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ABSTRACT
Mixture-of-Experts (MoE) has emerged as a favorable architecture in the era of large models due to its inherent
advantage, i.e., enlarging model capacity without incurring notable computational overhead. Yet, the realization of
such benefits often results in ineffective GPU memory utilization, as large portions of the model parameters remain
dormant during inference. Moreover, the memory demands of large models consistently outpace the memory
capacity of contemporary GPUs. Addressing this, we introduce SiDA-MoE (Sparsity-inspired Data-Aware), an
efficient inference approach tailored for large MoE models. SiDA-MoE judiciously exploits both the system’s
main memory, which is now abundant and readily scalable, and GPU memory by capitalizing on the inherent
sparsity on expert activation in MoE models. By adopting a data-aware perspective, SiDA-MoE achieves enhanced
model efficiency with a neglectable performance drop. Specifically, SiDA-MoE attains a remarkable speedup in
MoE inference with up to 3.93× throughput increasing, up to 72% latency reduction, and up to 80% GPU memory
saving with down to 1% performance drop. This work paves the way for scalable and efficient deployment of large
MoE models, even with constrained resources. Code is available at: https://github.com/timlee0212/SiDA-MoE.

1 INTRODUCTION

Recently, rapid advances in large models with shocking
performance have surprised the community in several ar-
eas, such as vision (Ramesh et al., 2022; Kirillov et al.,
2023; Saharia et al., 2022), language (Brown et al., 2020;
OpenAI, 2023; Smith et al., 2022), decision making (Yang
et al., 2023), and robotics (Vemprala et al., 2023). For ex-
ample, GPT-4 has demonstrated its capability that is compa-
rable or even exceeds human-level understanding on several
tasks (OpenAI, 2023), and DALLE·2 can generate aston-
ishing high-quality images. The outstanding performance
of large models heavily relies on the outrageous number of
parameters, namely the scaling law (Kaplan et al., 2020).
Broadly speaking, the scaling law asserts that as the model
size increases, various characteristics such as training loss,
test performance, and the amount of required data exhibit
predictable scaling behaviors.

Mixture-of-Experts (MoE), a classical model architecture,
enjoys the advantage that naturally fits the era of large mod-
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Figure 1. Diagram Showcasing the Architecture of MoE-based
Transformers. Within each MoE layer only a limited number of
experts are activated for inference.

els. MoE can improve the model’s performance by drasti-
cally increasing the number of parameters while only incur-
ring little computational overhead. Although the number of
parameters involved in the forward pass of an MoE model
remains almost unchanged, research (Fedus et al., 2022)
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suggests that augmenting parameter counts using the MoE
architecture still conforms to the scaling law. Encouraged
by the advantage, many MoE-based large models have been
proposed and achieved overwhelming performance in com-
puter vision (Li et al., 2023a; Riquelme et al., 2021; Xue
et al., 2022), natural language processing (Shazeer et al.,
2017; Fedus et al., 2022), Specifically, the Sparsely-Gated
Mixture-of-Experts (Shazeer et al., 2017) scales LSTM mod-
els to 137 billion parameters, which improves the model
capacity by 1000× with marginal computational overhead
increase. Switch Transformers (Fedus et al., 2022) scale
to 1.6 trillion parameters with the same perplexity as T5-
XXL (Raffel et al., 2020) while 4× speedup during infer-
ence. However, the success of MoE comes with sacrifices in
effective GPU memory utilization, incurring large memory
occupation while only a small fraction of parameters resid-
ing in the memory are effective for inference of the current
batch. Fig. 1 depicts the architecture of MoE-based trans-
formers, where only a small portion of experts are activated
in each MoE layer during each inference.

Further, with the trend of model scaling, we have observed a
substantial gap between the memory demands of large mod-
els and the memory capacity of GPUs. For instance, in the
past three years, the number of parameters in state-of-the-art
models has scaled from 175 billion in GPT-3 (Brown et al.,
2020) to 1.76 trillion in the newly announced GPT-4 (Ope-
nAI, 2023), showing an over 10× increase. Contrarily, the
memory capacity of high-end GPUs remains around 80GB
(Choquette, 2023), and commodity GPUs are still limited to
48GB or even smaller. This growing discrepancy motivates
techniques to improve memory utilization efficiency. Thus,
we seek to answer a compelling research question:

How to serve large Mixture-of-Experts models in an
efficient and scalable manner under constrained memory?

Previous efforts have studied the efficiency problem of MoE
models to some extent. Deepspeed-MoE (Rajbhandari et al.,
2022) optimizes the MoE module in the Deepspeed frame-
work for efficient grouping and scheduling. A later version
of the work (Aminabadi et al., 2022) focused on optimizing
the inference efficiency with optimized computation kernels
and careful coordination of communication and parallelism.
Tutel (Hwang et al., 2023) enables adaptive parallelism
and pipelining at runtime. However, these methods only
focus on optimizing device-to-device communication but
ignore the data-awareness, not to mention exploiting the
data-awareness to improve efficiency during inference. The
data-awareness refers to a design where the technique or
strategy is determined based on the incoming data. Our
proposed framework embraces the data-awareness which
brings three advantages. Firstly, the data-awareness can
squeeze the sparsity leading to a further increase in memory
efficiency compared to previous methods. Secondly, the

Table 1. Comparison of SiDA-MoE and Baseline Methods. This
table delineates the capabilities of various methods in terms of
data-awareness, effective GPU memory utilization, and inference
speed on large MoE models. SiDA-MoE excels in its data-aware
approach with high effective GPU memory utilization and high
inference speed on large MoE models.

