
ACCURATE LOW-DEGREE POLYNOMIAL APPROXIMATION OF NON-POLYNOMIAL

OPERATORS FOR FAST PRIVATE INFERENCE IN HOMOMORPHIC ENCRYPTION

Jianming Tong * 1 Jingtian Dang * 2 Anupam Golder 3 Arijit Raychowdhury 3 Cong Hao 3 Tushar Krishna 3

ABSTRACT
As machine learning (ML) permeates fields like healthcare, facial recognition, and blockchain, the need to protect
sensitive data intensifies. Fully Homomorphic Encryption (FHE) allows inference on encrypted data, preserving
the privacy of both data and the ML model. However, it slows down non-secure inference by up to five magnitudes,
with a root cause of replacing non-polynomial operators (ReLU and MaxPooling) with high-degree Polynomial
Approximated Function (PAF). We propose SMART-PAF, a framework to replace non-polynomial operators
with low-degree PAF and then recover the accuracy of PAF-approximated model through four techniques: (1)
Coefficient Tuning (CT) – adjust PAF coefficients based on the input distributions before training, (2) Progressive
Approximation (PA) – progressively replace one non-polynomial operator at a time followed by a fine-tuning, (3)
Alternate Training (AT) – alternate the training between PAFs and other linear operators in the decoupled manner,
and (4) Dynamic Scale (DS) / Static Scale (SS) – dynamically scale PAF input value within (−1,1) in training,
and fix the scale as the running max value in FHE deployment. The synergistic effect of CT, PA, AT, and DS/SS
enables SMART-PAF to enhance the accuracy of the various models approximated by PAFs with various low
degrees under multiple datasets. For ResNet-18 under ImageNet-1k, the Pareto-frontier spotted by SMART-PAF
in latency-accuracy tradeoff space achieves 1.42×∼ 13.64× accuracy improvement and 6.79×∼ 14.9× speedup
than prior works. Further, SMART-PAF enables a 14-degree PAF (f 2

1 ◦g2
1) to achieve 7.81× speedup compared

to the 27-degree PAF obtained by minimax approximation with the same 69.4% post-replacement accuracy. Our
code is available at https://github.com/EfficientFHE/SmartPAF

1 INTRODUCTION

As ML becomes more pervasive in fields such as health-
care (Mateen et al., 2020), facial recognition (Raji & Fried,
2021), and blockchain (Zhang et al., 2021), concerns re-
garding privacy leakage of private and sensitive data have
arisen. Fully Homomorphic Encryption (FHE) (Albrecht
et al., 2021) provides a solution to these concerns by allow-
ing for ML inference on encrypted data while preserving the
privacy of both the data and models. However, FHE-based
ML inference comes with a significant latency overhead,
i.e. five orders of magnitude longer than the corresponding
non-secure version (Samardzic et al., 2021). This slow-
down is primarily due to non-polynomial operators (e.g.
ReLU, MaxPooling, and Softmax, etc.), which dominate

*Equal contribution 1School of Computer Science, Georgia In-
stitute of Technology, North Avenue, Atlanta, 30332, Georgia, U.S.
2Electrical and Electronics Engineering, Carnegie Mellon Univer-
sity, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, U.S.
3School of Electrical and Computer Engineering, Georgia Insti-
tute of Technology, North Avenue, Atlanta, 30332, Georgia, U.S..
Correspondence to: Jingtian Dang <dangjingtian@cmu.edu>,
Jianming Tong <jianming.tong@gatech.edu>.

Proceedings of the 5th MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

approximately half of the total latency (Park et al., 2022).
Therefore, a major research problem is how to efficiently
process non-polynomial operators in FHE.

1.1 Challenges

Non-polynomial operators pose a challenge in FHE due
to the lack of native support. To overcome this, previous
research has explored (1) a hybrid scheme, which offloads
non-polynomial operators to other secure schemes with a
secure data transfer to communicate data among schemes,
and (2) approximation, which replaces non-polynomial op-
erators with polynomial approximation functions (PAF).

The hybrid scheme is challenging in practice because a
plethora of prior arts illustrate the prohibitive communica-
tion overheads for transferring data securely among different
schemes (Gilad-Bachrach et al., 2016; Lou et al., 2021; Ran
et al., 2022).

Despite its promise, PAF approximation is non-trivial be-
cause it requires striking a balance between accuracy and la-
tency. A high-accuracy approximation requires high-degree
PAFs with a prohibitively long chain of multiplications
with bootstrapping. An example includes a SotA 27-degree
PAF (Lee et al., 2021; Kim et al., 2022). On the other hand,

https://github.com/EfficientFHE/SmartPAF

SMART-PAF: Accurate Low-degree Polynomial Approximation of Non-Polynomial Operators for Fast Private Inference

0 10 20 30 40 50
Latency of PAF on AMD 2990WX (s)

0

20

40

60

Im
ag

eN
et

 To
p-

1
Ac

cu
ra

cy
 (%

)

69.4
65.3
57.3

6.5

69.4

47.1

23.0

4.20.0

Speedup 7.81X
1.47X more accurate

SmartPAF
Prior Works

Figure 1: SMART-PAF replaces ReLU and MaxPooling
by low-degree PAFs, and achieves better accuracy-latency
Pareto-frontier than prior works (Lee et al., 2021; 2022;
Cheon et al., 2020) on ResNet-18 (ImageNet-1k).

a low-latency approximation suffers from severe accuracy
degradation, allowing only a subset of non-polynomial oper-
ators to be replaced with PAFs. In such cases, there are still
some non-polynomial operators being offloaded to other
schemes to reduce the accuracy drop, resulting in dominat-
ing communication latency overheads in practice (Mishra
et al., 2020a; Lou et al., 2021; Ran et al., 2022). These
approaches are suboptimal and highlight the need for ex-
ploring alternative approaches.

To address this challenge, previous research has explored
coefficients fine-tuning to reduce accuracy drop when replac-
ing non-polynomial operators with low-latency low-degree
PAFs. However, existing techniques fail to converge for
PAFs with degrees higher than 5, and PAFs with degrees
lower than 5 still suffer from severe accuracy degradation for
a simple 7-layer CNN model under CiFar-10 dataset (Lou
et al., 2021), let alone deeper ResNet-18 model under more
complex task like ImageNet-1k. To explore the optimal
degree with minimal accuracy degradation for various mod-
els under different tasks, the key challenge is to improve
training techniques to enable the convergence of PAF with
arbitrary degrees.

1.2 Our Contributions

To tackle the aforementioned dilemma, this paper proposes
four key techniques and a framework to enable the conver-
gence of the PAF-approximated model when using PAFs
with arbitrary degrees. This is the first-ever framework, to
the best of our knowledge, to (1) replace all non-polynomial
operators with 8 ∼ 14-degree PAFs, and (2) to adopt pro-
posed training techniques to minimize accuracy degradation.
Out contributions are listed as follows. (The comparison
with prior arts is shown in Tab. 1)

Pre-Training Novel Techniques:

• Coefficient Tuning (CT): Using a uniform PAF to re-
place all non-polynomial layers neglects variations in
input distributions, causing a marked drop in accuracy
of PAF-approximated model (Tab. 3). CT refines PAF
coefficients based on local input distributions, enhanc-
ing the accuracy of PAF-approximated model without
fine-tuning by 1.04×∼ 2.38× across PAFs with various
degrees.

• Progressive Approximation (PA): Directly replacing
all non-polynomial operators and training the full net-
work, as adopted by previous works, lacks a theoretical
convergence guarantee under SGD (Fig. 9). Instead, PA
sequentially replaces non-polynomial operators in infer-
ence order, with each substitution followed by training
layers preceding the replacement point. The theoreti-
cal convergence of PA under SGD is analyzed in §3.1,
resulting in an accuracy boost of 0.4% ∼ 1.9%.

In-Training Novel Techniques:

• Alternate Training (AT): When training PAF and lin-
ear operator (like convolution) in a PAF-approximated
model together, issues arise: slow convergence with a
small learning rate or divergence with a large one. This
stems from the different hyperparameter needs of PAF
coefficients and linear layers training. Therefore, AT
trains PAF coefficients and other layers separately, using
different hyperparameters, and alternates between PAF
coefficients training and other layers training. This leads
to accuracy climbing by 0.6% ∼ 2.3% (Tab. 3).

• Dynamic Scaling (DS) and Static Scaling (SS): PAF
training is sensitive to the input value range. Prior works
take a fixed scale value to reduce the input range in train-
ing because FHE does not support value-dependent oper-
ators. However, input values in training might overflow
under a fixed scale, hampering fine-tuning accuracy and
potentially leading to divergence. We address this by
introducing Dynamic Scaling, normalizing inputs to the
[−1,1] range during training. Subsequently, we apply
Static Scaling to the post-training model, anchoring the
scale to the peak value in FHE deployment.

