.5% memory budget,
Q-Hitter maintains the full performance of the origi-
nal LLMs across diverse tasks. Notably, it showcases
throughput enhancements of 33×, 7×, 4×, and 1.3×
compared with Accelerate, DeepSpeed, FlexGen, and
H2O, respectively.

Submission and Formatting Instructions for MLSys 2024

2 RELATED WORK

LLMs have a large memory footprint both due to the mas-
sive model parameters and the transient state needed during
decoding (Dettmers et al., 2023b). In this section, we will
briefly summary how advanced techniques are utilized to
address these challenges.

Pruning and Quantization. Model compression is a long-
standing group of techniques with the primary goal to reduce
model size with negligible performance damage. These tech-
niques can be loosely categorized into two primary groups,
Pruning and Quantization. ❶ Pruning or sparsity (LeCun
et al., 1989; Han et al., 2015) is able to eliminate superfluous
components in neural networks with negligible performance
loss. In the context of LLMs, one-shot pruning without
re-training is more appealing due to the huge expenses of
the re-training (Jaiswal et al., 2023; Sun et al., 2023; Frantar
& Alistarh, 2023; Ma et al., 2023). ❷ Quantization is used
to reduce the memory and computational requirements by
representing the model’s parameters, such as weights and
activations, with lower bit precision (Dettmers et al., 2023a;
Frantar et al., 2022; Cheng et al., 2023; Li et al., 2023a; Be-
hdin et al., 2023; Li et al., 2023b; Chee et al., 2023; Wu et al.,
2023; Liu et al., 2023b;c; Zhang et al., 2023a). A primary
challenge in quantized LLMs is the emergence of outliers
(activations with large magnitude (Xiao et al., 2023a) or
weights associated with large quantization loss (Lin et al.,
2023)) exhibited in LLMs. Numerous approaches have been
proposed to overcome this issue, including rescaling tech-
niques (Xiao et al., 2023a; Lin et al., 2023; Wei et al., 2023),
clustering strategies (Yuan et al., 2023; Kim et al., 2023),
and mixed-precision methods (Dettmers et al., 2023b; Lee
et al., 2023). While these approaches have demonstrated
promising efficacy in model compression, their primary
goal is to handle barriers caused by the massive parameters
and activations, overlooking the KV cache, which typically
results in significant memory usage in tasks that involve
long-context generation.

Attention Approximation. The quadratic computational
complexity of attention mechanisms stands as a significant
impediment to LLM inference, prompting the development
of numerous efficient self-attention variants aimed at re-
ducing self-attention complexity. Notably, BigBird (Zaheer
et al., 2020) extends this by advocating for attention to a
random subset of prior tokens and a specific set of globally
accessible tokens. Linformer (Wang et al., 2020) leverages
a low-rank approximation of the attention matrix, while Per-
former (Choromanski et al., 2020) employs a non-softmax
kernel for enhanced efficiency. Longformer (Beltagy et al.,
2020), on the other hand, implements dilated sliding window
patterns to expand the attention’s receptive field, assigning
distinct window sizes to each layer manually. Flash At-
tention (Dao et al., 2022) addresses the quadratic memory

demands of attention mechanisms. Additionally, variants
like Sparse Transformer (Child et al., 2019), low-rank based
transformers (Katharopoulos et al., 2020), and multi-query
attention models (Pope et al., 2023; Chowdhery et al., 2022;
Shazeer, 2019) contribute to cache size reduction, albeit
not specifically designed for complexity alleviation. How-
ever, these innovations either fail to yield cache reduction
benefits (Dao et al., 2022; Kitaev et al., 2020) or induce
substantial performance declines when directly applied to
pre-trained LLMs for generation tasks (Katharopoulos et al.,
2020; Pope et al., 2023; Chowdhery et al., 2022).

KV Cache Reduction. Caching, quintessential for en-
hancing system performance, necessitates the formulation
of proficient eviction strategies to manage data that is fre-
quently accessed. Traditional methodologies, including
Least Recently Used (LRU) and Least Frequently Used
(LFU) (O’neil et al., 1993; Lee et al., 2001), focus on op-
timizing data access based on its recency and frequency,
respectively. The design of KV cache, grapples with numer-
ous challenges akin to those faced in conventional caching
paradigms. Some recent works demonstrate quite promising
progress in mitigating memory requirements of KV cache
for better inference efficiency. SpAtten (Wang et al., 2021)
implements cascade pruning during training to eliminate
inconsequential tokens and attention heads on the fly. Land-
mark Attention (Mohtashami & Jaggi, 2023) introduces
landmark tokens to mark distinct input blocks, steering
attention towards relevant blocks. Similarly, (Mu et al.,
2023) leverages gist tokens to encapsulate key information,
thereby streamlining the KV cache, albeit at an additional
training expense. CoLT5 (Ainslie et al., 2023) employs a
routing-based method, diverting specific tokens to lighter
attention blocks to alleviate cache cost. LM-Infinite (Han
et al., 2023) and StreamLLM (Xiao et al., 2023b) adopt
a strategy that retains only a selection of initial and local
tokens, reducing cache overhead. While H2O identifies a
subset of tokens as particularly vital for the generation, de-
veloping a KV cache eviction policy centered around this
insight to achieve impressive performance enhancements.
Moreover, FlexGen (Sheng et al., 2023a) applies group-wise
quantization to the KV cache, neglecting the variance in
quantization difficulty across different tokens. In our work,
we approach this challenge from a novel angle, proposing
a quantization-aware eviction policy that prioritizes the re-
tention of tokens crucial for generation performance and
amenable to quantization.

3 PRELIMINARIES

In this section, we briefly summarize the generative infer-
ence and quantization in LLMs, as well as the notations that
will be utilized in the following.