Methods Data-aware
Effective GPU

memory utilization
Inference speed
on large MoE

Standard ✗ low slow
Deepspeed ✗ medium slow

Tutel ✗ medium slow
SiDA-MoE ✓ Extremely high Extremely high

data-awareness preserves the structure crucial for a sample’s
unique features, better maintaining the model’s performance.
Thirdly, the data-awareness offers better adaptability since
the framework varies according to data distribution.

In this paper, we present an efficient inference system, i.e.,
SiDA-MoE (Sparsity-inspired Data-Aware), for serving
large MoE models. By noticing that modern server CPUs
support terabytes (TB) of main memory, dwarfing GPU ca-
pacity, SiDA-MoE dynamically leverages both main mem-
ory and GPU memory by exploiting sparsity in MoE models
in a data-aware manner. We summarize the comparison
in Table 1 between SiDA-MoE and baselines. Specifically,
SiDA-MoE contains two threads that run in parallel, an infer-
ence thread and a hash-building thread. The hash-building
thread exploits the sparsity of expert activation in a data-
aware manner, whose core is a network-based hash function.
Specifically, the hash function is an offline trained predic-
tor that predicts the experts to be activated. In this work,
we employ a LSTM (Hochreiter & Schmidhuber, 1997)
with sparse attention and a truncated knowledge distilla-
tion to boost the performance of the hash function. The
inference thread offloads inactivated experts predicted by
the hash-building thread to maximize effective GPU mem-
ory utilization. Besides, SiDA-MoE also brings significant
speedup during inference. Our contributions are summa-
rized as follows:

• To the best of our knowledge, SiDA-MoE is the first
sparsity-inspired data-aware system serving for effi-
cient and scalable inference on large MoE models.

• We propose an offline training strategy to build a data-
aware hash function deployed in SiDA-MoE that re-
places the router function in MoE layers. Our design
boosts the throughput of MoE models up to 3.93× and
reduces the latency down to 28%.

• Our offloading scheme achieves up to 80% GPU mem-
ory saving with only less than 1% performance drop.
Our hash function can achieve up to 99% prediction
accuracy on expert activation.

The paper is organized in the following manner: In Sec-
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tion 2, we will introduce the background and motivation.
Section 3 is devoted to the framework of SiDA-MoE, our
observation of the expert activation pattern, and our design
of the offline trained hash function. In Section 4, we present
our experimental results. Section 5 and 6 are devoted to
related works and discussions, respectively. Finally, Section
7 will conclude the paper.

2 BACKGROUND AND MOTIVATION

In this section, we present the background and motivation
for SiDA-MoE. We employ the following notation through-
out this paper: a denotes a scalar, a represents a vector, A
signifies a matrix, and A indicates a set. The notation [K]
is used to denote the set {1, 2, . . . ,K}. Unless explicitly
stated otherwise, all experiments are conducted with a batch
size of 1 to isolate the influence of batch size.

2.1 Mixture of Experts

Since the first proposal of Mixture-of-Experts (MoE) (Ja-
cobs et al., 1991; Jordan & Jacobs, 1994), different MoE
models have been proposed based on various experts models,
for example, hidden Markov models (Jordan et al., 1996),
Gaussian Process (Tresp, 2000), and support vector ma-
chine (Collobert et al., 2001). With the rise of deep learning,
Eigen et al. propose the use of several sets of routers and
experts to build a stacked model, namely Deep MoE (Eigen
et al., 2013).

A MoE layer consists of a router function, denoted as
h(·;Wr), followed by K experts in parallel, denoted as
{fi(·;θi)}Ki=1. Usually, the router function is set as a lin-
ear function, i.e., h(x;Wr) = Wr

⊤x where Wr ∈ Rd×K

for input x ∈ Rd, and experts are multi-layer perceptrons
(MLPs) with a non-linear activation function (Chen et al.,
2022; Fedus et al., 2022; Shazeer et al., 2017). The output
of a MoE layer takes the form:

M(x;Wr,θ1, ...,θK) =
∑
i∈I

αi(x)fi(x;θi), (1)

where I contains the selected indices of experts and the
scaling factor αi is defined as

αi(x) =
exp{Wr[:, i]

⊤x}∑K
j=1 exp{Wr[:, j]⊤x}

.

Different selection mechanism of I leads to different mod-
els. The soft-routing model (Jordan & Jacobs, 1994) selects
all experts, i.e., I = [K], which leads to high computa-
tional overheads. The switch-routing model (Fedus et al.,
2022) selects the top-1 expert, i.e., I = argmaxi∈[K] αi(·),
introducing little extra computational overhead.
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Figure 2. Memory Efficiency of Switch Transformers on SST2.
The x-axis represents the length of the sentence and the bar records
the counts of sentences of corresponding length. The line repre-
sents the effective memory utilization for Switch Transformer on
SST2 with a varied sentence length. Down to 5% utilization can
be observed for large models.

2.2 Low Effective Utilization of GPU Memory

Encouraged by the advantage of MoE-based large models
that drastically increasing the number of parameters leads
to little computational overhead, many large-scale archi-
tectures have been proposed such as the Sparsely-Gated
MoE (Shazeer et al., 2017), Gshard (Lepikhin et al., 2020),
and Switch Transformers (Fedus et al., 2022). Specifically,
the Sparsely-Gated MoE proposes a trainable router func-
tion to determine the expert to be activated for each sample,
which makes it possible to build very large MoE-based mod-
els as it improves the computational efficiency by a large
margin compared to the soft-routing selecting all experts.
The Sparsely-Gated MoE scales LSTM models to 137 bil-
lion parameters achieving outstanding performance. Switch
Transformers, the most widely used transformer-based large
MoE, converts T5 models (Raffel et al., 2020) to their MoE
versions. All Switch Transformers outperform their founda-
tion dense model with the same FLOPs.

