
S-LORA: SERVING THOUSANDS OF CONCURRENT LORA ADAPTERS

Ying Sheng * 1 2 Shiyi Cao * 1 Dacheng Li 1 Coleman Hooper 1 Nicholas Lee 1 Shuo Yang 1 3

Christopher Chou 1 Banghua Zhu 1 Lianmin Zheng 1 Kurt Keutzer 1 Joseph E. Gonzalez 1 Ion Stoica 1

ABSTRACT
The “pretrain-then-finetune” paradigm is commonly adopted in the deployment of large language models. Low-
Rank Adaptation (LoRA), a parameter-efficient fine-tuning method, is often employed to adapt a base model to a
multitude of tasks, resulting in a substantial collection of LoRA adapters derived from one base model. We observe
that this paradigm presents significant opportunities for batched inference during serving. To capitalize on these
opportunities, we present S-LoRA, a system designed for the scalable serving of many LoRA adapters. S-LoRA
stores all adapters in the main memory and fetches the adapters used by the currently running queries to the
GPU memory. To efficiently use the GPU memory and reduce fragmentation, S-LoRA proposes Unified Paging.
Unified Paging uses a unified memory pool to manage dynamic adapter weights with different ranks and KV cache
tensors with varying sequence lengths. Additionally, S-LoRA employs a novel tensor parallelism strategy and
highly optimized custom CUDA kernels for heterogeneous batching of LoRA computation. Collectively, these
features enable S-LoRA to serve thousands of LoRA adapters on a single GPU or across multiple GPUs with a
small overhead. Compared to state-of-the-art libraries such as HuggingFace PEFT and vLLM (with naive support
of LoRA serving), S-LoRA can improve the throughput by up to 4 times and increase the number of served
adapters by several orders of magnitude. As a result, S-LoRA enables scalable serving of many task-specific
fine-tuned models and offers the potential for large-scale customized fine-tuning services. The code is available at
https://github.com/S-LoRA/S-LoRA.

1 INTRODUCTION

Large language models (LLMs) have become ubiquitous in
modern applications, ranging from natural language pro-
cessing to more general tasks (OpenAI, 2023; Touvron
et al., 2023b; Alayrac et al., 2022). Within these domains,
LLMs have consistently demonstrated superior performance,
especially when fine-tuned for specific tasks (Kenton &
Toutanova, 2019; Houlsby et al., 2019; Ouyang et al., 2022).
This “pretrain-then-finetune” paradigm has led to the pro-
liferation of numerous fine-tuned variants of a single base
LLM, each tailored to a specific task or domain.

When scaling the fine-tuning of a base model for numer-
ous tasks, such as personalized assistants, which could in-
volve thousands or millions of users, the associated train-
ing and serving costs can become substantial. To address
this, several parameter-efficient fine-tuning methods have
been developed. A prime exemplar is Low-Rank Adaptation
(LoRA) (Hu et al., 2021), which enables efficient fine-tuning

*Equal contribution. Part of the work was done when Ying
was visiting UC Berkeley. 1UC Berkeley 2Stanford University
3Shanghai Jiao Tong University. Correspondence to: Ying Sheng
<ying1123@stanford.edu>, Shiyi Cao <shicao@berkeley.edu>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

by updating only low-rank additive matrices. These matri-
ces consist of a small number of parameters, referred to as
adapter weights. LoRA has shown that by fine-tuning just
these adapter weights, it is possible to achieve performance
on par with full-weight fine-tuning. However, despite con-
siderable research into fine-tuning, the question of how to
serve these fine-tuned variants at scale remains unexplored.

One of the key innovations in the LoRA paper was the
elimination of adapter inference latency by directly merging
the adapter with the model parameters. Additionally, to
support multiple models on a single machine, the same
paper proposes swapping adapters by adding and subtracting
LoRA weights from the base model. While this approach
enables low-latency inference for a single adapter and serial
execution across adapters, it significantly reduces overall
serving throughput and increases total latency when serving
multiple adapters concurrently. Moreover, the paper does
not consider the opportunity to leverage host memory to
increase the number of adapters hosted by a single machine.

In this paper, we study how to scalably serve thousands
of LoRA adapters on a single machine. We observe that
the shared base model, which underpins numerous LoRA
adapters, presents a substantial opportunity for batched in-
ference. To achieve high-throughput multi-adapter serving,

https://github.com/S-LoRA/S-LoRA


S-LoRA: Serving Thousands of Concurrent LoRA Adapters

it is advantageous to separate the batchable base model
computation from individual LoRA computations.

While leveraging batching in the base model is straight-
forward (as all queries share the base model), extending
batching to the adapters is challenging. First, serving many
LoRA adapters simultaneously requires efficient memory
management. Since GPU memory is limited, we must store
adapter weights outside the GPU and dynamically fetch
them when needed. However, dynamically loading and un-
loading adapters of varying sizes, coupled with the dynamic
allocation and deallocation of KV cache tensors for requests
with different sequence lengths, can lead to significant mem-
ory fragmentation and I/O overhead. Second, apart from
the easily batchable base model computation, the separated
computation of many adapters with distinct ranks in non-
contiguous memory is challenging to batch and demands the
development of new computation kernels. Third, leveraging
multiple GPUs on a single machine requires novel paral-
lelism strategies to accommodate the added LoRA weights
and computations. It is essential to carefully design this strat-
egy to minimize communication and memory overheads.

To this end, we introduce S-LoRA, a scalable LoRA serving
system. S-LoRA exploits batching opportunities, efficiently
manages both host and GPU memory, and orchestrates par-
allelism across multiple GPUs. The primary contributions
of S-LoRA are summarized as follows:

• Unified Paging: To reduce memory fragmentation and
increase batch size, S-LoRA introduces a unified mem-
ory pool. This pool manages dynamic adapter weights
and KV cache tensors by a unified paging mechanism.

• Heterogeneous Batching: To minimize the latency over-
head when batching different adapters of varying ranks,
S-LoRA employs highly optimized custom CUDA ker-
nels. These kernels operate directly on non-contiguous
memory and align with the memory pool design, facili-
tating efficient batched inference for LoRA.

• S-LoRA TP: To ensure effective parallelization across
multiple GPUs, S-LoRA introduces a novel tensor par-
allelism strategy. This approach incurs minimal com-
munication cost for the added LoRA computation com-
pared to that of the base model. This is realized by
scheduling communications on small intermediate ten-
sors and fusing the large ones with the communications
of the base model.

We evaluate S-LoRA by serving Llama-7B/13B/30B/70B.
Results show that S-LoRA can serve thousands of LoRA
adapters on a single GPU or across multiple GPUs with
a small overhead. When compared to the state-of-the-art
parameter-efficient fine-tuning library, Huggingface PEFT,
S-LoRA can enhance throughput by up to 30×. In com-
parison to the high-throughput serving system vLLM using
a naive support of LoRA serving, S-LoRA can improve

throughput by up to 4× and increase the number of served
adapters by several orders of magnitude.

2 BACKGROUND

Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a
parameter-efficient fine-tuning method designed to adapt
pre-trained large language models to new tasks. The mo-
tivation behind LoRA stems from the low intrinsic dimen-
sionality of model updates during adaptation. In the training
phase, LoRA freezes the weights of a pre-trained base model
and adds trainable low-rank matrices to each layer. This
approach significantly reduces the number of trainable pa-
rameters and memory consumption. When compared to full
parameter fine-tuning, LoRA can often reduce the number of
trainable parameters by orders of magnitude (e.g., 10000×)
while retaining comparable accuracy. For the inference
phase, the original paper suggests merging the low-rank
matrices with the weights of the base model. As a result,
there is no added overhead during inference, setting it apart
from previous adapters like (Houlsby et al., 2019) or prompt
tuning methods such as (Lester et al., 2021).

Formally, for a pre-trained weight matrix W ∈ Rh×d, LoRA
introduces the update as W ′ = W +AB, where A ∈ Rh×r,
B ∈ Rr×d, and the rank r ≪ min(h, d). If the forward pass
of a base model is defined by h = xW , then after applying
LoRA, the forward pass becomes

h = xW ′ = x(W +AB) (1)
= xW + xAB. (2)

Typically, this adjustment is only applied to the query, key,
value, and output projection matrices in the self-attention
module, excluding the feed-forward module.