Submission and Formatting Instructions for MLSys 2024

Generative Inference. The generative inference process
of LLMs unfolds in two primary stages: ❶ The prefilling
stage where an input sequence is utilized to generate the
key-value embeddings for each token across every trans-
former layer within LLMs. These embeddings are stored
in the KV cache; ❷ The generation stage retrieves embed-
dings from the cache and generates new tokens sequentially.
Every newly generated token then serves as an input for the
subsequent generation step and its corresponding key-value
embeddings are used to update the KV cache. Given the
iterative nature of this stage, the memory requirement for
KV cache scales linearly with the number of tokens, possi-
bly leading to prohibitive memory usage that impedes LLM
inference. This work targets on accelerating LLM inference
via compressing the KV cache during the generation stage.

Quantization. Quantization is a widely used compression
technique that transforms high-precision float values into
discrete integer values. Since non-uniform quantization
requires specialized hardware support that is not broadly
available, we focus on uniform quantization. The typical
uniform quantization process can be formulated as:

Xq = Quantn(X, s, z)

= clamp(⌊X
s
⌉+ z,−2n−1, 2n−1 − 1)

(1)

Here, X denotes the original tensor, while Xq represents the
quantized tensor. The quantization function Quantn maps
the tensor to an n-bit integer value, utilizing s as the scaling
factor and z as the zero point. The clamp function ensures
the values are constrained within the n-bit integer range.

Quantization methods fall into two primary categories: static
and dynamic quantization. Static quantization calculates
the scaling factor s offline, e.g., employing the activations
from a calibration dataset to approximate the scaling fac-
tor, then applying it to quantize activations. In contrast,
dynamic quantization computes the scaling factor in real-
time during model execution, which generally causes less
performance loss yet requires more computation overhead
for quantization.

Furthermore, quantization can be executed at varying gran-
ularities. Specifically, per-tensor quantization calculates
the scaling factor based on the entire tensor. On the other
hand, some finer-grained methods, such as per-channel and
per-token quantization, treat each channel and token as sep-
arate entities for individual quantization. Also, group-wise
quantization divides the tensor into several groups prior to
quantization. To select an apt quantization granularity, we
examined the dynamic ranges of the Key and Value em-
beddings, as illustrated in Figure 1. Notably, the activation
ranges exhibit significant variance across different tokens,
presenting a substantial challenge for quantization. Specifi-
cally, some tokens’ max values are close to 0 while others

are larger than 60. To navigate these disparities and preserve
model performance, we use token-wise quantization in the
following studies. Meanwhile, token-wise quantization cap-
tures the varying quantization difficulty across different to-
kens, providing a more conducive approach when integrated
with token eviction algorithms.

Figure 1. The maximum activation value of Key (left) and Value
(right) embeddings on the pre-trained Pythia models. Results are
collected on the WikiText-103 validation set.

Notations. We denote query matrix in the attention block
as Q ∈ Rn×d while the key and value matrix are referred
as K ∈ Rn×d and V ∈ Rn×d. The quantization er-
ror is used to assess the associated difficulty, defined as
E(X) = ||X − Quant(X)||2. Tokens with low quantiza-
tion errors are referred to as tokens with high quantization
friendiness. And we use the accumulated attention scores
to measure token importance, which is defined as Sj =∑

j Softmax(Qj,∗(K≤j,∗)
T). Qj,∗ represents the query

embedding during the jth decoding step in the generation
stage, and K≤j,∗ is all the previous key embeddings. The
accumulated attention score is an effective metric for iden-
tifying the important tokens during the whole generation
stage (Wang et al., 2021; Zhang et al., 2023b). We refer to
the tokens that exhibit large accumulated attention scores as
significant tokens, the same as the concept of Heavy Hitter
tokens.

4 METHODOLOGY

This section demonstrates the rationale of the sparsity and
quantization co-design method for KV cache compression,
followed by the empirical studies of the interplay between
sparsity and quantization methods. Then, the design detail
of the proposed Q-Hitter framework is described.

Submission and Formatting Instructions for MLSys 2024

4.1 Rationale

The primary goal of this study is to compress the KV cache
to enhance throughput during LLM inference. To achieve
this, commonly adopted strategies involve exploiting spar-
sity (i.e., preserving only a crucial subset of KV embed-
dings (Zhang et al., 2023b; Xiao et al., 2023b)) or employ-
ing quantization to reduce memory demands. Nevertheless,
the interplay between sparsity and quantization remains am-
biguous. Does the introduction of sparsity complicate the
quantization process, or does quantization introduce an un-
acceptable bias when identifying vital KV embeddings? To
address these queries, we conduct an empirical investigation
to scrutinize the influence of sparsity and quantization.

4.2 H2O Suffers from Attention Shift after KV cache
Quantization

8 bits

3 bits

2 bits

H
ea

d
In

de
x

H
ea

d
In

de
x

H
ea

d
In

de
x

H
ea

d
In

de
x

H
ea

d
In

de
x

H
ea

d
In

de
x

Figure 2. Visualization of the degree of attention shift caused by
KV cache quantization, with data derived from WikiText-103 on
Pythia-70M and 410M models. The horizontal axis represents
various layers, while the vertical axis represents different attention
heads. Each block within the matrix displays outcomes associated
with different quantization bits. Brighter colors signify a more
pronounced impact from quantization on attention shift.

In our initial investigation, we examine the impact of
KV cache quantization on the selection of pivotal tokens.
Following previous works (Wang et al., 2021; Zhang et al.,
2023b), we employ the accumulated attention score to gauge
the significance of different tokens. Tokens with higher ac-
cumulated attention scores are deemed more crucial in the
generation process, and we categorize the top 20% of these
tokens into a critical set, S, for inference.