SMART-PAF Framework:

• The order of applying proposed techniques affects final
accuracy, and thus a systematic scheduling framework is
proposed to automatically perform non-polynomial re-
placement and PAF-approximated model training. Our
evaluation results show that for ResNet-18 (ImageNet-
1k) and VGG-19 (CiFar-10), SMART-PAF consistently
enables low-degree PAFs to demonstrate higher accu-
racy than high-degree SotA PAFs (Tab. 3 and Tab. 4).
For example, SMART-PAF identifies the Pareto-frontier
of various PAFs shown in Fig. 1 and spots the sweet-
point PAF with 14 degrees, which can achieve the same

SMART-PAF: Accurate Low-degree Polynomial Approximation of Non-Polynomial Operators for Fast Private Inference

Table 1: Comparison of SMART-PAFwith prior works (Lou
et al., 2021; Ran et al., 2022; Gilad-Bachrach et al., 2016;
Hesamifard et al., 2017; Lee et al., 2021; Xie et al., 2022;
Samardzic et al., 2021; Kim et al., 2022; Samardzic et al.,
2022; Reagen et al., 2021; Juvekar et al., 2018b; Mishra
et al., 2020a; Riazi et al., 2020; Lou & Jiang, 2019).

Low
Communication

Overhead

Low
Accuracy

Degradation

Low
Latency

Overhead
SafeNet, CryptoGCN ✗ ✗ ✓

CryptoNet, CryptoDL, LoLa, CHE ✗ ✗ ✓
F1, CraterLake, BTS ✓ ✓ ✗

HEAX, Delphi, Gazelle, Cheetah ✗ ✗ ✓
SHE ✓ ✓ ✗

SMART-PAF ✓ ✓ ✓

Approximated
Non-linear Ops

PAF

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

B
at

ch
N

or
m

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

B
at

ch
N

or
m

PAF

C
on

vo
lu

tio
n

Av
gP

oo
lin

g

Fu
lly

C
on

ne
ct Cat

Fish

Encryption

Dog

Decryption

Secure Inference - Linear Opeartors Only

Approximated
Non-linear Ops

Figure 2: Overview of the FHE-base ML inference where
original non-polynomial operators are replaced by Polyno-
mial Approximated Activation (PAF).

69.4% validation accuracy with 7.81× latency speedup
in ResNet-18 inference on ImageNet-1k, compared to
the minimax approximation with 27-degree PAF (Lee
et al., 2021).

This work pushes the state-of-the-art in PAF-approximated
model training for higher accuracy with lower latency
(Fig. 1). First, we formalize PAF-approximated model
training into an optimization problem (§3.1). Second, §4
elaborates on the SMART-PAF techniques and framework
with both intuitive and theoretical analysis. Third, we in-
dividually assess the SMART-PAF techniques for VGG-19
(CiFar-10) and ResNet-18 (ImageNet-1k) in §5.

2 BACKGROUND

2.1 Non-polynomial Operators in FHE-based ML
Inference

FHE is an asymmetric encryption scheme that enables
ciphertext-based computation with Cheon-Kin-Kim-Song
(CKKS) (Cheon et al., 2016) as the most commonly used
FHE scheme for machine learning inference due to its su-
perior efficiency in approximate computation compared to
other schemes such as BGV, BFV, and TFHE (Riazi et al.,
2020). Under the CKKS scheme, only polynomial operators
are allowed as shown in Fig. 2 such that all non-polynomial
operators including both ReLU and MaxPooling must be
replaced by PAF (Approximation) or offloaded to other
schemes (Hybrid Scheme). Prior works have also shown
that approximation offers superior performance and lower
overhead compared to the hybrid scheme (Lou et al., 2021).

2.2 Polynomial Approximated Function (PAF)

High-degree polynomials are theoretically capable of ap-
proximating arbitrary functions, but approximating ReLU
or MaxPooling directly can result in severe approximation
errors (Lee et al., 2022). Prior research (Lee et al., 2022) has
shown that it is more effective to approximate the sign(x)
function 1 and then construct the ReLU and Max operator
using it, such as with (x+sign(x)·x)

2 and (x+y)+(x−y)·sign(x−y)
2 .

Lower latency and higher accuracy (low accuracy degra-
dation) are two fundamental goals of replacing non-
polynomial operators with PAFs. Latency is determined by
the degree of the polynomial, as FHE-based multiplication
dominates latency. Accuracy degradation arises from the dif-
ference between the PAF and the original non-polynomial
operators, as PAF cannot precisely approximate targeted
non-polynomial functions. Such differences can vary de-
pending on the degree of the PAF, the cascaded format of
the PAF, and the coefficient values of the PAF.

We adopt cascaded polynomial based PAFs throughout the
paper because they achieve lower approximation error than
a single polynomial with the same degree (Lee et al., 2022;
2021). Tab. 2 shows the selected PAFs with the minimal
multiplication depth under different degrees constraints. We
use the notation f n to indicate a serial nested function call
of the same polynomial f for n times, for example, f 2 =
f (f (x)).

2.3 PAF Approximation Input Range

The effectiveness of PAFs in approximating non-polynomial
operators depends on their input range. For example, setting
the approximation input range as [−1,1] for a PAF indicates
that it gives relatively more accurate approximations of non-
polynomial operators’ output when the input falls in [−1,1]
than outside this range.

However, determining an appropriate input range can be
challenging because a narrow input range can lead to severe
approximation loss for input value outside the input range
and potentially lead to training divergence. In contrast, a
broader range may result in a large average approximation
error across the entire input range, because of the limited
representation capability of PAFs to capture negligible dif-
ferences among input values under a broad range.

Prior works (Lee et al., 2021; Lou et al., 2021) adopted
a fixed scale in training because FHE does not support
value-dependent operation. Specifically, (Lee et al., 2021)
determines the fixed scale by adding some margin to the
maximum of input values. However, input values in train-
ing might overflow the range specified by a fixed scale,
hampering fine-tuning accuracy and potentially leading to

1sign(x) outputs 1/−1 if x is positive/negative, and 0 for zero

SMART-PAF: Accurate Low-degree Polynomial Approximation of Non-Polynomial Operators for Fast Private Inference

Table 2: PAF and corresponding multiplication depth. α

indicates precision parameter (Lee et al., 2021), and fi,gi
refer to PAF base in (Cheon et al., 2020)

Form α = 10 f 2
1 ◦g2

1 α = 7 f2 ◦g3 f2 ◦g2 f1 ◦g2
Degree 27 14 12 12 10 5

Multiplication Depth 10 8 6 6 6 5

divergence. Therefore, we propose dynamic-scale training
and only pick a fixed scale in model deployment.

3 PROBLEM STATEMENT

3.1 Polynomial Approximation Problem Statement

The essential problem for approximating non-polynomial
operators with PAF is the regression problem shown in Eq. 1.
Specifically, the goal is to find a vector of coefficients ai =
{a0

i , · · · ,aN
i } for a N-degree PAF, such that the cumulative

error of replacing non-polynomial function R(xi) by a N-
degree PAF is minimal given input data as xi (i = 0, · · · ,D−
1), where D stands for the total number of non-polynomial
layers 2 (Boyd et al., 2004).

min
a0,··· ,aD−1

f (a,x) =∑
D−1
i=0

[1
N ∑

N−1
i=0 (R(xi,a0, · · · ,ai)−ai ·xi)

2
]

(1)

where xi = {x0
i ,x

1
i , · · · ,xN

i }. The subscript / superscript of x
and a indicates layer index / degree index. On the other hand,
the subscript / superscript for a and x indicates layer index /
the training epoch. After replacing 0, · · · ,(i−2)-th ReLU
by PAFs, the input of the i-th ReLU xi becomes dependent
on a0, · · · ,ai−1, i.e. i-th ReLU becomes R(xi,a0, · · · ,ai)
instead of R(xi).

The Eq. 1 is non-convex as it optimizes all D vectors of
coefficients ai, i ∈ [0,D) under the changing x.

min
ai

f ′(ai) =
1
N

N−1

∑
i=0

(R(xi)−ai ·xi)
2 (2)

The Eq. 2 only optimizes a single layer, such that xi sta-
tistically is fixed, which makes it convex. In such cases,
the stochastic gradient descent could guarantee finding the
optimal solution a∗i given initial value as a0

i . The error
could converge in the speed order as shown in Eq. 3 after
training i-th non-polynomial operator coefficients ai for T
epochs (Boyd et al., 2004) i ∈ [0,D). And a good initial-
ization value of a0

i could reduce the total error and thus
improve the convergence speed.

f ′(aT
i)− f ′(a∗i) = O(

||a0
i −a∗i ||2√

T
) (3)

where aT
i indicates the value of ai after training for T epochs.

2we use non-polynomial layers and non-polynomial operators
interchangeably.

3.2 Post-replacement Model Retraining

The PAF-approximated model replaces non-polynomial op-
erators with PAFs. Such a replacement changes the orig-
inal model structure, leading to changed data distribution
of xi for all layers after the replacement points. There-
fore, original coefficients trained using the original model
structure may perform worse under new data distribution,
leading to accuracy degradation. Therefore, the PAF re-
placement forces retraining to fine-tune coefficients to learn
the changes in input data distributions.