Because LoRA greatly reduces the training and weight stor-
age costs, it has been widely adopted by the community,
and people have created hundreds of thousands of LoRA
adapters for pre-trained large language models and diffusion
models (Mangrulkar et al., 2022).

2.1 Serving Large Language Models

Most large language models (LLMs) are based on the trans-
former architecture (Vaswani et al., 2017). The number of
parameters in an LLM ranges from several billion to several
trillion (Brown et al., 2020; Chowdhery et al., 2022; Fedus
et al., 2022), corresponding to disk sizes spanning several gi-
gabytes to even terabytes. This scale results in LLM serving
having significant computational and memory demands.

Additionally, the inference process for LLMs requires iter-
ative autoregressive decoding. Initially, the model carries
out a forward pass to encode the prompt. Following this, it
decodes the output one token at a time. The sequential pro-
cess makes decoding slow. Since each token attends to the



S-LoRA: Serving Thousands of Concurrent LoRA Adapters

hidden states of all its preceding tokens, it becomes essential
to store the hidden states of all previous tokens. This storage
is referred to as the “KV cache”. Such a mechanism adds to
the memory overhead and causes the decoding process to
be more memory-intensive than computation-intensive.

The challenges become even more pronounced in online
settings, where requests of varying sequence lengths ar-
rive dynamically. To accommodate such dynamic incoming
requests, Orca (Yu et al., 2022) introduces a method of fine-
grained, iteration-level scheduling. Instead of scheduling at
the request level, Orca batches at the token level. This ap-
proach allows for the continuous addition of new requests to
the currently running batch, resulting in substantially higher
throughput. vLLM (Kwon et al., 2023) further optimizes
Orca’s memory efficiency using PagedAttention. PagedAt-
tention adopts concepts from virtual memory and paging in
operating systems and manages the storage and access of
dynamic KV cache tensors in a paged fashion. This method
efficiently reduces fragmentation, facilitating larger batch
sizes and higher throughput.

When serving very large models that exceed the memory
capacity of a single GPU, or when there are stringent la-
tency requirements, it is necessary to parallelize the model
across multiple GPUs. Several model parallelism methods
have been proposed, such as tensor parallelism (Shoeybi
et al., 2019), sequence parallelism (Korthikanti et al., 2023),
pipeline parallelism (Huang et al., 2019), and their combi-
nations (Narayanan et al., 2021; Zheng et al., 2022).

3 OVERVIEW OF S-LORA
S-LoRA encompasses three principal components of innova-
tion. In Section 4, we introduce our batching strategy, which
decomposes the computation between the base model and
the LoRA adapters. Additionally, we discuss adapter clus-
tering and admission control when scheduling the requests.
The ability to batch across concurrent adapters, introduces
new challenges around memory management. In Section 5,
we generalize PagedAttention (Kwon et al., 2023) to Unfied
Paging, which supports dynamically loading LoRA adapters.
This approach uses a unified memory pool to store the KV
caches and adapter weights in a paged fashion, which can
reduce fragmentation and balance the dynamic changing
size of the KV caches and adapter weights. In Section 6, we
introduce our new tensor parallelism strategy that enables us
to efficiently decouple the base model and LoRA adapters.

4 BATCHING AND SCHEDULING

4.1 Batching

Our batching strategy aims to support online and high-
throughput serving of many LoRA adapters simultaneously.

W

x1
x2

x3
x

A
1 B1x1 x x

x2 A
2 B2x x

x3 A
3 B3x x

x

Batched base computation

Batched LoRA computation
add

Figure 1. Separated batched computation for the base model and
LoRA computation. The batched computation of the base model
is implemented by GEMM. The batched computation for LoRA
adapters is implemented by custom CUDA kernels which support
batching various sequence lengths and adapter ranks.

Main Memory

Adapter 1 Adapter 2

Adapter 3 Adapter 4

Adapter 5 Adapter 6
…

GPU Memory

KV cache

Unified memory pool
for dynamic tensors

Base
Model

Weights

Other
Temporary

Tensors

Fetch active 
adapters for
the current batch

Adapter 2

Adapter 5

Figure 2. Overview of memory allocation in S-LoRA. S-LoRA
stores all adapters in the main memory and fetches the active
adapters for the current batch to the GPU memory. The GPU
memory is used to store the KV cache, adapter weights, base
model weights, and other temporary tensors.

For a single adapter, the method recommended by (Hu et al.,
2021) is to merge the adapter weights into the base model
weights, resulting in a new model (see Eq. 1). This has the
advantage that there is no additional adapter overhead during
inference, since the new model has the same number of
parameters as the base model. In fact, this was a prominent
feature of the original LoRA work.

However, when there are multiple adapters, merging the
weights into the base model leads to multiple weight copies
and missed batching opportunities. Directly merging the
models requires maintaining many copies of the full lan-
guage model. In the original LoRA paper, the authors pro-
posed adding and subtracting LoRA weights on the fly to
enable serving multiple models without increasing the mem-
ory overhead. However, this approach doesn’t support con-



S-LoRA: Serving Thousands of Concurrent LoRA Adapters

current inference on separate LoRA adapters and therefore
limits batching opportunities.

In this paper, we show that merging LoRA adapters into
the base model is inefficient for the multi-LoRA high-
throughput serving setting. Instead, we propose computing
the LoRA computation xAB on-the-fly as shown in Eq. 2.
This avoids weight duplication and enables batching of the
more costly xW operation. But this approach also increases
the computation overhead. However, because the cost of
xAB is substantially lower than xW and there is a consid-
erable savings from batching xW across different adapters,
we show that the savings far exceed the additional overhead.

Unfortunately, directly implementing the factored computa-
tion of the base model and individual LoRA adapters using
the batch GEMM kernel from the existing BLAS libraries
would require significant padding and result in poor hard-
ware utilization. This is because of the heterogeneity of
sequence lengths and adapter ranks.

In S-LoRA, we batch the computation of the base model and
then employ custom CUDA kernels to execute the additional
xAB for all adapters separately. This process is illustrated
by Figure 1. Instead of naively using padding and using the
batch GEMM kernel from the BLAS library for the LoRA
computation, we implement custom CUDA kernels for more
efficient computation without padding. In Subsection 5.3,
we discuss the implementation details.

While the number of LoRA adapters can be large if we
store them in main memory, the number of LoRA adapters
needed for the currently running batch is manageable, be-
cause the batch size is bounded by the GPU memory. To
take advantage of this, we store all LoRA adapters in the
main memory and fetch only the LoRA adapters needed
for the currently running batch to the GPU RAM when
running the inference for that batch. In this case, the max-
imum number of adapters that can be served is bounded
by the main memory size. This process is illustrated by
Figure 2. To achieve high-throughput serving, we adopt the
iteration-level scheduling batching strategy from Orca (Yu
et al., 2022). In this approach, requests are scheduled at the
token level. We immediately incorporate a new request into
the running batch if space is available. The request will exit
the batch once it reaches the maximum number of gener-
ated tokens or fulfills other stopping criteria. This process
reduces GPU memory usage but introduces new memory
management challenges. In Section 5, we will discuss our
techniques to manage memory efficiently.

4.2 Adapter Clustering

To enhance batching efficiency, one potential strategy is
reducing the number of active adapters in a running batch.
By using fewer adapters, there is an opportunity to allocate

more memory to the KV cache, which in turn can facili-
tate larger batch sizes. Given the common memory capaci-
ties of GPUs, they are often underutilized while decoding.
Consequently, increasing the batch size can lead to higher
throughput. A direct approach to reducing the number of
adapters in a running batch is to prioritize batching requests
that use the same adapter, a strategy we term “adapter clus-
tering”. However, adapter clustering comes with its own set
of trade-offs. For example, it can hurt the average latency
or fairness among adapters. We provide an ablation study in
Appendix A to illustrate how throughput and latency change
according to the cluster size.

4.3 Admission Control

In S-LoRA, we also applied an admission control strategy
to sustain good attainment when the traffic is higher than the
serving system capacity. A serving system is typically char-
acterized by a service level objective (SLO) which specifies
the desired latency of processing requests. If the serving
system has fixed capacity, it must implement an admission
control mechanism, that drops a request, if the system can-
not meet its SLO. Otherwise, if no request is dropped, and
the number of incoming requests is larger than the system
capacity for long enough, the serving system is bound to
violate the SLO. We implemented an abort strategy to mimic
admission control in S-LoRA, called early abort strategy.
Intuitively, we estimate the set of latest requests that we
can serve in SLO, and then serve them in the order of ar-
rival time. More implementation details and mathematical
justifications are deferred to Appendix B.

