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ABSTRACT
Data-parallel distributed training of deep neural networks (DNN) is pervasive, but can still experience communi-
cation bottlenecks. To address this, several compression mechanisms such as quantization, sparsification, and
low-rank approximation have been introduced. Despite this progress, most implementations are sub-optimal, as
they apply compression uniformly across DNN layers, although layers are heterogeneous in terms of parameter
count and their impact on accuracy. In this work, we provide a general framework for dynamically adapting the
degree of compression across the model’s layers during training, improving overall compression while leading to
substantial speedups, without sacrificing accuracy. Our framework, called L-GreCo, is based on an adaptive
algorithm that automatically picks the optimal compression parameters for model layers, guaranteeing the best
compression ratio, while satisfying an error constraint. Extensive experiments over image classification and
language modeling tasks show that L-GreCo is effective across all existing families of compression methods, and
achieves up to 2.5× training speedup and up to 5× compression improvement over efficient implementations of
existing approaches, and can even complement existing adaptive algorithms. An anonymized implementation is
available at https://github.com/LGrCo/L-GreCo.

1 INTRODUCTION

The growth in model and dataset sizes for deep learning has
made distribution a standard approach to training. The most
popular strategy is synchronous data-parallel distribution,
which splits the data between parallel workers, each of
which computes stochastic gradients over their data, and
then averages the workers’ gradients in a synchronous step.
This procedure has several advantages, but induces two
main overheads: The synchronization cost of barrier-like
synchronization at every step, and the communication cost
of exchanging the gradients in an all-to-all fashion.

A popular approach for reducing the cost of gradient commu-
nication, which is the main focus of our paper, is lossy gra-
dient compression (Seide et al., 2014; Alistarh et al., 2017;
Dryden et al., 2016; Vogels et al., 2019), which reduces the
number of communicated bits per iteration. Hundreds of
such techniques have been proposed, which can be roughly
categorized into three method families. The first is quanti-
zation (Seide et al., 2014; Alistarh et al., 2017; Wen et al.,
2017), which reduces the bit width of the communicated
gradients in a variance-aware fashion in order to preserve
convergence. The second is sparsification (Strom, 2015;
Dryden et al., 2016; Lin et al., 2017), reducing the number
of gradient components updated at every step, which are
chosen via various saliency metrics. The third and most
recent approach is low-rank approximation (Wang et al.,
2018; Vogels et al., 2019), which leverages the low-rank

structure of gradient tensors to minimize communication.

In practice, these approaches come with trade-offs in terms
of compression versus ease of use. For instance, gra-
dient quantization is easy to implement and deploy, but
only provides limited compression before accuracy degrada-
tion; sparsification and low-rank approximation can provide
order-of-magnitude compression improvements, but come
with additional costs in terms of maintaining error correction
and careful hyper-parameter tuning. These trade-offs have
been investigated via adaptive compression methods (Agar-
wal et al., 2021; Markov et al., 2022; Faghri et al., 2020),
which adjust the compression to the error incurred during
various phases of DNN training.

Currently, there is still a significant gap between ideal,
theoretically-justified compression methods, and their effi-
cient systems implementations. For example, the theory of
gradient compression (Karimireddy et al., 2019; Nadiradze
et al., 2021) suggests that the ideal compression method in
terms of convergence is that which minimizes the norm of
the compression error, i.e., the difference between the global
model gradient and the compressed one. (For instance,
global TopK selection provides the best sparsification-based
compressor for a given parameter K (Sahu et al., 2021).)
Yet, parameter selection based on a global gradient at each
step is not practical from the systems perspective: perform-
ing global selection, such as TopK, requires waiting for the
whole model gradient to be available; yet fast implementa-

https://github.com/LGrCo/L-GreCo


L-GreCo: Layerwise-Adaptive Gradient Compression

tions of data-parallel training transmit each layer’s gradients
as soon as they are generated, overlapping communication
and computation. Moreover, many existing implementa-
tions miss significant opportunities for optimization: mod-
ern models such as Transformers (Vaswani et al., 2017)
are highly heterogeneous in terms of both layer sizes and
layer sensitivity to gradient compression (see Figure 1),
and gradient compression impacts various stages of training
differently (Achille et al., 2018).

Thus, there is still a gap between the theory and practice
of gradient compression, leading some to question the use-
fulness of this approach (Agarwal et al., 2022). In this
paper, we address this gap and show that, when paired with
efficient and adaptive systems support, gradient compres-
sion can be a powerful technique for efficient data-parallel
training. Specifically, the question we address is the fol-
lowing: Given an arbitrary model and gradient compression
technique, is there an efficient way to balance accuracy
constraints, such as layer sensitivities, and the communi-
cation constraints, such as layer sizes, dynamically during
training in order to maximize speedup, without sacrificing
theoretical convergence and practical accuracy?

To address this, we introduce L-GreCo, an efficient and
general framework for Layer-wise parametrization of GRa-
diEnt COmpression. At the algorithmic level, L-GreCo
is based on a new formalization of the layer-wise adap-
tive compression problem, which identifies per-layer com-
pression parameters, e.g. per-layer sparsity or quantiza-
tion levels, seeking to maximize compression, under a
fixed constraint on the total compression error, which en-
sures both good theoretical convergence, and negligible
accuracy loss. At the system level, L-GreCo works by
integrating with standard training frameworks, such as
torch.distributed, to exploit model heterogeneity
in terms of both per-layer structure and per-layer sensitivity,
determining on-the-fly by how much to compress individ-
ual layer gradients in order to maximize compression or
end-to-end training times.