4 SMART-PAF TECHNIQUES

4.1 Overview

Training methods adopted by prior arts lead to divergence
when training PAF with a degree higher than 5, forbidding
exploration using PAFs with higher degrees to enhance over-
all accuracy. In this section, we analyze critical reasons
behind the divergence of existing training algorithms and
propose corresponding four techniques to guarantee training
convergence while replacing non-polynomial operators with
PAFs of arbitrary degrees. Then we propose a framework to
schedule techniques automatically.

4.2 Coefficient Tuning (CT)

Eq. 3 indicates that a good initialization can reduce the
overall training time, facilitating faster convergence, which
has been ignored by prior arts (Lee et al., 2021; Cheon et al.,
2020; Lee et al., 2022; Lou et al., 2021). These studies
have typically initialized PAFs with the same coefficients
using traditional regression algorithms. Such initialization is
suboptimal because it overlooks the distribution differences
of data at different non-polynomial operators.

Therefore, we propose coefficient tuning (CT) as a tech-
nique to use profiled data distribution 3 to obtain a closer-to-
original initialization point and then use PAF with different
initialization points to replace different non-polynomial op-
erators, as shown in Fig. 3. The CT involves the following
steps: (1) obtain the coefficients of PAFs using traditional re-
gression methods on the full range of input data; (2) profile
the input data distribution for each non-polynomial operator;
(3) tuned PAF coefficients to minimize overall approxima-
tion errors on profiled distributions to obtain the post-CT
PAFs; (4) replace original non-polynomial operators with
the post-CT PAFs.

Intuitively, CT tunes PAFs to achieve higher accuracy and
less approximation error over a reduced smaller input range,
which corresponds to the highest-probability range in the
data distribution. Besides, CT reduces training time because

3We assume that distribution probability range is consistent
across input samples.

SMART-PAF: Accurate Low-degree Polynomial Approximation of Non-Polynomial Operators for Fast Private Inference

ReLU/
MaxPooling

Inputs
from training datasets

Reference Output 1

PAF

Initial Coefficients from
Traditional Approx. Alg.

2 Profiling

Distribution

3
Fine Tune4 Replacement

Figure 3: Coefficient Tuning (CT) uses profiled distribution
to tune PAF coefficients to generate more accurate results
on a reduced smaller input range (high-probability range
in profiled data distribution), leading to closer-to-optimal
initialization, higher accuracy, and lower training time

the initial value of coefficients a0 are closer to the optimal
value a∗ as indicated by Eq. 3.

4.3 Progressive Approximation (PA)

Replacing all non-polynomial operators in the given ML
model with PAFs simultaneously, as done by prior arts, is
a suboptimal approach. This is because approximation er-
rors of early replacements propagate to all layers behind
the replacement point, making the regression (Eq. 2) non-
convex by varying both PAF coefficients ai and input data xi
(i ∈ [0,D)) for all D non-polynomial layers, causing training
divergence. Instead, we propose the Progressive Approxi-
mation (PA) approach, which replaces the non-polynomial
layer with PAF, one layer at a time, followed by fine-tuning
of PAF coefficients until accuracy convergence as shown
in Fig. 4. In such cases, all xi (i ∈ [0,D)) statistically get
fixed because we only vary PAF coefficients of a single
layer, which is one of all (a0,a1, · · · ,aD−1), ensuring a sim-
ple convex regression problem shown in Eq. 2, which is
easily optimizable by SGD.

For example in Fig. 4, PA starts with replacing the first
ReLU with a PAF, and then fine-tunes PAF coefficients until
accuracy converges. Then PA repeats the same flow for the
following non-polynomial operators.

Intuitively, the replacement of all non-polynomial operators
by PAFs simultaneously introduces a huge deviation to the
original model which is hard for the training algorithm to
recover, while PA applies the overall approximation error
progressively instead of applying all errors at once, restrict-
ing the approximation error to the optimizable range of the
training algorithm to enable convergence and effectively
mitigate the accuracy degradation.

4.4 Alternate Training (AT)

Replacing the non-polynomial operators with PAFs re-
quires model fine-tuning, as pretrained model parame-
ters are no longer optimal for the new PAF-approximated
model. However, multiple previous works fine-tune the
PAF-approximated models as a whole to optimize both PAF
coefficients and the parameters of other layers (like Convo-

Conv

BatchNorm

Input
PR Step 1

ReLU

MaxPooling

Input
Input Model

PAF

Conv

BatchNorm

PR Step 1
Input

PAF

Conv

BatchNorm

MaxPooling

avgPool

FC

avgPool

FC

avgPool

FC

PR Step N

ReLU ReLU ReLU

PAF

Input

PAF

Conv

BatchNorm

avgPool

FC

PAF

PAF

Steps

Replace

 Training Replace

 Training

Replace

 Training

Results Results Results Results

Figure 4: Progressive Approximation (PA) progressively
replaces non-polynomial operators, one layer at a time fol-
lowed by coefficients fine-tuning, to guarantee an SGD-
optimizable convex regression problem shown in Eq. 2, en-
abling training convergence for replacing the targeted model
with PAFs of arbitrary degrees.

lution, BatchNorm, etc.). Such a training scheme, however,
deteriorates accuracy, indicating a failure of convergence.
We demonstrate it later in Fig. 9. This is because modifi-
cations to PAF coefficients can have a significant impact
on final inference results, unlike changes to convolution
weights, which may not affect overall results at all. Such
an observation is consistent with the model structure that
all data need to go through PAF while some weights can be
pruned without any impact on overall accuracy.

To tackle training divergence, PAF coefficients fine-tuning
should be decoupled from fine-tuning parameters of other
layers, and two fine-tuning processes should use different
training hyperparameters. We thus propose Alternate Train-
ing (AT) to fine-tune PAF coefficients and parameters of
other layers separately in an alternate manner. Specifically,
AT fine-tunes PAF coefficients first while keeping other
parameters fixed, as shown in AT step 1 in Fig. 5. After
reaching a specific epoch threshold, PAF coefficients get
frozen and AT fine-tunes parameters of other layers in AT
step 2. Note that the training in different AT steps may use
different hyperparameters because of different parameter
sensitivity in different layers. AT repeats until the accuracy
finally converges, often resulting in an accuracy climb.

Intuitively, AT considers the sensitivity difference between
PAFs parameters and parameters of linear layers, and decou-
ples the two training processes to avoid training interference.

4.5 Dynamic Scaling (DS) and Static Scaling (SS)

In Section 2.3, we discuss the challenge of setting an appro-
priate input range for PAFs. Previous studies have employed
a large input range, such as [−50,50], to prevent infinite er-
rors for values outside the range (Lee et al., 2021). However,
we contend that this approach is suboptimal because it re-

SMART-PAF: Accurate Low-degree Polynomial Approximation of Non-Polynomial Operators for Fast Private Inference

Conv

BatchNorm

Input
AT Step 1

ReLU

MaxPooling

Input
Input Model

PAF
Replace

Conv

BatchNorm

AT Step 1
Input

PAF

Conv

BatchNorm

MaxPooling

AT Step N
Input

PAF

Conv

BatchNorm

 Training

 Training
Steps

PR Step 1

MaxPooling MaxPooling
 Training

Figure 5: Alternate Training (AT) fine-tunes PAF coeffi-
cients and parameters of other layers separately in an alter-
nate manner.

sults in high approximation error across the entire input
range, which can impede training convergence and lead to
significant accuracy degradation (e.g., accuracy drops from
69% to 10% for ResNet-18 on ImageNet-1k).

To tackle this issue, we introduce Dynamic Scaling (DS)
and add an auxiliary layer before each PAF to normalize the
value range of its input data to [−1,1] during fine-tuning.
DS determines the scale on a batch-by-batch basis. For each
batch, the scale is set to the highest absolute input value, and
then all data are proportionally scaled to fit within the [−1,1]
range. This ensures that the inputs within each batch spread
the [−1,1] range, maximizing their relative differences for
better distinguishment while staying within bounds.

However, the post-training model is intended for FHE de-
ployment, where Dynamic Scaling (DS) is inapplicable be-
cause FHE cannot select the batch’s maximal value due to
the absence of value-dependent operators. Therefore, we
propose Static Scaling (SS) to fix the scale of each auxiliary
layer in PAF-approximated model as the input running max-
imum under the training dataset Such a scale determination
relies on the similarity between training data and validation
data. In our evaluation, either a higher or smaller scale re-
sults in lower accuracy for both VGG-19 (CiFar-10 dataset)
and ResNet-18 (ImageNet-1k dataset).

4.6 SMART-PAF Framework

The sequence in which CT, PA, AT, and DS/SS are applied
can greatly affect the final validation accuracy. Furthermore,
employing existing techniques, such as dropout for overfit-
ting mitigation and Stochastic Weights Averaging (SWA)
for faster convergence, is crucial.

To navigate these complexities, we introduce a scheduler in
SMART-PAF. This scheduler systematically applies train-
ing configurations and proposed techniques, organizing the
training into steps, with each step replacing a single non-
polynomial layer with PAF. Coefficient Tuning is applied
offline before all steps. The sequence within a single step is
outlined below:

• Training Group: A training group first trains the PAF-

training best_model by E epochs

True
Overfitting? Add Dropout

Freeze PAF coefficients and defreeze parameters of linear layers or vice versa.
Apply_AT = False

index ++

True
False

Apply_AT?