5 MEMORY MANAGEMENT

Compared to serving a single base model, serving multiple
LoRA adapters simultaneously presents new memory man-
agement challenges. To support many adapters, S-LoRA
stores them in the main memory and dynamically loads the
adapter weights needed for the currently running batch into
GPU RAM. During this process, there are two noticeable
challenges. The first is memory fragmentation, resulting
from the dynamic loading and offloading adapter weights of
various sizes. The second is the latency overhead introduced
by adapter loading and offloading. To tackle these chal-
lenges efficiently, we propose Unfied Paging and overlap
the I/O with computation by prefetching adapter weights.

5.1 Unified Paging

Understanding the nature of adapter weights is essential for
optimizing memory usage. Our primary observation is that
these dynamic adapter weights are analogous to dynamic
KV caches in several ways:

• Variable sizes and operations: Just as the size of



S-LoRA: Serving Thousands of Concurrent LoRA Adapters

KV caches

Adapter weights

Empty

H

Figure 3. Unified memory pool. We use a unified memory pool to
store both KV caches and adapter weights in a non-contiguous way
to reduce memory fragmentation. The page size is H elements.

KV cache size fluctuates with the sequence length, the
ranks of the active adapters can also depend on the
choice of adapter associated with each request. KV
caches are allocated when requests arrive and deal-
located once the requests are completed. Similarly,
adapter weights are loaded and cleared with each re-
quest. If not managed properly, this variability can
result in fragmentation.

• Dimensionality: A KV cache tensor for a request in
a layer has a shape of (S,H), where S denotes the se-
quence length and H represents the hidden dimension.
Meanwhile, the shape of a LoRA weight is (R,H),
with R standing for the rank and H the hidden dimen-
sion. Both share a dimension size of H that can be
leveraged to reduce fragmentation.

Motivated by these parallels, we extend the idea of Page-
dAttention (Kwon et al., 2023) to Unified Paging which
manages adapter weights in addition to the KV cache. Uni-
fied Paging uses a unified memory pool to jointly manage
both KV cache and adapter weights. To implement this, we
first allocate a large buffer statically for the memory pool.
This buffer uses all available space except for the space oc-
cupied by the base model weights and temporary activation
tensors. Both KV caches and adapter weights are stored in
this memory pool in a paged manner, with each page corre-
sponding to a vector of H . Thus, a KV cache tensor with a
sequence length of S uses up S pages, while a LoRA weight
tensor of rank R takes up R pages. Figure 3 illustrates the
layout of our memory pool, where KV caches and adapter
weights are stored interleaved and non-contiguously. This
approach significantly reduces fragmentation, ensuring that
adapters weights of various ranks can coexist with dynamic
KV caches in a structured and systematic manner.

5.2 Prefetching and Overlapping

Although the unified memory pool mitigates fragmentation,
the I/O overhead from loading and offloading remains a
concern—especially when dealing with numerous or large
adapters. The latency introduced by waiting to load these
adapters can compromise the efficiency of the system.

To proactively address this issue, we introduce a dynamic
prediction mechanism. While running the current decoding
batch, we predict the adapters required for the next batch
based on the current waiting queue. This prediction allows
us to prefetch and store them in available memory. Such a
forward-looking strategy keeps most of the adapters needed
for the next batch already in place before running it, which
reduces I/O time for adapter swapping.

5.3 Custom Kernels for heterogeneous LoRA batching
on Non-Contiguous Memory

Due to the design of the unified memory pool, the adapter
weights are stored in non-contiguous memory. To run com-
putations efficiently under this design, we implement cus-
tom CUDA kernels that support batching LoRA computa-
tions with varying ranks and sequence lengths in a non-
contiguous memory layout.

In the prefill stage, the kernel handles a sequence of tokens
and gathers adapter weights with different ranks from the
memory pool. We call this kernel Multi-size Batched Gather
Matrix-Matrix Multiplication (MBGMM). It is implemented
in Triton (Tillet et al., 2019) with tiling.

In the decode stage, the kernel handles a single token and
gathers adapter weights with different ranks from the mem-
ory pool. We call this kernel Multi-size Batched Gather
Matrix-Vector Multiplication (MBGMV). We implemented
two versions of this kernel: one in Triton and another by
modifying an earlier version of Punica kernels (Chen, 2023)
to extend support for non-contiguous memory, multiple
ranks in a batch, and more fine-grained memory gathering.
We found the latter one was faster, so we used it in the
experiments.

Punica (Chen et al., 2023) is concurrent work on serving
multiple LoRA adapters, which will be discussed in Sec-
tion 8. In addition to Triton and Pucina kernels, NVIDIA
CUTLASS also provides high-performance kernels for
grouped GEMM (NVIDIA) that can be used for hetero-
geneous batching.

6 TENSOR PARALLELISM

We design novel tensor parallelism strategies for batched
LoRA inference to support multi-GPU inference of large
transformer models. Tensor parallelism is the most
widely used parallelism method because its single-program
multiple-data pattern simplifies its implementation and inte-
gration with existing systems. Tensor parallelism can reduce
the per-GPU memory usage and latency when serving large
models. In our setting, the additional LoRA adapters intro-
duce new weight matrices and matrix multiplications, which
calls for new partition strategies for these added items.



S-LoRA: Serving Thousands of Concurrent LoRA Adapters

input X

matmul_1 matmul_2

W1 W2

B1

add_1

matmul_3

B2

matmul_4

all-reduceadd_2

matmul all-gather matmul all-reduce

A1 A2

Column Partition Row Partition Partial Sum Replication

(B, h)
(h, r/N)

(B, r/N)

(B, r)

(r, d/N)

(B, d/N)

(h, d/N)

(B, d/N)

(B, d/N)

(d/N, r)

(B, r)

(B, r)

(r, h/N)

(d/N, h)

(B, h)

(B, h/N)

(B, h) (B, h)

Fuse all-gather
and all-reduce

Figure 4. Tensor parallelism partition strategy for batched LoRA computation. This is a computational graph where nodes represent
tensors/operators and the edges represent dependency. We use different colors to represent different partition strategies, which include
column partition, row partition, partial sum, and replication. The per-GPU shape of each tensor is also annotated in gray. Note that B is
the number of tokens, h is the input dimension, N is the number of devices, d is the hidden size, and r is the adapter rank.

6.1 Partition Strategy

Since the base model uses the Megatron-LM tensor paral-
lelism strategy (Shoeybi et al., 2019), our approach aims
to align the partition strategies of inputs and outputs of the
added LoRA computation with those of the base model.
In this way, we can minimize the communication costs
by avoiding unnecessary communications and fusing some
communications.

We use the feed-forward module (2-layer MLP) to illus-
trate our partition strategy. We will explain later how this
strategy can easily be adapted to the self-attention layer.
As depicted in Figure 4, the upper box illustrates the base
model’s Megatron-LM partition strategy: the first weight
matrix (W1) is column-partitioned, and the second (W2) is
row-partitioned. An all-reduce communication is required
to accumulate the partial sum from distributed devices.

The lower box illustrates the partitioning strategy for the
added LoRA computation. The matrices A1 and B1 for
the adapter of the first weight matrix (W1) are column-
partitioned. An all-gather operation is used to collect the in-
termediate results. The matrices A2 and B2 for the adapter
of the second weight (W2) are row-partitioned and column-
partitioned, respectively. An all-reduce operation is used
to sum up the intermediate results. Finally, the result from
the LoRA computation is added to that from the base model
(add 2). A single all-reduce operation is sufficient to ac-
cumulate the final results. It is worth noting that we are
essentially fusing an all-gather operation for matmul 4
with the final all-reduce. To our knowledge, this paralleliza-
tion strategy has not been studied before.

Next, we discuss adapting the strategy from the 2-layer MLP
to the self-attention layer. Similar to the Megatron-LM strat-
egy, we partition the head dimension of the self-attention
layer. The query-key-value projection weight matrix can be
seen as W1 in our example and the output projection weight
matrix can be seen as W2 in our example.