To quantify the attention shift stemming from KV cache
quantization, we employ both the original and quantized
KV cache to compute accumulated attention scores, subse-
quently deriving the critical sets So and Sq. Their overlap
ratio (|So ∩ Sq|/|So|, where |So| = |Sq|) serves as our
metric for evaluating attention shifts across various layers
and attention heads. The results are showcased in Figure 2.
We can observe that: ❶ In terms of selecting significant
tokens, quantization causes a minimal effect on the shallow
layers, whereas deeper layers exhibit pronounced attention
shifts (evidenced by overlap ratios below 50%). ❷ As the

quantization bits decrease, the attention shift becomes more
prominent, with nearly all layers and heads displaying an
overlap ratio below 30% when the KV cache is quantized to
ultra-low levels (i.e., 2-bits).

Delving deeper, we analyze the influence of such attention
shifts on the effectiveness of KV cache eviction policies.
Specifically, we evaluate perplexity on the validation set
from WikiText-103 and Penn Treebank datasets while re-
taining merely a small, crucial subset of KV embeddings.
Note that we simulate the quantization process to obtain the
shifted subset while preserving the KV embeddings in full
precision values. The results are reported in Table 1.

Table 1. Perplexity of language modeling with different set of KV
embeddings. “Full” represents using all the KV cache. So stands
for the critical subset that is identified by raw accumulated attention
scores while Sq is the associated subset when the accumulated
attention scores are shifted by quantization.

Model Size Dataset Full So
Sq

8 bits 3 bits 2 bits

70M
WikiText-103

55.82 57.61 59.05 63.97 70.24
160M 31.57 31.81 31.93 35.15 37.74
410M 18.87 18.95 18.95 19.59 20.18

70M
Penn Treebank

113.66 117.28 119.69 127.36 137.91
160M 68.50 69.51 69.68 74.87 79.45
410M 39.02 39.39 39.38 40.81 42.24

Without the influence of attention shifts stemming from
KV cache quantization, models relying solely on So manage
to preserve the quality similar to that of the full model. Nev-
ertheless, as we proceed to lower quantization bits and thus
enlarge attention shifts, we observe a marked degradation
in performance, reaching up to 24.25 perplexity increase
across various model sizes and diverse datasets. The re-
sults underscore that KV cache quantization will increase
the difficulty of selecting critical tokens and degrade current
KV cache eviction algorithms, which motivates us to con-
sider both token eviction and quantization simultaneously.

4.3 Heavy Hitter Tokens Are Not Necessarily
Quantization Friendly

Previously, we explored the impact of KV cache quantiza-
tion on the effectiveness of eviction policy. Now, we turn
our focus in the reverse direction, examining how KV cache
eviction strategies affect quantization. To start, we conduct
an in-depth analysis of token-wise quantization difficulty.

Ultra-crucial tokens are quantization-friendly tokens.
To comprehend the interaction between quantization er-
ror and the significance of each token in the generation
process, we analyze the correlation with accumulated at-
tention scores, visualizing the results in Figure 3. First,
we can observe some outlier tokens that have substantially
higher accumulated attention scores, underscoring their piv-

Submission and Formatting Instructions for MLSys 2024

Layer 1 Layer 3

Layer 18

Layer 10 Layer 18

Figure 3. Token-wise distribution of quantization error (vertical
axis) and accumulated attention scores (horizontal axis). Results
are collected on Pythia-410M with WikiText-2. The tokens with
ultra-large accumulated attention scores are highlighted in orange.
And the tokens with both top 20% quantization error and accumu-
lated attention scores are marked in red.

otal role during inference. Interestingly, these tokens also
demonstrate a propensity for quantization, indicating their
quantization-friendly nature. This relationship fortuitously
benefits KV cache quantization, providing a natural advan-
tage for reducing memory requirements.

Trade-off between quantization friendiness and token
importance. However, relying solely on these ultra-
important and quantization-friendly tokens is insufficient
for preserving performance. Figure 5 demonstrates the per-
plexity across various KV cache sizes, illustrating a marked
performance degradation when only utilizing outlier tokens
(e.g., almost doubling the perplexity compared to full cache
performance with Pythia-70M). This indicates a necessary
trade-off between quantization-friendliness and significance
during LLM inference. As shown in Figure 3, the tokens
highlighted in red are characterized by being in the top 20%
(i.e., the necessary ratio for preserving performance) for
both quantization error and accumulated attention scores.
These tokens introduce a new challenge when quantizing
the evicted KV cache, motivating the need for a co-design
framework that integrates quantization and sparsity to effec-
tively compress the KV cache.

4.4 Q-Hitter

Now, we delve into the details of our Q-Hitter framework.
The central idea driving our approach is the simultaneous
selection of both significant and quantization-friendly to-

kens. As shown in Figure 6, Q-Hitter can avoid involving
those hard quantized tokens and thus be more robust to
quantization. Adopting this strategy offers dual advantages:
(i) the accumulated attention score is typically susceptible
to the effects of quantization, leading to shifts in attention
and affecting the selection of significant tokens. By inte-
grating quantization-friendly tokens, we can mitigate this
shift, resulting in a more resilient and robust token eviction
policy; (ii) striking a better balance between significance
and quantization-friendliness of other tokens ensures that
the remaining KV embeddings experience minimal impact
from quantization, thereby reducing information loss.

Figure 4 provides an illustration of our Q-Hitter framework,
and the specific steps of the algorithm are outlined in Al-
gorithm 1. Throughout the generation process, we record
the accumulated attention score and quantization error as-
sociated with each token. We subsequently employ a linear
combination of these two metrics, moderated by the hyper-
parameter λ, to strike an optimal balance between the sig-
nificance and quantization-friendliness of each token. This
approach proves particularly beneficial in scenarios requir-
ing extremely low-bit quantization, ensuring the selection
of a superior token subset.