In our study, we found that large MoE models do not ef-
ficiently utilize GPUs. As shown in Eq. 1, we denote an
expert as activated if i ∈ I. Inactivated experts remain idle
in the forward pass, leading to low effective GPU memory
utilization. Effective GPU memory refers to the memory
storing parameters that are effective for the forwarding of
the model. The inactivated experts occupy a large amount
of GPU memory while remaining idle, leading to low ef-
fective GPU memory utilization. To quantitatively analyze
the GPU memory utilization, we provide a summary of
Switch Transformers on model size and MoE layer size in
Table 2. It is shown that for all Switch Transformers, espe-
cially the large ones, MoE layers occupy a large portion of
GPU memory. Meanwhile, most of the parameters of the
MoE layers are idle during one forward pass. To ascertain
the amount of ineffective GPU memory, we feed samples
from the SST2 dataset to Switch Transformers and record
the corresponding effective memory utilization rates. The
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Table 2. Memory Occupation of Switch Transformers. This table
highlights the allocation of parameters in gigabytes (GB) for differ-
ent models. MoE parameters dominate memory usage, especially
in larger models. In contrast, mainstream GPUs peak at 48GB,
with many at 24GB, while mobile GPUs range from 4GB to 12GB.

Model (GB) MoE (GB) Percentage (%)
Switch-base-8 2.298 1.7932 78.03

Switch-base-64 14.112 13.608 96.42
Switch-base-128 27.614 27.11 98.17
Switch-base-256 54.62 54.114 99.07
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Figure 3. MoE Overhead on SST2. The bar depicts the percentage
breakdown for MoE overhead and Ideal Inference time. Up to
72% time on Switch-base-256 are occupied by MoE overhead,
including expert selection, expert invocation, and communication.
Notably, the occupation of expert selection overhead scales up as
model size increases.

results are depicted in Fig. 2. For large Switch Transformers
such as Switch-base-128 and Switch-base-256, the ineffec-
tive GPU memory for short sentences is around 24GB and
50GB, respectively. Even for the longest sentences with
80 tokens, the ineffective GPU memory is around 20GB
and 46GB, respectively. Our method, SiDA-MoE, can save
all ineffective GPU memory, outperforming baselines by a
large margin. Further results on GPU memory reduction
across datasets can be found in Section 4.

2.3 High MoE Overhead

Apart from the low effective GPU memory utilization, we
also observed a high MoE overhead that includes expert
selection, expert invocation, and additional communication
costs when inference with MoE architectures. We conduct
experiments on SST2 with multiple Switch Transformer
models and provide the profiling results in Fig. 3. It is shown
that the MoE overhead consumes over 72% of the total
inference time for Switch-base-256, which is a bottleneck of
inference on MoE models. Notably, the overhead associated
with MoE escalates with the scale of the model, further
emphasizing the imperative of addressing the bottleneck
in inference efficiency. We account for this for the default
implementation that invokes every expert, irrespective of
whether any tokens are assigned to it to align with hardware
for efficient computation with a huge amount of requests.
In our modified implementation used as a proxy for ideal,
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Figure 4. Expert Activation in Switch Transformers on SST2. The
x-axis denotes sentence length, with bars illustrating the counts of
given lengths. The line depicts the ration of idle experts. Notably,
Switch-base-256 and Switch-base-128 activate less than 20% and
40% of their experts, respectively.

where we replace the router with a lookup table, we only
invoke an expert if there is token assigned to that expert to
suit the resource constraints scenario.

Remark 1 Given that we simulate an inference scenario
with a small batch size, the input to each expert is mini-
mal. Consequently, the invocation overhead surpasses the
computation itself — meaning the number of experts called
dictates the overall inference time.

2.4 Sparse Activation of Experts in Large MoE
Models

The sparse selection of experts is one of the critical obser-
vations that motivate SiDA-MoE. Our observation verifies
that only a small portion of experts will be activated during
inference.

For each token, the router function will select either top-
K (Shazeer et al., 2017) or top-1 (Fedus et al., 2022) experts
inducing a token level expert activation sparsity. However,
the sparsity on sentences, typically with 512 or 768 tokens,
remains elusive. Not to mention in the training stage, an
expert loading balance loss must be applied, which forces
the router to assign an almost equal number of tokens to
each expert. Otherwise, router’s outputs will collapse to few
experts leading to capacity degradation (Chen et al., 2022).

We test Switch Transformers with different number of ex-
perts on the SST2 dataset and report the sentence level
sparsity in Fig. 4. Our observation verifies that the sparse
activation pattern still exists at the sentence level for large
MoE models such as Switch-base-128 and Switch-base-256.
As shown in the figure, down to less than 40% experts and
20% experts are activated for Switch-base-128 and Switch-
base-256, respectively. Even for the longest sentences with
around 80 tokens, the ratio of idle experts is still higher than
70% for Switch-base-128 and 80% for Switch-base-256.
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Figure 5. Overview of SiDA-MoE. SiDA-MoE contains two threads, the inference and hash-building thread, that run concurrently. As
each batch Xj arrives, the hash-building thread constructs the expert hash table Hj and queues it. In tandem, the inference thread processes
the preceding batch Xi, dynamically managing experts in MoE layers based on the hash table Hi.

3 SIDA-MOE
3.1 Overview: workflow

We introduce a novel framework, Sparsity-inspired Data-
Aware (SiDA-MoE), for efficient inference of large MoE
models, whose overview is shown in Fig. 5. SiDA-MoE con-
tains two parallel threads that run simultaneously, namely
the Inference thread and the Hash-building thread. Consider
a sequence of incoming batches, batch Xj is fed to the hash-
building thread to build the hash table Hj storing expert
activation patterns for batch Xj , which will be pushed to the
hash table queue. At the same time, the inference thread is
handling the precedent batch Xi and operating dynamical
offloading on MoE layers based on the hash table Hi.

