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ABSTRACT
The growing demand for Large Language Models (LLMs) in applications such as content generation, intelligent
chatbots, and sentiment analysis poses considerable challenges for LLM service providers. To efficiently use
GPU resources and boost throughput, batching multiple requests has emerged as a popular paradigm; to further
speed up batching, LLM quantization techniques reduce memory consumption and increase computing capacity.
However, prevalent quantization schemes (e.g., 8-bit weight-activation quantization) cannot fully leverage the
capabilities of modern GPUs, such as 4-bit integer operators, resulting in sub-optimal performance.

To maximize LLMs’ serving throughput, we introduce Atom, a low-bit quantization method that achieves high
throughput improvements with negligible accuracy loss. Atom significantly boosts serving throughput by using
low-bit operators and considerably reduces memory consumption via low-bit quantization. It attains high accuracy
by applying a novel mixed-precision and fine-grained quantization process. We evaluate Atom on 4-bit weight-
activation quantization in the serving context. Atom improves end-to-end throughput (token/s) by up to 7.73×
compared to the FP16 and by 2.53× compared to INT8 quantization, while maintaining the same latency target.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly being in-
tegrated into our work routines and daily lives, where we
use them for summarization, code completion, and decision-
making. Studies report that ChatGPT has over 100 mil-
lion users, with more than 1 billion website accesses per
month (Duarte, 2023). Furthermore, the size and capabilities
of LLMs continue to grow to accommodate a broader range
of tasks. The high inference demand and model complexity
have significantly increased the operational costs, i.e., com-
pute/memory and energy, for LLM service providers to near
$1 million daily (Elimian, 2023).

Unsurprisingly, optimizing LLM serving is becoming a
pressing concern. Most efforts have focused on improv-
ing LLM serving throughput, which is typically achieved by
batching requests from various users (Yu et al., 2022; Chen,
2023; Kwon et al., 2023). Batching multiple requests in-
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creases compute intensity and amortizes the cost of loading
weight matrices, thereby improving throughput. Prior work
has explored LLM quantization techniques to further im-
prove batching efficiency. These techniques employ smaller
data types to replace 16-bit floating point (FP16) values,
thereby reducing memory consumption and accelerating
computation (Lin et al., 2023; Xiao et al., 2023).

However, current quantization schemes do not leverage the
full extent of capabilities provided by emerging efficient
low-bit hardware support (e.g., Nvidia Ampere (Abdelkha-
lik et al., 2022) and Qualcomm Hexagon (Wikipedia contrib-
utors, 2023)). For instance, several prior approaches have
explored weight-only quantization (Lin et al., 2023; Frantar
et al., 2023). In these quantization schemes, weights are
quantized to a low-bit representation (e.g., INT3), whereas
activations remain in a floating point representation (e.g.,
FP16). Consequently, weights must be dequantized to the
appropriate floating point representation (e.g., FP16) be-
fore being multiplied with activations using floating point
representation. Therefore, even though weight-only quanti-
zation reduces memory consumption, it still requires costly
floating-point arithmetic, which is inefficient, especially for
large batch sizes.

Another prominent quantization scheme is weight-activation
quantization, where both weights and activations are quan-
tized to low-bit representations. In this scheme, weights and
activations can be directly multiplied using low-precision
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Figure 1. Overview of Atom’s design. For activation matrices, we
dynamically reorder the channels to pick out the outliers. Then,
we apply low-bit group quantization to the normal values while
using high-bit precision for outliers. For weight matrices, the
quantization process can be done statically. We perform fused
GEMM and fused FlashInfer (Ye et al., 2024) to boost throughput.
We also adopt a quantized KV-cache to reduce memory movement.

arithmetic units. This quantization approach has greater po-
tential to achieve higher inference throughput than weight-
only quantization due to the efficient low-bit hardware sup-
port. For example, A100 GPUs can reach 1248 TOPS
of INT4 and 624 TOPS of INT8 as opposed to only 312
TFLOPS for FP16 with Tensor Cores (NVIDIA, a). Prior
works such as LLM.INT8() (Dettmers et al., 2022) and
SmoothQuant (Xiao et al., 2023) explored INT8 weight-
activation quantization and achieved near no accuracy loss.
However, INT8 quantization still cannot utilize lower bit
arithmetic such as INT4 Tensor Cores (NVIDIA, b). In
addition, INT8 quantization remains sub-optimal for re-
ducing the large memory consumption in LLM serving,
where both model parameters and batched KV-cache con-
sume large memory (Sheng et al., 2023; Zhang et al., 2023).
For lower-bit weight-activation quantization, recent works
such as OmniQuant (Shao et al., 2023) and QLLM (Liu
et al., 2023a) have proposed to quantize LLMs down to
4-bit. However, their techniques still show a significant per-
plexity increase compared to the FP16 baseline as shown in
Figure 2. Therefore, determining how to accurately quan-
tize LLMs into low-bit representations while maintaining
hardware efficiency remains an open area of research.

In this work, we introduce Atom, an accurate low-bit weight-
activation quantization for LLMs that efficiently use modern
hardware. To maintain accuracy, Atom incorporates three
key quantization designs: (1) It adopts mixed-precision
quantization, which retains a small but salient number of
activations and weights in high precision to preserve ac-
curacy. (2) It employs fine-grained group quantization on
both weights and activations, which naturally reduces quan-
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Figure 2. WikiText2 perplexity on Llama models with different
4-bit weight-activation quantization mechanisms. Atom maintains
perplexity results close to the FP16 baseline across all model sizes.

tization errors. (3) Instead of pre-calculating quantization
parameters for activations, Atom dynamically quantizes ac-
tivations to best capture the distribution of each input.

