
Does Compressing Activations Help Model Parallel Training?

A MORE EXPERIMENTAL RESULTS AND TAKEAWAYS

A.1 Experimental setup

System configuration. In order to measure the performance of compression algorithms over different hardware, we conduct
our experiments on two different setups. The first setup uses AWS p3.8xlarge machines which have 4 Tesla V100 GPUs with
all GPUs connected by NVLink. AWS p3.8xlarge instances have 10 Gbps network bandwidth across instances. Moreover,
we also use a local machine which also has 4 Tesla V100 GPUs but does not have NVLink. All the GPUs are connected by
a single PCIe bridge. The local server runs Ubuntu 18.04 LTS and the server has 125GB of memory.

Models. The models we use in this section are the same as what we mentioned in Section 4.1.

Experiment parameters. Consistent with the specifications laid out in Section 4.1, our experiments maintain the same
settings. We have also expanded the scope of our investigations to study the effect of various hyper-parameters. This includes
changing the batch size between {8, 32}, and adjusting sequence length from {128, 512} during fine-tuning. Moreover, we
explore the influence of the number of nodes, varying from {8, 16, 32, 64}, on strong-scaling speedup, while keeping the
model size constant.

Roadmap. The ensuing sections are structured as follows: Section A.2 presents the experimental findings on the BERTBASE
model. In Section A.3, we delve into the impact of model hyper-parameters on throughput and accuracy. Subsequently,
Section A.4 scrutinizes the effects of varying compression layers and compression locations on these same metrics.
Section A.5 compares the throughput performance between an AWS p3.8xlarge instance equipped with NVLink and a local
machine without NVLink, to evaluate the role of hardware. In addition, Section A.6 reports the outcomes of strong scaling
experiments. Finally, Section A.7 offers a theoretical analysis of slow network conditions using an analytical cost model,
while Section A.8 presents additional evaluation results over A100 GPUs.

A.2 Experimental results over BERTBASE model

Takeaway 5 When the evaluated model is BERTBASE, AE and Quantization can preserve the model’s accuracy on fine-tuning
tasks over GLUE datasets.

From Table 9, we can observe that the accuracy loss is within 5% except for the CoLA dataset when using AE and
quantization methods for compression. Since CoLA is the smallest dataset among GLUE datasets, slight perturbations can
cause drastic changes in the final results.

Compression
Algorithm MNLI-(m/mm) QQP SST-2 MRPC CoLA QNLI RTE STS-B Avg.

w/o 83.45/84.16 90.62 91.40 83.83 57.52 91.31 62.09 84.79 81.02

A1 80.20/81.10 89.75 90.71 80.23 35.74 86.58 61.01 83.03 76.48

A2 80.22/80.83 89.71 90.60 80.64 38.84 86.82 62.82 83.28 77.06

T1 78.83/79.44 88.86 89.91 75.07 23.19 86.66 59.57 80.00 73.50

T2 80.31/80.94 89.20 90.71 74.14 31.60 88.32 62.09 81.61 75.44

P1 74.92/75.39 88.18 87.16 70.20 23.85 84.95 51.99 73.13 69.97

P2 74.04/74.78 87.93 86.93 66.49 0.00 84.88 52.35 71.90 66.59

Q1 82.48/83.04 89.91 91.40 81.33 50.49 89.36 61.01 83.90 79.21

Q2 83.31/84.14 90.50 91.97 83.07 55.22 91.07 61.01 85.15 80.60

Table 9. Fine-tuning results over GLUE dataset on BERTBASE model under the setting that the tensor model-parallel size is 2 and pipeline
model-parallel size is 2. F1 scores are reported for QQP and MRPC, Matthews correlation coefficients are reported for CoLA, and
Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks.



Does Compressing Activations Help Model Parallel Training?

A.3 Impact of model hyper-parameters

Takeaway 6 Using a smaller batch size or sequence length for fine-tuning negates the throughput benefits from compression
because of the smaller communication cost.

