
HETEGEN: HETEROGENEOUS PARALLEL INFERENCE FOR LARGE
LANGUAGE MODELS ON RESOURCE-CONSTRAINED DEVICES

Xuanlei Zhao * 1 Bin Jia * 1 Haotian Zhou * 1 Ziming Liu 1 Shenggan Cheng 1 Yang You 1

ABSTRACT
In recent times, the emergence of Large Language Models (LLMs) has resulted in increasingly larger model size,
posing challenges for inference on low-resource devices. Prior approaches have explored offloading to facilitate
low-memory inference but often suffer from efficiency due to I/O bottlenecks. To achieve low-latency LLMs
inference on resource-constrained devices, we introduce HeteGen, a novel approach that presents a principled
framework for heterogeneous parallel computing using CPUs and GPUs. Based on this framework, HeteGen
further employs heterogeneous parallel computing and asynchronous overlap for LLMs to mitigate I/O bottlenecks.
Our experiments demonstrate a substantial improvement in inference speed, surpassing state-of-the-art methods
by over 317% at most.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have ex-
hibited remarkable performance improvements, correlating
with the exponential growth in their scale (Brown et al.,
2020; Devlin et al., 2019; Zhang et al., 2022; Ouyang et al.,
2022). These models have not only enhanced their funda-
mental capabilities but have also demonstrated the emer-
gence of novel functionalities (Wei et al., 2022), rendering
them more proficient across a wide array of tasks. The
substantial grow in model size has introduced considerable
memory demands for their deployment. The deployment
of most LLMs now necessitates tens, or even hundreds, of
gigabytes of memory for inference, leading to the biggest
barrier for their application.

In this paper, our focus is to achieve low-latency inference
for LLMs on resource-constrained devices. In many ap-
plications, we requires the model to be deployed on local
device for reasons like stability, privacy, safety and systems
constraints. These situations include individual user access,
autonomous driving (Fu et al., 2023), edge computing (Li
et al., 2019), and personal assistant (Ross et al., 2023). The
key characteristics of such tasks are as follows: 1) Their
GPU resources are often limited on local hardware. 2) They
typically use small batch sizes, typically 1, but require quick
responses for an enhanced user experience, which presents
a challenge for existing techniques.

*Equal contribution 1National University of Singapore. Corre-
spondence to: Yang You <youy@comp.nus.edu.sg >.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

24GB

220GBCPU

GPU 20,000GB/s

25GB/s

350GB/s

Figure 1. Memory space and processing speed for GPU, CPU, and
I/O between CPU and GPU. The speed is tested with OPT-30B
MLP Linear on NVIDIA A10 GPU and Intel Xeon @ 2.30GHz
CPU, calculated as parameter size divided by processing time.

Model compression (Dettmers et al., 2022; Xiao et al.,
2022; Frantar et al., 2022) compress the parameter weight’s
bitwidth to reduce parameter memory, and low-level op-
timization including KV-cache management (Kwon et al.,
2023) and fused attention kernels (Dao et al., 2022b) have
been proposed to reduce memory usage by system opti-
mization. But their capability to save memory is still far
from expected. ZeRO-offload (Ren et al., 2021; Aminabadi
et al., 2022b) proposes to offload unused parameters to CPU
memory and disk to reduce memory cost significantly, but it
leads noticeable loss in speed. FlexGen (Sheng et al., 2023)
improves offloading throughput for large batch inference
by computing attention in CPU and overlapping I/O with
computation. However, FlexGen’s utilization of CPU and
I/O resources is still limited, and it doesn’t efficiently reduce
latency for sparse inputs.

As illustrated in Figure 1, the CPU’s memory capacity sig-
nificantly surpasses that of the GPU, allowing it to accom-
modate unused parameters for the GPU. Additionally, the
I/O between the GPU and CPU is considerably slower com-
pared to the GPU’s computational efficiency, thus acting as

HeteGen: Heterogeneous Parallel Inference for Large Language Models on Resource-Constrained Devices

a bottleneck within the system. However, in such a system,
the potential of the CPU is often underestimated, resulting
in either idle or very light workload. Our key observation is
that since the bottleneck of LLM inference with offloading
is I/O, we can leverage the CPU for heterogeneous parallel
computation alongside the GPU, thereby reducing the need
for parameter I/O and achieving an better resource alloca-
tion. In this context, there are three core challenges that need
to be addressed: 1) What parallel strategy should be em-
ployed for CPU and GPU? 2) How to distribute computation
between the CPU and GPU to achieve optimal efficiency?
3) How to improve the usage of I/O and CPU computation?