Although these quantization optimizations can improve
quantization accuracy, they may not utilize the underlying
hardware efficiently without a bespoke design. For example,
the mixed-precision technique could lead to irregular mem-
ory accesses and performance slowdown (Guo et al., 2023);
matrix multiplications with group quantization are not well-
supported in kernel libraries; and dynamic quantization of
activations incurs extra computation (Xiao et al., 2023). To
ensure high hardware efficiency and minimize quantization
overheads, Atom: (1) reorders activations and weights to
maintain regular memory accesses for mixed-precision op-
erations, (2) fuses quantization and reordering operations
into existing operators to mitigate the overheads, (3) further
quantizes outliers into 8-bit to keep a balance between ac-
curacy and efficiency and (4) quantizes the KV-cache into
low-bit representations to reduce memory movement. We
illustrate Atom’s quantization workflow in Figure 1.

To validate Atom’s feasibility, we integrate it into an end-
to-end serving framework (Chen et al., 2023). For our spe-
cial matrix multiplications with mixed-precision and group
quantization, we implement customized CUDA kernels that
utilize low-bit tensor cores. Experiments on popular datasets
show that Atom has negligible accuracy loss (1.4% average
zero-shot accuracy drop, 0.3 WikiText2 perplexity increase
for Llama-65B) when quantizing models to 4-bit (for both
weights and activations), while prior works suffer larger
accuracy loss under the same precision (see Table 1).

When comparing end-to-end serving throughput to differ-
ent precisions and quantization schemes, Atom improves
throughput by up to 7.7×, 5.5×, and 2.5× relative to FP16,
W4A16, and W8A8, respectively, while achieving simi-
lar latency (see Figure 10). These results show that Atom
can accurately quantize LLMs into low-bit precision while
achieving high serving throughput.

In summary, we contribute the following:

• A comprehensive performance analysis of LLM serv-
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ing workloads that pinpoints the efficiency benefit of
low-bit weight-activation quantization.

• Atom, an accurate low-bit weight-activation quantiza-
tion algorithm that combines (1) mixed-precision with
channel reordering, (2) fine-grained group quantiza-
tion, (3) dynamic activation quantization to minimize
quantization errors, and (4) KV-cache quantization.

• An integrated LLM serving framework for which we
codesign an efficient inference workflow, implement
low-bit GPU kernels and demonstrate practical end-to-
end throughput and latency of Atom.

• A comprehensive evaluation of Atom, which shows
that it improves LLM serving throughput by up to
7.7× with only a slight accuracy loss.

2 BACKGROUND

Quantization techniques use discrete low-bit values to ap-
proximate high-precision floating points. Since integers
represent a uniform range, quantizing floating point values
into integers is widespread due to simplicity and hardware
efficiency (Jacob et al., 2017; Han et al., 2016). Typical
quantization involves two steps: determining the quantiza-
tion parameters (which consist of scale and zero point) and
calculating the quantized tensor. For uniform asymmetric
quantization, the scale s and zero point z are determined
by (Nagel et al., 2021):

s =
max(X)−min(X)

2n − 1
· c, z = ⌊−min(X)

s
⌉, (1)

where X is the input tensor, n is the quantization bit-width,
and c is the clipping factor used to reduce the dynamic range
of quantization to mitigate the effect of outlier values. The
elements in quantized tensor can be calculated by:

X̄ = clamp(⌊X
s
⌉+ z, 0, 2n − 1).

We can further simplify this equation for symmetric quanti-
zation:

s =
2 ·max(|X|)

2n − 1
· c

X̄ = clamp(⌊X
s
⌉,−2n−1, 2n−1 − 1).

Quantization parameters s and z can be calculated either
statically using calibration data or dynamically during in-
ference time with runtime statistics. Thus, quantization
approaches can be classified as static or dynamic.

For LLMs, we can apply quantization on both activation
and weight matrices (weight-activation quantization) or just
the latter (weight-only quantization). However, asymmetric
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Figure 3. Runtime breakdown of Llama-7b inference with differ-
ent batch sizes. The dense layer represents the batched K, Q,
V generation, O projection, and MLP. The self-attention layer
is implemented by FlashInfer (Ye et al., 2024) integrated with
PageAttention (Kwon et al., 2023). Results indicate that the dense
and self-attention layers together account for over 90% of the exe-
cution time, thereby constraining the throughput.

weight-activation quantization can lead to additional calcu-
lations during matrix multiplication since:

W ·X = sW (W̄ − zW ) · sx(X̄ − zx),

where three additional cross-terms need to be calculated
for using low-bit arithmetic units. Therefore, we apply
symmetric quantization in this work for efficiency.

Different trade-offs between accuracy and efficiency can be
achieved by quantization with different granularity: For per-
tensor quantization, all the values in the tensor share one set
of scale and zero-point (Nagel et al., 2021). For per-channel
(token) quantization, we calculate scale and zero-point for
a row or a column of the tensor (Xiao et al., 2023). We
denote the channel as the last dimension of the input matrix.
Each channel can be further divided into several sub-groups,
and quantization is individually performed on each group,
which is called per-group quantization (Lin et al., 2023).
The finer the granularity, the more precise the quantization,
but the higher the overhead. In this work, we adopt group
quantization for higher accuracy with dedicated kernels to
manage the overhead, as shown in § 4.2.

3 PERFORMANCE ANALYSIS OF LOW-BIT
LLM SERVING

In this section, we first analyze the performance bottleneck
of LLM inference in serving scenarios and then establish
the importance of low-bit weight-activation quantization.