We validate L-GreCo across all existing families of com-
pression strategies: quantization, sparsification, and low-
rank compression, across a variety of vision and language
tasks. L-GreCo consistently achieves higher compression
rates than existing manual or adaptive strategies (Vogels
et al., 2019; Agarwal et al., 2021), in a black-box fashion,
and is particularly effective for modern Transformer models,
in both single- and multi-node settings.

We summarize our contributions as follows:

• We introduce a new approach leveraging the hetero-
geneous structure of DNNs in order to reduce com-
munication overheads while maintaining convergence,
guaranteeing optimal layer-wise compression-based by
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Figure 1. Profile of L-GreCo rank choices for PowerSGD com-
pression on Transformer-XL. The red line represents uniform
compression, while the blue line represents the L-GreCo pro-
file. Transparent bars show layer sizes. Layers are indexed in the
order they are communicated. The annotated number is the final
test perplexity (ppl) for the experiment (lower is better). Here, the
average compression of L-GreCo is 1.5x higher than uniform.

balancing a theoretically-justified error metric with an
optimization objective maximizing compression.

• We provide an extensive empirical evaluation on
different neural networks (ResNet18, ResNet50,
Transformer-XL, Transformer-LM) with different
datasets (CIFAR-100, ImageNet, Wikitext-103) show-
ing that L-GreCo reduces communication by up to
5× and achieves speedups up to 2.5× without loss of
accuracy or significant tuning, across both single and
multi-node deployments.

• In addition, we conduct the first in-depth study of both
sensitivity and performance metrics. We show that the
theoretically-justified error norm metric is essentially
equivalent to more complex metrics based on exam-
ining output loss. From the performance perspective,
we show that optimization objectives seeking to max-
imize absolute compression lead to similar results to
objectives that minimize transmission time.

• Finally, we show that L-GreCo is compatible with
prior adaptive compression schemes; specifically, it
can be extended to use information about the different
stages of training (Agarwal et al., 2021), leading to
further performance improvements.

2 RELATED WORK

Compression methods. Gradient compression usually em-
ploys three strategies: quantization, sparsification, and low-
rank decomposition. Quantization methods (Seide et al.,
2014; Alistarh et al., 2017; Wen et al., 2017; Lim et al.,
2018; Ramezani-Kebrya et al., 2021) use lower precision of
each gradient component, reducing the number of transmit-
ted bits. They are easy to implement and work under stable
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hyper-parameters (Alistarh et al., 2017; Xu et al., 2021;
Markov et al., 2022). However, their compression is limited
by the fact that at least one bit per entry must usually be
transmitted. Sparsification techniques (Strom, 2015; Dry-
den et al., 2016; Lin et al., 2017; Karimireddy et al., 2019)
circumvent this by identifying salient components in the
gradient and only transmit such subsets. Finally, gradient
decomposition algorithms (Vogels et al., 2019; Wang et al.,
2018) use the fact that the layer-wise gradient tensors are
known to be well-approximable via low-rank matrices and
aim to design light-weight projection approaches that also
provide low error. Sparsification and low-rank techniques
usually require error correction buffers to preserve good
convergence, as well as non-trivial hyper-parameter tuning.
As we show experimentally, L-GreCo is compatible with
all of these approaches and can provide significant addi-
tional bandwidth savings for each such strategy without
sacrificing model accuracy and without tuning.

Adaptive Compression. The general idea of adapting the
degree of compression during training has been investigated
by AdaComp (Chen et al., 2018), which proposes a self-
tuning adaptive compression method; yet, their method does
not adapt compression parameters per layer and cannot be
combined with other compression approaches. Faghri et al.
(2020) adapts the quantization grid to the gradient distribu-
tion; yet, their approach is specifically tuned to quantization,
and oblivious to layer heterogeneity.

Sahu et al. (2021) optimize the total error over steps for
sparsification-based compression and suggest threshold
global sparsifiers, which are shown to reach higher compres-
sion rates than uniform per-layer compression on small vi-
sion tasks (e.g. ResNet18 on CIFAR10/100). However, their
approach is restricted to sparsification and leaves unclear
how to tune the threshold for large-scale, sensitive models
such as Transformers or ImageNet-scale models. In particu-
lar, we were unable to obtain good results with this approach
on models such as Transformer-XL or Transformer-LM. In
Section 5.3, we present a comparison with their approach
on ResNet18/CIFAR-100, showing that our method yields
both higher accuracy and higher compression.

Accordion (Agarwal et al., 2021) adapts the compression pa-
rameters of sparsification and low-rank compression based
on the critical regimes of training. The algorithm alter-
nates between two compression levels (“low” and “high”),
provided by the user and is prone to accuracy loss. Our
approach improves upon Accordion in terms of speedup,
but also that we can combine our method with Accordion
and obtain even higher gains. CGX (Markov et al., 2022)
investigated a kmeans-based heuristic, which we show ex-
perimentally to be sub-optimal.

To our knowledge, our dynamic programming strategy has
not been employed in the context of adaptive gradient com-

pression. Related approaches have been investigated in the
context of weight compression for DNNs, see e.g. (Wu et al.,
2020; Aflalo et al., 2020; Frantar & Alistarh, 2022; Shen
et al., 2022). Yet, there are major differences: (1) the error
metrics and speedup objectives are different in the case of
weight compression; (2) we execute online at training time,
which means that our algorithm has to be extremely efficient
and adapt to dynamic inputs.

Recently, Agarwal et al. (2022) questioned the utility of
gradient compression for distributed training. Yet, their
study is limited in the sense that they only consider a limited
subset of compression methods and focus on NCCL-type im-
plementations on bandwidth-overprovisioned networks. By
contrast, we consider a more flexible system implementation
that allows to map layer parameters to different compression
levels and show practically that L-GreCo can yield speedups
both on commodity single-node GPU servers and on general
multi-node systems.