6.2 Communication and Memory Cost Analysis

Let N be the number of devices, B be the number of to-
kens, h be the hidden size, and r be the adapter rank. The
communication cost of the base model is one all-reduce, or
2(N−1)Bh

N . The communication cost of the added LoRA
computation is three all-gather for query, key, and value
projections, and one all-reduce for the output projection.
Formally, it is 3 (N−1)Br

N + 2(N−1)Br
N = 5(N−1)Br

N .

Under our strategy, the additional communication cost intro-
duced by LoRA is negligible when compared to the commu-
nication cost of the base model, because r ≪ h. Intuitively,
this is achieved by carefully scheduling communications on
the small intermediate tensors of LoRA computation and
fusing communications with base models.

In terms of memory usage, our strategy is optimal because
we partition all weight matrices among all devices and there
is no replicated weight matrix.

7 EVALUATION

We evaluate the performance of S-LoRA on both synthetic
and real production workloads. S-LoRA is built on top of
LightLLM (ModelTC, 2023), a single-model LLM serv-



S-LoRA: Serving Thousands of Concurrent LoRA Adapters

ing system based on PyTorch (Paszke et al., 2019) and
Triton (Tillet et al., 2019). We evaluate the scalability of
S-LoRA by serving up to two thousand LoRA adapters si-
multaneously and compare it with other strong baselines.
We then perform ablation studies to verify the effectiveness
of individual components.

7.1 Setup

Model. We test the Llama model series (Touvron et al.,
2023a;b), one of the most popular open large language mod-
els. We consider 5 different model and adapter configura-
tions, which are listed in Table 1 1. Our optimizations can
be easily adapted to other transformer-based architectures as
well, such as GPT-3 (Brown et al., 2020) and PaLM (Chowd-
hery et al., 2022; Anil et al., 2023).

Setting Base model Hidden size Adapter ranks

S1 Llama-7B 4096 {8}
S2 Llama-7B 4096 {64, 32, 16, 8}
S4 Llama-13B 5120 {64, 32, 16}
S5 Llama-30B 7168 {32}
S6 Llama-70B 8192 {64}

Table 1. Model and adapter configurations.

Hardware. We conduct tests on various hardware settings,
including a single NVIDIA A10G GPU (24GB), a single
A100 GPU (40GB), a single A100 GPU (80GB), and mul-
tiple A100 GPUs (40GB/80GB). The host’s main memory
varies based on the GPU setup, ranging from 64 GB to
670 GB. We will show that S-LoRA can efficiently scale
the number of adapters, limited only by the available main
memory.

Baselines. We benchmark several variants of S-LoRA, Hug-
gingFace PEFT (Mangrulkar et al., 2022), and vLLM (Kwon
et al., 2023).

• “HuggingFace PEFT” is a library for training and run-
ning parameter-efficient fine-tuning models. It lacks ad-
vanced batching and memory management. We build a
server using it that batches single adapter requests and
switches adapter weights between batches.

• “vLLM m-packed” is a simple multi-model serving
solution based on vLLM, a high-throughput serving
system. Because vLLM does not support LoRA, we
merge the LoRA weights into the base model and serve
the multiple versions of the merged weights separately.
To serve m LoRA adapters, we run m vLLM workers
on a single GPU, where multiple workers are separate
processes managed by NVIDIA MPS. We statistically
allocate the GPU memory proportionally to the average

1For Llama-70B, we used different architecture parameters
than the official model and did not employ group-query attention.

request rate for each process.
• “S-LoRA” is S-LoRA with all the optimizations and it

is using the first-come-first-serve scheduling strategy.
• “S-LoRA-no-unify-mem” is S-LoRA without the uni-

fied memory management.
• “S-LoRA-bmm” is S-LoRA without unified memory

management and customized kernels. It copies the
adapter weights to continuous memory space and per-
forms batched matrix multiplication with padding.

Metrics. There are several metrics to measure the perfor-
mance of serving systems, including latency and throughput.
Following common practice, we report the throughput, av-
erage request latency, average first token latency, and SLO
attainment. SLO attainment is defined as the percentage
of requests that return the first token in 6 seconds. Addi-
tionally, we introduce a new metric termed user satisfaction
(see Appendix B), which offers a more fine-grained analysis
of the first token latency. Intuitively, a shorter first token
latency gives a higher satisfaction. The satisfaction becomes
0 if the first token latency exceeds the SLO.

7.2 End-to-End Results on Synthetic Workloads

Workload trace. We generate synthetic workload traces
using the Gamma process, which is commonly used in ma-
chine learning serving literature (Crankshaw et al., 2020; Li
et al., 2023). Given n adapters, the requests for adapter i are
modeled using a Gamma arrival process with a mean rate of
λi and a coefficient of variance (CV) of cv. The mean rate,
λi, adheres to a power-law distribution with an exponent
α. The total request rate for all adapters is R requests per
second. For the n adapters, we set their ranks based on the
list provided in Table 1 with a round-robin method. Our
tests cover various combinations of n, α, R, and cv. For
every request, the input and output lengths are sampled from
uniform distributions U [Il, Iu] and U [Ol, Ou] respectively.
The default duration of a trace is 5 minutes. To conduct
comprehensive experiments, we first pick a set of default
parameters for generating workloads, as shown in Table 2.
We then vary one of the n, α, R, and cv to see how each
factor affects the performance.

Table 2. Default parameters for generating the synthetic workloads.
“7B @ A10G” means running a Llama-7B on a single A10G.

Setting n α R cv [Il, Iu] [Ol, Ou]

7B @ A10G (24G) 200 1 2 1 [8, 512] [8, 512]
7B @ A100 (80G) 200 1 10 1 [8, 512] [8, 512]
13B @ A100 (40G) 200 1 2 1 [8, 512] [8, 512]
13B @ A100 (80G) 400 1 6 1 [8, 512] [8, 512]

Comparison with other systems. We compare S-LoRA
with both vLLM-packed and HuggingFace PEFT for serv-
ing many LoRA adapters. The results are shown in Table 3.
Remarkably, S-LoRA can serve 2,000 adapters simultane-



S-LoRA: Serving Thousands of Concurrent LoRA Adapters

0 100 2000.0

0.5

1.0

1.5

0 100 2000.0

0.5

1.0

1.5

0 100 2000.0

0.5

1.0

1.5

0 100 2000.0

2.0

4.0

6.0

8.0

0 200 4000.0

1.0

2.0

3.0

4.0

0 100 2000.0

20.0

40.0

60.0

0 100 2000.0

25.0

50.0

75.0

100.0

0 100 2000.0

50.0

100.0

150.0

0 100 2000.0

50.0

100.0

150.0

200.0

0 200 4000.0

100.0

200.0

S1 (Llama-7b)
A10G (24GB)

S2 (Llama-7b)
A10G (24GB)

S4 (Llama-13b)
A100 (40GB)

S2 (Llama-7b)
A100 (80GB)

S4 (Llama-13b)
A100 (80GB)

Th
ro

ug
hp

ut
 (r

eq
/s

)

Number of Adapters Number of Adapters Number of Adapters Number of Adapters Number of Adapters

Av
er

ag
e 

La
te

nc
y 

(s
)

S-LoRA S-LoRA-bmm S-LoRA-no-unify-mem

Figure 5. The throughput and average request latency of S-LoRA and its variants under different numbers of adapters. S-LoRA achieves
significantly better performance and can scale to a large number of adapters. We run S-LoRA-bmm for a shorter duration since it has a
significantly lower throughput. Some S-LoRA-bmm curves are omitted because it is out of the figures’s scope.

Table 3. Throughput (req/s) comparison between S-LoRA, vLLM-
packed, and PEFT. The hardware is a single A100 (80GB). We run
PEFT for a shorter duration when n = 100. We do not evaluate
PEFT for n ≥ 1000, as its throughput is already very low for a
small n. “OOM” denotes out-of-memory.

Model Setup n S-LoRA vLLM-packed PEFT

S1

5 8.05 2.04 0.88
100 7.99 OOM 0.25
1000 7.64 OOM -
2000 7.61 OOM -

S2

5 7.48 2.04 0.74
100 7.29 OOM 0.24
1000 6.69 OOM -
2000 6.71 OOM -

S4
2 4.49 3.83 0.54

100 4.28 OOM 0.13
1000 3.96 OOM -

ously, maintaining minimal overhead for the added LoRA
computation. In contrast, vLLM-packed needs to maintain
multiple weight copies and can only serve fewer than 5
adapters due to the GPU memory constraint. The through-
put of vLLM-packed is also much lower due to the missed
batching opportunity. Although PEFT can swap adapters
between batches, enabling it to handle a large number of
adapters, its lack of advanced batching methods and mem-
ory management results in significantly worse performance.
Overall, S-LoRA achieves a throughput up to 4x higher than
vLLM-packed when serving a small number of adapters,
and up to 30x higher than PEFT, while supporting a signifi-
cantly larger number of adapters.