We vary the batch size from {8, 32} and sequence length from {128, 512}, and report the results in Figure 5(a)-6(b). We
notice that when the communication cost over model parallelism is small, the overhead of the compression methods can
become the bottleneck. Therefore, we cannot improve system throughput when using compression algorithms with batch
size 8 and sequence length 128.

w/o A1 A2 T1 T2 R1 R2 P1 P2 Q1 Q2

TP=1, PP=4 TP=2, PP=2 TP=4, PP=1
Distributed Setting

102

103

104

105

Av
er

ag
e 

Ite
ra

tio
n 

Ti
m

e 
(m

s)

(a) Batch size=32, Sequence length=128

TP=1, PP=4 TP=2, PP=2 TP=4, PP=1
Distributed Setting

101

102

103

104

Av
er

ag
e 

Ite
ra

tio
n 

Ti
m

e 
(m

s)
(b) Batch size=8, Sequence length=128

Figure 5. Average iteration time (ms) for fine-tuning with various batch sizes and sequence lengths. The results are collected from the
AWS p3.8xlarge instance with NVLink. For each setting, we repeat experiments 5 times. Red rectangular boxes highlight the best
method.

w/o A1 A2 T1 T2 R1 R2 P1 P2 Q1 Q2

TP=1, PP=4 TP=2, PP=2 TP=4, PP=1
Distributed Setting

102

103

104

105

Av
er

ag
e 

Ite
ra

tio
n 

Ti
m

e 
(m

s)

(a) Batch size=32, Sequence length=128

TP=1, PP=4 TP=2, PP=2 TP=4, PP=1
Distributed Setting

101

102

103

104

Av
er

ag
e 

Ite
ra

tio
n 

Ti
m

e 
(m

s)

(b) Batch size=8, Sequence length=128

Figure 6. Average iteration time (ms) for fine-tuning with various batch sizes and sequence lengths. The results are collected from the
local machine without NVLink. For each setting, we repeat experiments 5 times. Red rectangular boxes highlight the best method.

Takeaway 7 Using a smaller batch size or sequence length for fine-tuning, AE and Quantization can also preserve the
model’s accuracy.

From Table 10 and Table 11, it can be noted that the decrease in accuracy is kept within a 5% range for all but the CoLA and
RTE datasets when employing AE and quantization techniques for compression. Furthermore, despite the utilization of fp64
for running the PowerSGD component, precision overflow remains a concern. This issue arises due to the instability of
PowerSGD and the activation is not low-rank. In view of this, PowerSGD does not serve as a viable option for activation
compression.

A.4 Varying compression layers and location

Takeaway 8 When the number of compressed layers increases, the model accuracy decreases.

From Figure 7(a), we can observe that the accuracy for RTE and the matthews correlation coefficient for CoLA decreases as
we increase the number of layers compressed. This is because as we increase number of layers compressed, we lose more



Does Compressing Activations Help Model Parallel Training?

Compression
Algorithm MNLI-(m/mm) QQP SST-2 MRPC CoLA QNLI RTE STS-B Avg.

w/o 86.23/86.07 91.22 91.74 88.17 59.02 92.09 78.70 88.40 84.63

A1 82.49/82.41 89.93 91.85 82.43 43.56 89.84 47.29 87.03 77.43

A2 82.18/82.23 90.45 90.52 83.54 0.00 89.02 62.82 87.66 74.27

T1 49.07/47.96 72.02 83.57 69.33 12.04 83.60 55.60 84.96 62.02

T2 83.99/84.37 35.78 68.30 83.54 47.33 60.52 64.62 86.72 68.35

P1 36.66/37.18 68.28 81.19 67.59 0.00 58.23 55.23 7.26 45.74

P2 32.74/32.95 63.18 50.92 66.72 2.76 56.98 47.29 5.66 39.91

Q1 84.91/85.18 90.54 92.43 85.91 53.25 60.68 57.04 87.91 77.54

Q2 85.66/86.09 90.99 91.74 86.84 53.92 91.31 75.81 88.19 83.39

Table 10. Fintune results over GLUE dataset under the setting using tensor parallelism size 2, pipeline parallelism size 2, batch size 8, and
sequence length 128. F1 scores are reported for QQP and MRPC, Matthews correlation coefficient is reported for CoLA, and Spearman
correlations are reported for STS-B, and accuracy scores are reported for the other tasks.