To solve these challenges, we propose HeteGen, a heteroge-
neous parallel inference system that can effectively reduce
the latency of LLMs on low-resource devices by fully uti-
lizing CPU and I/O resources. HeteGen proposes a general
framework for heterogeneous parallel computing using both
CPUs and GPUs. Building upon this framework, HeteGen
incorporates heterogeneous parallel computing and asyn-
chronous overlap to address I/O bottlenecks in Large Lan-
guage Models (LLMs) inference. Our experiments show
a significant enhancement in inference speed, exceeding
state-of-the-art methods by 317%.

In summary, our contributions are as follows:

• We proposed a low-latency offloading inference ap-
proach based on heterogeneous parallel computing
asynchronous overlapping to alleviate the bottleneck
of I/O.

• We have developed a general heterogeneous parallel
method and corresponding theoretical formula that
guides optimal performance in computations distribu-
tion for heterogeneous parallel computing.

• HeteGen incorporates heterogeneous parallel comput-
ing and asynchronous overlap to address I/O bottle-
necks in Large Language Models (LLMs) inference.

• Our experimental results demonstrate that we have sur-
passed the current state-of-the-art methods in latency
and dynamic ranges.

2 BACKGROUND

2.1 Generative Language Models Inference

In this section, we present the inference process of gen-
erative language models. The Transformer (Vaswani
et al., 2017) takes an input sequence, which undergoes a
multi-head self-attention mechanism to produce a context-
sensitive representation. This representation then passes
through forward network layers, repeating the above steps
until the final prediction is generated. During multi-head
attention, we compute the query, key, and value based on our

input and calculate the attention result according to a spe-
cific formula. After attention, two feed-forward networks
(FFN) further process the features in MLP module.

We introduce the two stages of inference for generative
language models, prefill and decode, and discuss their dif-
ferences. In the prefill stage, the generative model receives
the input text (also known as ”prompt”) and processes it
in parallel. Our input is [x1, x2, ...xn], which is processed
according to the Transformer’s standard inference flow. At
each attention layer, we save the key and value results for
reuse in subsequent steps. In the decode stage, the model
generates the answer step by step, producing one token at
a time. Unlike prefill, we only take the last token in the se-
quence as our input because the previous tokens have been
computed in the previous steps and only need to be called
from the cache. Therefore, in the modules except for atten-
tion, we only need to calculate based on this single token.
In attention, after computing the query, key, and value for
the current input, we concatenate the saved key and value
with the current value, allowing this token to obtain informa-
tion from the previous sequence, as shown in the following
formula.

{Xi
key, X

i
value} ←Concat({Xi−1

key , X
i−1
value}, (1)

{tokeni · wi
key, token

i · wi
value})

2.2 Memory Analysis

Figure 2. Memory usage in OPT-30B. Batch size is 1, and sequence
length is 512.

As depicted in Figure 2, we provide a insight into the mem-
ory utilization of OPT-30B. It becomes evident that the
linear modules constitute a substantial majority, exceed-
ing 97% of the total memory consumption. In contrast,
other components such as layernorm, embedding, and KV-
cache make up only a minor fraction of the overall memory
footprint. This observed proportionality extends to smaller
model variants, reinforcing the significance of prioritizing
offloading strategies for optimizing linear modules within
the architecture.

2.3 Offloading Bottleneck

As illustrated in Figure 1, it is evident that the speed of I/O
operations lags significantly behind that of the GPU, and

HeteGen: Heterogeneous Parallel Inference for Large Language Models on Resource-Constrained Devices

COM

CPU

GPU

P1 P2 P3 P4

(a) Heterogeneous tensor parallelism.

P1

COM

CPU

GPU

P2 P3 P4

(b) Heterogeneous pipeline parallelism.

Figure 3. A straightforward illustration of heterogeneous paral-
lelism. COM denotes parameter communication, Pi refers to the
i-th part of the model and the black line represents data exchange.

even falls short of CPU performance by more than a tenfold
margin. This highlights that the conventional approach, as
suggested in prior works, which involves loading all param-
eters from the CPU to the GPU, is not the most efficient
strategy. Instead, we can leverage the CPU to handle the
computations as well. However, it is also impractical to
have the CPU handle all workloads, as it would leave the
GPU and I/O resources underutilized and wasted. Therefore,
the optimal solution lies in a distribution of computation
between the CPU and GPU, allowing them to work in paral-
lel.

3 HETEROGENEOUS PARALLELISM

In this section, we discuss the design of our heterogeneous
parallelism algorithm and computation distribution law. Sec-
tion 3.1 focuses on exploring the most efficient parallelism
strategy that aligns with our purpose. Furthermore, section
3.2 investigates the guidelines for the distribution of com-
putations to enable effective overlap among the CPU, GPU,
and I/O under such parallelism strategy.