3 PROBLEM FORMULATION

Goals. Assuming we are given a DNN model M with L

layers and a compression technique, we would intuitively
like to find a choice of compression parameters cℓ, one for
each layer ℓ ∈ {1, 2, . . . , L} which would minimize a met-
ric representing damage of the training quality introduced
by compression while minimizing the total number of bits
transmitted. Yet, this intuitive description leaves open a
range of details, such as 1) the notion of layer-wise metric
that corresponds to the compression effect for a given set of
parameters; 2) the exact problem formulation, constraining
the compression effect or the compression ratio; and 3) an
efficient implementation of such an algorithm.

Sensitivity Metrics. Since choosing the right sensitivity
metric is key for accuracy recovery, we have investigated
two different approaches. First, the sensitivity of a layer
to gradient compression can be measured by the impact on
the model’s loss. To evaluate this, we set up the following
experiment: We saved model checkpoints at different stages
of the uncompressed training. Then, we conducted multi-
ple short runs (50 steps) with the same data starting from
the checkpoint, varying compression parameters. We use
the difference of loss with and without compression as the
metric. Since we wish to observe the model’s reaction to
the compression of individual layers, we vary compression
parameters for each layer, not compressing other layers’
gradients. With that, we collect the differences of loss for
each layer and the compression parameter as the metric.

Another approach is based on gradient compression theory,
which shows formally that the squared ℓ2 compression error
is a good measure of the convergence impact of compression
technique (Karimireddy et al., 2019; Nadiradze et al., 2021;
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Sahu et al., 2021). Here, we aggregate gradients for the
training, then compress the aggregated gradients for each
compression parameter and for each layer individually, and
use the magnitude of the error as a metric.

As shown in Section 5.4, the two approaches are strongly
correlated, and the resulting optimal parameters are close to
each other. However, the loss-based approach is less prac-
tical, as it requires offline evaluation, altering the original
training pipeline and additional training time. By contrast,
the error-based approach can be used online during training
and has negligible overheads. Thus, throughout the paper,
we use the L2 norm of the compression error as the main
sensitivity metric.

The Constrained Optimization Problem. Given an error
metric, we formalize the layer-wise compression optimiza-
tion problem as follows. Given a model M with L layers
ℓ ∈ {1, 2, . . . , L} and a compression technique, providing
a set of compression choices C = {c1, c2, . . . ck} for each
layer. We emphasize that, for simplicity, we consider a
single compression technique and the same compression
choices/levels for each layer, but our approach would also
work for different techniques being applied to the same
model and heterogeneous compression choices.

In this context, our method receives as input an error func-
tion error(ℓ, cj), which provides the L2 norm of the com-
pression error at layer ℓ for compression choice cj , and a
function size(ℓ, cℓ) which measures the transmission cost
of layer ℓ for choice cℓ. In addition, we assume to be given
a fixed maximal error threshold Emax which the algorithm
should not violate. Then, we wish to find a layer-wise setting
of compression parameters c1, . . . , cL with the objective:

minimize
L∑

ℓ=1

size(ℓ, cℓ) s.t.
L∑

ℓ=1

error(ℓ, cℓ) ≤ Emax.

Practically, this formulation minimizes the total transmis-
sion cost for the gradient tensors under a maximum additive
constraint on the gradient compression error. One implicit
assumption is that the metric error(·, ·) is additive over lay-
ers and that it is possible to obtain a “reference” error upper
bound, which does not result in accuracy loss. We will see
that this is the case for the error metric we adopt.

The Error Bound. We pick the error bound Emax to track
that of a reference compression approach which is known
not to lose accuracy relative to the baseline. Here, we lever-
age the fact that the literature provides parameters that allow
reaching full accuracy recovery for different models and
datasets. For instance, for quantization, we track the error
of 4-bit quantization, known to recover for every model (Al-
istarh et al., 2017; Markov et al., 2022). For sparsification,

(Lin et al., 2017; Renggli et al., 2019) as well as for matrix
decomposition (Vogels et al., 2019), we use different refer-
ence parameters according to their baselines. For details,
please refer to Tables 2 and 3. An interesting consequence
of this choice is that, since we guarantee ℓ2 compression
error, which is a small constant factor of the error of these
theoretically-justified approaches, we inherit similar conver-
gence guarantees, as per Nadiradze et al. (2021).

4 THE L-GRECO FRAMEWORK

Overview. We now describe a general algorithm to solve
the constrained optimization problem from the previous
section. Our algorithm makes layer-wise decisions in order
to balance the magnitude of the compression error and the
compressed size of the model. As inputs, our algorithm
takes in the uncompressed layer sizes size(ℓ,⊥), a set G
of accumulated gradients per layer (which will be used to
examine compression error), as well as a fixed error bound
Emax. Specifically, at a given decision step, the objective is
to find an optimal mapping of each layer ℓ to a compression
level cℓ, such that the norm of the total compression error,
computed over the set of accumulated gradients G does not
surpass Emax, but the total compressed size of the model∑L

ℓ=1 size(ℓ, cℓ) is minimal for this error bound.

This formulation is reminiscent of the knapsack problem:
the error is the size of the knapsack, and the compressed
size is the value we wish to optimize. In this formulation,
the problem would have an efficient optimal algorithm using
dynamic programming (DP). However, the squared L2 error
is not discrete, so we cannot directly apply this approach.
Instead, we reduce this to a solvable problem by discretizing
the possible set of error values. Since errors are monotonic
and we can use a very fine discretization without significant
efficiency loss, it is unlikely that we would miss the optimal
solution by a significant amount. For illustration, in our
implementation, we use D = 10000 as a discretization
factor (i.e. steps of size Emax/D).