Compression
Algorithm MNLI-(m/mm) QQP SST-2 MRPC CoLA QNLI RTE STS-B Avg.

w/o 87.87/88.02 91.96 95.18 87.71 59.40 92.99 76.90 88.43 85.38

A1 85.30/85.33 91.28 92.32 84.58 55.18 90.87 59.93 87.92 81.41

A2 85.25/85.19 91.41 93.23 86.72 57.02 90.92 64.26 87.74 82.42

T1 68.76/69.23 64.58 91.40 80.93 0.00 67.34 66.43 69.24 64.21

T2 84.24/85.23 89.17 92.09 81.68 51.54 91.71 63.54 84.80 80.44

P1 32.74/32.95 63.18 49.08 81.68 0.00 50.54 61.73 -7.02 40.54

P2 32.74/32.95 50.27 49.08 78.67 0.00 50.54 44.04 0.00 37.59

Q1 86.85/87.58 91.50 93.58 86.96 59.20 92.24 59.57 86.89 82.71

Q2 87.46/88.02 91.82 94.95 87.48 57.02 93.36 68.95 87.84 84.10

Table 11. Fintune results over GLUE dataset under the setting using tensor parallelism size 2, pipeline parallelism size 2, batch size
32, and sequence length 128. F1 scores are reported for QQP and MRPC, Matthews correlation coefficient is reported for CoLA, and
Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks.

information in the activations leading to a loss in accuracy. From Figure 7(a), we observe that compressing activations of the
last 8 layers is the best strategy to keep the accuracy loss within 3% for both datasets.

Takeaway 9 Compressing the activation for the initial layers harms the accuracy of the model.

We keep the number of layers compressed constant and vary the location where we apply compression (Figure 7(b)). The
results indicate that compressing activations of the first few layers of the model significantly harms the model’s accuracy.
This is because compressing activations generates error and the error in the early layers can be accumulated and propagated
to later layers.

A.5 Throughput benefits for fine-tuning on machine without NVLink

Takeaway 10 Using non-learning-based compression techniques to compress activations only slightly improves system
throughput (by 1% or less) due to the large overhead of these methods. However, we see end-to-end speedups of up to 17.8%
when using learning-based compression methods on a machine without NVLink.

When running fine-tune experiments on a p3.8xlarge instance on Amazon EC2, we cannot improve system throughput
by using non-learning-based compression algorithms (Figure 3(a)). Comparing Figure 3(a) and Table 12, we can see that
the network bandwidth across the GPUs can affect the performance benefits from compression. In other words, we can
improve system throughput by at most 17.8% when compressing activation for fine-tuning tasks on a 4-GPU machine



Does Compressing Activations Help Model Parallel Training?

w/o 6 8 10 12 14 16 18
Number of Layers Compressed

0

20

40

60

80

100

M
et

ric
s (

%
)

CoLA
RTE

(a) Vary Number of Layers Compressed

1-12 4-15 7-18 10-21 13-24 w/o
Compression Location

0

20

40

60

80

100

M
et

ric
s (

%
)

CoLA
RTE

(b) Vary Compression Location

Figure 7. Fine-tuning results over CoLA and RTE datasets by varying the compression location and number of layers compressed. The
above figure shows that model performance vs the number of layers compressed. The below figure shows that model performance versus
the compression location. We use tensor model-parallel degree 2, pipeline model-parallel degree 2, batch size 32, and sequence length
512.

without NVLink. That’s because, without NVLink, the communication time for model parallelism is much longer. Thus,
while the message encoding and decoding time remain unchanged, compression methods can provide more throughput
benefits across lower bandwidth links.

Furthermore, from Figure 3(a) and Table 12, we observe that AE outperforms other compression methods. In Table 13, we
breakdown the time taken by each algorithm and find that Top-K, Random-K and quantization have large encoding/decoding
overheads and thus cannot provide end-to-end throughput improvements. Although AE slightly increases the time taken by
the backward step, the ∼ 2× reduction in communication time and the limited encoding/decoding overhead lead to better
overall throughput.