Due to high demand, LLM serving is throughput-oriented.
However, the auto-regressive decode stage of LLM in-
ference only takes one token as input and generates the
next token, thus relying on matrix-vector multiplication
(GEMV) (Agrawal et al., 2024). Since GEMV needs to
load a large weight matrix while only performing a few
multiplications, it is heavily memory-bound. It thus causes
GPU under-utilization, which results in low compute inten-
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Figure 4. A roofline model of different quantization approaches
that characterizes operators by their arithmetic intensity, which is
defined as Ops/Elements. At large batch sizes, the dense layer is
compute-bound, which has a large arithmetic intensity, whereas
self-attention consistently exhibits a lower arithmetic intensity.

sity (computation-to-IO ratio) and, thereby, low through-
put (Williams et al., 2009). To mitigate this problem, batch-
ing is widely used by combining the input from multiple
requests to perform dense layer (K,Q,V generation, O pro-
jection, and MLP) matrix multiplications and increase com-
pute intensity, therefore GPU utilization (Pope et al., 2022;
Yu et al., 2022; Chen et al., 2023; Zhong et al., 2024).

To further exploit the batching effect and boost through-
put, the input matrices of the dense layer of the decode
and prefill stages are batched together to form larger matri-
ces (Patel et al., 2023). Given large batch sizes, the dense
layer ends up having compute-bound matrix-matrix multi-
plications (GEMM). However, though self-attention layers
in the decode stage are also GEMV operations, they cannot
benefit from batching. Since different inference requests
do not share the KV-cache with different context histories,
cross-request data cannot be batched for reuse, resulting
in no efficiency benefit. Even with several optimizations
such as FlashAttention (Dao et al., 2022) or Group Query
Attention (Ainslie et al., 2023), the self-attention layers are
still bounded by the large memory movement of KV-cache.

After applying the batching technique, we measure the time
breakdown of different operators under different batch sizes.
As Figure 3 shows, both the dense and self-attention layers
act as bottlenecks to throughput, consuming over 90% of
the processing time. Consequently, we employ quantization
mechanisms to expedite both dense and self-attention layers.

We use the Roofline model (Williams et al., 2009) to evalu-
ate the effect of different quantization approaches in serving
scenarios. As Figure 4(a) shows, weight-activation quanti-
zation has higher dense layer compute throughput due to the
efficient low-bit hardware arithmetic. It also increases the
throughput of the self-attention layer by reducing the size
of the KV-cache, thus decreasing memory movement. How-
ever, as Figure 4(b) shows, weight-only quantization fails to
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Figure 5. Sampled value of an activation matrix from Llama-7b.
(a) The activation matrix contains outlier channels, which result in
large quantization errors. (b) Atom reorders these outlier channels
to the end of the matrix and uses higher precision to quantize them
while keeping regular memory access.

improve dense layer throughput since dequantization must
be performed before matrix multiplications, yielding calcu-
lations still in the floating point format. On the other hand,
weight-only quantization fails to quantize the KV-cache,
yielding no benefit for self-attention layers. We further
quantify the effect of different quantization techniques in
Figures 11(a) and 11(b) in §5 with kernel profiling.

In summary, the low-bit weight-activation quantization is
superior to weight-only quantization in terms of enhancing
the throughput in the serving scenario because it accelerates
both the dense and self-attention layers. In the following
sections, we demonstrate how Atom delivers high through-
put while still maintaining high accuracy with the low-bit
weight-activation quantization.

4 DESIGN

Low-bit precision enables efficient utilization of the under-
lying hardware, leading to increased throughput. However,
it is challenging to maintain high accuracy with a low-bit
representation. To quantize LLMs to extremely low-bit pre-
cision while keeping accuracy, we incorporate a suite of
quantization mechanisms tailored to LLM characteristics.
These mechanisms include mixed-precision quantization
with channel reordering, fine-grained group quantization,
and dynamic quantization. We demonstrate the accuracy
gain thanks to these techniques with ablation study in Ta-
ble 3. Atom also applies low-bit quantization on KV-cache,
which further boosts the efficiency. The subsequent sub-
sections delve into the specifics of each mechanism and
its advantages, followed by a detailed description of the
end-to-end workflow.

4.1 Mixed-precision quantization

Prior works observed that a key challenge of LLM quantiza-
tion is the outlier phenomena in activations (Dettmers et al.,
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Figure 6. Overview of Atom workflow on Llama model family. Atom carefully manages the overhead of quantization operators by fusing
them into existing operators. For the compute-bound operators, Atom utilizes efficient low-bit hardware support. For the memory-bound
self-attention layer, Atom quantizes KV-cache to further enhance the throughput. We implement dedicated kernels for each fused operator.
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Figure 7. Atom dynamically reorders activation (A) to move the
outlier channels to the end of the matrix, with the reorder indices
determined in offline calibration. The weight matrix (W) is stati-
cally reordered to remain aligned with the corresponding activation
channels, which guarantees the correctness of the output result.

2022; Lin et al., 2023). As Figure 5(a) shows, a few chan-
nels exhibit large magnitudes that are several orders greater
than those of other channels, which are called outliers. The
large dynamic range of these outliers can substantially in-
crease the quantization error. Therefore, efficiently handling
the outliers is crucial in low-bit quantization.

One intuitive way to effectively mitigate this challenge is to
quantize outliers and normal values separately, into low and
high bits, which is referred to as a mixed-precision method.
As Figure 5(b) shows, after we remove the outliers, the re-
maining channels are much more uniform, which can be
effectively expressed by low-bit values. Our results indi-
cate that 8-bit representations, such as FP8 (Micikevicius
et al., 2022) and INT8, are sufficient to express outliers
(See Table 3). Since INT8 is widely supported by hardware
implementations (e.g., NVIDIA Tensor Core (Abdelkhalik
et al., 2022)), Atom applies INT8 quantization for outliers.