The Algorithm. The procedure, presented in Algorithm 1,
works as follows. First, we compute the data needed for the
algorithm for all layers and all considered compression pa-
rameters (lines 1-10), corresponding to errors and compres-
sions for each possible choice. Then, we execute a dynamic
programming algorithm to solve the following problem. We
want to compute the minimum total size given total compres-
sion error E in the first ℓ layers compressedsize(ℓ, E) =
minℓ compressedsize(ℓ−1, E−error(ℓ, cℓ))+size(ℓ, cℓ).
To achieve this, for each layer we want to consider, we run
over all error increments and all possible compression pa-
rameters and minimize the total compressed size for the
current total compression error (lines 12-22), saving the
compression parameter with which we obtain the minimum.
Then, in lines 23-27, we find the error increment achiev-
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Algorithm 1 L-GreCo adaptive compression
Input: Model Layers Li, accumulated gradients Gi, compression

parameters C = {c1, c2, . . . , ck}, static default compression
parameters to improve Cd

i , discretization factor D
Output: Compression assignments cℓ ∈ C for each layer ℓ
1: N = number of layers
2: Compute Emax for the default compression parameters Cd

i

3: Compute discretization step Emax/D.
4: Costs matrix N × |C| where position i, j has a value of the

size of layer i compressed with compression parameter cj .
5: Errors matrix N × |C| where position i, j has a value of the

discretized L2 of the compression error when the accumulated
gradients of layer i are compressed with parameter cj .

6: DP matrix N × (D + 1) filled with ∞ values.
7: PD matrix N × (D + 1).
8: // Initialization of the cost tables:
9: for c ∈ C do

10: DP [1][Errors[1][c]] = Costs[1][c]
11: PD[1][Errors[1][c]] = c
12: end for
13: // Dynamic programming algorithm
14: for Layer li := 2..N do
15: for ci ∈ C do
16: for ei := Errors[li][ci]..D do
17: t = DP [li − 1][ei −Errors[li][ci]] +Costs[li][ci]
18: if t < DP [li][ei] then
19: DP [li][ei] = t
20: PD[li][ei] = ci
21: end if
22: end for
23: end for
24: end for
25: errmin = argmin(DP [N ])
26: // Reconstruction of the optimal parameters
27: for li = N..1 do
28: result[li] = PD[li][errmin]
29: errmin = errmin − Errors[li][result[li]]
30: end for
31: return result

ing the lowest total compressed size and reconstruct the
compression parameter mapping—obtaining the result.

System Implementation. We integrate L-GreCo between
the user training code and the communication system re-
sponsible for gradient compression and synchronization.
We run the above algorithm periodically, e.g., once per train-
ing epoch, on a single designated worker; unless otherwise
stated, this worker performs all steps. In between runs of the
algorithm, we accumulate per-layer gradients in auxiliary
buffers. We then build an L2 error table for each layer, for
every compression parameter in the user-provided range,
and for the reference compression parameters set. To find
the error, we simulate the compression/decompression of
each layer with the given compression parameter without
applying error feedback and compute the L2 distance be-
tween the original and recovered vectors. Then, we run
the DP algorithm. This provides us with the optimal com-
pression mapping, which the designated worker broadcasts

to the other workers. Then, on each worker, we save the
parameters mapping in the communication engine.

Computational and memory costs. The algorithm assumes
that we accumulate gradients in additional buffers, occu-
pying the model size memory. The DP algorithm has
O(D|L||C|) time complexity and O(|L|D) memory com-
plexity. The actual timings for the algorithm are presented
in Table 1. The overheads consist of 1. error computation,
and 2. running dynamic programming. Dynamic program-
ming takes a minor fraction of training time, whereas most
of the overhead is caused by computation. However, both
overheads are negligible compared to the speedups provided
by L-GreCo (see Figures 3 and 11).

Table 1. Timing overheads for L-GreCo in relation to the total
training time. Numbers in brackets represent error computation.

Model Description ResNet50
PowerSGD 0.56%[0.49%] 0.15%[0.14%]

QSGD 0.14%[0.13%] 0.04%[0.03%]
TopK 0.38%[0.35%] 0.33%[0.30%]

Communication details. In a data-parallel implementation,
gradients become available right after the backward prop-
agation of the corresponding layer, and are grouped into
several buffers—called buckets in Pytorch)—allowing
the overlapping of gradient communication with further
computation. Thus, the communication of the first buckets
is completely “hidden” by computation, whereas the syn-
chronization of the last bucket becomes a significant part of
the timing delay between steps. Thus, the transmission time
of different buckets has a different impact on the training
speed. Hence, in theory, optimizing for the compression
ratio might yield suboptimal results in practice.

Optimizing for Time. To showcase the flexibility of L-
GreCo, we augmented our system to allow us to measure
the actual synchronization time for each gradient bucket,
allowing the algorithm to optimize directly for communica-
tion times. We also reformulated the optimization problem:
to minimize the length of time between the start of the first
bucket synchronization and the end of the last one, rather
than the compression ratio. Then, we train a regression
model to learn the relation between the transmitted bucket
sizes and gradient synchronization time. Thus, we obtained
per-bucket coefficients T (b), which we can apply for each
layer in a respective bucket. Then we change the objective
in the optimization problem(see Formula. 3) to:

minimize
L∑

ℓ=1

size(ℓ, cℓ)∗T (ℓ) s.t.
L∑

ℓ=1

error(ℓ, cℓ) ≤ Emax.
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5 EXPERIMENTAL VALIDATION

We experimentally evaluate L-GreCo across all existing
compression strategies: quantization using QSGD, TopK
sparsification, and low-rank approximation via PowerSGD.