With NVLink w/o A1 A2

TP=1, PP=4 591.96 591.36 591.47

TP=2, PP=2 440.71 437.98 444.02

TP=4, PP=1 261.48 270.22 275.54

Without NVLink w/o A1 A2

TP=1, PP=4 633.17 620.10 620.44

TP=2, PP=2 646.14 586.65 595.25

TP=4, PP=1 736.01 624.62 636.15

Table 12. The average iteration time (ms) for fine-tuning with/without NVLink. We compare time without compression and with AE on
different distributed settings, with batch size 32, and sequence length 512. The best setting on each machine is bolded. And the settings,
under which we can gain benefits compared with the baseline, are underlined.



Does Compressing Activations Help Model Parallel Training?

Compression
Algorithm Forward Backward Optimizer Waiting &

Pipeline Comm. Total Time Tensor Enc. Tensor Dec. Tensor
Comm.

w/o 276.34 354.16 5.80 9.83 646.14 \ \ 150.72

A1 213.83 362.61 6.16 4.06 586.65 2.16 3.12 80.88

A2 219.01 366.51 5.67 4.07 595.25 3.12 4.56 84.48

T1 331.70 356.80 5.78 5.00 699.27 72.24 27.36 100.80

T2 376.72 359.19 5.89 6.60 748.41 74.88 45.36 124.56

R1 12,603.79 362.13 6.81 25.28 12,998.01 11,499.12 29.76 139.92
R2 46,968.21 365.36 7.61 22.81 47,363.98 44,038.56 47.52 567.36

P1 450.66 258.23 5.88 2.85 717.62 298.20 14.64 85.66
P2 718.48 282.97 6.85 10.41 1,018.71 556.61 20.13 90.56

Q1 274.03 354.56 5.88 7.98 642.46 20.64 32.16 91.68

Q2 282.64 354.55 5.58 7.58 650.36 19.92 30.24 104.64

Table 13. We breakdown the average iteration time (ms) for fine-tuning with various compression techniques when using TP=2 and PP=2,
batch size 32, and sequence length 512. The results are collected from the local machine without NVLink. The total time (ms) is divided
into following parts: forward step, backward step, optimizer, and waiting & pipeline communication. The last three columns further
breakdown the tensor encoder/decoder and communication times which are considered part of the forward step.

A.6 The results of strong scaling experiments

Takeaway 11 There is a noticeable increase in benefits from model parallelism compression when the number of nodes for
a fixed model is adequately incremented.

As denoted in Table 14, for a static model, we observe an upward trend in the advantages gained from model parallelism
compression when the count of nodes escalates from 8 to 64.

hidden size # layers # nodes batch size speedup

25600 128 8 3072 1.04×

25600 128 16 3072 1.07×

25600 128 32 3072 1.14×

25600 128 64 3072 1.26×

Table 14. Strong-scaling speedup for the Transformer models. The number of tensor model parallelism is 4, and the micro-batch size
is min{128, batch size/# nodes}. As for the hidden size, the number of layers, and the batch size, we follow the setting of Table 1
in (Narayanan et al., 2021b).

A.7 Slow network

Previous research (Wang et al., 2022) demonstrates that one application of activation compression is to speed up the
fine-tuning process in slow network environments. In this section, we demonstrate that our cost model, as outlined in Eq. 3,
enables a greater overall speedup in slow network environments compared to data center networks. The proof is provided
below:

Proof 1 Referring to the analytical cost model described in Section 3.3, we assume that w represents the bandwidth of the
data center network and w′ represents the bandwidth of a slower network, where w′ < w. To simplify the notation, we
define A = (m−1

n + 1)× L× T , B = (m−1
n + 1)× L× TX , C = (n− 1)× Bsh

w , and D = (n− 1)× Mc

w .

It is evident that TX > T and Mc < Bsh. Consequently, this leads us to the conclusion that A
B < 1 < C

D . Next, we show



Does Compressing Activations Help Model Parallel Training?

that

A+ C

B +D
<

A+ αC

B + αD

where α = w
w′ > 1. The detailed steps are outlined below.