Algorithm 1 Q-Hitter Algorithm
Require: A pre-trained LLM f(θ, ,), KV cache M, token

eviction ratio s, quantization bits k, input content X ,
generation length l, balance factor λ.

Ensure: Generated text Y .
1: Set M = ∅; Y = ∅; and i = 0
2: while i < l do
3: # Generation Next Token
4: Qi,Ki, Vi, y = f(θ,X,M)
5: # Update KV cache
6: Ss =

∑
i Softmax(Qi,∗(K≤i,∗)

T)
7: Sqk = ||K −Quant(K)||2
8: Sqv = ||V −Quant(V)||2
9: Normalize Ss, Sqk, Sqv

10: # Linear combination of scores, where 1− Sq∗ mea-
sures the quantization friendiness.

11: Select tokens with largest S, where S = λSs + (1−
λ)(1−Sqk+1−Sqv), perform quantization on Ki, Vi

and update KV cacheM
12: y → Y ; y → X; i = i+ 1
13: end while

5 EXPERIMENTS

In this section, we undertake a comprehensive empirical
evaluation to determine the efficacy of our Q-Hitter frame-
work. Our key findings are as follows: (i) Performance Su-
periority: Q-Hitter consistently outperforms the traditional
method of applying sparsity and quantization sequentially

Submission and Formatting Instructions for MLSys 2024

I eat an at a sunny parkapple

0.1

0.1 0.5

0.2 0.1 0.1

1

0.9

0.4

0.03 0.02 0.2 0.05 0.9

0.6

I eat an apple at

I

eat

an

apple

at

1.43 1.52 0.7 0.65 0.9

I eat an apple at

Significant
Token

I eat an apple at

Key & Value

Quantization

Quantization
Friendly Token KV Cache

Query

Value

Key

Value

Key

Value

Key

Value

Key

Significant Token
Quantization Friendly Token

Next decoding step

Saving to Memory

Figure 4. The overall illustration of our Q-Hitter framework where the left part visualizes the significant and quantization-friendly tokens
and the right part details the generation process.

100 40 20 10 0.1
KV Cache Size (%)

20

40

60

80

Pe
rp

le
xi

ty

WikiText-103

Pythia-70M
Pythia-160M
Pythia-410M

Figure 5. Performance when reducing the size of KV cache via
token eviction. The results of only storing the outlier KV is high-
lighted as “star”.

Figure 6. Illustration of token selection results of Q-Hitter (right)
and H2O (left). The green dots represent the selected tokens, and
the red circle shows the hard quantized tokens that have been
selected by H2O.

for KV cache compression. Remarkably, it manages to re-
tain the performance equivalent to that of the full model,
even under a substantial compression ratio of up to 20×.
(ii) Throughput Enhancements: Building on the top of
Flexgen, Q-Hitter showcases impressive throughput gains,
achieving up to 33× compared to other leading systems. (iii)

Handling Infinite Input Sequences: Our Q-Hitter algo-
rithm empowers LLMs with the capability to process inputs
of infinite sequence length.

5.1 General Setup

Models and Datasets. In our experiments, we consider
four representative families of Large Language Models
(LLMs), including OPT (Zhang et al., 2022), Pythia (Bi-
derman et al., 2023), Llama-2 (Touvron et al., 2023), and
Vicuna (Chiang et al., 2023). We have chosen four tasks to
benchmark the performance of our Q-Hitter framework, cat-
egorizing them into three main groups: ❶ Text Summariza-
tion: We select two tasks from the popular HELM (Liang
et al., 2022) framework, specifically XSUM (Narayan et al.,
2018) and CNN/Daily Mail (Nallapati et al., 2016). The
performance for these tasks is reported using the Rouge-L
score. ❷ Multi-Document Question Answering (MDQA):
Following the procedure outlined in (Liu et al., 2023a), we
evaluate our method on MDQA tasks. Each test sample con-
sists of one question accompanied by ten documents. The
relevant information for the question is contained within
one of the documents. By changing the order of the doc-
uments, we assess the LLMs’ understanding ability when
the pertinent information is presented in different positions.
The performance is measured using the EM score. ❸ Lan-
guage Modeling: We concatenate all articles in the test
set of PG-19 (Rae et al., 2019), which results in overall 4
million tokens and shows Q-Hitter can tackle infinite-long
length inputs. Through this diverse set of tasks, we aim to
provide a comprehensive evaluation of the effectiveness of
different KV cache compression strategies across various
model architectures and applications.

Submission and Formatting Instructions for MLSys 2024

Figure 7. Results of different compression methods on summarization (XSUM, CNN-DailyMail) and Multi-Document QA (MDQA) tasks
where Rouge-L and EM score are used to assess the generation quality. The dashed line represents the performance of the full model.

5.2 End-to-End Results

To begin, we demonstrate that (i) Q-Hitter consistently out-
performs the conventional approach in which sparsity and
quantization are applied sequentially across various tasks
and models; (ii) it preserves the full model quality with only
5% to 12.5% memory requirements.

Superior performance over sequential sparsity and quan-
tization. In Figure 7, we present a comprehensive com-
parison between Q-Hitter and the baseline approach that
first employs H2O for KV embedding eviction, followed by
token-wise quantization for additional compression. Several
observations can be drawn: (i) Performance Advantage: Q-
Hitter consistently outperforms the baseline method across
a diverse range of tasks and models. Under the quantiza-
tion bits of both 4 and 3 bits, Q-Hitter achieves substantial
improvements, with up to 78.17% increase (e.g., on CNN-
DailyMail with Llama-2-7b-chat model). (ii) Long-Context
Understanding: In the MDQA task, where the critical docu-
ment’s position is varied, Q-Hitter demonstrates stable and
superior performance, underscoring its proficiency in long-
context understanding. (Note that in our experiments, we
change the position of critical documents to appear at the
beginning, middle, and end of all documents, respectively,
and report the average performance.) This is a crucial capa-
bility for LLMs, especially in tasks that require synthesizing
information from extensive contexts. (iii) Surpassing Full
Model Performance: Interestingly, under certain compres-
sion settings, Q-Hitter not only matches but even exceeds
the performance of the uncompressed full model, for exam-
ple, on {XSUM, Llama-2-13b-chat}, Q-hitter shows 4.6%
improvement of Rouge-L score against the full model. This
extra bonus shows the potential of Q-Hitter to enhance the

generation ability of LLMs. These observations collectively
highlight the efficacy of Q-Hitter as a robust framework for
compressing KV cache in Large Language Models, achiev-
ing significant memory savings while maintaining or even
enhancing, model performance across various generative
tasks and models.

