
L-GreCo: Layerwise-Adaptive Gradient Compression

Table 5. Hyperparameters for ResNet-18/CIFAR-100 from (Sahu
et al., 2021)

Parameter Value
Number of workers 8

Optimizer SGD with momentum
Global batch size 1024

Momentum 0.9
Post warmup LR 1.6

LR decay /10 at epoch 150 and
250

LR warmup Linear for 5 epochs,
starting from 0.1

Epochs 300
Weight decay 10−4

A BUCKET PRIORITIZATION

Considering the fact that communication buckets have dif-
ferent impacts on training performance, we modified the
L-GreCo algorithm so that the last buckets in transmission
order, corresponding to the earlier layers, were compressed
more. This compensates for the compression error caused
by picking lower compression parameters for the first buck-
ets, i.e., the last layers. In practical terms, we have added
linear priorities to the layers in Algorithm 1, multiplying
the size of each layer by the index of the bucket the layer is
communicated in. The profile of communicated elements
per buckets is shown in the Figure 8. We observe the linear
shift of higher compression ratios towards the last buckets.
However, bucket prioritization performs worse than original
L-GreCo. It means that the effect of the first big buckets
transmission is higher than the effect of better compression
of the last buckets.

1 2 3 4 5 6 7 8 9
Buckets

0.5

1.0

1.5

2.0

N
um

be
r o

f t
ra

ns
m

itt
ed

 e
le

m
en

ts

1e6

L-GreCo[8:64]
LGreco[8:64] + Linear

Figure 8. Communicated elements per bucket for L-GreCo and
L-GreCo with linear bucket prioritizing. Transformer-XL with
PowerSGD.

Table 6. Comparison of L-GreCo with other adaptive algorithms
on ResNet-18/CIFAR-100.

Method Parameters Accuracy Average
Density (%)

Uniform 2% 71.8 2.00 (1×)
Uniform 0.1% 70.6 0.1 (20×)

Accordion min = 0.1%,
max = 2% 71.6 0.57 (3.5×)

Rethink-GS λ =
4.72× 10−3 71.4 0.35(5.7×)

L-GreCo [0.1%, 10%] 71.7 0.30% (6.7×)

B LOW-RANK ERROR COMPUTATION

As discussed in Section 4, one of the main steps of our algo-
rithm is to compute the error matrix for different possible
compression parameters. Table 1 suggests that this is the
most time-consuming part of our framework. Specifically
for the PowerSGD, we need to compute low-rank errors for
a wide range of ranks. There are two possible solutions to
do so.

B.1 Singular Value Decomposition

The first way to compute errors is to use singular value
decomposition and compute singular values for a particu-
lar layer, and calculate the approximation error for rank

r < min(m,n) by calculating er =
√∑min(m,n)

i=r+1 σ2
i ,

which can be done efficiently for all ranks. Specifically,
it is sufficient to compute squared singular values once,
and then compute all the errors by a single matrix product.
Thus, the bottleneck is computing singular values requiring
O(mn ·min(m,n)) time and O(n2 +mn) space.

B.2 Power Iteration Steps

The second approach is to calculate the approximation error
for each rank separately by doing a few power steps (without
the communication parts); as Vogels et al. (2019) claims,
this approach converges to the SVD-suggested matrix. On
the practical side, we have observed that applying only 5
power steps is enough to have a small error relative to the
optimal low-rank approximation suggested by SVD. This
approach needs O(mnr) time and O((m + n) · r) space
for calculating rank r approximation error and therefore
O(mnr2max) to compute errors for all r ∈ [rmin, rmax].

B.3 The Best of Both Worlds

Comparing computational complexity and memory require-
ments of two methods suggests it is better to use the power
method when the rank range is small, e.g., ResNet50 on
ImageNet or ResNet18 on Cifar100, and to use the SVD
method when the rank range is large, e.g., TransformerXL
and TransformerLM on WIKITEXT-103.