A+ C

B +D
<

A+ αC

B + αD

⇐ (A+ C)(B + αD) < (B +D)(A+ αC)

⇐ BC + αAD < AD + αBC

⇐ AD < BC

⇐ A

B
<

C

D

This finishes the proof.

A.8 More evaluation over A100 GPUs

In this section, we evaluate OPT-3B (Zhang et al., 2022) over Cloudlab (Duplyakin et al., 2019) d8545 instances where each
instance is equipped with 4 A100 GPUs and NVLink in each instance. The results are shown in Table 15. Given that the
hidden dimension for OPT-3B is 2560, we set the output dimensions of A1 and A2 to 128 and 256, respectively, to maintain
the same compression ratio used in prior experiments. Other compression methods maintain the same compression ratio as
the autoencoder. In addition, Q1 and Q2 still reduce the precision to 2 bits and 4 bits respectively.

Distributed Setting w/o A1 A2 T1 T2 P1

TP=2, PP=2 390.35 412.36 417.22 500.61 516.47 890.64

Distributed Setting w/o P2 R1 R2 Q1 Q2

TP=2, PP=2 390.35 1,435.42 13,840.75 28,894.11 433.87 470.00

Table 15. The average iteration time (ms) for pre-training OPT-3B with various compression techniques by setting TP=2, PP=2. The
results are collected from the Cloudlab d8545 machine with NVLink by using batch size 16, and sequence length 512. The best setting is
bolded in the table. And the settings which see benefits compared with the baseline, are underlined.



Does Compressing Activations Help Model Parallel Training?

B COMPRESSION METHODS IMPLEMENTATION DETAILS

In this section, we present more details about the model parallelism compression implementation.

B.1 Auto-encoders

This implements compression for auto-encoders (AEs).

Algorithm 1 auto-encoders compression
We use torch.nn.init.xavier_uniform_ to initial two learnable matrices We ∈ Rh×hc (the encoder) and
Wd ∈ Rhc×h (the decoder). Based on We and Wd, we do the compression and decompression operation for each
activation A ∈ RB×s×h

Procedure Compress(A ∈ RB×s×h)
Ac ← AWe ∈ RB×s×hc

return Ac

Procedure Aggregate+Decompress(worker’s compressed activation Ac,1, . . . , Ac,n)
Āc ←

∑n
i=1 Ac,i

Â← ĀcWd ∈ RB×s×hc

return Â

B.2 Top-K

This implements compression of Top-K.

Algorithm 2 Top-K compression
We do the compression and decompression operation for each activation A ∈ RB×s×h

Procedure Compress(A ∈ RB×s×h)
We treat A as a vector of length Bsh
Obtain top-k absolute values to get index I ∈ Rk and value V ∈ Rk

return I , V
Procedure Aggregate+Decompress(worker’s index I1, . . . , In, value V1, . . . , Vn)

Â← 0 ∈ RB×s×h

Â← Â+
∑n

i=1 Decompress(Ii, Vi)

return Â

Here, we present more details about the implementation of Top-K compression. As for the Compress operation
in Algorithm 2, we use torch.topk function to get top-k absolute values. For the Aggregate step, we use
torch.distributed.all_gather function to gather index and value from each worker. As for the Decompress
operation, we utilize torch.sparse_coo_tensor to get the sparse matrix first, then we use to_dense function to
obtain the matrix after the decompression.

B.3 Random-K

This implements compression of Random-K.

Here, we present more details about the implementation of Random-K compression. As for the Compress operation in
Algorithm 3, we use random.sample function to sample a set of k absolute values. For the Aggregate step, we use
torch.distributed.all_gather function to gather index and value from each worker. As for the Decompress
operation, we utilize torch.sparse_coo_tensor to get the sparse matrix first, then we use to_dense function to
obtain the matrix after the decompression.



Does Compressing Activations Help Model Parallel Training?

Algorithm 3 Random-K compression
We do the compression and decompression operation for each activation A ∈ RB×s×h

Procedure Compress(A ∈ RB×s×h)
We treat A as a vector of length Bsh
Sample a set of k values without replacement, using the same seed on all workers to get index I ∈ Rk and value

V ∈ Rk

return I , V
Procedure Aggregate+Decompress(worker’s index I1, . . . , In, value V1, . . . , Vn)

Â← 0 ∈ RB×s×h

Â← Â+
∑n

i=1 Decompress(Ii, Vi)

return Â

B.4 PowerSGD

This implements compression of PowerSGD methods.