No performance loss with only 5% to 12.5% memory.
Furthermore, as illustrated in Figure 7, Q-Hitter is capable of
preserving the performance of the full model while applying
a 4-bit quantization, resulting in an overall compression
ratio ranging from 8× to 20× across various tasks. Here,
we compute the composite compression ratio as the product
of sparsity and quantization contributions: c = cs × cq,
where cs and cq represent the compression achieved through
sparsity and quantization, respectively.

The requisite amount of memory to maintain performance
varies depending on the task, given the inherent differences
in information redundancy across tasks. For example, more
memory-intensive tasks, such as MDQA, require a larger
memory allocation. In our experiments, we have set cs
to 5× for XSUM, 2.5× for CNN-DailyMail, and 2× for
MDQA. The results demonstrate the efficacy of Q-Hitter in
compressing the KV cache, establishing it as a reliable solu-
tion for achieving memory-efficient large language model
(LLM) inference.

5.3 Q-Hitter Enhanced Throughput Improvements

Having established Q-Hitter’s ability to retain model qual-
ity with a compression ratio of up to 20× on the KV cache
memory, we now shift our focus to quantifying its corre-
sponding throughput improvements.

Submission and Formatting Instructions for MLSys 2024

Table 2. Throughput (token/s) comparison of our Q-Hitter with
different inference systems. For the sequence length, ”512+32”
represents a prompt length of 512 and generation length of 32.
Experiments are conducted on a single T4 GPU.

Seq. length 512+32 512+512 512+1024

Model size 6.7B 30B 6.7B 30B 6.7B 30B

Accelerate 20.4 0.6 15.5 0.6 5.6 0.6
DeepSpeed 10.5 7.6 10.1 7.9 11.3 7.3
FlexGen 20.2 8.1 16.8 8.5 16.9 7.1

H2O 35.1 12.7 51.7 18.8 52.1 13.8
Ours 47.3 15.1 68.7 20.0 57.2 16.1

Implementation details. We integrate Q-Hitter into Flex-
Gen (Sheng et al., 2023b) and compare it with other leading
inference systems, including DeepSpeed (Aminabadi et al.,
2022), Hugging Face Accelerate (HuggingFace, 2023), Flex-
Gen (Sheng et al., 2023b), as well as H2O (Zhang et al.,
2023b). For our experiments, we configure Q-Hitter with a
sparsity ratio of 20% and a quantization precision of 4 bits,
ensuring full performance maintenance as verified in the pre-
vious section. The tensors of KV are stored in the quantized
format during I/O. Once the KV are loaded, we dequan-
tize these tensors back to FP16 for computation. The pri-
mary goal of this quantization approach is to reduce the I/O
costs incurred during the iterative decoding steps of LLM
inference. The dequantization does introduce additional
computational overhead. However, given that the I/O costs
during LLM inference significantly outweigh computational
expenses, the overall throughput is still markedly improved
due to the savings on I/O costs. Moreover, the efficiency of
our method could be further enhanced through integration
with optimized CUDA kernels, such as AWQ (Lin et al.,
2023) or using the MX data format (Rouhani et al., 2023).

The evaluation metric of throughput is the number of gener-
ated tokens per second, where the cost time includes both
prompting and generation stages. The evaluations are con-
ducted on a single T4 GPU with 208GB CPU DRAM and
1.5TB SSD, with an end-to-end approach that includes the
time required for prefilling, decoding and identifying impor-
tant and quantization-friendly tokens. In scenarios where the
combined memory requirements of the model and KV cache
exceed the GPU’s capacity, CPU offloading will be turned
on. To provide a comprehensive benchmark, we assess the
throughput of various methods across a range of prompting
and generation lengths. Note that we follow exact same
setting as (Zhang et al., 2023b) but using DeepSpeed with
version 0.10.3.

Results and Analysis. Table 2 demonstrates the throughput
comparison of different methods, in which a clear through-
put improvements of our Q-Hitter can be drawn. Since
the unnecessary KV embeddings are evicted and the re-

maining parts are quantized to low-precision, the memory
requirements are largely reduced which enables us to use
a larger batch size and more flexibility of either CPU or
disk offloading. For OPT-6.7B, DeepSpeed has a higher
memory cost and uses slower CPU offloading, resulting in
its lower throughput, while all other methods can fit the
model into a single GPU. For OPT-30B, all methods turn
on CPU offloading and Accelerate store the KV cache on
the GPU, thus restricts the batch size they can use, leading
to a relatively low throughput, while other systems offload
it to CPU. Results shows our Q-Hitter can achieve up to
33×, 7×, 4× and 1.3× throughput improvements compared
with Hugginface Accelerate, DeepSpeed, FlexGen and H2O,
respectively. Note that, our method build on the top of Flex-
Gen, and achieves a further 4× throughput improvements
via evicting unnecessary tokens as well as quantization. Part
of the improvements against DeepSpeed and Accelerate are
credits to FlexGen.