Hash-building thread. The Hash-building thread consists
of two components, a hash function and a hash table queue.
For each incoming batch ( 1 -a), the hash function will de-
termine experts to be activated for each token at each layer
and the corresponding scaling factor α ( 1 -b). The pre-
dictions are stored in the hash table Hj for the batch Xj

and pushed to the hash table queue ( 1 -c). The hash func-
tion can be a predefined hash function if the MoE model is
trained with the Hash layer (Roller et al., 2021). More com-
monly, for the MoE model using trained router functions,
such as Switch Transformers, the hash function will be of-
fline trained. We propose hash function training techniques
dedicated to modern MoE models, which will be introduced
in later sections.

Inference thread. The inference thread performs two tasks,
i.e., dynamically load activated experts and offload inacti-
vated experts according to the hash table built by the hash-
building thread, and use the SiDA-MoE MoE layers to in-
ference input batches. Specifically, for each incoming batch
Xi ( 2 -a), the inference thread will first pop the hash table
Hi from the hash table queue ( 2 -b) and remain idle if Hi

is not found. Notably, in practice, the inference thread takes
a longer time to inference a batch than the hash-building
thread to build a hash table for a batch. As a result, the infer-
ence thread never idles except at the very beginning. With
the popped hash table Hi, the next step is to dynamically
load and offload experts. Based on GPU memory budgets
and the expert activation pattern of the current batch, the
inference thread will load activated experts to GPU and of-
fload inactivated experts to RAM ( 2 -c). A first-in-first-out
(FIFO) scheme is applied on experts if no memory budgets
remain. The dynamical loading task of a MoE layer will be
done right after the finish of inference on the previous batch
following the pipeline parallelism mechanism (Huang et al.,
2019). Note that, in our system, all routers are offloaded to
the main memory and do not participate in the forward pass.
Lastly, the incoming batch Xi will be forwarded using the
SiDA-MoE MoE layers specific to Xi ( 2 -d). Algorithm 1
shows the end-to-end pipeline.

3.2 Design challenges

In the design of SiDA-MoE, we spot three key challenges.

Challenge 1: How to efficiently obtain experts that are
to be offloaded beforehand? Given the observation that
experts are activated sparsely, it is trivial to save GPU mem-
ory by offloading inactivated experts to RAM. However,
this naiv̈e implementation sacrifices the latency since expert
activation patterns are inaccessible without the output of
the router functions. It incurs large overheads to move ex-
perts between CPU and GPU after each router function as it
breaks the forwarding pipeline. We propose to use an offline-
trained hash function to acquire the expert activation pattern
before inference starts for each batch. Furthermore, we
design the hash function to run independently of model in-
ference and build a hash-building thread running in parallel
with the inference thread to achieve the efficiency require-
ments. By employing the hash-building thread, SiDA-MoE
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achieves outstanding latency compared to baselines since
the expert selection, dynamical offloading, and inference all
run in parallel.

Challenge 2: How to leverage sparse cross-embedding
dependency on experts activation to design a lightweight
offline trained hash function? Considering the inference
efficiency and the GPU memory consumption of the system,
the hash function must be a lightweight predictor. However,
simple predictors can hardly capture the contextual informa-
tion of the sequence and can be easily distracted. Hence, it
becomes crucial to enforce the predictor to focus on critical
information. We empirically verify that there exists a sparse
cross-embedding dependency on expert activation, i.e., a
limited number of embeddings in the sequence jointly affect
expert activation. This sparse cross-embedding dependency
sheds light on the success of lightweight predictors. How-
ever, it is impractical and inefficient to rule out all possible
outcomes to find the cross-embedding dependency for every
token. In response to the challenge, we propose a sparse
attention mechanism on LSTM that enforces the predictor
to focus on the most important embedding automatically.

Challenge 3: How to improve the expert selection accuracy
and approximate the scaling factor simultaneously? The
hash function needs to determine not only the expert acti-
vation but also the scaling factor α in Eq. 1. As the scaling
factor is derived from the SoftMax logits output from the
model, it is natural to apply knowledge distillation (KD),
setting the router functions as teacher models and the hash
function as the student model. However, it is impossible for
the hash function to approximate the scaling factor distribu-
tion over all experts by KD due to the limited capacity of the
hash function. To solve this challenge, we propose to use
a truncated knowledge distillation (TKD), where the KD
loss is computed over the top-T experts. However, the TKD
cannot guarantee adequate prediction accuracy. We further
add a cross-entropy loss to boost the prediction accuracy.

We introduce how SiDA-MoE deals with each challenge in
detail in the following sections.

3.3 Data-Aware and Efficient Expert Activation
Prediction

SiDA-MoE proposes a data-aware solution to efficiently
obtain the experts to be offloaded beforehand. Specifically,
we propose to use an offline trained hash function that takes
the sequence of embedding as input and predicts all the acti-
vated experts for each token in the sequence. Training data
of the hash function are pairs of input token embeddings
and MoE expert activation patterns. SiDA-MoE, augmented
by the data-aware expert activation prediction, enjoys two
advantages while compromising little loss of model perfor-
mance down to less than 1%. Firstly, the system can acquire
the activation pattern of each sample beforehand and operate

dynamically loading and offloading according to the GPU
memory budget without interrupting the inference process.
Secondly, since the hash function determines the expert acti-
vation across all the MoE layers for a sample independently
of the inference, the system can build the hash function in a
hash-building thread running in parallel with the inference
thread. By doing this, we can remove the overhead caused
by expert selection from the inference time, which boosts
the throughput up to 3.93×.

Previous works have also been proposed to improve the
router function of MoE, such as the Hash layer (Roller
et al., 2021) and the Base layer (Lewis et al., 2021). SiDA-
MoE is orthogonal to these router functions as they can
be accommodated in the hash-building thread. For MoE
models with trained routers, we propose to train an LSTM as
the hash function with the sparse attention boosted with our
truncated knowledge distillation, detailed in the following
sections.
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Figure 6. Visualization of Eq. 2 over Different p and c.
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(b) Positions dependency.