Comparing with own variants. Since no baseline system
can efficiently scale to a large number of adapters, we now
focus on comparing S-LoRA with its own variants. Fig-
ure 5 illustrates how they scale with the number of adapters.
S-LoRA achieves noticeably higher throughput and lower
latency compared to S-LoRA-bmm and S-LoRA-no-unify-
mem. This implies that our memory pool and custom ker-
nels are effective. When the number of adapters increases,
the throughput of S-LoRA initially experiences a slight de-
cline due to the overhead introduced by LoRA. However,
once the number of adapters reaches a certain threshold
(e.g., 100 in most experiments), the throughput of S-LoRA
no longer decreases. This stability can be attributed to the
fact that as the number of adapters grows, the number of
activated adapters for the currently running batch remains
unchanged, maintaining a constant overhead. Consequently,
S-LoRA can scale to a much larger number of adapters with-
out incurring additional overhead, constrained only by the
available main memory.

Figure 6 demonstrates the variation in throughput, first token
latency, and SLO attainment relative to the total request
rate, revealing a pattern consistent with the aforementioned
observations and underscoring the efficacy of our design.

7.3 End-to-End Results on Real Workloads

Real workload trace. We construct real-world serving
traces by downsampling from the traces of LMSYS Chatbot
Arena (Zheng et al., 2023b;a), a website that serves multiple
LLMs. The raw log from Arena does not concern LoRA
adapters; it focuses on different base models. Nonetheless,
we treat the distribution of different base models as if they



S-LoRA: Serving Thousands of Concurrent LoRA Adapters

1.0 1.5 2.0 2.50.0

0.5

1.0

1.5

2 4 6 80.0

2.0

4.0

1.0 1.5 2.0 2.50.0

100.0

200.0

2 4 6 80.0

200.0

400.0

1.0 1.5 2.0 2.50.0

0.5

1.0

2 4 6 80.0

0.5

1.0

S2 (Llama-7b) A10G (24GB) S4 (Llama-13b) A100 (80GB)

Th
ro

ug
hp

ut
 (r

eq
/s

)
Fir

st
 To

ke
n 

La
te

nc
y 

(s
)

Request Rate Request Rate

SL
O 

At
ta

in
m

en
t

S-LoRA S-LoRA-bmm S-LoRA-no-unify-mem

Figure 6. The throughput, first token latency, and SLO attainment
of S-LoRA and its variants under different request rates. Note that
in both settings the first token latency of S-LoRA-bmm is out of
the figure’s scope.

1 2 3 40.0

1.0

2.0

3.0

1 2 3 40.0

0.2

0.5

0.8

1.0

Request Rate

Th
ro

ug
hp

ut
 (r

eq
/s

)

Request Rate

SL
O 

At
ta

in
m

en
t

S-LoRA S-LoRA-bmm S-LoRA-no-unify-mem

Figure 7. The throughput of S-LoRA and its variants on real work-
load traces with different request rates. The model and hardware
configuration is S2 on an A10G (24GB).

were the distribution of different adapters of a single base
model. The raw log can be sampled into traces that exhibit
varying request rates, denoted as R, and durations, repre-
sented by D. To achieve this, we sample R · D requests
from the raw log and rescale the time stamps to fit within
the range of [0, D]. The number of models n corresponds
to the number of adapters. Furthermore, we set the adapter
ranks based on Table 1 with a round-robin method.

Since we are using a real workload trace, there are no pa-
rameters such as α, λi, or cv. For consistency, we set the
duration to 5 minutes. We adjust the request rate R to study
its impact on performance metrics. In the sampled trace, the
average input length is 85 tokens, the average output length
is 165 tokens, and the number of adapters is around 26.

Results. Figure 7 shows the throughput and attainment

results, which show a similar pattern to the synthetic work-
loads. This means the strong performance S-LoRA holds
for real world workloads.

7.4 Multi-GPU Tensor Parallelism

We test the scalability of our tensor parallelism strategy by
running 1) Llama-30B on two A100 (40GB) and four A100
(40GB) GPUs with 10 to 100 adapters; and 2) Llama-70B
on two A100 (80GB) and four A100 (80GB) GPUs with 10
adapters. We then report the serving throughputs.

As depicted in Figure 8, the disparity between S-LoRA
with and without LoRA communication is small. This sug-
gests that the added LoRA communication in our strategy
has a very small overhead. The figure further reveals that
the communication overhead due to LoRA is less than the
computational overhead it introduces. Furthermore, when
transitioning from 2 GPUs to 4 GPUs, the serving through-
put increases by more than 2 times. This significant increase
can be attributed to the fact that the system is predominantly
memory-bound in this context. Adding more GPUs alle-
viates memory constraints, leading to superlinear scaling.
In conclusion, the results verify both the minimal overhead
and the scalability of our tensor parallelism strategy.

Llama-30B
2xA100(40GB)

n=10

Llama-30B
4xA100(40GB)

n=10

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (r

eq
/s

)

S-LoRA S-LoRA (w/o LoRA communication) S-LoRA (base only)

Llama-30B
2xA100(40GB)

n=100

Llama-30B
4xA100(40GB)

n=100

0

1

2

3

4

5

Llama-70B
2xA100(80GB)

n=10

Llama-70B
4xA100(80GB)

n=10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 8. Throughput with tensor parallelism.

7.5 Ablation Study

Merging adapter weights versus computing on-the-fly.
While S-LoRA does not merge adapter weights and com-
putes LoRA matrices on-the-fly each time, we compare it
with an alternative design that merges an adapter with the
base model, denoted as x(W + AB), as proposed in the
LoRA paper. This approach involves: 1) Updating the base
model with the current adapter weights before each new
batch; and 2) Switching to a new adapter if there are too
many waiting requests.2 This method is efficient for a small
number of adapters due to the reduced LoRA computation
overhead.

Results in Figure 9 demonstrate that with just one adapter,

2This is different from PEFT. For example, it has continuous
batching and PagedAttention, which are not enabled in PEFT.



S-LoRA: Serving Thousands of Concurrent LoRA Adapters

the merging approach outperforms the on-the-fly computa-
tion owing to a one-time merging cost. However, its per-
formance declines with more than 2 adapters, primarily
because of the time-consuming switch between adapters.
Such switching results in periods of GPU under-utilization.
Furthermore, a smaller value of α causes requests to be
distributed unevenly across adapters, which in turn reduces
batch sizes and overall performance.

1 2 3 4 5
number of adapters

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

th
ro

ug
hp

ut
 (r

eq
/s

)

S-LoRA-merge alpha=0.1
S-LoRA alpha=0.1

S-LoRA-merge alpha=1
S-LoRA alpha=1

Figure 9. Ablation study comparing adapter merging and on-the-
fly compute for S2 on A10G (24GB) with different α and number
of adapters. The settings for the synthetic workloads are R =
2, cv = 1, [It, Iu] = [8, 512], [Ol, Ou] = [8, 512].

Early abort strategy experiments. We compared S-
LoRA’s early abort strategy to First Come First Serve
(FCFS) and Last Come First Serve (LCFS) for optimiz-
ing user satisfaction and SLO attainment. As shown in
Figure 10, S-LoRA-Abort outperforms both, especially as
cv scales. FCFS is least effective, often processing requests
that have already missed the SLO. LCFS, similar to a greedy
algorithm that only prioritizes the newest requests, works
well for small cv, but its performance drops with larger
cv. S-LoRA-Abort excels as it avoids prioritizing only the
newest requests, as detailed in Appendix B.

8 RELATED WORK

Optimize LLM serving with system techniques. The sig-
nificance of the transformer architecture has led to the devel-
opment of many specialized serving systems for it. These
systems use advanced batching mechanisms (Fang et al.,
2021; Yu et al., 2022), memory optimizations (Sheng et al.,
2023; Kwon et al., 2023), GPU kernel optimizations (Wang
et al., 2021; Aminabadi et al., 2022; NVIDIA, 2023; Dao,
2023), model parallelism (Pope et al., 2022; Aminabadi
et al., 2022), parameter sharing (Zhou et al., 2022), and
speculative execution (Stern et al., 2018; Miao et al., 2023)
for efficient serving. Among them, PetS (Zhou et al., 2022)
is most relevant to ours. However, PetS only considers
the serving for small encoder-only BERT models. It does
not consider generative inference, a very large number of
adapters or large models go beyond a single GPU, so it does
not address the problems in our settings.