5.4 Further Investigation and Ablation Study

In this section, we aim to further explore the effectiveness
of Q-Hitter framework. Specifically, we will address the
following research questions: Q1: Can we stream LLMs
to infinite input lengths with Q-Hitter? Q2: What is the
trade-off between retaining significant tokens and opting
for quantization-friendly tokens? Q3: Does the Q-Hitter
framework consistently surpass the performance of baseline
methods across different inference scenarios? Q4: Key or
Value, which one is more challenging for quantization?

0 1M 2M 3M 4M
Input Length

0

1

2

3

4

N
LL

Streaming with Q-Hitter

StreamingLLM
Ours

Figure 8. Streaming LLMs to infinite-input with Q-Hitter. The ex-
periment is implemented on the test set of PG-19 (Rae et al., 2019)
with Llama-2-7b. The baseline method StreamingLLM (Xiao et al.,
2023b) employs the first four tokens and local tokens.

A1: Efficient Streaming of LLMs with Q-Hitter. Be-
yond the challenges imposed by the extensive memory de-
mands of the KV cache, another significant hurdle for Large

Submission and Formatting Instructions for MLSys 2024

Language Models (LLMs) is their limited ability to tackle
inputs with extremely long sequence lengths. Due to com-
putational constraints, LLMs are typically pre-trained with
a predetermined fixed sequence length, such as 4096 for
Llama-2, resulting in their poor generalization to the inputs
whose sequence lengths substantially exceed the pretrained
length. Recent studies (Xiao et al., 2023b; Han et al., 2023)
have made strides in enabling LLMs to handle sequences of
infinite length. Inspired by that, we further explore the po-
tential of our Q-Hitter framework to process infinite-length
inputs. Following (Xiao et al., 2023b), We set the over-
all size of the KV cache to 2048 and allocate 128 for the
tokens identified by our Q-Hitter algorithm, with the re-
maining 1920 space for local tokens. The input are fed
iteratively via different chunks, avoiding the issue of large
activation memory from the MLP blocks. As illustrated
in the upper part of Figure 8, our Q-Hitter can effectively
empower LLMs to manage sequences of up to 4 million to-
kens, showing the potential for infinite-length inputs. Note
that StreamingLLM (Xiao et al., 2023b), H2O (Zhang et al.,
2023b), and our Q-Hitter are all capable of handling com-
parably lengthy (“infinite”) sequences while the Q-Hitter
algorithm is specifically designed for scenarios involving
quantization and its primary strength lies in its ability to
select tokens that are less impacted by the quantization.

0 0.1 0.3 0.5 0.7 0.9 1
0.15

0.16

0.17

0.18

0.19

0.20

R
ou

ge
-L

Llama-2-7b, XSUM, 3 Bits

0 0.1 0.3 0.5 0.7 0.9 1
0.18

0.19

0.20

0.21

0.22

0.23
Llama-2-13b, XSUM, 3 Bits

0 0.1 0.3 0.5 0.7 0.9 1
0.15

0.16

0.17

0.18

0.19

0.20

R
ou

ge
-L

Vicuna-7b, XSUM, 3 Bits

0 0.1 0.3 0.5 0.7 0.9 1
0.180

0.185

0.190

0.195

0.200

0.205

0.210
Vicuna-13b, XSUM, 3 Bits

0 0.1 0.3 0.5 0.7 0.9 1
0.15
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23

R
ou

ge
-L

Vicuna-7b, CNN-DailyMail, 3 Bits

0 0.1 0.3 0.5 0.7 0.9 1
0.14

0.15

0.16

0.17

0.18

0.19

0.20
Vicuna-7b, XSUM, 4 Bits

Figure 9. Performance of Q-Hitter with different value of balance
factor λ.

A2: Ablation study of balance factor λ. We conducted
an ablation study to investigate the impact of varying bal-
ance factor (λ) values on the performance of our Q-Hitter
framework. The results are presented in Figure 9. These

experiments were performed with 3-bit quantization applied
on the KV cache. As λ increases, we observe a trend where
the generation quality initially improves, peaks, and then
begins to deteriorate. This is because purely relying on
accumulated attention scores will retain some hard quan-
tized KV embeddings, leading to suboptimal performance.
Conversely, an exclusive focus on quantization friendliness
(λ = 0) can result in neglecting significant tokens, degrad-
ing the generation performance. Also, we can observe that
a balance factor (λ) of 0.5 delivers the best performance,
striking an optimal balance between attention significance
and quantization friendliness. As such, we set λ to 0.5 as
the default value for all the experiments.

A3: Consistent improvements under different shots of
inference. Table 3 showcases a comparative analysis be-
tween our Q-Hitter framework and the sequential approach
of applying sparsity and quantization (H2O w. 4 Bit). Each
sample comprises k pairs of articles and summaries dur-
ing the inference process to facilitate in-context learning.
By varying the value of k, we assess the model’s gener-
ative ability across different input sequence lengths. The
results depict a consistent performance enhancement across
various numbers of shots during inference. Taking the CNN-
DailyMail task as an instance, our Q-Hitter framework is
able to match the performance of the full model, achieving
an improvement of up to 0.097 in terms of the Rouge-L
score. Also, such improvement is more significant on zero-
shot inference.

Table 3. Ablation study of the number of shots during inference.
Experiments are conducted on Llama-2-7b-chat.