Figure 7. Cross-embedding Dependency for Expert Activation on
Switch-base-128 on C4. The x-axis shows the proportion of cor-
ruption, while the y-axis represents the empirical probability of
expert activation change. Over 100 random embedding positions
are examined, with the average trend displayed.

3.4 LSTM with Sparse Attention

3.4.1 Sparse cross-embedding dependency on expert
activation

In the MoE layer, each word embedding will be fed to the
router function to decide which expert to activate for in-
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ference of the token. However, the expert activation does
not solely depend on the embedding corresponding to the
token due to the self-attention layer before each MoE layer
(shown in Fig. 1), where the word embedding is mixed to-
gether. Because of the positional embedding, the position
of tokens will also affect the expert activation. While the
process by which embeddings collectively influence expert
activation is complex, we identify a sparse cross-embedding
dependency on expert activation, indicating that only a lim-
ited number of other tokens and positions are critical to the
expert activation for the current token.

Suppose a sequence of length L, and let ci denote the num-
ber of critical tokens for the token at position i. We define
the critical tokens as tokens in the sequence other than the
selected i-th token, whose changes lead to a change in ex-
pert activation of the i-th token. In order to empirically
verify that ci is a small number for all i, we consider find-
ing a combinatorial equation involving ci and quantities we
can measure. Consider selecting a set of tokens from the
sequence excluding the i-th token, the probability that the
set contains a critical token is formulated as below:

E[p̂i] = 1−

(
L−1−ci
⌊pL⌋

)(
L−1
⌊pL⌋

) . (2)

where ⌊pL⌋ denotes the size of the set and p denotes the
portion of selection over the sequence. Note that the proba-
bility that the selected set of tokens contains a critical token
is equal to the probability that the i-th token’s expert ac-
tivation changes, denoted as p̂i, if we change all selected
tokens in the set. We denote the process of changing the
tokens in a sequence as ‘corruption.’ Given Eq. 2, p and p̂
are quantities that we can empirically acquire, that is, by
randomly selecting a portion p of tokens, we can empiri-
cally measure the probability that the i-th token’s expert
activation changes. We show in Fig. 6 the relation between
c and p̂ under different p.

Empirically, to study the token dependency of the token at
position i, the corruption is executed by randomly modify-
ing a fraction p of chosen tokens from [L]− {i} to values
distinct from their original and the i-th token. To examine
the position dependency for the i-th token, the corruption
also involves randomly choosing a fraction p of positions
from [L]− {i} and swapping the token positions. We use
the English division in the dataset C4 (Raffel et al., 2020)
to measure the probability that the i-th token’s expert acti-
vation changes under different p, depicted in Fig. 7. We set
the length L = 512 and truncate or pad sentences which are
not of length 512. We randomly test over 100 word embed-
ding positions (i.e., 100 i’s) on Switch-base-128 and plot
all of them in Fig. 7 with the average trend shown. Fig. 7a
and Fig. 7b show the cross-embedding dependency of the
token and position, respectively. Only a large portion of

corruption leads to high chances of expert activation change,
which demonstrates that most of the other tokens do not
have an impact on the expert activation of the current token.

By combining Fig. 6 and Fig. 7, we can read the best ap-
proximation of ci based on different pairs of (p, p̂) in Fig. 7,
where we find that the best approximation of ĉ ranges from 1
to 4 demonstrating the sparse cross-embedding dependency.

3.4.2 Design of the hash function

The design of the hash function must satisfy the following
conditions: (1) be able to capture the sequential information,
(2) be lightweight to preserve efficiency, and (3) be able to
extract and focus on the critical embedding automatically.
We adopt a 2-layer LSTM followed by a fully connected
layer to align the first two conditions. Further, we add one
fully connected layer to compress the embedding dimension.
To achieve the third condition, we adopt the sparse atten-
tion mechanism with the SparseMax activation (Martins &
Astudillo, 2016).

Attention mechanism. The attention mechanism was first
proposed in (Bahdanau et al., 2015), which has been proven
to be influential in the realm of deep learning. The attention
mechanism was proposed to allow the decoder to focus
on different parts, resolving the problem that the encoder
encodes the entire sentence. Given a query q and a set of
key-value pairs (k,v), the attention mechanism computes
a weighted sum of values based on the similarity of the
query to the keys. Formally, the attention weights w and
the output o are computed as o =

∑
i wivi with

wi =
exp(score(q,ki))∑
j exp(score(q,kj))

,

where score(q,k) is a function that calculates the similarity
between the query and a key. One common choice for score
is the dot product of the query and key.

We append one attention layer right after the LSTM layer
where the key, value, and query are all set as the output
sequence from LSTM. Consequently, each embedding will
be a weighted sum of the sequence with weights propor-
tional to the similarity between two vectors. The attention
mechanism allows the predictor to pay different attention to
different embeddings. However, the naive attention mech-
anism cannot impose a sparse focus. We further apply the
SparseMax activation over w.

SparseMax activation. In contrast to the SoftMax acti-
vation, which provides a dense distribution, that is, non-
zero probabilities assigned to all classes or positions, the
SparseMax (Martins & Astudillo, 2016) provides a sparse
distribution, where zero probability is assigned to many posi-
tions. We apply the SparseMax activation over the attention
weights w to obtain a sparse attention mechanism. Given
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Algorithm 1 SiDA-MoE workflow
Assume batches of inputs {Xi}B−1

i=0 . Let M denote the MoE
model, h denote the hash function, H denote the hash table that
stores the expert activation, and k denote the index of experts.