The primary concern with mixed-precision quantization is
its irregular memory accesses (Dettmers et al., 2022; Guo

et al., 2023), which leads to poor hardware efficiency. To ap-
ply mixed-precision quantization while maintaining regular
memory access, Atom re-purposes the reordering technique
introduced in RPTQ (Yuan et al., 2023), where the objective
is to improve quantization accuracy. As Figure 7 shows,
Atom reorders the scattered outlier channels of activations
to the end of the matrix, which enables the efficient imple-
mentation of mixed-precision. To guarantee the equivalence
of the computation result, the weight matrices need to be
reordered with the corresponding reorder indices of activa-
tions. Since the outlier channels can be identified offline
using calibration data (Dettmers et al., 2022), the reorder-
ing of weight matrices incurs a one-time cost. However,
the reordering of activation matrices still needs to be per-
formed online, which can be expensive. To mitigate this,
Atom fuses the activation matrix reordering operators into
prior operators, which significantly reduces the reordering
overhead to less than 0.5% of runtime.

4.2 Fine-grained group quantization

Even if Atom quantizes outliers and normal values sepa-
rately, the latter is still challenging to perform accurately
due to the limited representation capability of 4-bit pre-
cision (Section 5.4). To further enhance accuracy, group
quantization is widely adopted (Lin et al., 2023; Nagel et al.,
2021), which divides the matrix into subgroups and per-
forms quantization within each subgroup. For example, a
group size of 128 implies that every contiguous sequence of
128 elements is treated as a single group, which is quantized
independently.

Group quantization offers a trade-off between accuracy im-
provements and dequantization overheads, especially in
weight-activation quantization. Prior works have not in-
vestigated how to efficiently incorporate group dequan-
tization into the delicate GEMM pipeline, i.e., MMA



Atom

+

Dequant

Dequant

Group 1

INT

FP16

1

2
3

G
ro

up
 2

Tensor Cores CUDA Cores

Figure 8. Overview of the fused GEMM operator. The multiplica-
tion of each group is first computed by units with efficient low-bit
support, i.e., Tensor Cores (Step 1 ). The result is then dequan-
tized and subsequently accumulated with typical FP16 units (Step
2 , 3 ). Note that all operations are fused in a single pipeline.

pipeline (Thakkar et al., 2023). Atom proposes a fusion
technique as shown in Figure 8, which contributes to an
efficient GEMM kernel with practical speedup (See §5.3.1).
Atom first calculates the matrix multiplication of the acti-
vation groups with the corresponding weight groups and
obtains temporary results using efficient low-bit hardware,
i.e. Tensor Cores (Step 1 ). Atom then adds multiple tem-
porary results together to get the GEMM result. However,
since Atom performs fine-grained quantization for each acti-
vation and weight group, each temporary result has different
quantization parameters. Therefore, Atom first dequantizes
all temporary results to the FP16 representation with CUDA
Cores (Step 2 ) and then performs addition (Step 3 ). To
manage the overhead, we fuse dequantization and summa-
tion into the GEMM kernel, to be specific, into the MMA
pipeline. Therefore, the additional operations can be exe-
cuted in place without extra memory movement and over-
lapped with the original MMA instructions. We demonstrate
the efficiency of the fused GEMM operator in §5.3.1.

With a group size of 128 and a high precision channel size
of 128, Atom has an effective bit of 4.251 on Llama-7b.
The effective bit is defined as the average bits used for each
element, including the quantization parameters. This metric
is widely used in previous works on weight-only quantiza-
tion (Frantar et al., 2023; Lin et al., 2023), mainly because
it represents the actual compression ratio and, therefore,
the speedup in the memory-bound setting. However, the
main benefit of weight-activation quantization in serving
scenarios is the computation efficiency of leveraging low-bit
arithmetic units instead of the memory reduction. Therefore,
we will not use this metric in the following discussions.

4.3 Dynamic quantization process

Although fine-grained quantization can better preserve the
local variations inside each channel of activations, this ad-

1With 4-bit for normal values, 8-bit for outliers, and 16-bit
scale per group, the effective bit is calculated as ((4096− 128) ∗
4 + 128 ∗ 8)/4096 + 16/128 = 4.25.
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Figure 9. Sampled value of the V cache within a single attention
head from Llama-7b. Compared with sampled activations shown
in Figure 5(a), the V cache shows a much less dynamic range with
fewer outlier channels, which is much easier to quantize.

vantage would diminish if we statically calculated the quan-
tization parameters based on calibration data, as the actual
input might have a different local distribution.

Therefore, Atom adopts dynamic quantization, tailoring
quantization parameters for each activation matrix during
inference. To tame the overhead of dynamic quantization,
we fuse quantization operations into the prior operator, akin
to the implementation of ZeroQuant (Yao et al., 2022). Since
the additional operator is element-wise (with a reduction
and an element-wise division), the run time of the fused
operator is still negligible compared to the time-consuming
dense and self-attention layers, as Figure 3 shows.

However, asymmetric quantization can lead to significant
run-time overhead due to considerable additional compu-
tation (as discussed in §2). To strike a balance between
throughput and accuracy, we choose symmetric quantization
with a carefully chosen clip threshold. We also incorporate
GPTQ (Frantar et al., 2023) when quantizing the weight
matrix since this is purely an offline process and offers an
accuracy boost without sacrificing runtime efficiency.

4.4 KV-cache quantization

As described in §3, the self-attention layer in the decode
stage is highly memory-bound. To mitigate this issue, Atom
also applies low-bit quantization to the KV-cache. Atom
loads the KV-cache in low-bit precision and directly de-
quantizes it before performing the FP16 calculation, which
significantly boosts the throughput by large memory reduc-
tion. On the other hand, since the memory movement of
asymmetric and symmetric quantized KV-cache are simi-
lar, they perform similarly on memory-bound self-attention
layers. Therefore, Atom uses asymmetric quantization on
KV-cache as it can provide accuracy benefits.