Settings Methods 0 1 3 5

XSUM
Full 0.171 0.191 0.201 0.207

H2O w. 4 Bits 0.093 0.116 0.184 0.190
Ours (4 Bits) 0.152 0.171 0.194 0.202

CNN-DailyMail
Full 0.234 0.243 0.254 0.258

H2O w. 4 Bits 0.132 0.202 0.163 0.228
Ours (4 Bits) 0.229 0.242 0.241 0.243

A4: Quantizing the Key cache presents greater chal-
lenges compared to the Value cache. Figure 10 com-
pares the effects of quantizing either the key or value cache
in isolation. As the number of quantization bits decreases,
we observe a more rapid deterioration in performance when
quantization is applied solely to the key cache, compared
to the value cache. This observation underscores that the
key cache is significantly more challenging to be quantized.
A potential explanation for this phenomenon might be the
broader value range of key embeddings(up to 70 for key
cache in Pythia-70M while 12 for value cache), as shown in
Figure 1. Larger value ranges are more prone to introducing

Submission and Formatting Instructions for MLSys 2024

Figure 10. Comparison of quantization difficulty of key and value
cache, where the horizontal axis represents the bits used for quan-
tization. Results are collected from XSUM with Llama-2-7b-chat.

substantial quantization error, leading to a corresponding
drop in performance.

6 CONCLUSION AND DISCUSSION

In this paper, we addressed the substantial memory and
bandwidth challenges associated with deploying Large Lan-
guage Models (LLMs) by providing a nuanced analysis of
the interactions between sparsification and quantization in
KV cache reduction. We first unveiled critical shortcom-
ings in naive post-sparsification quantization approaches,
particularly in low-bit scenarios: (i) KV cache quantiza-
tion results in a significant accuracy degradation in the
Heavy-Hitter selection process; (ii) the tokens identified
by H2O do not consistently exhibit compatibility with quan-
tization. To address these challenges, we proposed Q-Hitter,
a quantization-aware KV cache sparsification framework,
that simultaneously takes “quantization friendliness” and
accumulated attention scores into account. Q-Hitter success-
fully retains tokens that are crucial for maintaining LLM
performance while being amenable to quantization, result-
ing in significant memory savings without compromising
model efficacy. Furthermore, Q-Hitter can empower LLMs
to effectively handle inputs with infinite sequence lengths.
Our extensive experiments across various LLMs and tasks
demonstrated the superiority of our Q-Hitter approach over
previous post-sparsification quantization approaches, high-
lighting its potential to significantly enhance the affordabil-
ity and efficiency of state-of-the-art LLM deployments.

7 ACKNOWLEDGEMENT

This work was performed under the auspices of the U.S.
Department of Energy by the Lawrence Livermore National
Laboratory under Contract No. DE-AC52-07NA27344 and
supported by the LLNL-LDRD Program under Project No.
24-ERD-010. S. Liu is funded by the Royal Society with
the Newton International Fellowship.

REFERENCES

Ainslie, J., Lei, T., de Jong, M., Ontañón, S., Brahma, S.,
Zemlyanskiy, Y., Uthus, D., Guo, M., Lee-Thorp, J., Tay,
Y., et al. Colt5: Faster long-range transformers with con-
ditional computation. arXiv preprint arXiv:2303.09752,
2023.

Aminabadi, R. Y., Rajbhandari, S., Zhang, M., Awan, A. A.,
Li, C., Li, D., Zheng, E., Rasley, J., Smith, S., Ruwase, O.,
et al. Deepspeed inference: Enabling efficient inference
of transformer models at unprecedented scale. arXiv
preprint arXiv:2207.00032, 2022.

Behdin, K., Acharya, A., Gupta, A., Keerthi, S., and
Mazumder, R. Quantease: Optimization-based quan-
tization for language models–an efficient and intuitive
algorithm. arXiv preprint arXiv:2309.01885, 2023.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chee, J., Cai, Y., Kuleshov, V., and De Sa, C. Quip: 2-bit
quantization of large language models with guarantees.
arXiv preprint arXiv:2307.13304, 2023.

Cheng, W., Zhang, W., Shen, H., Cai, Y., He, X., and
Lv, K. Optimize weight rounding via signed gradient
descent for the quantization of llms. arXiv preprint
arXiv:2309.05516, 2023.

Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang,
H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J. E.,
Stoica, I., and Xing, E. P. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality,
March 2023. URL https://lmsys.org/blog/
2023-03-30-vicuna/.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin,

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Submission and Formatting Instructions for MLSys 2024

A., Kaiser, L., et al. Rethinking attention with performers.
arXiv preprint arXiv:2009.14794, 2020.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. Qlora: Efficient finetuning of quantized llms. arXiv
preprint arXiv:2305.14314, 2023a.

Dettmers, T., Svirschevski, R., Egiazarian, V., Kuznedelev,
D., Frantar, E., Ashkboos, S., Borzunov, A., Hoefler, T.,
and Alistarh, D. Spqr: A sparse-quantized representation
for near-lossless llm weight compression. arXiv preprint
arXiv:2306.03078, 2023b.

Frantar, E. and Alistarh, D. SparseGPT: Massive language
models can be accurately pruned in one-shot. arXiv
preprint arXiv:2301.00774, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Han, C., Wang, Q., Xiong, W., Chen, Y., Ji, H., and Wang, S.
Lm-infinite: Simple on-the-fly length generalization for
large language models. arXiv preprint arXiv:2308.16137,
2023.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 1135–1143, 2015.

HuggingFace. Hugging face accelerate. https://
huggingface.co/docs/accelerate/index,
2023.

Jaiswal, A., Liu, S., Chen, T., and Wang, Z. The emergence
of essential sparsity in large pre-trained models: The
weights that matter. arXiv preprint arXiv:2306.03805,
2023.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Kim, S., Hooper, C., Gholami, A., Dong, Z., Li,
X., Shen, S., Mahoney, M. W., and Keutzer, K.

Squeezellm: Dense-and-sparse quantization. arXiv
preprint arXiv:2306.07629, 2023.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 598–605, 1989.

Lee, C., Jin, J., Kim, T., Kim, H., and Park, E. Owq: Lessons
learned from activation outliers for weight quantization in
large language models. arXiv preprint arXiv:2306.02272,
2023.