2 4 6 80.0

0.2

0.5

0.8

2 4 6 80.0

0.2

0.4

0.6

2 4 6 80.0

0.2

0.4

0.6

2 4 6 80.0

0.2

0.4

0.6

S2 (Llama-7b) S4 (Llama-13b)

SL
O 

At
ta

in
m

en
t

CV Scale CV Scale

Us
er

 S
at

isf
ac

tio
n

S-LoRA-FCFS S-LoRA-LCFS S-LoRA-Abort

Figure 10. Ablation study for early abort scheduling strategy on
A10G-24G (S1) and A100-80G (S4). Other settings follow the
description in Table 2.

In concurrent work, Punica (Chen et al., 2023) explored the
concept of decomposed computation for the base model and
adapters. Some of our CUDA kernels were developed based
on the implementation presented in a previous blog post
of Punica, with additional support for batching different
ranks and non-contiguous memory. Analyzing kernel per-
formance is not the focus of this paper, but it is discussed in
Punica. Our work differs from Punica in our novel memory
management and tensor parallelism techniques, which have
not been covered in any previous work.

Optimize LLM serving with algorithm techniques. In
addition to system-level improvements, inference efficiency
can be enhanced using algorithm techniques like quanti-
zation (Yao et al., 2022; Dettmers et al., 2022; Frantar
et al., 2022; Xiao et al., 2023; Lin et al., 2023), sparsifi-
cation (Frantar & Alistarh, 2023; Zhang et al., 2023b) and
model architecture improvements (Shazeer, 2019). These
approaches can reduce memory consumption and accelerate
the computation, with a minor compromise in model quality.
They are complementary to the techniques in this paper.

Parameter-efficient fine-tuning. Recent work has devel-
oped methods for parameter-efficient fine-tuning of large
pre-trained language models. These methods show fine-
tuning is possible with only a small fraction of tuned param-
eters. The state-of-the-art methods include LoRA (Hu et al.,
2021), Prefix-tuning (Li & Liang, 2021), P-Tuning (Liu
et al., 2021), Prompt tuning (Liu et al., 2023; Lester et al.,
2021), AdaLoRA (Zhang et al., 2022), and (IA)3 (Liu et al.,
2022). While our paper focuses on LoRA due to its wide
adoption, most techniques can be easily applied to other
parameter-efficient fine-tuning methods as well.

General purpose model serving systems. Over the years,



S-LoRA: Serving Thousands of Concurrent LoRA Adapters

the domain of general model serving has seen significant
advancements, Notable systems from earlier research in-
clude Clipper (Crankshaw et al., 2017), TensorFlow Serv-
ing (Olston et al., 2017), Nexus (Shen et al., 2019), Infer-
Line (Crankshaw et al., 2020), and Clockwork (Gujarati
et al., 2020). These systems delve into topics such as batch-
ing, caching, and model placement, catering to both individ-
ual and multiple model deployments. In more recent devel-
opments, DVABatch (Cui et al., 2022), REEF (Han et al.,
2022), Shepherd (Zhang et al., 2023a) and AlpaServe (Li
et al., 2023) have explored the ideas of multi-entry multi-
exit batching, preemption, and statistical multiplexing with
model parallelism. Although these systems have made sig-
nificant contributions, they overlook the auto-regressive
characteristics and parameter-efficient adapters in LLM serv-
ing, leading to potential optimization gaps.

9 CONCLUSION

We present S-LoRA, a system capable of serving thou-
sands of LoRA adapters from a single machine with much
higher throughput compared to existing systems. S-LoRA
is made possible by our innovative design of the unified
memory pool, tensor parallelism strategy, adapter batch-
ing, and CUDA kernels. S-LoRA enables large-scale, cus-
tomized fine-tuning services essential for deploying models
tailored to diverse requirements. Future extensions of S-
LoRA will encompass support for additional adapter meth-
ods, enhanced fused kernels, and the use of multiple CUDA
streams to parallelize base model and LoRA computations.

ACKNOWLEDGMENT

This research was supported by gifts from Anyscale, As-
tronomer, Google, IBM, Intel, Lacework, Microsoft, Mo-
hamed Bin Zayed University of Artificial Intelligence, Sam-
sung SDS, Uber, and VMware. Ying is partly supported by
the Stanford Center for Automated Reasoning. We thank
Clark Barrett for academic advising and funding support.
We also thank Yonghao Zhuang and Lisa Dunlap for their
helpful discussions and feedback.

REFERENCES

Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I.,
Hasson, Y., Lenc, K., Mensch, A., Millican, K., Reynolds,
M., et al. Flamingo: a visual language model for few-shot
learning. Advances in Neural Information Processing
Systems, 35:23716–23736, 2022.

Aminabadi, R. Y., Rajbhandari, S., Awan, A. A., Li, C., Li,
D., Zheng, E., Ruwase, O., Smith, S., Zhang, M., Rasley,
J., and He, Y. Deepspeed- inference: Enabling efficient
inference of transformer models at unprecedented scale.

In Wolf, F., Shende, S., Culhane, C., Alam, S. R., and
Jagode, H. (eds.), SC22: International Conference for
High Performance Computing, Networking, Storage and
Analysis. IEEE, 2022.

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin,
D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen,
Z., et al. Palm 2 technical report. arXiv preprint
arXiv:2305.10403, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, L. Potentials of multitenancy fine-tuned llm serv-
ing. https://le.qun.ch/en/blog/2023/09/
11/multi-lora-potentials/, 2023.

Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., and Krishna-
murthy, A. Punica: Multi-tenant lora serving, 2023.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gon-
zalez, J. E., and Stoica, I. Clipper: A low-latency online
prediction serving system. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI
17), pp. 613–627, 2017.

Crankshaw, D., Sela, G.-E., Mo, X., Zumar, C., Stoica, I.,
Gonzalez, J., and Tumanov, A. Inferline: latency-aware
provisioning and scaling for prediction serving pipelines.
In Proceedings of the 11th ACM Symposium on Cloud
Computing, pp. 477–491, 2020.

Cui, W., Zhao, H., Chen, Q., Wei, H., Li, Z., Zeng, D.,
Li, C., and Guo, M. Dvabatch: Diversity-aware multi-
entry multi-exit batching for efficient processing of dnn
services on gpus. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22), pp. 183–198, 2022.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm.int8(): 8-bit matrix multiplication for transformers at
scale. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022.

Fang, J., Yu, Y., Zhao, C., and Zhou, J. Turbotransformers:
an efficient gpu serving system for transformer models.

https://le.qun.ch/en/blog/2023/09/11/multi-lora-potentials/
https://le.qun.ch/en/blog/2023/09/11/multi-lora-potentials/


S-LoRA: Serving Thousands of Concurrent LoRA Adapters

In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp.
389–402, 2021.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple
and efficient sparsity. The Journal of Machine Learning
Research, 23(1):5232–5270, 2022.

Frantar, E. and Alistarh, D. Massive language models
can be accurately pruned in one-shot. arXiv preprint
arXiv:2301.00774, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Gujarati, A., Karimi, R., Alzayat, S., Hao, W., Kaufmann,
A., Vigfusson, Y., and Mace, J. Serving {DNNs} like
clockwork: Performance predictability from the bottom
up. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pp. 443–462,
2020.

Han, M., Zhang, H., Chen, R., and Chen, H.
Microsecond-scale preemption for concurrent {GPU-
accelerated}{DNN} inferences. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 22), pp. 539–558, 2022.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp.
2790–2799. PMLR, 2019.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,
L., Chen, W., et al. Lora: Low-rank adaptation of large
language models. In International Conference on Learn-
ing Representations, 2021.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

Jamin, S., Shenker, S., Zhang, L., and Clark, D. D. An ad-
mission control algorithm for predictive real-time service.
In Network and Operating System Support for Digital
Audio and Video: Third International Workshop La Jolla,
California, USA, November 12–13, 1992 Proceedings 3,
pp. 347–356. Springer, 1993.