Inference Thread:
for each batch Xi do

Dequeue Hi.
for each MoE layer l and
each token s do

Check Expert Hi[l][s].
If not on GPU: to cuda.

end for
MSiDA-MoE � M .
output = MSiDA-MoE(Xi).

end for
end Inference Thread

Hash Building Thread:
for each batch Xi do

for each MoE layer l and
each token s do

Expert k � hl(Xi)[s].
Hi[l][s] � Expert k.

end for
Enqueue Hi.

end for
end Hash Building Thread

an input vector w ∈ RL, the SparseMax transformation is
defined as:

SparseMax(w) = argminu∈∆L−1 ∥u−w∥22 ,

where ∆L−1 denotes the (L− 1)-dimensional simplex, i.e.,

∆L−1 = {u ∈ RL|u ≥ 0,

L∑
i=1

ui = 1}.

Although the expert selection is affected by other tokens in
the sequence, the current token is always the most crucial
on expert selection. Hence, we adopt the residual connec-
tion (He et al., 2016) to boost the performance right before
the final fully connected layer.

3.5 Truncated Knowledge Distillation

The hash function of SiDA-MoE is required to predict the
expert to be activated and the corresponding scaling factor
α. Knowledge distillation (KD) (Hinton et al., 2015), which
aims to minimize the distance of logits between the teacher
and student model, should be the best training strategy for
our hash function. However, the capacity of our hash func-
tion, 2-layer LSTM, is far less capable than the MoE model.
The predictor cannot fully capture the behavior of logits of
the router functions in the MoE model. The naiv̈e usage of
KD greatly harms the performance of the system.

We propose Truncated KD (TKD) to tackle the challenge.
Different from the traditional KD, the truncated KD only
considers positions with top-T SoftMax logit, which helps
the hash function focus more on predicting the scaling factor
for experts with a higher chance of being activated. Notably,
large T can provide a smooth ground truth for the hash
function, while small T enforces the hash function to be
more focused on fewer experts. Further, we add the cross
entropy loss to ensure the prediction accuracy. The training
objective is λLCE + LTKD(T ).

4 EXPERIMENT

We extensively evaluate SiDA-MoE on different datasets.
Specifically, we first show the GPU memory reduction ratio
of SiDA-MoE demonstrating a memory saving up to 80%.
We then report the throughput and latency of SiDA-MoE and
baselines, where SiDA-MoE achieves up to 3.93× improve-
ments in terms of throughput with little performance degra-
dation down to less than 1%. Our hash function achieves
a prediction accuracy of up to 99%. Also, SiDA-MoE
achieves the best efficiency under different GPU memory
budgets.

Implementation. We implement the proposed SiDA-MoE
framework atop the readily available Switch Transformer
implementation in transformer (Wolf et al., 2019), albeit not
without substantial additional engineering effort. Enabling
performant slice extraction poses challenges, as the MoE
must maintain fine-grained associations between experts
and hash table slices across layers and iterations. We opti-
mize the parallel invocation of experts through meticulous
inter-thread coordination, as naive parallelism introduces
serious race conditions. The SiDA-MoE manager tackles
intricate scheduling across the main training thread and the
concurrent prediction thread, synchronizing via a shared
queue that demands careful contention management. The
main thread must then judiciously merge predictor outputs
with the model state to orchestrate expert device placement,
avoiding costly overheads like GPU-CPU data transfers.

Setup. We select three baselines namely, Standard, Deep-
speed, and Tutel. The Standard baseline refers to the stan-
dard inference of the model. The Deepspeed refers to the
Deepspeed implementation (Aminabadi et al., 2022) of the
model, and the Tutel (Hwang et al., 2023) is designed for
MoE models by enabling adaptive parallelism. We select
three datasets from GLUE (Wang et al., 2018) and Super-
GLUE (Wang et al., 2019). Specifically, we select SST2
and MRPC from GLUE for short sentences and mid-length
sentences, and MultiRC from SuperGLUE for long sen-
tences. We test most of the experiments on a server with
an A-100 80GB GPU and 64 Intel(R) Xeon(R) Platinum
8358 CPU @ 2.60GHz CPUs. We investigate Switch-base-
8, Switch-base-64, Swicth-base-128, and Switch-base-256
on efficiency, where the number indicates the number of ex-
perts in each MoE layer in the Switch Transformer. And we
select Switch-base-8 and Switch-base-128 to fine-tune on
selected datasets as the representatives on accuracy analysis,
considering the representativeness and limited resources.
Our hash function in the hash building thread is trained
on the train set of the dataset with the true hash table and
evaluated on the test set of the dataset.

Evaluation metrics. We follow standard evaluation metrics
for SST2, MRPC, and MultiRC, i.e., classification accuracy
for SST2 and F1 score for MRPC and MultiRC. Further,
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we evaluate the fidelity of SiDA-MoE, which refers to how
much performance can be preserved compared to original
models. We refer the hash hits rate as the prediction accu-
racy on the expert activation of our hash function.

Hyperparameters We use AdamW (Loshchilov & Hutter,
2019) optimizer for fine-tuning the Switch Transformers
and training the hash function. We set the batch size as 1
when measuring the latency and memory usage to eliminate
the disturbance of the batch size. We select T = 30 in
the truncated KD with learning rate 5e − 5, batch size 64,
λ = 0.005, and train to converge. For fine-tuning Switch
Transformers, we set learning as 5e− 5 and fine-tune with
16000 max steps. We select top-1 experts from the hash
function for SST2 and top-3 experts for MRPC and MultiRC
when evaluating SiDA-MoE.