Compared with activation matrices, we argue that the KV-
cache is more amenable to quantization. To perform self-
attention, the Query vector of the incoming token is multi-
plied by the K cache. The result is normalized using Soft-
max and further multiplied with the V cache to obtain the
output (Vaswani et al., 2023). Due to the normalization of
Softmax, the quantization error of the K cache has less influ-
ence on the output. Furthermore, our profiling in Figure 9
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indicates that the V cache exhibits the outlier phenomenon
less frequently, rendering it more suitable for quantization.
Therefore, Atom directly applies asymmetric low-bit quan-
tization with the granularity of attention head and preserves
high accuracy as shown in §5.4.

4.5 Implementation of quantization workflow

To demonstrate the feasibility of our design choices, we im-
plement Atom on Llama models (Touvron et al., 2023a), as
shown in Figure 6. To leverage the benefit of quantization,
Atom manages the overhead of the additional operators by
kernel fusion: Atom fuses quantization operators, including
reordering, quantization, and dequantization, into existing
operators. For the compute-bound dense layer, Atom uti-
lizes the low-bit units to boost throughput. For the memory-
bound self-attention layer, Atom fuses dequantization with a
kernel library for LLM serving, FlashInfer (Ye et al., 2024),
so that only low-bit values from KV-cache are loaded. Atom
also incorporates PageAttention (Kwon et al., 2023) for effi-
cient memory usage to enable large batch sizes.

5 EVALUATION

We conduct a comprehensive evaluation of Atom’s accuracy
and efficiency. For accuracy, we evaluate Atom on widely
used metrics, generation perplexity and zero-shot accuracy.
For efficiency, we evaluate Atom from the bottom up, start-
ing with per-kernel performance, followed by end-to-end
throughput and latency. We also perform ablation studies
to understand how different techniques affect Atom, which
pinpoints the trade-off between the efficiency and accuracy
of each design choice.

5.1 Quantization setup

Atom uses symmetric quantization on weights and activa-
tions while using asymmetric quantization on the KV-cache.
We evaluate Atom using a group size of 128. To identify
outlier channels, we use 128 randomly sampled sentences
from WikiText2 (Merity et al., 2016) as calibration data,
following prior works (Lee et al., 2023; Shao et al., 2023;
Liu et al., 2023a). We select 128 channels with the highest
square sum values as outlier channels and keep them in
INT8. We then reorder activation and weight matrices ac-
cording to the indices of outlier channels. After reordering,
Atom adopts GPTQ (Frantar et al., 2023) for the quantiza-
tion on weight matrices. For clipping, we use a grid search
to find optimal clipping factors 0.9 and 0.85 for activation
and weight quantization, respectively.

For the preprocessing of weight quantization and outlier
identification, we run Atom on a single RTX Ada 6000 and
quantize the model layer-by-layer. For large Llama-65B,
Atom takes roughly 4 hours to complete the process.

5.2 Accuracy evaluation

Benchmarks. We evaluate Atom on popular open-sourced
Llama (Touvron et al., 2023a) models. We focus on low-bit
settings, INT4 and INT3 weight-activation quantization. We
adopt commonly used metrics of model accuracy, perplexity,
and zero-shot accuracy. For perplexity, we evaluate on
WikiText2 (Merity et al., 2016), PTB (Marcus et al., 1994),
and C4 (Raffel et al., 2020) datasets. For zero-shot tasks, we
use lm-eval (Gao et al., 2021), based on which we evaluate
Atom on PIQA (Bisk et al., 2019), ARC (Clark et al., 2018),
BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019),
and WinoGrande (Sakaguchi et al., 2019) tasks.

Baselines. We compare Atom to recently released post-
training quantization techniques: SmoothQuant (Xiao et al.,
2023), OmniQuant (Shao et al., 2023), and QLLM (Liu et al.,
2023a). For SmoothQuant, we implement our own version
as the official code does not support Llama models and only
has W8A8 quantization. We conducted a grid search on the
alpha value defined in SmoothQuant and reported the best
numbers for each benchmark. For OmniQuant, we use their
pre-quantized weights for W4A4 evaluations and evaluate
W3A3 by running their official code. To obtain the best
W3A3 results for OmniQuant, we conduct a hyperparameter
search and identify lr = 1e−4 and alpha = 0.75 for their
quantization process. We skip W3A3 OmniQuant on Llama-
30B and Llama-65B due to the large resource requirement
of its quantization process. For QLLM, we report the W4A4
numbers in their paper but do not evaluate W3A3 as their
code was unavailable when we conducted experiments.

Zero-shot accuracy. Table 1 compares the zero-shot ac-
curacy of six tasks between Atom and baselines on Llama
models. Atom significantly outperforms the other weight-
activation quantization methods. For W4A4, Atom shows
only a 2.3%, 1.7%, 0.4% and 1.4% average accuracy loss
for Llama at 7B, 13B, 30B and 65B sizes when compared
to FP16. At the same time, previous works showed a 9.6%
to 23.8% accuracy loss under the same settings.

Perplexity. Table 2 reports perplexity results of Atom and
baselines on Llama models. As the table shows, though
recent methods such as OmniQuant and QLLM successfully
reduce the perplexity of W4A4 to around 10, the accuracy
loss is still significant. Atom further reduces the perplexity
and achieves less than 0.4 perplexity increase on all three
datasets with Llama-65b. For W3A3, Atom still largely
maintains the perplexity, with an average 2.3 perplexity
increase for Llama-65B. At the same time, existing works
do not achieve acceptable perplexity. Note that Atom has
less accuracy loss when quantizing larger models.
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Table 1. Zero-shot accuracy of quantized Llama models on six common sense tasks.

Zero-shot Accuracy ↑Size #Bits Method PIQA ARC-e ARC-c BoolQ HellaSwag Winogrande Avg.