Kenton, J. D. M.-W. C. and Toutanova, L. K. Bert: Pre-
training of deep bidirectional transformers for language
understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Korthikanti, V. A., Casper, J., Lym, S., McAfee, L., Ander-
sch, M., Shoeybi, M., and Catanzaro, B. Reducing activa-
tion recomputation in large transformer models. Proceed-
ings of Machine Learning and Systems, 5, 2023.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Flinn, J., Seltzer, M. I., Druschel,
P., Kaufmann, A., and Mace, J. (eds.), Proceedings of the
29th Symposium on Operating Systems Principles, SOSP
2023, pp. 611–626. ACM, 2023.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. In Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 3045–3059, 2021.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continu-
ous prompts for generation. In Proceedings of the 59th
Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Li, Z., Zheng, L., Zhong, Y., Liu, V., Sheng, Y., Jin, X.,
Huang, Y., Chen, Z., Zhang, H., Gonzalez, J. E., et al.
{AlpaServe}: Statistical multiplexing with model paral-
lelism for deep learning serving. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 23), pp. 663–679, 2023.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Liu, H., Tam, D., Muqeeth, M., Mohta, J., Huang, T., Bansal,
M., and Raffel, C. A. Few-shot parameter-efficient fine-
tuning is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems, 35:
1950–1965, 2022.

Liu, X., Ji, K., Fu, Y., Tam, W. L., Du, Z., Yang, Z., and
Tang, J. P-tuning v2: Prompt tuning can be comparable
to fine-tuning universally across scales and tasks. arXiv
preprint arXiv:2110.07602, 2021.

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z.,
and Tang, J. Gpt understands, too. AI Open, 2023. ISSN
2666-6510. doi: https://doi.org/10.1016/j.aiopen.2023.08.
012. URL https://www.sciencedirect.com/
science/article/pii/S2666651023000141.

Mangrulkar, S., Gugger, S., Debut, L., Belkada, Y., Paul,
S., and Bossan, B. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

https://www.sciencedirect.com/science/article/pii/S2666651023000141
https://www.sciencedirect.com/science/article/pii/S2666651023000141
https://github.com/huggingface/peft
https://github.com/huggingface/peft


S-LoRA: Serving Thousands of Concurrent LoRA Adapters

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z., Wong,
R. Y. Y., Chen, Z., Arfeen, D., Abhyankar, R., and Jia,
Z. Specinfer: Accelerating generative llm serving with
speculative inference and token tree verification. arXiv
preprint arXiv:2305.09781, 2023.

ModelTC. Lightllm: Python-based llm inference and serv-
ing framework. https://github.com/ModelTC/
lightllm, 2023. GitHub repository.

Naghshineh, M. and Schwartz, M. Distributed call admis-
sion control in mobile/wireless networks. IEEE Journal
on Selected Areas in Communications, 14(4):711–717,
1996.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V., Vainbrand, D., Kashinkunti, P.,
Bernauer, J., Catanzaro, B., et al. Efficient large-scale
language model training on gpu clusters using megatron-
lm. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, pp. 1–15, 2021.

NVIDIA. Cutlass gemm grouped. https:
//github.com/NVIDIA/cutlass/blob/
main/examples/24_gemm_grouped/gemm_
grouped.cu.

NVIDIA. Fastertransformer. https://github.com/
NVIDIA/FasterTransformer, 2023.

Olston, C., Fiedel, N., Gorovoy, K., Harmsen, J., Lao, L., Li,
F., Rajashekhar, V., Ramesh, S., and Soyke, J. Tensorflow-
serving: Flexible, high-performance ml serving. arXiv
preprint arXiv:1712.06139, 2017.

OpenAI. Gpt-4 technical report, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury,
J., Levskaya, A., Heek, J., Xiao, K., Agrawal, S., and
Dean, J. Efficiently scaling transformer inference. arXiv
preprint arXiv:2211.05102, 2022.

Shazeer, N. Fast transformer decoding: One write-head is
all you need. arXiv preprint arXiv:1911.02150, 2019.

Shen, H., Chen, L., Jin, Y., Zhao, L., Kong, B., Philipose,
M., Krishnamurthy, A., and Sundaram, R. Nexus: A gpu
cluster engine for accelerating dnn-based video analysis.
In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pp. 322–337, 2019.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen,
B., Liang, P., Ré, C., Stoica, I., and Zhang, C. Flex-
gen: High-throughput generative inference of large lan-
guage models with a single GPU. In International Confer-
ence on Machine Learning, ICML 2023, volume 202 of
Proceedings of Machine Learning Research, pp. 31094–
31116. PMLR, 2023.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Stern, M., Shazeer, N., and Uszkoreit, J. Blockwise parallel
decoding for deep autoregressive models. Advances in
Neural Information Processing Systems, 31, 2018.

Tillet, P., Kung, H.-T., and Cox, D. Triton: an intermediate
language and compiler for tiled neural network computa-
tions. In Proceedings of the 3rd ACM SIGPLAN Interna-
tional Workshop on Machine Learning and Programming
Languages, pp. 10–19, 2019.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vin, H., Goyal, P., and Goyal, A. A statistical admission con-
trol algorithm for multimedia servers. In Proceedings of
the second ACM international conference on Multimedia,
pp. 33–40, 1994.

Wang, X., Xiong, Y., Wei, Y., Wang, M., and Li, L. Light-
seq: A high performance inference library for transform-
ers. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies: Industry
Papers, pp. 113–120, 2021.

https://github.com/ModelTC/lightllm
https://github.com/ModelTC/lightllm
https://github.com/NVIDIA/cutlass/blob/main/examples/24_gemm_grouped/gemm_grouped.cu
https://github.com/NVIDIA/cutlass/blob/main/examples/24_gemm_grouped/gemm_grouped.cu
https://github.com/NVIDIA/cutlass/blob/main/examples/24_gemm_grouped/gemm_grouped.cu
https://github.com/NVIDIA/cutlass/blob/main/examples/24_gemm_grouped/gemm_grouped.cu
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer


S-LoRA: Serving Thousands of Concurrent LoRA Adapters

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, ICML 2023, volume
202 of Proceedings of Machine Learning Research, pp.
38087–38099. PMLR, 2023.

Yao, Z., Aminabadi, R. Y., Zhang, M., Wu, X., Li, C., and
He, Y. Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. In Oh, A. H.,
Agarwal, A., Belgrave, D., and Cho, K. (eds.), Advances
in Neural Information Processing Systems, 2022.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-
G. Orca: A distributed serving system for {Transformer-
Based} generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pp. 521–538, 2022.

Zhang, H., Tang, Y., Khandelwal, A., and Stoica, I. SHEP-
HERD: Serving DNNs in the wild. In 20th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 23), pp. 787–808, Boston, MA, April
2023a. USENIX Association. ISBN 978-1-939133-33-5.
URL https://www.usenix.org/conference/
nsdi23/presentation/zhang-hong.

Zhang, Q., Chen, M., Bukharin, A., He, P., Cheng, Y.,
Chen, W., and Zhao, T. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh Interna-
tional Conference on Learning Representations, 2022.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H 2 o:
Heavy-hitter oracle for efficient generative inference of
large language models. arXiv preprint arXiv:2306.14048,
2023b.

Zheng, L., Li, Z., Zhang, H., Zhuang, Y., Chen, Z., Huang,
Y., Wang, Y., Xu, Y., Zhuo, D., Xing, E. P., et al. Alpa:
Automating inter-and intra-operator parallelism for dis-
tributed deep learning. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
22), pp. 559–578, 2022.

Zheng, L., Chiang, W.-L., Sheng, Y., Li, T., Zhuang, S., Wu,
Z., Zhuang, Y., Li, Z., Lin, Z., Xing, E., et al. Lmsys-chat-
1m: A large-scale real-world llm conversation dataset.
arXiv preprint arXiv:2309.11998, 2023a.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena. In
Conference on Neural Information Processing Systems,
Datasets and Benchmarks Track, 2023b.