5.1 Experimental setup

Infrastructure. Our evaluation uses commodity worksta-
tions with 4 or 8 NVIDIA RTX3090 GPUs. In the multi-
node setting, we use 4 cloud instances with 4xRTX3090
GPUs provided by Genesis Cloud. Bandwidth measure-
ments show that inter-GPU bandwidth values lie between
13 to 16 Gbps, and inter-node bandwidth in the cloud is up
to 10 Gbps. We used Pytorch 1.10, openmpi/4.1.4, CUDA
11.3, NCCL 2.8.4, and cudnn/8.1.1.

Implementation. We implemented L-GreCo in PyTorch
using torch.distributed hooks for PowerSGD and
leveraging the open-source CGX framework (Markov et al.,
2022) for basic quantization and sparsification operations.

Datasets and models. We examine two different
DNN learning tasks: 1) image classification on the CI-
FAR100 (Krizhevsky, 2009) and ImageNet (Deng et al.,
2009) datasets, and 2) language modeling on WikiText-
103 (Merity et al., 2016). We used state-of-the-art model im-
plementations and parameters provided by the PyTorch ver-
sion of the NVIDIA Training Examples benchmark (Nvidia,
2020) and the fairseq library PyTorch examples (Ott
et al., 2019). We used ResNet-18 for CIFAR-100 train-
ing with batch size 256, ResNet-50 in the mixed-precision
regime for ImageNet with batch size 2048, and Transformer-
XL and Transformer-LM trained in full-precision for
WikiText-103, with batch sizes 256 and 2048, respectively.
All our experiments use the original uncompressed train-
ing recipes, without any additional hyperparameter tun-
ing to account for gradient-compressed training.

Baselines. The first natural baseline is uncompressed
training, which sets our accuracy baseline. Matching
MLPerf (Mattson et al., 2020), we set our accuracy thresh-
old to 1% relative to uncompressed training. The second
natural baseline is the best existing manually-generated gra-
dient compression recipes. By and large, existing methods
propose uniform per-layer compression to a given threshold,
e.g. (Alistarh et al., 2017; Wen et al., 2017; Renggli et al.,
2019; Vogels et al., 2019). For such baselines, we want to
improve compressed size and training speed, possibly also
improving final model accuracy. We found that the best
choice of compression parameters for uniform per-layer as-
signment depends on the compression method, dataset, and
task. For some experiments, we had to tune the uniform com-
pression parameters to match baseline (non-compressed)
results (see Tables 2 and 3).
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Figure 2. Perplexity (lower is better) vs. time per step (smaller
is better) for different ranks of PowerSGD compression for the
Transformer-XL wikitext-103 task with uniform or L-GreCo
suggested compression schemes. Single node, 8 RTX3090 GPUs.

Parameter ranges. L-GreCo requires a range of possible
compression parameters as input. We have always chosen
this range to include the default compression parameters
used in the literature. Moreover, we left a gap between the
default parameter and the highest possible compression pa-
rameter (the right range bound) — otherwise, we are limited
to matching L2 error, and a gap between the default pa-
rameter and the lowest possible compression (the left range
bound)—otherwise, we will not improve compression. We
use the following approach for deciding ranges. Assume a
default uniform compression parameter D, e.g., 4 quantiza-
tion bits. For quantization and low-rank methods, the search
space was defined as [D/2, 2 ∗D] with an incremental step
of 1. For sparsification, we chose [D/10, 10 ∗D] with an
increment of D/10.

The other two input parameters of L-GreCo are how fre-
quently the algorithm is run and the warm-up period after
which the compression is turned on. The first parameter
matches the evaluation period (typically, 1 epoch). As we
will see (Figure 6a), the compression ratio of the schemes
returned by L-GreCo is relatively stable, so it does not
need a frequent re-adjustment. The warm-up period equals
the default learning rate warm-up period.

5.2 Evaluation results

Accuracy recovery. We first examine model accuracies
using standard recipes for end-to-end training. For each
experiment, we performed 3 runs with different seeds. We
compare L-GreCo recovery with the uncompressed (base-
line) and the best uniform per-layer compression parameters
(uniform). The results are presented in Tables 2 and 3, in-
cluding seed variability. The compression ratio represents
actual transmission cost savings versus the uncompressed
baseline. For each compression method and training task,
we show the parameter value that provides the highest com-



L-GreCo: Layerwise-Adaptive Gradient Compression

Table 2. Accuracy recovery and compression ratios for different compression methods with uniform and adaptive schemes on image
classification tasks. The compression ratios measure actual transmission savings. Values in brackets for L-GreCo compression ratios
stand for improvements relative to the corresponding uniform compression.

Compression
approach

Parameter
choice

ResNet18 on CIFAR-100 ResNet50 on ImageNet

Default
param

Accuracy Compression
ratio

Default
param

Accuracy Compression
ratio

Baseline N/A - 76.60± 0.40 1.0 - 76.88± 0.16 1.0

QSGD uniform 4 bit 76.80± 0.40 7.8 4 bit 77.38± 0.10 7.7
L-Greco 76.46± 0.21 8.6 [1.10×] 76.77± 0.25 11.0 [1.41×]

TopK uniform 1% 75.73± 0.46 48.1 1% 76.85± 0.06 45.6
L-Greco 75.66± 0.35 182.0 [3.78×] 77.04± 0.27 122.0 [2.67×]

PowerSGD uniform rank 4 76.36± 0.28 72.2 rank 4 76.50± 0.37 66.5
L-Greco 76.43± 0.37 133.9 [1.85×] 76.33± 0.27 96.2 [1.44×]

Table 3. Accuracy recovery and compression ratios for different compression methods with uniform and adaptive schemes on language
modeling tasks. The compression ratios measure actual transmission savings. Values in brackets for L-GreCo compression ratios stand
for improvements relative to the corresponding uniform compression.