Replace NonLinear[index] with PAF

False

Progressive
Approximation

(PA)

Coefficient
Tuning (CT)

Training
Processing

Initial
Input

Legend

Reset to default training configurations; Apply_AT = False

Alternate
Training (AT)

Tunes PAF[i] coefficients for NonLinear[index]

True
Accuracy Improved?

Apply SWA Pick model with highest accuray within E epochs

Pick the branch providing higher accuracy

False

update best_model;
Apply_AT = True

Branch

Figure 6: Overview of SMART-PAF framework, which
automatically schedules SMART-PAF techniques including
CT, PA, AT, and existing techniques including Dropout and
Stochastic Wegiths Averaging (SWA).

approximated model for E epochs, followed by applying
SWA using weights of all E epochs. The model with the
highest validation accuracy proceeds to the following
procedures.

• Accuracy Improvement Detection: If the validation ac-
curacy gets improved during the process, the framework
launches a new training group until no accuracy im-
provement is observed.

• Overfitting Avoidance: The framework applies Dropout
followed by a new training group if spots overfitting 4.

• Alternative Training: When previous techniques do not
improve accuracy anymore, AT is applied to swap train-
ing targets between PAF and other layers, followed by a
new training group.

• Step Termination Condition: Current step terminates
when observing no accuracy improvement in above pro-
cesses.

SMART-PAF framework dedicates one step for each non-
polynomial layer, orchestrating these steps progressively
based on the inference order (Progressive Approximation).
Dynamic Scaling is adopted in the entire fine-tuning process,
while Static Scaling is applied for the post-finetuning model.

5 EVALUATION

5.1 Evaluation Setup

Model We evaluated SMART-PAF with models being used
by prior works for fair comparison (Lee et al., 2021; Lou
et al., 2021), including VGG-19 (18 ReLU and 5 MaxPool-
ing), and ResNet-18 (17 ReLU and 1 MaxPooling).

Datasets We adopt CiFar-10 and ImageNet-1k (He et al.,

4we adopt the empirical overfitting condition, which is “training
accuracy > validation accuracy + 10%”

SMART-PAF: Accurate Low-degree Polynomial Approximation of Non-Polynomial Operators for Fast Private Inference

20

40

60
Po

st
-R

ep
la

ce
m

en
t V

al
. A

cc
. (

%
) 1.05x 1.34x 1.36x 2.08x 3.32x

= 7 f2
1 g2

1 f2 g3 f2 g2 f1 g2

20

40

60 1.16x 2.13x

1.46x
2.35x

1.71x

Figure 7: Comparison of ResNet-18 (ImageNet-1k) valida-
tion accuracy w/o Fine-Tuning between Coefficient Tuning
(CT, green bar) and baseline (blue bar). Top: only replace
ReLU by PAF. Bottom: replace all ReLU and MaxPooling.

2015; Krizhevsky et al., 2012) to test the generality of pro-
posed techniques for tasks with different complexity.

PAF Form We adopt 6 PAFs (Tab. 2) with minimal multi-
plication depth under different degrees as the approxima-
tion of sign(x). ReLU and Max operators are replaced by
(x+sign(x)·x)

2 and (x+y)+(x−y)·sign(x−y)
2 , separately.

Latency Evaluation We implement PAF in Microsoft SEAL
library (Chen et al., 2017) using CKKS (Cheon et al., 2016)
(Degree: 32768, modulus bitwidth: 881) and evaluate the
wall-clock PAF latency on AMD Threadripper 2990WX.

Accuracy Evaluation The accuracy is obtained through
evaluating PAF-approximated models under given datasets.

Training Hyperparameters We adopt different training hy-
perparameters for training PAF coefficients and parameters
of other layers, as shown in Tab. 5. We set the epoch E = 20
for each training group. A smaller epoch leads to negligible
accuracy changes while a larger epoch leads to long latency
of SWA which slows down the training processing.

5.2 Coefficient Tuning (CT) Evaluation

CT adjusts PAF coefficients based on profiled value distri-
butions and improve the 1.05 ∼ 3.32× post-replacement
validation accuracy w/o fine tuning, as shown in Fig. 7.

When only approximating ReLU, CT shows more benefits
for polynomials with lower degrees, as they have less ca-
pability to fit the entire input range and are more prone to
significant accuracy reduction. CT mitigates this loss by
focusing on fitting the high-probability region in the distribu-
tion, resulting in less initial post-replacement approximated
error. On the other hand, polynomials with higher degrees

= 7 f2
1 g2

1 f2 g3 f2 g2 f1 g2
50
55
60
65
70

Po
st

-F
in

eT
un

e
Va

l.
Ac

c.
 (%

)

+1.7%
+1.3% +0.4%

+1.9%

0.5%

direct replacement + direct training
Direct replacement + progressive training
progressive replacement + progressive training

Figure 8: Comparison of ResNet-18 (ImageNet-1k) valida-
tion accuracy w/ Fine-Tuning between Progressive Approx-
imation (PA, orange) and baseline (blue). Green bar only
adopts progressive training w/o progressive replacement and
suffers from severe accuracy degradation.

have less overall approximated error across the entire input
range and, therefore, show less improvement from CT.

Further, approximating both ReLU and MaxPooling leads
to 10.9% ∼ 21% accuracy drop than approximating ReLU
only, as shown by comparing the blue bar in the top and bot-
tom figures in Fig. 7. Contrary to the ReLU approximations
in earlier works (Park et al., 2022), this suggests that solely
assessing ReLU does not provide a full picture of PAF’s
non-polynomial approximation prowess. Comprehensive
evaluations should encompass both ReLU and MaxPool-
ing, wherein CT consistently aids in accuracy restoration,
improving up to 34.1% accuracy for f 2

1 ◦g2
1!

5.3 Progressive Approximation Evaluation

During fine-tuning, the baseline (prior works) uses a di-
rect replacement + direct training approach: it replaces all
non-polynomial operators with PAFs and trains other lay-
ers, excluding the PAFs. In contrast, PA adopts a step-wise
strategy. In each step, it replaces one non-polynomial oper-
ator with a PAF and trains preceding layers progressively
(termed progressive replacement and progressive training).
This method yields an accuracy improvement ranging from
0.4 ∼ 1.7%, as illustrated in Fig. 8. Significantly, the pro-
gressive replacement is pivotal for this improvement. This is
evident from the marked accuracy degradation of the green
bar (direct replacement + progressive training) relative to
the orange bar. This is because progressive replacement sim-
plifies the optimization, enabling its theoretical convergence
under SGD, as discussed in §3.1.

While PA doesn’t always ensure superior accuracy—for
instance, the baseline training (blue) outperforms PA in
the f1 ◦g2 setup—it can enhance post-fine-tuning accuracy
beyond the limits of higher-degree PAFs shown in Fig. 8.
Consequently, the SMART-PAF framework divides training

SMART-PAF: Accurate Low-degree Polynomial Approximation of Non-Polynomial Operators for Fast Private Inference

Table 3: Ablation study under of ResNet-18/VGG-19 models under CiFar-10/ImageNet-1k datasets. CT: Coefficient Tuning;
PA: Progressive Approximation; AT: Alternate Training; DS: Dynamic Scaling; SS: Static Scaling. DS is only used in
fine-tuning to improve accuracy and must converted to SS to be adopted in Homomorphic Encryption (HE) because DS
contains value-dependent operators that are not supported by HE. Best HE-compatible accuracies are colored in grey while
results with the best validation accuracy are bolded. An accuracy of 0% indicates training divergence.

Model-Dataset Technique Setup f 2
1 ◦g2

1 α = 7 f2 ◦g3 f2 ◦g2 f1 ◦g2

Replace ReLU
ResNet-18

ImageNet-1k
Original Accuracy

69.3%

baseline + DS w/o fine tune 51.30% 64.70% 49.40% 32.00% 18.60%
baseline + CT + DS w/o fine tune 68.60% 67.70% 67.00% 66.50% 61.70%

baseline + DS 64.30% 66.70% 64.20% 58.30% 53.10%
baseline + AT + DS 65.20% 68.30% 63.70% 60.50% 52.00%
baseline + PA + DS 65.60% 68.40% 64.60% 60.20% 52.60%

baseline + PA + AT + DS 64.90% 67.40% 64.60% 56.50% 47.10%
baseline + CT + PA + DS 68.20% 67.00% 67.60% 65.90% 60.80%

baseline + CT + PA + AT + DS 69.00% 68.10% 61.40% 66.50% 63.10%
Accuracy Improvement over “baseline + DS” +4.7%(1.07×) +1.7%(1.03×) +3.4%(1.05×) +8.2%(1.14×) +10%(1.19×)

Replace all
non-polynomial

ResNet-18
ImageNet-1k

Original Accuracy
69.3%

baseline + DS w/o fine tune 30.3% 51.2% 28% 14.1% 7.8%
baseline + CT + DS w/o fine tune 64.4% 59.4% 40.9% 33.1% 13.3%

baseline + DS 59.6% 66.2% 62% 49% 37%
baseline + SS (prior work (Lee et al., 2022)) 25.5% 47.1% 23% 4.2% 0%

baseline + CT + PA + AT + DS 69.9% 68% 65.7% 64.1% 57.8%
SMART-PAF: baseline + CT + PA + AT + SS 69.4% 67% 65.3% 57.3% 6.5%
Accuracy Improvement over (Lee et al., 2022) +43.9%(2.72×) +19.9%(1.42×) +42.3%(2.84×) +53.1%(13.64×) +6.5%(∞)

Replace all
non-polynomial

VGG-19
CiFar-10

Original Accuracy
93.95%

baseline + DS 93.4% 92.38% 89.87% 89.87% 86.57%
baseline + SS (prior work (Lee et al., 2022)) 91.06% 81.35% 76.58% 58.11% 43.84%

baseline + CT + DS 93.39% 93.6% 93.3% 92.4% 91.53%
baseline + CT + PA + AT + DS 93.6% 93.81% 93.59% 91.49% 91.51%

SMART-PAF: baseline + CT + PA + AT + SS 92.16% 92.62% 91.51% 88.45% 76.93%
Accuracy Improvement over (Lee et al., 2022) +1.1%(1.01×) +11.27%(1.14×) +14.93%(1.2×) +30.34%(1.52×) +33.09%(1.75×)

into smaller steps, proceeding with the best results between
PA and baseline training, as depicted in Fig. 6.