Algorithm 4 PowerSGD compression
Given a corresponding Q ∈ RB×h×r, we do the compression and decompression operation for each activation A ∈
RB×s×h

Procedure Compress(A ∈ RB×s×h, Q ∈ RB×h×r)
P ← AQ ∈ RB×s×r

P ← All_Reduce_Mean(P )
P̂ ← Orthogonalize(P )
Q←M⊤P̂
Q← All_Reduce_Mean(Q)
return P̂ , Q

Procedure Aggregate+Decompress(P̂ ∈ RB×s×r, Q ∈ RB×h×r)
return P̂Q⊤

For the Orthogonalize step in Algorithm 4, we use the torch.linalg.qr function to get the QR decomposition
results.

B.5 Quantization-based

This implements compression of Quantization-based methods.

Algorithm 5 Quantization-based compression
We do the compression and decompression operation for each activation A ∈ RB×s×h by using quantization function Q
Procedure Compress(A ∈ RB×s×h)
V, S ← Q(A)
return V , S

Procedure Aggregate+Decompress(worker’s value V1, . . . , Vn, scale S1, . . . , Sn)
Â← 0 ∈ RB×s×h

Â← Â+
∑n

i=1 Decompress(Vi, Si)

return Â

The implementation of the Quantization function Q is based on the code released by (Wang et al., 2022).



Does Compressing Activations Help Model Parallel Training?

C PRESENT EXPERIMENTAL RESULTS USING TABLES

For the sake of clarity and precision, this section incorporates tables detailing the experimental results previously discussed in
the paper. These tabulated results allow readers to pinpoint the exact figures reported. The tables align with the corresponding
figures as follows:

• Table 16 corresponds to Figure 3(a).

• Table 17 pairs with Figure 3(b).

• Table 18 matches Figure 5(a).

• Table 19 aligns with Figure 5(b).

• Finally, Table 20 and Table 21 relate to Figure 6(a) and Figure 6(b) respectively.

Distributed Setting w/o A1 A2 T1 T2 P1

TP=1, PP=4 591.96 591.36 591.47 599.65 605.05 587.90

TP=2, PP=2 440.71 437.98 444.02 493.16 528.93 750.97

TP=4, PP=1 261.48 270.22 275.54 356.57 409.23 848.84

Distributed Setting w/o P2 R1 R2 Q1 Q2

TP=1, PP=4 591.96 609.61 1,824.36 5,572.87 595.29 595.45

TP=2, PP=2 440.71 1,044.70 17,117.01 71,058.64 489.27 486.54

TP=4, PP=1 261.48 850.11 16,990.88 65,121.79 347.68 350.50

Table 16. The average iteration time (ms) for fine-tuning with various compression techniques by varying the distributed setting. The
results are collected from the AWS p3.8xlarge machine with NVLink by using batch size 32, and sequence length 512. The best setting is
bolded in the table. And the settings which see benefits compared with the baseline, are underlined.

Distributed Setting w/o A1 A2 T1 T2 P1

TP=2, PP=8 1,625.16 1,550.18 1,579.70 1,593.37 1,682.87 2,311.99

TP=4, PP=4 1,422.40 1,242.97 1,223.20 1,410.47 1,721.87 2,840.97

TP=8, PP=2 15,642.30 14,577.29 14,073.45 18,919.92 27,152.07 17,289.43

Distributed Setting w/o P2 R1 R2 Q1 Q2

TP=2, PP=8 1,625.16 4,043.56 55,925.28 >100,000 1,759.27 1,752.24

TP=4, PP=4 1,422.40 5,390.51 87,421.46 >100,000 2,435.03 2,594.94

TP=8, PP=2 15,642.30 30,332.80 >100,000 >100,000 16,414.57 16,517.44

Table 17. The average iteration time (ms) for pre-training with various compression techniques by varying the distributed setting. The
results are collected from 4 AWS p3.8xlarge machines with NVLink by using micro-batch size 128, global batch size 1024, and sequence
length 128. The best setting is bolded in the table. And the settings, under which we can gain benefits compared with the baseline, are
underlined.