Compression
approach

Compression
parameters

TransformerXL on WIKITEXT-103 TransformerLM on WIKITEXT-103

Default
param

Perplexity Compression
ratio

Default
param

Perplexity Compression
ratio

Baseline N/A - 23.82± 0.10 1.0 - 29.34± 0.12 1.0

QSGD uniform 4 bit 23.82± 0.1 7.8 4 bit 29.39± 0.10 7.8
L-Greco 24.11± 0.09 9.1 [1.16×] 30.03± 0.16 9.9 [1.26×]

TopK uniform 10% 24.13± 0.14 4.9 10% 29.29± 0.09 4.9
L-Greco 24.19± 0.13 12.8 [2.61×] 29.08± 0.20 25.6 [5.2×]

PowerSGD uniform rank 32 24.08± 0.12 14.0 rank 32 29.98± 0.09 15.0
L-Greco 24.09± 0.15 20.8 [1.48×] 30.19± 0.09 26.5 [1.76×]

pression ratio while recovering final accuracy, i.e., further
uniform compression leads to worse convergence.

Overall, results show that L-GreCo stays within the ac-
curacy recovery limit of 1% multiplicative error (Mattson
et al., 2020) for most tasks, often being close to the uniform
baseline while consistently increasing the compression ratio
across all the tasks and compression techniques. We stress
that we did not perform task-specific parameter tuning. The
gains are remarkably high for sparsification and low-rank
techniques, where the search space and savings potential
are higher. For instance, for Transformer-LM, we obtain up
to 5x higher compression relative to the uniform baseline,
with negligible accuracy impact. At the same time, L-GreCo
induces > 1% multiplicative loss on quantization and low-
rank compression for the highly-sensitive Transformer-LM
model.1 This is because our default compression range is
too aggressive in this case; this can be easily addressed by
adjusting the range—we chose not to do it for consistency.

Further, we varied the uniform default parameters, specif-
ically throttling the target PowerSGD rank for the
Transformer-XL/WikiText-103 task. Figure 2 shows that

1Specifically, our loss is of at most 0.85 perplexity relative to
the uncompressed baseline. For this model, however, even basic
FP16 training loses more than 1 point of perplexity vs FP32.

L-GreCo provides a markedly better trade-off than uni-
form compression. We can see that L-GreCo provides better
perplexity recovery while improving training speed.

Speedup results. For end-to-end training speedup improve-
ments, we compare against standard uncompressed training
ResNets and Transformers. We consider weak scaling, i.e.,
increase the global batch size while increasing the node
count. (Performance improvements are higher for strong
scaling.) We begin by examining training throughput results
for multi-node training of Transformer-XL in Figure 3, exe-
cuted in the cloud environment. (See Appendix Figure 11
for ResNet50 experiments.) This setting encounters a band-
width bottleneck even at a lower node count, which is appar-
ent given the poor performance of the uncompressed base-
line. Tuned uniform compression partly removes this bottle-
neck: for instance, uniform PowerSGD/ResNet50 reaches
75% of ideal scaling on 4 nodes.

It is, therefore, surprising that automatic non-uniform com-
pression can still provide significant improvements in this
setting: relative to uniform compression, L-GreCo gives
up to 2.4x speedup.

This suggests that non-uniform compression can be an
effective strategy in this scenario, especially for layer-
heterogeneous models such as Transformers.
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Figure 3. Throughput for Transformer-XL (TXL) on WikiText-103. Multi-node, each node has 4 RTX3090 GPUs.
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Figure 4. Throughput for Transformer-XL (TXL) on WikiText-103. Single node, 8 RTX3090 GPUs.

We next examine results for single-node scaling from 1
to 8 GPUs, presented in Figure 4. For this model, using
PowerSGD and TopK, L-GreCo leads to gains up to 25%
end-to-end speedup compared to uniform, with negligible
accuracy difference. For QSGD, the search space is very
limited: uniform already uses 4 bits and provides very good
scaling. Our adaptive method still provides 2% speedup
compared to our well-tuned uniform compression and 50%
speedup compared to non-compressed training, reaching
≥ 90% of ideal scaling. (Appendix Figure 10 presents
ResNet50 results, which show lower improvements since
training is weakly communication-bound in this setting.)

Overall, we note that L-GreCo provides statistically-
significant performance improvements over static uniform
compression (especially given heterogeneous models) when
applied to all considered compression methods, with negli-
gible impact on accuracy.

Profiling. In order to explore the compression overhead,
we run the profiling of the training. The result is presented
in Figure. 5. We compare operation timings for the origi-
nal(uncompressed) training and training where the gradients
are compressed with PowerSGD, rank 32. We can see that
relatively expensive compression (PowerSGD is more time-
consuming than QSGD and optimized TopK) takes less than
10% of the step time.
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Figure 5. Profiling of the training without compression vs Pow-
erSGD compression, rank 32. Transformer-XL model on WikiText-
103 dataset. Single node, RTX3090 GPUs.