5.4 Ablation Study

5.4.1 Configuration Setup

To investigate the effectiveness of different combinations
of proposed techniques, we conduct an ablation study with
results of VGG-19 (CiFar-10) ResNet-18 (ImageNet-1k)
being presented in Tab. 3. We separate ReLU from Max-
Pooling to show the approximation effects of different types
of non-polynomial operators.

• Baseline + SS: We take (Lee et al., 2021; 2022; Cheon
et al., 2020) as the baseline. We obtain PAF coefficients
through deterministic methods and uses one PAF to re-
place sign(x) in all non-polynomial operators. Further,
a fixed scale is chosen which falls into the category of
Static Scaling. For a fair comparison, we still adopted
Dynamic Scaling for the training baseline and converted
it to a fixed scale after training. The final training accu-
racy before SS conversion is noted as “baseline + DS”.

• Baseline + “technique” + DS: The final training accu-
racy using “technique” before SS conversion.

• Baseline + “technique” + SS: The validation accuracy
of FHE-deployable PAF-approximated model.

5.4.2 Impact of Techniques Combinations

When replacing all non-polynomial operators, combining
CT, PA, and AT yields the highest validation accuracy in
PAF coefficients fine-tuning for ResNet-18 (Imagenet-1k).

However, for VGG-19 (CiFar-10), there are outliers (f2 ◦g2,
and f1 ◦g2) obtaining the highest validation accuracy using
CT only, as indicated by bolded values lying at different
rows in Tab. 3.

Further, when replacing ReLU only, the optimal accuracy
point stems from a subset of proposed techniques, e.g. α = 7
obtains best training accuracy 68.4% when using PA while
f2◦g3 achieves 67.6% when using CT +PA. This variability
inspired the development of step-wise SMART-PAF frame-
work, allowing us to test different combinations of proposed
methods and select the most effective results for every step.

In short, the full combination of proposed techniques is
prone to perform the best under complex tasks. While sub-
sets of techniques might be sufficient for producing good
accuracy for simpler tasks.

5.4.3 Impact of Approximating MaxPooling

The MaxPooling operator exhibits greater sensitivity to PAF
replacement, evidenced by reduced accuracy in replacing
both ReLU and MaxPooling than replacing ReLU only. This
sensitivity arises because MaxPooling’s single sliding win-
dow requires nested PAF calls, leading to the propagation
and accumulation of approximation errors.

5.4.4 Impact of Dataset

For VGG-19 under the CiFar-10 dataset, SMART-PAF en-
hances the accuracy of prevailing Pareto-frontier by factors
ranging from 1.01× to 1.75×. This improvement jumps to
1.42× up to 13.64× for ResNet-18 under the ImageNet-1k
dataset. This distinction is attributed to the inherent com-

SMART-PAF: Accurate Low-degree Polynomial Approximation of Non-Polynomial Operators for Fast Private Inference

Table 4: SMART-PAF V.S. (Lee et al., 2021). Results of two PAFs with better accuracy and latency are bolded.
VGG19 under CiFar-10, Original Accuracy 93.95% SMART-PAF Lee (Lee et al., 2021)

PAF format f1 ◦g2 f2 ◦g2 f2 ◦g3 α = 7 f 2
1 ◦g2

1 α = 14
Validation Accuracy (Replace all non-polynomial) 72.24% 86.36% 91.05% 91.82% 92.39% 90.21%

Accuracy Improvement over (Lee et al., 2021) -19.97% -3.85% +0.84% +1.61% +2.08% 90.21%
ReLU Latency on CPU (ms) 3240.16 3510.82 4122.58 7113.35 6179.18 48278.84 (baseline)

Speedup over (Lee et al., 2021) 14.90× 13.75× 11.71× 6.79× 7.81× 1.0

0 100 200 300 400
Epoch

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Va
lid

at
io

n
Ac

cu
ra

cy

ReLU0 ReLU1 ReLU2 ReLU3 ReLU4 ReLU5 ReLU6 ReLU7 ReLU8
ReLU9

ReLU10

MaxPooling

f2
1 g2

1 AT+PA+CT
f2
1 g2

1 baseline
AT to train weight
AT to train PAF
SWA
PA then train weights
PA then train PAF
final network wise train

Figure 9: Comparison of training curve (baseline v.s. SMART-PAF) ResNet-18 (ImageNet-1k) with ReLU approximated by
PAF (14-degree f 2

1 ◦g2
1)

plexity of ImageNet-1k, having 224×224 image size and
1k categories, compared to CiFar-10’s 32×32 image size
and 10 categories. For instance, replacing with f 2

1 ◦g2
1 re-

sults in a 0.55% accuracy dip for VGG-19 on CiFar-10. In
contrast, the same PAF leads to a significant 30.3% decline
for ResNet-18 on ImageNet-1k, highlighting the crucial role
of task-tailored PAF selection in preserving accuracy.

5.5 Comparison with SotA Implementations

5.5.1 Latency/Accuracy v.s. (Lee et al., 2021)

We also compare SMART-PAFwith the 27-degree PAF (Lee
et al., 2021) widely used in prior FHE accelerators including
F1(Samardzic et al., 2021) and BTS (Kim et al., 2022).

For VGG-19 under CiFar-10 as shown in Tab. 4,
SMART-PAF identified two higher-accuracy PAFs with
7.81× and 11.71× speedup and 0.84% and 2.08% accu-
racy improvement.

Considering ResNet-18 under ImageNet-1k, the PAF-
approximated model using the 27-degree PAF demonstrates
69.3% top-1 accuracy. In contrast, SMART-PAF spotted the
14-degree PAF (f 2

1 ◦g2
1) that achieves 7.81× speedup with

69.4% PAF-approximated validation accuracy. Remarkably,
this marginally surpasses original pretrained ResNet-18’s
accuracy 69.3%, underscoring SMART-PAF’s efficacy.

5.5.2 Accuracy v.s. (Lee et al., 2022; Cheon et al., 2020)

We contrast SMART-PAF with prevailing Pareto-frontier
PAFs (Lee et al., 2022) in Tab. 3. When all non-
polynomial operators (ReLU and MaxPooling) were substi-
tuted, SMART-PAF consistently achieves 1.42×∼ 13.64×

accuracy enhancement over (Cheon et al., 2020) on ResNet-
18 (ImageNet-1k) and 1.01× ∼ 1.75× under VGG-19
(CiFar-10).

6 TRAINING PROCESSING DEEP DIVE

In this section, we perform a detailed comparison and analy-
sis of the training curve using both the baseline training strat-
egy and SMART-PAFwith the 14-degree PAF (f 2

1 ◦g2
1) (Lee

et al., 2021) in Tab. 2. Both baseline and SMART-PAF train
the PAF-approximated model step-by-step and leverage the
same dropout and SWA strategy for a fair comparison.

Before the training, the baseline (blue in Fig. 9) replaces
all non-polynomial operators with the same PAF, the coeffi-
cients of which are determined by regression algorithm (Lee
et al., 2021; 2022). By contrast, SMART-PAF only replaces
the first non-polynomial layer with PAF followed by a Co-
efficient Tuning to reduce the accuracy drop, leaving other
non-polynomial layers to be replaced progressively in the
future steps, hence resulting in a 34.1% initial accuracy
improvement compared to the baseline as shown in Fig. 9.

During training, the accuracy of baseline drops after an
initial boost, Specifically, when the first training step ends
(E = 20 epochs), Stochastic Weights Averaging (SWA) is
applied to smooth the weights update, recovering around
10% accuracy demonstrated by the first yellow pentagon
on the blue curve. However, every training step thereafter
leads to worse accuracy as shown by the dropping trend of
the blue curve, indicating a training failure because of no
convergence guarantee under the SGD algorithm.