FP16 - 77.37 52.53 41.38 73.12 72.99 66.85 64.04
SmoothQuant 63.11 40.03 31.57 58.47 43.38 52.80 48.23
OmniQuant 66.15 45.20 31.14 63.51 56.44 53.43 52.65
QLLM 68.77 45.20 31.14 - 57.43 56.67 51.84W4A4

Atom 76.28 52.10 38.99 69.79 69.81 63.69 61.78
SmoothQuant 48.69 25.97 28.16 45.26 26.02 49.57 37.28
OmniQuant 49.78 27.19 27.22 37.86 25.64 49.96 36.28

7B

W3A3
Atom 65.56 41.41 30.72 61.77 53.19 55.56 51.37

FP16 - 79.05 59.85 44.62 68.53 76.22 70.09 66.39
SmoothQuant 64.47 41.75 30.89 62.29 46.68 51.70 49.63
OmniQuant 69.69 47.39 33.10 62.84 58.96 55.80 54.63
QLLM 71.38 47.60 34.30 - 63.70 59.43 55.28W4A4

Atom 77.69 57.58 42.92 67.46 73.77 68.51 64.66
SmoothQuant 47.99 26.30 27.65 46.91 25.65 49.64 37.36
OmniQuant 50.22 26.77 27.82 37.83 25.77 51.07 36.58

13B

W3A3
Atom 70.08 47.94 33.70 63.46 62.93 56.75 55.81

FP16 - 80.20 58.92 45.31 68.38 79.23 72.69 67.46
SmoothQuant 59.30 36.74 28.58 59.97 34.84 49.96 44.90
OmniQuant 71.21 49.45 34.47 65.33 64.65 59.19 57.38
QLLM 73.83 50.67 38.40 - 67.91 58.56 57.87W4A4

Atom 78.73 58.92 45.82 68.47 77.40 73.09 67.07
SmoothQuant 49.46 27.53 28.16 39.42 26.05 51.38 37.00

30B

W3A3 Atom 72.47 49.54 37.80 65.75 66.99 60.14 58.78

FP16 - 80.79 58.71 46.33 82.26 80.71 77.03 70.97
SmoothQuant 60.72 38.80 30.29 57.61 36.81 53.43 46.28
OmniQuant 71.81 48.02 35.92 73.27 66.81 59.51 59.22
QLLM 73.56 52.06 39.68 - 70.94 62.90 59.83W4A4

Atom 80.41 58.12 45.22 82.02 79.10 72.53 69.57
SmoothQuant 49.56 26.64 29.10 42.97 26.05 51.14 37.58

65B

W3A3 Atom 75.84 51.43 41.30 74.07 72.22 64.33 63.20

Table 2. Perplexity of quantized Llama models on WikiText2, PTB and C4 dataset.

Perplexity ↓Size Bits Method WikiText2 PTB C4

FP16 - 5.68 8.80 7.08
SmoothQuant 22.62 40.69 31.21
OmniQuant 11.59 20.65 14.96
QLLM 9.65 - 12.29W4A4

Atom 6.16 9.62 7.70
SmoothQuant 2.7e4 3.5e4 2.6e4
OmniQuant 3.4e3 7.5e3 6.3e3

7B

W3A3
Atom 11.77 20.84 15.43

FP16 - 4.10 7.30 5.98
SmoothQuant 109.85 142.34 87.06
OmniQuant 10.34 14.91 12.49
QLLM 8.37 - 11.51W4A4

Atom 4.54 7.69 6.35
SmoothQuant 1.5e4 1.6e4 1.5e4

30B

W3A3 Atom 6.94 12.12 9.14

Perplexity ↓Size Bits Method WikiText2 PTB C4

FP16 - 5.09 8.07 6.61
SmoothQuant 33.98 73.83 41.53
OmniQuant 10.90 18.03 13.78
QLLM 8.41 - 10.58W4A4

Atom 5.46 8.60 7.03
SmoothQuant 1.3e4 1.6e4 1.5e4
OmniQuant 7.2e3 1.6e4 1.3e4

13B

W3A3
Atom 8.40 15.84 10.81

FP16 - 3.53 6.91 5.62
SmoothQuant 88.89 278.76 283.80
OmniQuant 9.18 16.18 11.31
QLLM 6.87 - 8.98W4A4

Atom 3.89 7.22 5.92
SmoothQuant 6.6e8 3.7e8 4.4e8

65B

W3A3 Atom 5.89 9.71 7.94
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Figure 10. End-to-end evaluation of Atom. Solid lines are exact measurements, while dashed lines are estimations due to the limited
memory capacity. (a) The number of generated tokens per second. (b) Average decode latency per token. Atom surpasses all other
quantization methods for both throughput and latency. (c) Performance evaluated under a fixed amount of GPU memory. Note that Atom
boosts the throughput by 2.5× more than W8A8 since it enables a larger batch size, which utilizes the batching effect.

5.3 Efficiency evaluation

To demonstrate the efficiency of Atom, we conduct experi-
ments profiling both per-kernel and end-to-end performance.
Since the highly efficient INT4 arithmetic is supported by
NVIDIA GPUs, we evaluate Atom with W4A4 quantization
on a 24GB RTX 4090 with CUDA 11.3.

5.3.1 Kernel evaluation

Matrix multiplication. We evaluate the fused GEMM op-
erator implemented by Atom, as shown in Figure 11(a). We
also implemented fused GEMM for 8-bit weight-activation
quantization (W8A8) and 4-bit weight-only quantization
(W4A16) following the existing work (Xiao et al., 2023; Lin
et al., 2023) as baselines. For smaller batch sizes, GEMM is
memory-bound; thus, weight-only quantization’s memory
reduction is effective. However, as the batch size increases,
the efficiency of weight-only quantization diminishes in the
compute-bound setting due to the expensive FP16 calcula-
tions. At the same time, 4-bit Atom outperforms all other
approaches due to its hardware efficiency. At batch size
512, Atom’s matrix-multiplication achieves 3.4× and 1.9×
speedup over FP16 and INT8 kernels.