4.1 GPU Memory Saving

We report the GPU memory saving in Fig. 8. For short
sentences in SST2, SiDA-MoE can achieve over 80% GPU
memory reduction. For samples in MRPC whose lengths
are clustered between 50 and 80, the GPU memory reduc-
tion remains substantial, yielding savings of 6.28GB and
19.84GB GPU memory for Switch-base-128 and Switch-
base-256, respectively. Furthermore, even when processing
long paragraphs in MultiRC with lengths ranging from 200
to 500, the rate of GPU memory reduction retains over 40%
and 20%, leading to a save of 4.52GB for Switch-base-128
and 9.92GB for Switch-base-256.

4.2 Latency and Throughput

Apart from the GPU memory saving, SiDA-MoE also
achieves overwhelming efficiency in terms of throughput
and latency (see Fig. 9). Specifically, SiDA-MoE exceeds
the average of baselines by 2.60× and 3.93× on through-
put for large MoE models such as Swicth-base-128 and
Switch-base-256 on SST2. Even for MultiRC containing
long sentences, SiDA-MoE exceeds the average throughput
of baselines by 1.26× on Switch-base-128 and 1.57× on
Switch-base-256.

We also investigate the inference latency of SiDA-MoE and
baselines (see Fig. 10). For large MOE models such as
Switch-base-128 and Switch-base-256, SiDA-MoE reduces
the inference latency to 25% on SST2 and MRPC and to
60% on MultiRC. The improvements come from our design
of the hash-building thread that resolves the MoE overhead.

4.3 Efficiency under Limited GPU Memory Budgets

We investigate the efficiency under different GPU memory
budgets with different offloading methods on Switch-base-
128 and Switch-base-256 since large MoE models are more
resource-sensitive. Under a limited GPU memory budget,

Table 3. Evaluation of SiDA-MoE’s Perplexity. SiDA-MoE retains
the perplexity well, especially for large Switch Transformers. For
example, the perplexity only drops 3.52 for Switch-base-256.

Backbone Pretrained ppl. (↓) SiDA-MoE ppl. (↓)
Switch-base-8 6.68 18.49
Switch-base-64 4.93 11.84
Switch-base-128 4.86 11.73
Switch-base-256 4.59 8.11

Table 4. Evaluation of SiDA-MoE’s Performance Preservation.
SiDA-MoE retains as much as 99% of the performance on the
Switch-base-8 model and maintains over 95% on the Switch-base-
128 model, resulting in down to less than 1% performance drop.

Backbone SST2 MRPC MultiRC

Switch-base-8
Finetuned 92.20 89.14 56.70

SiDA-MoE 90.59 86.91 56.11
Fidelity 98.25% 97.49% 98.95%

Switch-base-128
Finetuned 93.57 89.66 59.95

SiDA-MoE 87.04 83.01 55.49
Fidelity 93.02% 92.59% 92.56%

SiDA-MoE will offload and cache inactivated experts in a
first-in-first-out manner1, while all other baselines imple-
ment the model parallelism, where only layers required for
inference will be kept on the GPU. The results of throughput
versus GPU memory budgets are shown in Fig. 11. SiDA-
MoE achieves better throughput under all GPU memory
budgets across all datasets, demonstrating that SiDA-MoE
employs a better offloading strategy under limited GPU
memory budgets.

4.4 Capabilities as Pretrained Models

We replace the router function with its approximation. The-
oretically, our hash function approximates the density distri-
bution of the router function, so the output will be similar.
Empirically, to provide better sense on the performance
degradation of Switch Transformers as pretrained models,
we measure and report the perplexity of several Switch
Transformers on the C4 dataset (Raffel et al., 2020), where
Switch Transformers are pretrained. Results are shown in
Tab. 3. Note that there is a drop in perplexity degradation
as models getting larger, since larger models have stronger
resistance to experts miss-classification caused by the hash
function. The following two sections show the results on
finetuned downstream tasks.

4.5 Fidelity Analysis

We conduct the fidelity analysis to check how much per-
formance SiDA-MoE can preserve. As Table. 4 shows,
SiDA-MoE can preserve up to nearly 99% accuracy lead-

1For fair comparison with baselines, we use FIFO, although
other strategies could also be effective.
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Figure 8. GPU Memory Reduction Rate by SiDA-MoE for Switch Transformers Across Datasets. SiDA-MoE achieves over 60% and
80% reduction on SST2 and MRPC for Switch-base-128 and Switch-base-256, respectively. And in MultiRC, with sentence lengths of
200-500, memory reductions of over 40% for Switch-base-256 and 20% for Switch-base-128 are noted.

Switch-base-8 Switch-base-64 Switch-base-128 Switch-base-256

101

102

Th
ro

ug
hp

ut
 (S

am
pl

es
/s

) 

1.04×
1.43× 2.60× 3.93×

SST2
SiDA
Others

Switch-base-8 Switch-base-64 Switch-base-128 Switch-base-256

101

102

1.01×
1.54× 2.52× 3.83×

MRPC

Switch-base-8 Switch-base-64 Switch-base-128 Switch-base-256

101

102

1.02×

1.09×
1.26× 1.57×

MultiRC
SiDA
Standard
Deepspeed
Tutel

Figure 9. Throughput of Different Methods for Switch Transformers Across Datasets. SiDA-MoE achieves outstanding throughput
for large MoE models on all three datasets with various sentence length and comparable results for small MoE models. Specifically,
SiDA-MoE achieves 2.60×, 3.93× more throughput on SST2, 2.52×, 3.83× more on MRPC, and 1.26×, 1.57× more throughput on
MultiRC for Switch-base-128 and Switch-base-256, respectively.

Table 5. Top-3 Hash Hits Rate. Demonstrating SiDA-MoE’s ex-
emplary accuracy on expert activation prediction up to over 99%
across various models.