3.1 Parallelism Strategy

As elaborated in Section 6.2, the field of deep learning
encompasses three primary forms of parallelism: data
parallelism (Rajbhandari et al., 2020), tensor parallelism
(Shoeybi et al., 2020), and pipeline parallelism (Huang et al.,
2019). This subsection is dedicated to an in-depth explo-
ration of the most effective parallelism strategy for GPU-
CPU heterogeneous computing. A distinguishing factor in
our task is the considerable disparity in processing speeds
between the CPU and GPU components. The CPU compu-
tations and I/O operations exhibit speeds that are often tens
or even hundreds of times slower than GPU computations.
Consequently, it is imperative to meticulously address load

balancing and the potential for communication overlap in
order to optimize performance.

Data parallelism is evidently not a suitable choice for our
scenario due to the small batch sizes our inputs, rendering
them unsuitable for partitioning into mini-batches. Further-
more, the limited computational capacity of the CPU results
in a substantial decrease in processing speed. On the other
hand, both tensor parallelism and pipeline parallelism seems
to offer promising solutions to this challenge. Considering
the previously outlined distinctions, we present a simplified
visualization of heterogeneous tensor and pipeline paral-
lelism in Figure 3. In this visualization, we have omitted the
consideration of communication overlap between layers for
the sake of simplicity. It is apparent that GPU computation
times are notably shorter due to their significantly superior
efficiency in comparison to the CPU and communication. To
minimize bottleneck communication time, we have strate-
gically allocated a larger portion of the computation to the
CPU to reduce communication volume.

To be specific, within the framework of tensor parallelism,
the model is divided into two components, one designated
for CPU processing and the other for GPU execution. The
CPU is exclusively dedicated to computational tasks, and
while CPU computation is underway, model parameters
are conveyed to the GPU. The GPU, in turn, generates re-
sults once the communication process is completed. In this
specific context, it is imperative to ensure:

TCPU = TGPU + TCOM (2)

In order to fully harness the computational capabilities of
the CPU and the communication, a method of achieving this
involves partitioning the weight’s dimensions. Furthermore,
idle periods during GPU computations can be mitigated
through prefetching.

In the context of pipeline parallelism, the model is seg-
mented into distinct parts, and computations are executed
sequentially on various devices. As evident from the illustra-
tion, in order to maximize utilization, it is crucial to ensure
that the CPU computation time for the current part matches
the communication duration for the subsequent stage, as
denoted by:

TPi

CPU = T
Pi+1

COM (3)

In this scenario, we can discern the drawbacks of pipeline
parallelism in comparison to tensor parallelism: 1) CPU
idleness during GPU computations is a notable drawback.
Although the utilization of micro-batches is a common ap-
proach to alleviate this idle time, it proves challenging for
our sparse input data, hindering overall efficiency. 2) A
critical concern lies in the necessity to segregate different

HeteGen: Heterogeneous Parallel Inference for Large Language Models on Resource-Constrained Devices

operators into distinct parts to satisfy Equation 3 for pipeline
parallelism. Achieving a perfect allocation is a difficult task,
particularly for operators with varying computation times
such as matrix multiplication, which inevitably leads to
idle time. The option of stacking more layers into a single
stage for better time balance is restricted by the GPU’s finite
parameter-handling capacity. 3) While pipeline parallelism
generally incurs lower data exchange costs than tensor paral-
lelism, this advantage becomes less important in the context
of large language model generative inference, where activa-
tion sizes are relatively small. Consequently, for our specific
task, tensor parallelism emerges as the optimal strategy.

3.2 Computation Distribution

As mentioned earlier, parameter transmission has emerged
as a significant bottleneck when conducting model inference
on resource-limited devices. A practical strategy involves
minimizing the data exchange between the GPU and mem-
ory and redistribute some parameter and computation to
the CPU. To begin, we must decide how to distribute the
workload between the GPU and CPU for any given module.
Our primary aim is to balance the processing times of the
GPU and CPU to optimize efficiency.

For the CPU, since the model parameters are already present
in memory, the total CPU processing time is equivalent to
the time required for parameter calculations on the CPU. On
the other hand, for the GPU, parameter must be transferred
from memory to GPU memory before computation can
commence. Thus, the overall GPU processing time includes
both data transfer time and GPU computation time.

Let’s denote TCPU as the CPU processing time, TGPU as
the GPU processing time, and TCOM as the time for CPU-
to-GPU data transfer. Our initial objective can be stated
as Equation 4. Next, let’s assume that the total number of
parameters is W , and the portion of parameters computed
on the GPU is expressed as α. The CPU’s processing speed
is denoted as VCPU , and the GPU’s processing speed is
VGPU . Additionally, the transmission speed is indicated as
VCOM . We can elaborate on the equation as follows:

(1− α)W

VCPU
=

αW

VGPU
+

αW

VCOM
(4)

After simplifying the expression, we arrive at the following
formula:

α =
VGPUVCOM

VCPUVGPU + VCPUVCOM + VCOMVGPU

=
1

VCPU

VCOM
+ VCPU

VGPU
+ 1

(5)