5.3 Comparison with other adaptive methods

So far, we have used uniform compression as our base-
line. We now compare L-GreCo with prior works on adap-
tively choosing compression parameters. We consider the
Accordion (Agarwal et al., 2021) and CGX (Markov et al.,
2022) approaches, as they are the closest in terms of scope
and the most general in terms of applicable compression
methods. We perform our comparison on the Transformer-
XL model on WikiText-103, as 1) it is a model that is sen-
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Figure 6. Adaptive compression using L-GreCo versus other methods, for PowerSGD compression on Transformer-XL. The left plot
shows the dynamics of the compression ratio during training, marking the average compression ratio. The right plot presents the
transmitted number of elements per bucket averaged over time. Buckets are in communication order.

sitive to gradient compression, 2) has high heterogeneity
of layers, and 3) suffers from bandwidth bottlenecks (see
Figure 3). We use PowerSGD as the compression method,
as Accordion specifically optimizes for it. We run the
experiments in two distributed settings: single node with
8 GPUs and multi-node, which includes 4 machines with
4 GPUs each. We compare compression and throughput
(processed samples per second) for each method.

Here, since we aim to maximize speedup without dropping
accuracy, we tune the compression parameters for each al-
gorithm, the chosen compression method, and training task
(without changing the training hyperparameters, e.g., learn-
ing rate, weight decay, etc.) so that we get the best timing
results with the final model accuracy within the 1% MLPerf
standard. The best range of parameters for L-GreCo turns
is ranks [8, 64] (see Table 4) with default rank 32.

Table 4. Comparison of L-GreCo with other adaptive algorithms
on Transformer-XL using PowerSGD.

Adaptive
algorithm

Param.
Range Ratio

Single
node

Tokens/s

Multi-
node

Tokens/s
Uniform 32 14.1 110k 72k
L-GreCo 8 - 64 23.5 144k 150k

Accordion 16, 64 23.9 114k 107k
CGX,

kmeans 8 - 64 21.6 124k 112k

L-GreCo +
Accordion 8 - 128 36.9 138k 176k

Global TopK Comparison. The optimization problem of
minimizing gradient error magnitude given the desired com-
pression ratio - can be alternatively solved by taking a global
TopK in the case of gradient sparsification, which in this
case minimizes total error. However, this method has sev-
eral drawbacks. First, the global TopK requires careful
fine-tuning and hyperparameter search in order to converge

when low densities are used. L-GreCo, in turn, does not
try to minimize the global compression error – it tries to
match it to the compression error of the uniform layer-wise
compression that recovers accuracy. Also, L-GreCo aims
to maximize compression, meaning that each layer has a
contribution to gradient synchronization. This may not be
the case for global TopK: at high sparsities, some layers
could have gradient zero for several steps, impacting model
quality. The second disadvantage of global TopK is the
actual speedup. As we discussed in Section 4, in mod-
ern data-parallel frameworks, gradients are synchronized
in parallel with computation for the sake of efficiency, hid-
ing communication costs behind computation. However, in
global TopK, one has to wait until all layer gradients are
produced, then perform compression and communication.
In this case, the loss of performance due to non-overlapped
communication may be higher than the improvements due
to compression. To confirm this, we have implemented the
algorithm using torch.distributed hooks and ran
the RN18/CIFAR100 training. Even on this relatively small
model, global TopK is 10% slower than L-GreCo when
applied with a similar global density, in this case 0.25%.

CGX Comparison. The adaptive compression of CGX is
based on kmeans and maps layers into a 2-dimensional
space (layer size vs. L2-error). The algorithm clusters lay-
ers into several groups and assigns predefined compression
parameters to the layers in the groups. We have imple-
mented this logic with PowerSGD compression. We used
rank 32 as default, and the best (in terms of compression)
range was from 8 to 64, using 6 layer clusters. The results
are shown in the Table 4. In short, L-GreCo improves upon
the kmeans approach by up to 33%. In Figure 6b, we ob-
serve that L-GreCo picks parameters such that the largest
and the last bucket are compressed the most, whereas the
kmeans algorithm chooses worse compression parameters
for those layers in some iterations.
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Rethink-GS Comparison. Sahu et al. (2021) suggest a
sparcification method, which is technically adaptive hard-
threshold sparsification changes the number of transmitted
elements based on the gradient distribution. We have run the
L-GreCo training of ResNet18/CIFAR-100 in the setup de-
scribed in the paper. We used 1% density as a default param-
eter for L-GreCo and the search range was [0.1%, 10%].
For Rethink-GS we used parameter λ = 4.72× 10−3.

As a result, L-GreCo improves upon Rethink-GS by
17% in terms of compression ratio (6.7× vs 5.7×) while
also improving the final accuracy - 71.7% vs 71.4% (the
numbers differ from the ones we show in Table. 2 as here we
used the setup from (Sahu et al., 2021)). We note that our
framework did not require any hyperparameter tuning at all
for this experiment, whereas Rethink-GS requires careful
tuning of the hard-threshold λ parameter.

Accordion Comparison. Accordion adapts compression
by detecting critical regimes during training. It accepts
two possible compression modes (corresponding to low
and high compression) and has a threshold error param-
eter η. It collects the gradients and periodically decides
the parameter to use based on gradient information for
each layer. We have implemented Accordion using the
torch.distributed hook, used for PowerSGD. For
the parameter η, we chose the value of 0.5 suggested by the
authors and tried to hand-tune the best pair of low and high
compression parameters for each model, with which training
converges to an accuracy that is within MLPerf bounds. We
ran this algorithm on Transformer-XL/Wikitext-103, and
found that the best pair of parameters (in terms of training
time without losing accuracy) are high compression rank 16
and low compression rank 64.