Backbone SST2 MRPC MultiRC
Switch-base-8 99.00% 97.41% 91.74%
Switch-base-128 98.78% 98.65% 90.49%

ing to a performance degradation down to less than 1% for
Switch-base-8. For Switch-base-128, the fidelity is up to
96% leading to a performance loss down to 3%. Our results
demonstrate the superiority of SiDA-MoE, which achieves
low inference latency and low GPU memory occupation
with negligible loss on the model’s performance.

4.6 Hash Hits Rate

SiDA-MoE adopts a predictor to predict the experts to be
activated for each token. We investigate the accuracy of the
predictor in the hash-building thread, which we refer to as
the hash hits rate. Results can be found in Table 5 where we
report top-3 accuracy. For very long sentences, such as the
MultiRC dataset, the hash hits rate can achieve over 90%.

5 RELATED WORK

With the rise of LLM, efficient serving for large models
has become a hot topic. Much research has been done by
adopting classical model compression methods, such as

knowledge distillation (Fu et al., 2023; Li et al., 2023b;
Tan et al., 2023; Wang et al., 2023; Wu et al., 2023; Gu
et al., 2023; Zhou et al., 2023; Yuan et al., 2023a), quantiza-
tion (Chee et al., 2023; Frantar et al., 2022; Lin et al., 2023;
Cheng et al., 2023; Liu et al., 2023a;b; Shang et al., 2023;
Shao et al., 2023; Xiao et al., 2023; Yuan et al., 2023b), and
pruning (Frantar & Alistarh, 2023; Ji et al., 2023; Ma et al.,
2023; Sun et al., 2023; Xia et al., 2023; Li et al., 2023c).
Further, others have been exploring more efficient network
architectures (Del Corro et al., 2023; Liu et al., 2023c; Miao
et al., 2023; Jiang et al., 2023b; Ning et al., 2023; Spector &
Re, 2023; Xu et al., 2023). Besides, some have tackled the
efficiency problem from a data perspective by performing
text compression (Chevalier et al., 2023; Ge et al., 2023;
Valmeekam et al., 2023; Jiang et al., 2023a). However, these
works are not specifically designed for MoE models and
ignore the sparse expert activation patterns. SiDA-MoE
exploits the expert activation patterns to achieve efficient in-
ference. Furthermore, SiDA-MoE is orthogonal to methods
such as quantization and pruning, which can be applied to
the activated expert networks.

Deploying deep neural networks under resource-limited sce-
narios has long been an active research area (Mao et al.,
2017; Zhou et al., 2019; Wang et al., 2020; Qiu et al., 2024).
The efficient deployment of MoE-based models has gain
more and more attention recently. SE-MoE (Shen et al.,
2022) considers a sophisticated communication schedul-
ing strategy design to improve the throughput in inference.
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Figure 10. Comparison of Inference Latency Across Different Methods. SiDA-MoE consistently outperforms baselines, especially evident
on Switch-base-256 model with latency reduced down to 28%. Notably, improvements are more pronounced as sentence lengths decrease.
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Figure 11. Throughput Efficiency Relative to GPU Memory Bud-
get. SiDA-MoE’s advantage is particularly pronounced in con-
strained GPU memory scenarios, showcasing its superior efficiency
by offloading experts compared to the conventional model paral-
lelism, here denoted as ’Standard’.

Specifically, SE-MoE uses dynamic scheduling to overlap
movement from CPU memory and inference computation in
GPU memory. However, we propose a look-ahead strategy
in a data-aware manner. Further, we observe and exploit
the inherited sparsity on expert activation in MoE, while
SE-MoE considers distillation and compression to reduce
the MoE graph. Besides, M3ViT (Fan et al., 2022) proposes
a co-design framework and Edge-MoE (Sarkar et al., 2023)
accomplish the hardware design of M3ViT. Fan et al. in-
troduce MoE-based models to multi-task learning to allow
efficient on-device multi-task learning for both training and
inference. SiDA-MoE is different in the sense that the sparse
expert path in M3ViT is enforced by the multi-tasks, while
we observe and exploit the inherited sparse expert activation
pattern in MoE based-model.

We also notice several concurrent works specifically de-
signed for efficient MoE-based model inference (Huang
et al., 2023; Kong et al., 2023; Yi et al., 2023). However,
SiDA-MoE is orthogonal to these works, which focus on
designing better scheduling for caching experts. SiDA-MoE
explores a data-aware path that predicts the experts to be

activated. The data-aware approach and the caching schedul-
ing can be combined to achieve better efficiency.

6 DISCUSSION

Enhanced Hierarchical Offloading. While SiDA-MoE of-
fers offloading capabilities between main memory and GPU
memory, its limitations are defined by the storage capac-
ity of the main memory. This poses challenges, especially
when deploying massive models like Switch-c-2048 with
almost 5TB of parameters. A logical progression would
be to introduce a layered offloading mechanism that fluidly
transfers experts between GPU memory, main memory, and
SSD storage. Such an advanced hierarchical approach in
SiDA-MoE would make it adept at handling models of any
magnitude.

Optimized Hash Graph for Expert Activation Storage.
Currently, SiDA-MoE utilizes an LSTM model to function
as its hash system. It’s evident that the expert activation
is conditionally contingent upon the activation patterns ob-
served in preceding MoE layers. To enhance efficiency, an
ideal hash function could be designed as a graph. This graph
would capture and store these conditional dependencies, en-
abling rapid and effective extraction of expert activation.

7 CONCLUSION

In summary, this paper presents SiDA-MoE, a novel data-
aware method that adeptly addresses the challenges posed
by the memory constraints of GPUs when serving expansive
models, specifically leveraging the sparsity inherent in MoE
architectures. Further, SiDA-MoE deploys an offline trained
hash function running in the hash-building thread, which
alleviates the expert selection overhead by a large margin.
Through judicious utilization of both main and GPU mem-
ory, SiDA-MoE offers a promising route for serving large
MoE models under limited GPU budgets with nearly zero
performance setbacks.
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