Self-attention. For the self-attention layer, we fuse differ-
ent quantization methods into FlashInfer (Ye et al., 2024),
which is a performant kernel library for LLMs serving. We
also integrate PageAttention (Kwon et al., 2023) for efficient
memory usage. We evaluate our implementation and show
the results in Figure 11(b). The decrease in bits linearly
reduces the memory usage of the KV-cache, therefore pro-
portionally boosting the throughput in the memory-bound
setting. At batch size 128, Atom achieves a 1.8× speedup
over INT8 quantization and 3.5× over the FP16 baseline.

5.3.2 End-to-end evaluation

Serving setup. We integrate Atom into Punica, an LLM
serving framework (Chen et al., 2023), to evaluate the perfor-
mance in the end-to-end scenario. We also integrate W8A8
and W4A16 quantizations following previous works (Xiao
et al., 2023; Lin et al., 2023) as baselines. To generate a
representative workload, we use ShareGPT (HuggingFace,
2023) to collect the distribution of prefill and decode request
length. We treat multi-round conversations as requests from
multiple users. Specifically, we concatenate all previous
prompts and responses and use them as the prompt for the
new user request. We vary the batch size from 8 to 256,
which represents the practical range in LLM serving2. All
requests are served in a First-Come-First-Served manner.
When a request is finished, we re-fill the on-the-fly batch
with a new request following continous batching as intro-
duced in Orca (Yu et al., 2022). Due to GPU memory limits,
we only show the exact results on small batch sizes. When
the memory requirement cannot be satisfied, we simulate the
performance by reusing the KV-caches from a smaller batch
size while preserving the data access pattern and amount of
computation.

End-to-end throughput. We show the end-to-end through-
put, i.e., generated tokens per second, in Figure 10(a). Solid
lines represent exact evaluation results, while dashed lines
represent our simulated results for the cases that exceed our
GPU’s memory capacity. As Figure 10(a) shows, Atom
outperforms other quantization methods on all batch sizes.
If we fix the available memory as shown in Figure 10(c),
Atom can achieve larger batch sizes so that its throughput
further surpasses all baselines while still meeting the latency

2With quantization, pipelining, and tensor parallelism to amor-
tize weights, it is practical to deploy a 180B model with a 256
batch size in the serving scenario (Patel et al., 2023).
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Figure 11. Performance evaluation of different quantization ap-
proaches on Atom and baseline kernels. We set up the evaluation
configuration aligned with the Llama-7b config and 1024 sequence
length. Kernels are evaluated by NVBench (NVIDIA, 2024b).

target. Atom achieves 7.73× throughput compared to the
FP16 baseline and 2.53× throughput compared to INT8
quantization using the same amount of memory. In contrast,
weight-only quantization is bounded by FP16 computation
capacity in dense layers and large memory movement of the
KV-cache in the self-attention layer.

End-to-end latency. We measure the latency as the aver-
age decoding time of each token, without considering the
queuing time. Atom significantly outperforms other quanti-
zation methods on every batch size. When we achieve the
highest practical performance at batch size 64, our latency
is lower than INT8 or FP16 implementations, even under
batch size 8. Notably, even at batch size 256, our latency
is still lower than 100 ms, which has been shown to be
the effective reading speed of human eyes by a prior study
(Trauzettel-Klosinski et al., 2012).

5.4 Ablation study of quantization techniques

In this subsection, we comprehensively evaluate the effec-
tiveness of quantization techniques used in Atom, in terms
of both accuracy and efficiency, to better illustrate our design
choices and the trade-off between accuracy and efficiency.

5.4.1 Ablation study to evaluate accuracy

We examine the accuracy gain or loss of different quan-
tization techniques used in Atom. We first use RTN and
adopt per-channel quantization for weights and per-token
quantization for activations, which is the standard quanti-
zation recipe (Xiao et al., 2023), to quantize the model to
W4A4. We then apply other quantization techniques used
in Atom, i.e., mixed-precision, quantizing outliers, group
quantization, clipping, GPTQ, and KV-cache quantization,
and examine the perplexity case by case. As shown in Ta-
ble 3, keeping outlier channels in FP16 significantly reduces
the perplexity. Further quantizing outliers into INT8 only
results in a very minor 0.05 perplexity increase, which indi-
cates mixed precision effectively addresses the outlier issue.

Table 3. Ablation study on different quantization techniques used
in Atom. The model used in this table is Llama-7B.

Quantization method WikiText2 PPL↓
FP16 baseline 5.68

W4A4 RTN 2315.52
+ Keeping 128 outliers in FP16 11.34 (2304.2↓)
+ Quantizing outliers to INT8 11.39 (0.05↑)
+ Group size 128 6.22 (5.17↓)
+ Clipping 6.13 (0.09↓)
+ GPTQ 6.04 (0.09↓)
+ Quantizing KV-cache to INT4 6.16 (0.12↑)

Besides, fine-grained group quantization brings another ma-
jor perplexity reduction. Furthermore, using clipping and
GPTQ lowers perplexity by 0.09 each. After all, quantizing
KV-cache results in a slight 0.12 perplexity increase, which
echoes our finding in Section 4.4.
5.4.2 Ablation study to evaluate efficiency

We then showcase the GEMM kernel throughput with dif-
ferent fused quantization techniques3. A pure INT4 GEMM
implementation without any quantization operation achieves
nearly 980 TOPS. Fusion of mixed precision, which keeps
128 channel calculations in INT8 Tensor Cores, leads to
8% overhead, with 900 TOPS throughput. Fine-grained
group quantization contributes to the major overhead since
it deeply affects the compute pipeline. The fusion of group
dequantization decreases the performance to 770 TOPS.
However, the fused GEMM kernel still outperforms the
theoretical limit of INT8 throughput by nearly 18%.