On the contrary, SMART-PAF replaces the ReLU progres-
sively with post-CT PAFs, and validation accuracy increases

SMART-PAF: Accurate Low-degree Polynomial Approximation of Non-Polynomial Operators for Fast Private Inference

for SMART-PAF when training the PAF-approximated
model under SGD. During the middle of the training, each
replacement of non-polynomial layer with PAF causes some
accuracy degradation, which is further optimized back
through both Stochastic Weight Averaging (SWA) and Alter-
nate Training (AT), as shown in the climbing orange curve
after each ReLU replacement (purple diamond) in Fig. 9.

Moreover, AT enhances validation accuracy after replacing
ReLU 0, 8, 9, and so on, as indicated by the ascending or-
ange curve after applying AT (marked by an orange cross
and dark star). However, AT shows no improvement for
ReLU 3 and 6, consistent with findings in Tab. 3. This
suggests that AT alone could help accuracy but doesn’t guar-
antee accuracy enhancement for PAF-approximated models.

The detailed comparison illustrates both the invalidity of
baseline training methods for PAF-approximated ML mod-
els and the effectiveness of SMART-PAF.

7 RELATED WORK

ML inference is prone to a severe threat of private informa-
tion leakage in the cloud. Fully Homomorphic Encryption
(FHE) (Albrecht et al., 2021) guarantees privacy by directly
enabling computation on the encrypted data.

FHE schemes do not support non-polynomial operators
like ReLU or MaxPooling. Therefore, HEAX (Riazi et al.,
2020), Delphi (Mishra et al., 2020a), Gazelle (Juvekar et al.,
2018b), and Cheetah (Reagen et al., 2021) presented hy-
brid schemes consisting of FHE, Multi-Party Computa-
tion (Rouhani et al., 2017), or Garbled Circuits (GC) (Ju-
vekar et al., 2018a), where they relied on non-FHE scheme
to process non-polynomial kernels. However, both MPC
and GC are non-practical because of large-size packets in
need of transferring among data sources and compute nodes.

Alternatively, (Lee et al., 2021; Gilad-Bachrach et al., 2016;
Hesamifard et al., 2017; Brutzkus et al., 2019; Xie et al.,
2022; Mishra et al., 2020b) propose replacing all non-
polynomial kernels with the same low-degree polynomial
approximation and processing it in the FHE domain. How-
ever, a 27-degree PAF is used for low accuracy degrada-
tion, which consumes a large-portion of overall latency
because of the long multiplication chain in FHE accelera-
tors (Samardzic et al., 2021; 2022; Kim et al., 2022).

To further reduce the overhead of non-polynomial ker-
nels, SAFENet (Lou et al., 2021), and CryptoGCN (Ran
et al., 2022) proposed a finer granular replacement of non-
polynomial operators with a lower degree, then they lever-
age ML training to figure out the parameters of each in-
dividual approximated polynomial. However, they suffer
from significant accuracy degradation because of the train-
ing divergence in high-degree polynomials. Till now, there

are no systematic training techniques for fine-tuning the
model consisting of both linear operators and polynomial
approximation functions.

Recently, AESPA (Park et al., 2022) claims a quadratic
approximation to replace ReLU with negligible accuracy
degradation of VGG and ResNet models under CiFar-10/100
and TinyImageNet. However, the scheme does not show the
method to approximate MaxPooling which is more sensitive
and hard to approximate than ReLU as we quantified in
Tab. 3. Further, the high accuracy preserving capability
under TinyImageNet of quadratic does not guarantee low
accuracy degradation under complex datasets like ImageNet,
as we quantified in §5.4.

8 CONCLUSION

This paper demonstrates that the training of ML models
with non-polynomial operators replaced with Polynomial
Approximated Functions (PAF) is a fundamentally different
problem than the typical model training, such that typical
training algorithms hardly converge and even lead to worse
accuracy. The limitation of typical training methods hinders
the exploration of using PAF (higher than 5 degrees) to re-
place non-polynomial operators for better post-replacement
accuracy. This paper proposes four techniques and a training
framework to address such a challenge: (1) Coefficient Tun-
ing provides good initialization of PAF coefficients using
profiled data distribution for higher post-replacement initial
accuracy and faster convergence; (2) Progressive Approxi-
mation enables the PAF-approximated model training con-
vergence under SGD algorithm through progressive layer-
wise non-polynomial operators replacement and training;
(3) Alternate Training separately trains PAF coefficients and
layers except PAFs with different hyperparameters to avoid
training interference; and (4) Dynamic Scale in training
and Static Scale in post-training post-replacement inference
under FHE to avoid value overflow. The order of applying
techniques affects final accuracy, and SMART-PAF frame-
work is thus proposed to automatically apply the above tech-
niques as well as dropout and SWA for accuracy improve-
ment. SMART-PAF identifies the optimal Pareto-frontier in
the latency-accuracy tradeoff space with 1.42×∼ 13.64×
accuracy improvement and 6.79× ∼ 14.9× speedup for
ResNet-18 (ImageNet-1k). Further, within such Pareto-
frontier, SMART-PAF spots the 14-degree PAF (f 2

1 ◦ g2
1)

that achieves the same 69.4% post-replacement accuracy
with 7.81× latency speedup compared to 27-degree PAF
obtained by minimax approximation. The validity and effi-
cacy of SMART-PAF are tested by multiple models under
different datasets. We believe that SMART-PAF potentially
opens a new paradigm of systematically augmenting PAF-
approximated ML models for accurate and fast private in-
ference.

SMART-PAF: Accurate Low-degree Polynomial Approximation of Non-Polynomial Operators for Fast Private Inference

9 ACKNOWLEDGE

We thank Guanghui Wang for mathematical formulation in
§3.1, Hanrui Wang for his valuable feedbacks to improve
this paper. This work was supported in part by ACE, one
of seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

REFERENCES

Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S.,
Gorbunov, S., Halevi, S., Hoffstein, J., Laine, K., Lauter,
K., et al. Homomorphic encryption standard. Protecting
privacy through homomorphic encryption, pp. 31–62,
2021.

Boyd, S., Boyd, S. P., and Vandenberghe, L. Convex opti-
mization. Cambridge university press, 2004.

Brutzkus, A., Gilad-Bachrach, R., and Elisha, O. Low
latency privacy preserving inference. In International
Conference on Machine Learning, pp. 812–821. PMLR,
2019.

Chen, H., Laine, K., and Player, R. Simple encrypted
arithmetic library-seal v2. 1. In International conference
on financial cryptography and data security, pp. 3–18.
Springer, 2017.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. Ho-
momorphic encryption for arithmetic of approximate
numbers. Cryptology ePrint Archive, Paper 2016/421,
2016. URL https://eprint.iacr.org/2016/
421. https://eprint.iacr.org/2016/421.

Cheon, J. H., Kim, D., and Kim, D. Efficient homomor-
phic comparison methods with optimal complexity. In
International Conference on the Theory and Application
of Cryptology and Information Security, pp. 221–256.
Springer, 2020.

Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. Cryptonets: Applying
neural networks to encrypted data with high through-
put and accuracy. In Balcan, M. F. and Weinberger,
K. Q. (eds.), Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Pro-
ceedings of Machine Learning Research, pp. 201–210,
New York, New York, USA, 20–22 Jun 2016. PMLR.
URL https://proceedings.mlr.press/v48/
gilad-bachrach16.html.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.
URL http://arxiv.org/abs/1512.03385.

Hesamifard, E., Takabi, H., and Ghasemi, M. Cryp-
todl: Deep neural networks over encrypted data. ArXiv,
abs/1711.05189, 2017.

Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A.
Gazelle: A low latency framework for secure neu-
ral network inference. In Proceedings of the 27th
USENIX Conference on Security Symposium, SEC’18, pp.
1651–1668, USA, 2018a. USENIX Association. ISBN
9781931971461.

Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A.
Gazelle: A low latency framework for secure neural net-
work inference, 2018b. URL https://arxiv.org/
abs/1801.05507.

Kim, S., Kim, J., Kim, M. J., Jung, W., Kim, J., Rhu, M., and
Ahn, J. H. Bts: An accelerator for bootstrappable fully
homomorphic encryption. In Proceedings of the 49th An-
nual International Symposium on Computer Architecture,
ISCA ’22, pp. 711–725, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery. ISBN 9781450386104.
doi: 10.1145/3470496.3527415. URL https://doi.
org/10.1145/3470496.3527415.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Proceedings of the Neural Information Processing
Systems (NIPS), 2012.

Lee, E., Lee, J.-W., No, J.-S., and Kim, Y.-S. Minimax
approximation of sign function by composite polynomial
for homomorphic comparison. IEEE Transactions on
Dependable and Secure Computing, 19(6):3711–3727,
2022. doi: 10.1109/TDSC.2021.3105111.

Lee, J., Lee, E., Lee, J.-W., Kim, Y., Kim, Y.-S., and
No, J.-S. Precise approximation of convolutional neural
networks for homomorphically encrypted data. ArXiv,
abs/2105.10879, 2021.

Lou, Q. and Jiang, L. SHE: A Fast and Accurate Deep
Neural Network for Encrypted Data. Curran Associates
Inc., Red Hook, NY, USA, 2019.