In Figure 6, one can observe the dynamics of the average
compression ratio over the training of Accordion relative
to L-GreCo. We notice that Accordion chooses a low
compression rank for almost all layers during the first pe-
riod of training and a high compression rank for the rest of
the training time, leading to completely bimodal uniform
compression. This suggests that Accordion may not really
exploit the heterogeneous nature of DNN models. Therefore,
the optimizations of Accordion and L-GreCo, respec-
tively, could be seen as orthogonal: Accordion focuses
on varying the amount of average compression during train-
ing, whereas L-GreCo finds an optimal way of reaching
this average level by setting layer-wise targets.

L-GreCo+ Accordion. With this in mind, we combined
these two algorithms: We first executed Accordion to
get the suggested parameters for each layer and used these
parameters as the default set of parameters in L-GreCo,
used to define the maximal error of the DP algorithm (see
line 2 in Algorithm 1). Thus, Accordion determines the

model sensitivity to gradient compression at different points
in training, while L-GreCo finds the best mapping of com-
pression parameters per layer. In Figure 6, we see that the
resulting combination (L-GreCo with range [8, 128] and
Accordion with high=16, low=64) provides better compres-
sion ratios, without accuracy drop.

We also compare the performance of the two algorithms
in isolation (see Table 4). We observe that, despite the
fact that the theoretical compression ratio suggested by
Accordion is essentially the same as that of L-GreCo,
the Accordion throughput is less by around 30%. This
is explained by the fact that L-GreCo compressed the last
transmitted layers (buckets) to higher levels, leading to
significantly-improved total transmission time. Specifically,
in Figure 6b, we observe that L-GreCo transmits twice
fewer elements in the last bucket relative to Accordion.
Moreover, combining L-GreCo with Accordion im-
proves the compression ratio by 50%, and training time
by up to 66% compared to Accordion.

Overall, L-GreCo improved practical compression rela-
tive to prior techniques. Of note, the highest compression
ratio is achieved by the hybrid Accordion + L-GreCo
method, which leverages layer-wise insights in terms of
both sensitivity and training dynamics.

5.4 Evaluating the loss-based accuracy metric

As discussed in Section 3, a key advantage of L-GreCo is
that it can use any metric for measuring layer sensitivity to
compression. To illustrate this, we investigated a loss-based
metric, in which we collect model loss differences between
uncompressed training and training with the gradient com-
pression for certain layers, while other layers stay intact and
use the loss difference as the sensitivity metric.

To compare the loss-based and error-based approaches, we
evaluate the correlation coefficients of the metrics these two
approaches provide. We observe (see Figure 7a) that the met-
ric values from the two approaches have a high correlation
and lead to very similar layer-wise compression parame-
ters. Hence, since collecting loss-based metrics requires
additional offline training runs, our usage of an error-based
metric is justified.

5.5 Optimizing specifically for time

Considering that transmitted layer groups/communication
buckets have different impacts on training performance,
one may notice that compression may not always result in
speedup. With this in mind, we have modified L-GreCo to
explicitly optimize the expected communication time, rather
than the compression ratio. See the last part of Section 4 for
a detailed description of this algorithm variant.

We have run the resulting time-aware variant of L-GreCo
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Figure 7. Correlation coefficients between metric values (a) for PowerSGD using loss-based and error-magnitude approaches as the
sensitivity metrics. Timing coefficients per bucket (b) for timing-based approach. Transformer-XL/WikiText-103 model training with
PowerSGD method.

with PowerSGD on Transformer-XL/WikiText-103 training.
The linear model built on the timing data we collected (5000
samples - sets of compression ratios per bucket) has a score
close to 1, meaning that we managed to predict the com-
munication time using communicated bucket sizes almost
perfectly. (The linear regression model was trained by run-
ning training for 50 steps with 5 steps of warmup for each
set of compression parameters.)

We find that the per-bucket coefficients from the linear
model are close to each other. Figure. 7b shows that the
coefficients are uniform across the model. This means that
each bucket’s impact on communication time is proportional
to the bucket size. Also, we noticed that the parameters we
obtain with the modified algorithm are close to the param-
eters from the original L-GreCo algorithm. Given that,
we figure that in the case of Transformer-XL the original
L-GreCois close to optimal in terms of timing as well.

6 CONCLUSION

We proposed L-GreCo, an adaptive gradient compression
algorithm that automatically identifies optimal layer-wise
compression parameters, given a fixed error constraint. The
L-GreCo algorithm finds the mapping of compression pa-
rameters such that 1) the total L2 compression error matches
a target known to recover accuracy, and 2) the total com-
pressed size is minimal for this target.

Our approach is complemented by an in-depth exploration
of the “correct” metrics, which capture the accuracy and
performance impact of compression at the per-layer level.
Specifically, we present evidence that minimizing local, per-

layer compression errors leads to very similar results to
minimizing global metrics such as output loss. Moreover,
maximizing per-layer compression rates correlates very well
with specifically minimizing total transmission time on ex-
isting data-parallel implementation.

We complemented these algorithmic and analytic contribu-
tions with extensive experimental validation across all fami-
lies of gradient compression methods, showing that training
with the layer-wise parameters suggested by L-GreCo re-
covers the baseline accuracy while the gradient compression
ratio is substantially increased. L-GreCo improves training
performance up to 2.5×, saving up to 5.2x communication
compared to vanilla compression, and up to 122x relative to
uncompressed training. Overall, our work provides a new
approach for improving existing gradient compression meth-
ods at almost zero cost in terms of time and accuracy loss.
Possible extensions of our method could consider hybrid
strategies, which combine different families of compression
techniques inside the same model.
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