Besides, to demonstrate the efficiency of channel reorder-
ing, we also conduct an ablation study on Atom and base-
line. The baseline is implemented following the previous
work (Dettmers et al., 2022), with matrix decomposition
for mixed precision quantization. At the same time, Atom
fuses quantization operators, including reordering and quan-
tization, into existing operators. We evaluate batch sizes
from 16 to 256 and measure the inference latency of a layer
norm and a GEMM operation. Results show that Atom
consistently outperforms the baseline from 25% to 35%.

6 DISCUSSION

With innovations of model architectures like Mixture of
Experts (MoE) (Jiang et al., 2024; Dai et al., 2024), State
Space Models (SSMs) (Gu et al., 2022; Gu & Dao, 2023),
and evolvement of hardware accelerators (e.g., NVIDIA
Blackwell GPU (NVIDIA, 2024a)), it’s important that Atom
can be used for new models and hardware. In this section,
we provide evaluations on more LLMs and data formats.
Generality on models. Atom’s main techniques to achieve

3Kernel performance is profiled by NVBench (NVIDIA, 2024b)
with the Llama-7b config and a batch size of 4096 on RTX 4090.
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Table 4. WikiText2 perplexity for Llama-2 and Mixtral.

Llama2 Mixtral# Bits Method 7B 13B 70B 8x7B
FP16 - 5.47 4.88 3.32 3.84

SmoothQuant 83.12 35.88 - -
OmniQuant 14.61 12.3 - -
Atom (INT) 6.03 5.27 3.68 4.41W4A4

Atom (FP) 6.14 5.35 3.78 4.50

high accuracy are mixed precision for outliers and fine-
grained quantization for normal values. We empirically
find these are generalizable to newer transformer-based
LLMs. In Table 4, we show the perplexity results of two
relatively new LLMs, Llama-2 (Touvron et al., 2023b) and
Mixtral (Jiang et al., 2024). To generalize on MoE models,
Atom only needs to adapt to using different reorder indices
for different experts’ FFN4. As Table 4 shows, Atom still
outperforms baselines and maintains high accuracy.

Generality on data formats. With the support for emerg-
ing data formats such as FP4 and MX (Liu et al., 2023b;
Rouhani et al., 2023) on new hardware, we also evaluate
the effectiveness of Atom in FP4. As shown in Table 4,
Atom maintains a similar accuracy to INT4 when quantiz-
ing both weights and activations into FP4. We conclude
that the representation capability between INT4 and FP4 is
similar. Additionally, group quantization with the MX for-
mat is supported by NVIDIA Blackwell GPUs. We expect
this hardware feature can mitigate the group quantization
overhead of Atom as described in § 5.4.2.

7 RELATED WORK

LLM serving. Various works have been explored to im-
prove LLM serving throughput. (Pope et al., 2022) investi-
gated the batching effect when scaling up LLMs. Orca (Yu
et al., 2022) proposed continuous batching to improve GPU
utilization by refilling the on-the-fly batch. vLLM (Kwon
et al., 2023) utilized page tables to manage KV-cache,
which significantly increases GPU memory utilization. Flex-
Gen (Sheng et al., 2023) proposed an offload mechanism to
support larger batches for high serving throughput. How-
ever, unlike prior works, in this paper, we delve deep into
the intersection between quantization and LLM serving.

Weight-only quantization. For LLMs, weight matrices
lead to large memory movement, limiting decode efficiency.
Weight-only quantization uses low-bit precision to approxi-
mate weight matrices. For instance, GPTQ (Frantar et al.,
2023) used 4-bit to quantize the weight based on the approx-
imate second-order information. AWQ (Lin et al., 2023)

4In practice, we find that accuracy is similar when Atom share
reorder indices across all experts in an MoE layer. Therefore, we
use shared indices for efficiency consideration.

further advanced accuracy by preserving salient weights.
SqueezeLLM (Kim et al., 2023) handled outliers through
non-uniform quantization and used a sparse format to keep
outliers and sensitive weights at high precision. QuiP (Chee
et al., 2023) successfully represented weights using 2-bit
by an adaptive rounding method. Nonetheless, in the LLM
serving scenario, the overhead of loading the weight matrix
is amortized due to batching. Thus, the dense layer becomes
compute-bound, while weight-only quantization fails to use
efficient low-bit hardware to deliver ideal throughput.

Weight-activation quantization. Weight-activation quan-
tization quantizes both the weight and activation matrices,
which is considered more challenging due to the outlier
phenomenon of the activation. LLM.INT8 (Dettmers et al.,
2022) proposed mixed precision to preserve outlier values in
activation matrices. (Xiao et al., 2023; Shao et al., 2023; Yao
et al., 2022; Wei et al., 2023) used mathematical equivalent
transformations to manage activation outliers. RPTQ (Yuan
et al., 2023) rearranges the channels to reduce the variance
within one quantization group, further enhancing the ac-
curacy. Some works (Liu et al., 2023a; Wu et al., 2023)
used low-rank matrices to compensate for quantization error.
Others (Guo et al., 2023; Zhou et al., 2023) used algorithm
and architecture co-design to accommodate outliers. How-
ever, these approaches either suffer significant accuracy loss
at extremely low-bit precision or lack practical hardware
support. In this work, our method achieves notable accuracy
with low-bit representation and ensures practical speedup.

8 CONCLUSION

We presented Atom, a low-bit quantization method that
leverages the underlying hardware efficiently to achieve both
high accuracy and high throughput for LLM serving. We use
mixed-precision quantization with reordering, fine-grained
group quantization, dynamic quantization, and KV-cache
quantization to preserve accuracy while fully exploiting
emerging low-bit hardware support. We integrate Atom into
an end-to-end serving framework, achieving up to 7.73×
throughput enhancement compared to the FP16 baseline as
well as maintaining less than 1.4% zero-shot accuracy loss.
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