Lee, D., Choi, J., Kim, J.-H., Noh, S. H., Min, S. L., Cho,
Y., and Kim, C. S. Lrfu: A spectrum of policies that
subsumes the least recently used and least frequently
used policies. IEEE transactions on Computers, 50(12):
1352–1361, 2001.

Li, L., Li, Q., Zhang, B., and Chu, X. Norm tweaking:
High-performance low-bit quantization of large language
models. arXiv preprint arXiv:2309.02784, 2023a.

Li, Q., Zhang, Y., Li, L., Yao, P., Zhang, B., Chu, X., Sun,
Y., Du, L., and Xie, Y. Fptq: Fine-grained post-training
quantization for large language models. arXiv preprint
arXiv:2308.15987, 2023b.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D.,
Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Kumar,
A., et al. Holistic evaluation of language models. arXiv
preprint arXiv:2211.09110, 2022.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilac-
qua, M., Petroni, F., and Liang, P. Lost in the middle:
How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023a.

Liu, P., Liu, Z., Gao, Z.-F., Gao, D., Zhao, W. X., Li, Y.,
Ding, B., and Wen, J.-R. Do emergent abilities exist in
quantized large language models: An empirical study.
arXiv preprint arXiv:2307.08072, 2023b.

Liu, Z., Oguz, B., Zhao, C., Chang, E., Stock, P., Mehdad,
Y., Shi, Y., Krishnamoorthi, R., and Chandra, V. Llm-qat:
Data-free quantization aware training for large language
models. arXiv preprint arXiv:2305.17888, 2023c.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. arXiv preprint
arXiv:2305.11627, 2023.

https://huggingface.co/docs/accelerate/index
https://huggingface.co/docs/accelerate/index

Submission and Formatting Instructions for MLSys 2024

Mohtashami, A. and Jaggi, M. Landmark attention:
Random-access infinite context length for transformers.
arXiv preprint arXiv:2305.16300, 2023.

Mu, J., Li, X. L., and Goodman, N. Learning to
compress prompts with gist tokens. arXiv preprint
arXiv:2304.08467, 2023.

Nallapati, R., Zhou, B., Gulcehre, C., Xiang, B., et al. Ab-
stractive text summarization using sequence-to-sequence
rnns and beyond. arXiv preprint arXiv:1602.06023, 2016.

Narayan, S., Cohen, S. B., and Lapata, M. Don’t give me the
details, just the summary! topic-aware convolutional neu-
ral networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

O’neil, E. J., O’neil, P. E., and Weikum, G. The lru-k page
replacement algorithm for database disk buffering. Acm
Sigmod Record, 22(2):297–306, 1993.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury,
J., Heek, J., Xiao, K., Agrawal, S., and Dean, J. Efficiently
scaling transformer inference. Proceedings of Machine
Learning and Systems, 5, 2023.

Rae, J. W., Potapenko, A., Jayakumar, S. M., and Lillicrap,
T. P. Compressive transformers for long-range sequence
modelling. arXiv preprint arXiv:1911.05507, 2019.

Rouhani, B. D., Zhao, R., More, A., Hall, M., Khodamoradi,
A., Deng, S., Choudhary, D., Cornea, M., Dellinger, E.,
Denolf, K., et al. Microscaling data formats for deep
learning. arXiv preprint arXiv:2310.10537, 2023.

Shazeer, N. Fast transformer decoding: One write-head is
all you need. arXiv preprint arXiv:1911.02150, 2019.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Fu,
D. Y., Xie, Z., Chen, B., Barrett, C., Gonzalez, J. E.,
et al. High-throughput generative inference of large
language models with a single gpu. arXiv preprint
arXiv:2303.06865, 2023a.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Fu,
D. Y., Xie, Z., Chen, B., Barrett, C., Gonzalez, J. E.,
et al. High-throughput generative inference of large
language models with a single gpu. arXiv preprint
arXiv:2303.06865, 2023b.

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid,
A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A.,
Garriga-Alonso, A., et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiv:2206.04615, 2022.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kul-
shreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L.,
Du, Y., et al. Lamda: Language models for dialog appli-
cations. arXiv preprint arXiv:2201.08239, 2022.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, H., Zhang, Z., and Han, S. Spatten: Efficient sparse
attention architecture with cascade token and head prun-
ing. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 97–110.
IEEE, 2021.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Wei, X., Zhang, Y., Li, Y., Zhang, X., Gong, R., Guo, J., and
Liu, X. Outlier suppression+: Accurate quantization of
large language models by equivalent and optimal shifting
and scaling. arXiv preprint arXiv:2304.09145, 2023.

Wu, X., Yao, Z., and He, Y. Zeroquant-fp: A leap forward in
llms post-training w4a8 quantization using floating-point
formats. arXiv preprint arXiv:2307.09782, 2023.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023a.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
arXiv preprint arXiv:2309.17453, 2023b.

Yuan, Z., Niu, L., Liu, J., Liu, W., Wang, X., Shang, Y., Sun,
G., Wu, Q., Wu, J., and Wu, B. Rptq: Reorder-based post-
training quantization for large language models. arXiv
preprint arXiv:2304.01089, 2023.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,
Yang, L., et al. Big bird: Transformers for longer se-
quences. Advances in neural information processing
systems, 33:17283–17297, 2020.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,

Submission and Formatting Instructions for MLSys 2024

et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhang, Y., Zhao, L., Cao, S., Wang, W., Cao, T., Yang, F.,
Yang, M., Zhang, S., and Xu, N. Integer or floating point?
new outlooks for low-bit quantization on large language
models. arXiv preprint arXiv:2305.12356, 2023a.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H 2 o:
Heavy-hitter oracle for efficient generative inference of
large language models. arXiv preprint arXiv:2306.14048,
2023b.