Does Compressing Activations Help Model Parallel Training?

Distributed Setting w/o A1 A2 T1 T2 P1

TP=1, PP=4 151.82 154.62 155.03 156.84 158.58 162.71

TP=2, PP=2 145.58 157.49 163.63 186.71 178.91 286.59

TP=4, PP=1 136.66 155.43 145.97 186.06 190.01 467.49

Distributed Setting w/o P2 R1 R2 Q1 Q2

TP=1, PP=4 151.82 182.81 449.70 1,292.15 154.30 153.65

TP=2, PP=2 145.58 506.52 3,915.32 15,732.57 178.09 175.23

TP=4, PP=1 136.66 465.98 3,915.52 15,469.87 188.10 168.90

Table 18. The total time (ms) for fine-tuning with various compression techniques by varying the distributed setting. The results are
collected from the AWS p3.8xlarge machine with NVLink by using batch size 32, and sequence length 128. The best setting is bolded in
the table. And the settings which see benefits compared with the baseline, are underlined.

Distributed Setting w/o A1 A2 T1 T2 P1

TP=1, PP=4 106.04 113.67 106.35 109.18 110.57 126.29

TP=2, PP=2 121.26 142.41 154.60 162.00 157.12 194.67

TP=4, PP=1 122.22 142.33 139.47 172.69 170.61 336.59

Distributed Setting w/o P2 R1 R2 Q1 Q2

TP=1, PP=4 106.04 130.72 187.59 333.61 108.18 109.56

TP=2, PP=2 121.26 347.85 998.51 3,197.42 163.18 155.48

TP=4, PP=1 122.22 336.89 1,007.65 3,406.20 171.06 163.96

Table 19. The total time (ms) for fine-tuning with various compression techniques by varying the distributed setting. The results are
collected from the AWS p3.8xlarge machine with NVLink by using batch size 8, and sequence length 128. The best setting is bolded in
the table. And the settings which see benefits compared with the baseline, are underlined.

Distributed Setting w/o A1 A2 T1 T2 P1

TP=1, PP=4 154.82 152.50 153.47 156.81 158.37 152.83

TP=2, PP=2 184.48 175.29 180.35 207.66 214.30 283.43

TP=4, PP=1 212.76 201.39 200.31 242.62 261.39 467.72

Distributed Setting w/o P2 R1 R2 Q1 Q2

TP=1, PP=4 154.82 176.15 368.95 963.62 155.33 154.85

TP=2, PP=2 184.48 501.01 2,900.86 10,499.14 188.82 189.14

TP=4, PP=1 212.76 498.53 2,973.04 10,891.70 225.42 230.69

Table 20. The total time (ms) for fine-tuning with various compression techniques by varying the distributed setting. The results are
collected from the local machine without NVLink by using batch size 32, and sequence length 128. The best setting is bolded in the
table. And the settings which see benefits compared with the baseline, are underlined.



Does Compressing Activations Help Model Parallel Training?

Distributed Setting w/o A1 A2 T1 T2 P1

TP=1, PP=4 73.19 72.94 72.58 73.62 74.86 118.18

TP=2, PP=2 100.86 107.73 100.54 114.86 112.11 183.97

TP=4, PP=1 100.73 107.90 115.18 136.18 133.91 332.64

Distributed Setting w/o P1 R1 R2 Q1 Q2

TP=1, PP=4 73.19 124.76 123.78 239.81 73.33 74.41

TP=2, PP=2 100.86 340.98 769.47 2,183.39 111.61 106.75

TP=4, PP=1 100.73 330.98 733.03 2,509.73 120.14 114.73

Table 21. The total time (ms) for fine-tuning with various compression techniques by varying the distributed setting. The results are
collected from the local machine without NVLink by using batch size 8, and sequence length 128. The best setting is bolded in the table.
And the settings which see benefits compared with the baseline, are underlined.