Lou, Q., Shen, Y., Jin, H., and Jiang, L. {SAFEN}et: A
secure, accurate and fast neural network inference. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=Cz3dbFm5u-.

Mateen, B. A., Liley, J., Denniston, A. K., Holmes, C. C.,
and Vollmer, S. J. Improving the quality of machine learn-
ing in health applications and clinical research. Nature
Machine Intelligence, 2(10):554–556, 2020.

https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2016/421
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://proceedings.mlr.press/v48/gilad-bachrach16.html
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1801.05507
https://arxiv.org/abs/1801.05507
https://doi.org/10.1145/3470496.3527415
https://doi.org/10.1145/3470496.3527415
https://openreview.net/forum?id=Cz3dbFm5u-
https://openreview.net/forum?id=Cz3dbFm5u-

SMART-PAF: Accurate Low-degree Polynomial Approximation of Non-Polynomial Operators for Fast Private Inference

Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W.,
and Popa, R. A. Delphi: A cryptographic infer-
ence system for neural networks. In Proceedings of
the 2020 Workshop on Privacy-Preserving Machine
Learning in Practice, PPMLP’20, pp. 27–30, New
York, NY, USA, 2020a. Association for Computing
Machinery. ISBN 9781450380881. doi: 10.1145/
3411501.3419418. URL https://doi.org/10.
1145/3411501.3419418.

Mishra, P., Lehmkuhl, R. T., Srinivasan, A., Zheng, W., and
Popa, R. A. Delphi: A cryptographic inference service
for neural networks. In IACR Cryptology ePrint Archive,
2020b.

Park, J., Kim, M. J., Jung, W., and Ahn, J. H. Aespa:
Accuracy preserving low-degree polynomial activation
for fast private inference, 2022.

Raji, I. D. and Fried, G. About face: A survey of facial
recognition evaluation. CoRR, abs/2102.00813, 2021.
URL https://arxiv.org/abs/2102.00813.

Ran, R., Wang, W., Gang, Q., Yin, J., Xu, N., and Wen,
W. CryptoGCN: Fast and scalable homomorphically en-
crypted graph convolutional network inference. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=VeQBBm1MmTZ.

Reagen, B., Choi, W.-S., Ko, Y., Lee, V. T., Lee, H.-H. S.,
Wei, G.-Y., and Brooks, D. Cheetah: Optimizing and
accelerating homomorphic encryption for private infer-
ence. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 26–39,
2021. doi: 10.1109/HPCA51647.2021.00013.

Riazi, M. S., Laine, K., Pelton, B., and Dai, W. Heax: An
architecture for computing on encrypted data. In Pro-
ceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’20, pp. 1295–1309,
New York, NY, USA, 2020. Association for Comput-
ing Machinery. ISBN 9781450371025. doi: 10.1145/
3373376.3378523. URL https://doi.org/10.
1145/3373376.3378523.

Rouhani, B. D., Riazi, M. S., and Koushanfar, F. Deepse-
cure: Scalable provably-secure deep learning, 2017. URL
https://arxiv.org/abs/1705.08963.

Samardzic, N., Feldmann, A., Krastev, A., Devadas, S.,
Dreslinski, R., Peikert, C., and Sanchez, D. F1: A fast
and programmable accelerator for fully homomorphic
encryption. In MICRO-54: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO

’21, pp. 238–252, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450385572.
doi: 10.1145/3466752.3480070. URL https://doi.
org/10.1145/3466752.3480070.

Samardzic, N., Feldmann, A., Krastev, A., Manohar, N.,
Genise, N., Devadas, S., Eldefrawy, K., Peikert, C.,
and Sanchez, D. Craterlake: A hardware accelera-
tor for efficient unbounded computation on encrypted
data. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, ISCA ’22, pp.
173–187, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450386104. doi: 10.
1145/3470496.3527393. URL https://doi.org/
10.1145/3470496.3527393.

Xie, T., Yamana, H., and Mori, T. Che: Channel-wise homo-
morphic encryption for ciphertext inference in convolu-
tional neural network. IEEE Access, 10:107446–107458,
2022. doi: 10.1109/ACCESS.2022.3210134.

Zhang, Y., Wang, S., Zhang, X., Dong, J., Mao, X., Long,
F., Wang, C., Zhou, D., Gao, M., and Sun, G. Pipezk:
Accelerating zero-knowledge proof with a pipelined ar-
chitecture. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pp. 416–
428, 2021. doi: 10.1109/ISCA52012.2021.00040.

A TRAINING HYPERPARAMETERS

The following hyperparameters were used as the baseline
training methodology to train the machine learning model.

Table 5: Baseline training parameters, where other layers
include Convolution, Linear, and BatchNorm.

Configuration Value
Replaced layer ReLU& MaxPooling

Optimizer Adam
learning rate for PAF 1e-4

learning rate for other layers 1e-5
Weight decay for PAF 0.01

Weight decay for other layers 0.1
BatchNorm Tracking False

Dropout False

B POST-TRAINING PAF COEFFICIENTS

In this section, we present the specific coefficient values
of polynomials with the highest validation accuracy shown
in bold in Tab. 3. All proposed techniques including Co-
efficients Tuning (CT), Progressive Approximation (PA),
and Alternate Training (AT) happen at the granularity of the
layer and thus PAFs at different ReLU layers have different
coefficients.

https://doi.org/10.1145/3411501.3419418
https://doi.org/10.1145/3411501.3419418
https://arxiv.org/abs/2102.00813
https://openreview.net/forum?id=VeQBBm1MmTZ
https://openreview.net/forum?id=VeQBBm1MmTZ
https://doi.org/10.1145/3373376.3378523
https://doi.org/10.1145/3373376.3378523
https://arxiv.org/abs/1705.08963
https://doi.org/10.1145/3466752.3480070
https://doi.org/10.1145/3466752.3480070
https://doi.org/10.1145/3470496.3527393
https://doi.org/10.1145/3470496.3527393

SMART-PAF: Accurate Low-degree Polynomial Approximation of Non-Polynomial Operators for Fast Private Inference

B.1 α = 7

Mathematical Format: The original format for the Mini-
Max approximated polynomial (α = 7) (Lee et al., 2021) is
shown in Eq. 4. Such a proposed polynomial p7(x) was used
to approximate the sign(x) function, which outputs 1 when x
is positive and −1 when x is negative. Then non-polynomial
ReLU could be constructed using x+x·sign(x)

2 .

p7(x) = p7,2(x)◦ p7,1(x)

p7,1(x) =
7

∑
i=0

ai × xi p7,2(x) =
7

∑
i=0

bi × xi (4)

The odd function nature of sign(x) results in a negligible
coefficient value of composite polynomial p7(x) in entries
with an even degree of x. Such even-degree entries could be
safely removed without the impact on the overall accuracy.
Therefore, we remove all entries with even degrees to obtain
p7(x) in the format shown in Eq. 5.

p7(x) = podd only
7,2 (x)◦ podd only

7,1 (x)

podd only
7,1 (x) = a1x+a3x3 +a5x5 +a7x7

podd only
7,2 (x) = b1x+b3x3 +b5x5 +b7x7

(5)

Table 6: f1 ◦g2 best coefficients list

f2 coefficients g3 coefficients
layer id c1 c3 d1 d3 d5

0 3.064987659 -4.359854698 3.644091129 -7.056697369 4.412326813
1 2.939064741 -3.989520550 3.756805420 -7.105865479 4.209794998
2 2.962512255 -4.095692158 3.725888252 -7.275540352 4.892793179
3 2.996977568 -4.153297901 3.783520699 -7.263069630 4.682956696
4 2.898474693 -4.044208527 3.641639471 -7.243083000 4.771345139
5 2.895201445 -3.905539751 3.689141512 -7.129144192 4.736110687
6 3.018208981 -4.113882542 3.705801964 -7.180747986 4.518863201
7 2.848899364 -3.874762058 3.611979723 -6.771905422 4.524455547
8 3.008141994 -4.087264061 3.836204052 -7.746193886 4.919332504
9 2.968442440 -3.986024141 3.703149557 -7.153123856 4.776097775

10 2.900203228 -3.924145937 3.688660622 -7.306476593 4.663645267
11 2.782385111 -3.684296608 3.651248932 -6.951449394 4.715543270
12 2.958166838 -3.980643034 3.829906940 -7.610838890 4.719619274
13 2.811106443 -3.719117880 3.632898569 -6.837011814 4.688860893
14 2.911352396 -3.886567831 3.674616098 -6.988801003 4.670355797
15 2.796648502 -3.706235886 3.595447540 -6.843948841 4.560091972
16 3.042621136 -3.979726553 3.910200596 -7.521365166 4.733543873

Under such polynomial format, coefficients used in PAF for
replacing ReLU at different locations are shown in Tab. 7.