Zhou, Z., Wei, X., Zhang, J., and Sun, G. {PetS}: A
unified framework for {Parameter-Efficient} transformers
serving. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pp. 489–504, 2022.

https://www.usenix.org/conference/nsdi23/presentation/zhang-hong
https://www.usenix.org/conference/nsdi23/presentation/zhang-hong


S-LoRA: Serving Thousands of Concurrent LoRA Adapters

A ADDITIONAL EXPERIMENT RESULTS

A.1 Analysis of PEFT

In our evaluation of PEFT, several key observations were
discerned. First, the lack of KV cache support makes the
maximal batch size of PEFT much smaller compared to
S-LoRA. For instance, in A10G S1, S-LoRA can accom-
modate a maximal batch size of 30, while PEFT can only
accommodate a maximal batch size of 6. Secondly, the
lack of continuous batching support makes shorter requests
wait for longer requests in a batch. These two factors to-
gether result in the low throughput of PEFT even when
there is only one adapter. When there are more adapters, the
lack of batching support across different adapters makes the
throughput even lower, resulting in only 0.17 request/sec-
ond performance in the largest number of adapters we test.
As another result, the average latency explodes because the
request rate is far beyond the maximal capacity of the PEFT
system. In Table 5, we show that even in the lowest request
rate we test, PEFT fails to process with a low latency.

num adapters throughput avg. latency avg. attainment

1 0.26 1021.86 0.0
20 0.23 1178.52 0.0
50 0.22 1293.97 0.0

100 0.20 1421.16 0.0
200 0.17 1609.50 0.0

Table 4. PEFT results on the synthetic workload S1 against number
of adapters.

req rate throughput avg. latency avg. attainment

1 0.11 1165.46 0.0
1.5 0.13 1398.56 0.0
2 0.17 1614.37 0.0

2.5 0.18 1904.73 0.0

Table 5. PEFT results on the synthetic workload S1 against request
rate.

A.2 Experiments for adapter clustering.

We implement a straightforward adapter clustering algo-
rithm. Let parameter d be the number of adapters in a batch.
In addition to the FCFS order (or early abort order if turned
on), if the number of adapters reaches d, we will prioritize
the requests that have their adapter already in the batch. But
if the requests from the d adapters cannot fill all the space
for a running batch, we allow other requests to be added. We
run some additional experiments to study how the number
of clusters impacts throughput and SLO attainment. We
call d as the number of clusters in the figure. As shown in
Figure 11 and Figure 12, the impact is not significant but ob-
servable, especially for larger α and cv. Generally, a small

d can result in better performance. The small fluctuation
for small d’s may be because of the scheduler overhead and
random noise.

0 10 20 301.0

1.2

1.4

1.6

0 10 20 301.0

1.1

1.1

1.2

1.2

1.2

0 10 20 300.0

0.2

0.4

0.6

0.8

0 10 20 300.0

0.1

0.2

0.3

0.4

0.5

S2 (Llama-7b) S4 (Llama-13b)

Th
ro

ug
hp

ut
 (r

eq
/s

)
Number of Clusters Number of Clusters

SL
O 

At
ta

in
m

en
t

alpha = 0.1 alpha = 0.3 alpha = 0.6 alpha = 1

Figure 11. Ablation study for different number of clusters on A100
(40GB) with different α. The settings for the synthetic work-
load trace are n = 32, α = [0.1, 0.3, 0.6, 1], R = 2, cv =
1, [It, Iu] = [8, 512], [Ol, Ou] = [8, 512]

0 10 20 301.0

1.2

1.5

1.8

2.0

0 10 20 300.0

0.2

0.5

0.8

1.0

Number of Clusters

Th
ro

ug
hp

ut
 (r

eq
/s

)

Number of Clusters

SL
O 

At
ta

in
m

en
t

cv = 1 cv = 2 cv = 4 cv = 6 cv = 8

Figure 12. Ablation study for different number of clusters on S2
(Llama-7b) A100 (80GB) with different cv. The settings for the
synthetic workload trace are n = 32, α = 1, R = 2, cv =
[1, 2, 4, 6, 8], [It, Iu] = [8, 512], [Ol, Ou] = [8, 512]

B ADMISSION CONTROL IN S-LORA
Traditional admission control usually assumes a hard thresh-
old for the delay in the service (Jamin et al., 1993; Vin
et al., 1994; Naghshineh & Schwartz, 1996), and controls
the total number of violations of delay. Here for LoRA
serving, we assume a soft threshold characterized by the
user’s reward function. For illustration purposes, let the
arrival time of the requests be integers, and assume that
we process one query in each time period of length 1. Let
Q = {q1, q2, · · · qn} be the request queue in the ascending
order of the arrival time, and l be the desired number of
served requests. We quantify the user’s satisfaction with a



S-LoRA: Serving Thousands of Concurrent LoRA Adapters

reward function r : R+ 7→ [0, 1] that maps the first token
latency of a request to a scalar in between [0, 1], where 0
represents the user losing patience and giving up the query,
and 1 represents the user is completely satisfied with the
latency. Let ti be the latency of serving the request qi in the
queue Q. Then we aim to solve the following constrained
optimization:

max

n∑
i=1

r(ti) (3)

s.t. 1(r(ti) > 0) = l.

We show that when the derivative of reward is non-
increasing, the optimal solution to the above constrained
optimization problem is to serve the most recent l elements
qn−l+1, qn−l+2, · · · , qn in order.

Theorem B.1. Assume that r′(t) ≤ 0 for any t ∈ R+. The
optimal solution to Equation (3) is to serve the most recent
l elements qn−l+1, qn−l+2, · · · , qn in order.

The proof is deferred to Appendix B.1. In practice, for a
given request queue, we can estimate the largest possible
number of requests to be served in SLO as l. Then we
take the most recent l elements for serving. Such an l can
be approximated by simulating a First-Come-First-Serve
(FCFS) strategy, which is optimized to serve requests as
many as possible.

In S-LoRA, the scenario is more complicated because of the
heterogeneity and unpredictability of the sequence length.
As an approximation, we implement a heuristic as follows.
The high-level scheduling is that we will fetch a minibatch
of new requests to be added into the running batch every
several decode step. From the history, we use the moving
average to estimate a current request rate R1 measured in
how many requests will be added to the waiting queue per
period of fetching new requests. We also use the moving
average to estimate the number of new requests R2 that can
be added to the running batch for a period. Let rti be the
coming time of request ri, ct be the current time, tlmax be
the maximum allowed first token latency to meet the SLO
and lprefill be the maximum prefill latency for a minibatch
in history. Each time we generate the new minibatch, we
will first abort the requests R = {rk | ct− rtk + lprefill >
tlmax}. Requests in R are highly likely to miss the SLO
even if they get scheduled immediately due to the high
prefill latency. Then if R1 > R2, which means the system
is temporarily overloaded, we will fetch the newest requests
into the minibatch. If R1 ≤ R2, the waiting queue will be
shortened if the trend continues. In this case, we will choose
from the earliest.

B.1 Proof of Theorem B.1

We first prove that for any admission control strategy that
serves l elements, one can always find another admission
control strategy that serves the most recent l elements with
a larger cumulative reward.

Assume that we serve l elements qs1 , qs2 , · · · , qsl in the l
timesteps. Assume without loss of generality that qs1 is not
among the most recent l elements, and assume that the k-th
element is not served with k ∈ [n − l, n]. By definition
we know that s1 < k. Now at the time of serving qs1 , we
serve qk rather than qs1 , and keep the rest of the choices in
other time steps same. In this case, the number of served
queries remains the same. On the other hand, we know that
the latency satisfies ts1 > tk since the k-th element is more
recent. This gives that

r(ts1) < r(tk).

Since the reward for other elements does not change, the
total reward is increased while the constraint is still satisfied.
By repeating the operations until all the elements served are
the most recent l elements, we prove that claim.

Next, we prove that serving the most recent l elements in
order of qn−l+1, qn−l+2, · · · , qn is optimal. For any i, j ∈
[n− l + 1, n], we assume that i < j and j is first served at
time t1 while i is served at time t2 with t1 < t2. Let tai , taj
be the arrival time of i, j. The reward for serving i, j in this
case becomes

r(t2 − tai ) + r(t1 − taj ).

Now we show that by swapping the time of serving i, j, the
reward does not decrease. This is equivalent to showing that

r(t1 − tai ) + r(t2 − taj ) ≥ r(t2 − tai ) + r(t1 − taj ).

Rearranging the above equation, we know that it is equiva-
lent to

r(t1 − tai )− r(t2 − tai )

t1 − t2
≤

r(t1 − taj )− r(t2 − taj )

t1 − t2
.

This is true due to the concavity of the reward function, thus
finishing the proof.