L-GreCo: Layerwise-Adaptive Gradient Compression

Table 7. Hyperparameters for ResNet-18/CIFAR-100
Parameter Value

Number of workers 8
Optimizer SGD with momentum

Global batch size 128
Momentum 0.9

Base LR 0.1

LR decay /10 at epoch 150 and
250

Epochs 200
Weight decay 10−4

C COMBINATION OF POWERSGD AND
L-GRECO

We note that in all of our wide-range experiments, the com-
pression ratio when L-GreCo is applied to PowerSGD
generally increases during the training (see Figure 9). This
also aligns with the intuition behind the results of (Agarwal
et al., 2021). This suggests that in this scenario, L-GreCo
is able to increase the compression in the less crucial learn-
ing periods, e.g., last epochs.

10 20 30 40 50 60 70 80 90
Epoch

90

92

94

96

98

Co
m

pr
es

sio
n 

Ra
tio

Figure 9. Compression ratio of the scheme suggested by
L-GreCo during the training. ResNet50 with PowerSGD.

Table 8. Hyperparameters on ResNet-50/ImageNet
Parameter Value

Number of workers 8
Optimizer SGD with momentum

Global batch size 2048
Momentum 0.875

LR warmup Linear for 8 epochs,
starting from 0.256

LR schedule cosine

LR decay /10 at epoch 150 and
250

Epochs 90
Weight decay 1/32768

Label smoothing 0.1

Table 9. Hyperparameters on Transformer-XL/WikiText-103
Parameter Value

Number of workers 8
Optimizer LAMB

Global batch size 256
LR warmup Linear for 1000 steps
LR schedule cosine

Number of steps 40k
Weight decay 0.0

Table 10. Hyperparameters on Transformer-LM/WikiText-103
Parameter Value

Number of workers 8
Optimizer Adam

Adam betas (0.9, 0.98)
Global batch size 2048

LR warmup Linear for 4000 steps
starting from 10−7

LR schedule inverse sqrt
Number of steps 50k

Weight decay 0.01

D DETAILED EXPERIMENTAL SETTINGS

For all the experiments, we used the standard hyperparame-
ters, datasets, and data preprocessing. The detailed hyperpa-
rameters are shown in the tables 7, 8, 9, and 10.

For preprocessing the images of CIFAR-100 datasets, we
follow the standard data augmentation and normalization
routines. Random cropping and horizontal random flipping
were applied for data augmentation. We also normalized
each color with the following mean and standard devia-
tion values for each channel: (0.4914, 0.4822, 0.4465) and
(0.2023, 0.1994, 0.2010).

ResNet50 model uses the following data augmentation. We
perform random resized crop to 224× 224, scale from 8%
to 100%, and do a random horizontal flip. Also, we do nor-
malization with means (0.485, 0.456, 0.406) and standard
deviations (0.229, 0.224, 0.225).

For wikitext-103 preprocessing, we used the standard pre-
processing tools and tokenizers provided by Nvidia Exam-
ples (Nvidia, 2020) and FairSeq library (Ott et al., 2019).



L-GreCo: Layerwise-Adaptive Gradient Compression

1 2 4 8
Num GPUs

1k

2k

3k

4k

5k

6k

7k

Im
ag

es
/s

ec

baseline

uniform

L-GreCo

(a) PowerSGD

1 2 4 8
Num GPUs

1k

2k

3k

4k

5k

6k

7k

8k

Im
ag

es
/s

ec

baseline

uniform

L-GreCo

(b) QSGD

1 2 4 8
Num GPUs

1k

2k

3k

4k

5k

6k

7k

8k

Im
ag

es
/s

ec

baseline

uniform

L-GreCo

(c) TopK

Figure 10. Throughput for ResNet50/ImageNet. Single node, RTX3090 GPUs.

1 2 4
Num Nodes

1k
2k
3k
4k
5k
6k
7k
8k
9k

10k
11k
12k
13k
14k

Im
ag

es
/s

ec

baseline

uniform

L-GreCo

(a) PowerSGD

1 2 4
Num Nodes

1k

2k

3k

4k

5k

6k

7k

Im
ag

es
/s

ec

baseline

uniform

L-GreCo

(b) QSGD

1 2 4
Num Nodes

1k
2k
3k
4k
5k
6k
7k
8k
9k

10k
11k
12k
13k
14k

Im
ag

es
/s

ec

baseline

uniform

L-GreCo

(c) TopK

Figure 11. Throughput for ResNet50/ImageNet. Multi-node, each node has 4 RTX3090 GPUs.