B.2 f 2
1 ◦g2

1

The format of different building-block polynomials are
shown in Eq. 8.

f1(x) = c1 · x+ c3 · x3

g1(x) = d1 · x+d3 · x3

f2(x) = c1 · x+ c3 · x3 + c5 · x5

g2(x) = d1 · x+d3 · x3 +d5 · x5

g3(x) = d1 · x+d3 · x3 +d5 · x5 +d7 · x7

(6)

f 2
1 ◦ g2

1 refers to combining both f1 and g1 into a compos-

c3 x0M
ul
tip
lic
at
io
n
D
ep
th

c3x x^21
c3x3 y=f1(x)2
d5y y23

y44
d5y55

Figure 10: Illustration of multiplication depth for f1 ◦g2.

ite polynomial in the sequence shown in Eq. 7, with PAF
coefficients for at different ReLU layers shown in Tab. 9.

f 2
1 ◦g2

1(x) = g1
1(g

0
1(f 1

1 (f 0
1 (x)))) (7)

Similarly, coefficients value of f2 ◦g3, f2 ◦g2 and f1 ◦g2 are
shown in Tab. 10, Tab. 11 and Tab. 8, separately.

C MULTIPLICATION DEPTH ANALYSIS

CKKS (Cheon-Kim-Kim-Song) is a leveled homomorphic
encryption scheme capable of evaluating L-level arithmetic
circuits without the need for bootstrapping. Here, L signi-
fies the depth of the arithmetic circuit that can be computed,
which is contingent upon the parameters defining the ho-
momorphic context. Every Rescaling or modulus reduction
decreases one level to reduce the noise of the multiplication
operation.

In this context, the “multiplication depth” of a PAF refers
to the number of levels reduced during its evaluation. The
multiplication depth is also decided by the highest degree
term in PAF. To minimize level consumption in PAF multi-
plication, contemporary methodologies leverage the expo-
nentiation by squaring strategy (See Fig. 10). For instance,
for a polynomial featuring a highest degree term of a ·xn, the
required depth is computed as ⌈log2(n+1)⌉. When dealing
with composite polynomials, the overall depth necessitated
is the aggregate of the depths required for each constituent
sub-polynomial.

Taking f1 ◦g2 = g2(f1(x)) as an example. The multiplica-
tion depth of each intermediate result is shown in Tab. 8
with the illustration shown in Fig. 10.

y = f1(x) = c1 · x+ c3 · x3

g2(y) = d1 · y+d3 · y3 +d5 · y5
(8)

SMART-PAF: Accurate Low-degree Polynomial Approximation of Non-Polynomial Operators for Fast Private Inference

Table 7: Coefficients value for minimax composite polynomial (α = 7) used in PAF to replace all ReLU functions
a1 a3 a5 a7 b1 b3 b5 b7

7.304451 -34.68258667 59.85965347 -31.87552261 2.400856 -2.631254435 1.549126744 -0.331172943

Table 8: f1 ◦g2 Multiplication Depth Example
Multiplication Depth 0 1 2 3 4 5

Variables c3, x c3 · x, x2 c3 · x3, y = f1(x) d5 · y, y2 y4 d5 · y5

Table 9: Coefficients of f 2
1 ◦g2

1 at different layers
f 2
1 coefficients g2

1 coefficients
layer id c0

1 c0
3 c1

1 c1
3 d0

1 d0
3 d1

1 d1
3

0 2.736806631 -3.864239931 2.115309238 -2.268822908 2.239115477 -2.424801588 2.189934731 -1.481475353
1 2.609737396 -2.629375458 2.115823507 -1.854049206 2.300836086 -2.241225243 2.231765747 -1.455139399
2 2.572752714 -2.620458364 2.008517504 -1.67325747 2.017426491 -1.779745221 2.066540718 -1.300397515
3 2.874353647 -3.49595499 2.073785543 -1.72846055 2.091589212 -1.851963162 2.141039133 -1.372249603
4 2.588399172 -3.086382866 2.01845789 -1.867060781 1.999999881 -1.845559597 2.052644968 -1.279196978
5 2.604569435 -2.614924431 1.93332684 -1.466841698 1.942190886 -1.626866937 2.10518527 -1.243854761
6 2.510973692 -2.517734289 2.132683754 -2.017316103 2.235149622 -2.204242945 2.183528662 -1.424280167
7 2.751836777 -2.765525579 2.021913052 -1.521527886 2.008341789 -1.650658488 2.125827074 -1.320276856
8 2.517604351 -2.519313574 2.131887913 -1.986418962 2.247759819 -2.206320763 2.191907883 -1.425198913
9 2.562408924 -2.520729303 2.110760212 -1.814227581 2.062101603 -1.789000034 2.126989841 -1.338556409
10 2.437770844 -2.398545027 2.016869307 -1.811605096 2.103379965 -1.996958494 2.111694336 -1.30810833
11 2.781474829 -2.742717981 2.02037096 -1.498650432 2.043134928 -1.701895356 2.140466452 -1.345968127
12 2.483508587 -2.447231293 2.057531595 -1.836180925 2.189022541 -2.110060215 2.162631512 -1.370931029
13 2.787295341 -2.709958792 2.00928688 -1.456294537 2.007162809 -1.627877712 2.114115715 -1.327487946
14 2.674963474 -2.604590893 2.028381109 -1.637359142 2.129605532 -1.939982772 2.159248829 -1.392939448
15 2.731667519 -2.661221027 2.026224852 -1.519181132 2.036108494 -1.692675114 2.118255377 -1.338307023
16 2.670770168 -2.607930183 2.119180441 -1.756756186 2.236502171 -2.061469316 2.230870724 -1.45818007

Table 10: f2 ◦g3 best coefficients list
f2 coefficients g3 coefficients

layer id c1 c3 c5 d1 d3 d5 d7

0 3.487593412 -6.971315384 2.381806374 4.736026287 -16.16058159 25.20542908 -13.1174
1 3.484929323 -7.034649372 3.685389519 4.983552456 -17.01627541 25.34817886 -12.4504
2 3.312547922 -6.849102974 3.659186125 4.616300583 -15.70791912 25.24704933 -13.7765
3 3.42953968 -7.291306973 3.949234486 4.785545349 -16.25030518 25.22435379 -13.1702
4 3.550015688 -7.992001534 3.389156818 4.644083023 -15.87583256 25.47412872 -13.8047
5 3.484149933 -7.679964066 3.130941153 4.65158844 -15.79552174 25.19073868 -13.6172
6 1.875 -1.25 0.375 4.481445313 -16.18847656 25.01367188 -12.5586
7 3.137469292 -6.013744831 2.900674343 4.600552082 -15.5252409 24.95741463 -13.7303
8 3.355214119 -5.68600893 1.215050697 4.856618881 -16.73614693 25.50185585 -12.7147
9 3.605870724 -9.147006989 6.160003185 4.596205711 -15.64334202 25.45436478 -14.1617
10 3.669521809 -8.906849861 5.65577507 4.712775707 -16.15146828 25.63137817 -13.6679
11 3.432019472 -8.035040855 4.964941978 4.565317631 -15.44346809 25.10269928 -13.9918
12 3.677670956 -8.38080883 4.933722496 4.846800804 -16.69511223 25.66197395 -13.0236
13 3.383493662 -8.223423958 5.385590076 4.52063942 -15.19449425 24.9539814 -14.2344
14 3.32148385 -7.110795498 4.014864445 4.572896957 -15.55243587 25.26078415 -14.0067
15 3.381628513 -7.793000221 4.806651115 4.586762428 -15.50544167 25.14218521 -14.0126
16 3.627621889 -8.305987358 5.061814785 4.829498291 -16.53964996 25.57732391 -13.1699

Table 11: f2 ◦g2 best coefficients list
f2 coefficients g3 coefficients

layer id c1 c3 c5 d1 d3 d5

0 3.632708073 -8.879578590 4.333632946 3.700465441 -7.351731300 5.071476460
1 3.412810802 -7.752333164 4.516210556 3.855783939 -7.789761543 5.177268505
2 3.355527401 -8.588312149 5.618574142 3.640014887 -7.615984440 5.668038368
3 3.533123493 -9.278223038 6.205972672 3.779361486 -7.770857811 5.565216064
4 1.875000000 -1.250000000 0.375000000 3.255859375 -5.964843750 3.707031250
5 3.421332598 -9.231142044 6.353975773 3.687772274 -7.753697395 5.787805080
6 3.494106293 -8.028047562 3.792766333 3.851673841 -8.117405891 5.920250893
7 3.236023188 -7.844894886 4.858978271 3.662446976 -7.398378849 5.480692863
8 3.308430910 -7.289185524 3.084533691 3.766145468 -8.078896523 5.651748657
9 3.438756227 -9.819555283 7.128154278 3.620871305 -7.664072514 5.793798447
10 3.470819712 -9.487674713 6.564511299 3.746651173 -8.130080223 6.042979240
11 3.344857931 -8.513930321 5.686520100 3.717740774 -7.314604759 5.406781673
12 3.561307669 -9.413117409 6.282663822 3.941442251 -8.642221451 6.365680695
13 3.235330582 -8.009678841 5.256969452 3.645334482 -7.250671864 5.429522514
14 3.269543648 -7.355520248 4.257196426 3.702267408 -7.359237194 5.368722439
15 3.318752050 -8.203745842 5.435956478 3.630973339 -7.331366062 5.393109322
16 3.595479012 -9.167343140 6.192716122 3.955091715 -8.303151131 6.023469925