We can disregard the GPU-to-CPU computation time ra-
tio since it is usually negligible in the majority of cases,
represented as:

α ≈ VCOM

VCOM + VCPU
(6)

To further simplify, we can substitute V with 1/T ′, where
T ′ signifies the overall duration of the entire operation,
while the T mentioned earlier pertains to the duration of
the distributed computation. The ultimate formula can be
expressed as:

α ≈ T ′
CPU

T ′
CPU + T ′

COM
(7)

Hence, we derive a formula for the CPU-GPU heteroge-
neous computation ratio. Dividing the parameters based
on this ratio enables us to establish an optimal proportion,
maximizing theoretical efficiency. The significance of this
formula is twofold: 1) It offers a straightforward and ele-
gant description of distribution principles, applicable not
only to Transformers but also to all forms of heterogeneous
computation following this tensor parallelism approach. 2)
Its practicality is noteworthy, as it requires only the mea-
surement of execution times for these two operations in the
respective models, making it exceptionally user-friendly for
implementing such strategies.

4 HETEGEN

4.1 Overview

To enable low-latency large language model inference on
resource-constrained devices, we introduce HeteGen, a so-
lution that harnesses parallel heterogeneous computing to
enhance efficiency. HeteGen strategically exploits the capa-
bilities of the CPU and I/O to mitigate the bottleneck I/O
associated with offloading. This approach minimizes the
need for parameter transfers between the GPU and memory,
resulting in improved computational efficiency. To facilitate
the implementation of this strategy, we outline a guideline
for heterogeneous parallel computation in the previous sec-
tion. In this section, we endeavor to apply this approach to
the inference of large language models.

As illustrated in Figure 4, HeteGen consists of two main
stages: the scheduler stage and the runtime stage. In the
scheduler stage, HeteGen initially employs the alpha bench-
mark to determine the distribution ratio of computation for
each module. Subsequently, the parameter scheduler as-
sesses whether a heterogeneous policy should be applied to
a module or place parameters solely on the GPU, based on
our proposed value function and model configuration. In
the runtime stage, within each heterogeneous module, our

HeteGen: Heterogeneous Parallel Inference for Large Language Models on Resource-Constrained Devices

Param. Scheduler

Scheduler

Runtime

Alpha Benchmark

Params

L
a
y
e
r
s

Param. Manager

Params

L
a
y
e
r
s

CPU

COM

GPU

CPU GPU

Act

Pin Com

Hybrid Hete. Para.

Figure 4. Overview of HeteGen. HeteGen has two main stages: scheduling and runtime. In the scheduling stage, it uses the alpha
benchmark to distribute computation and decides on parameter policies based on our scheduler. In the runtime stage, it optimizes I/O and
CPU utilization within heterogeneous modules using hybrid parallelism and manages asynchronous weights to minimize system impact.

hybrid heterogeneous parallelism technique is employed to
optimize their utilization of I/O and CPU, making use of
asynchronous overlap. Additionally, a parameter manager
oversees the management of these asynchronous weights to
minimize their impact on the system.

4.2 Hybrid Heterogeneous Parallelism

This section delves into the implementation details of Hete-
Gen’s hybrid heterogeneous parallelism approach. As illus-
trated in Figure 2, we observe that the majority of memory is
consumed by the linear in LLMs. As a result, we focus our
attention on applying heterogeneous parallelism to linear
modules, while retaining all other modules on the GPU. To
achieve the best efficiency with our hybrid heterogeneous
parallelism, the key to reducing latency is as follows: 1) En-
sure the system bottlenecks, notably CPU computation and
CPU-GPU communication, are fully utilized. 2) Maximize
the overlap between communication and CPU computation.
Equation 7 provides insight into the optimal distribution of
computation between the CPU and GPU for optimal uti-
lization. With α already determined, our focus shifts to
optimizing the overlap within a single module.

As depicted in Figure 3a, it provides a naive outline for
the design of heterogeneous parallelism. Following this
framework, we can implement the most straightforward
form of asynchronous overlap, as illustrated in Figure 5a.
To clarify, the process first involves transmitting activation

from the GPU to the CPU, then commencing CPU com-
putation, and asynchronously transferring GPU weights to
the CPU. Once the CPU computations are complete, the
outputs are sent back to the GPU for final processing. How-
ever, this basic form of heterogeneous parallelism is not
the most efficient since it fails to fully utilize the I/O band-
width between the CPU and GPU. For better bandwidth,
some prior works (Sheng et al., 2023) employ pinned mem-
ory to expedite weight transfer, as illustrated in Figure 5b.
This approach involves pinning the relevant CPU memory
first, as pinned memory offers higher transfer speeds. But
the pinning memory blocks both communication and CPU
computation, leading to worse performance.

HeteGen has discovered that this approach is not the most
efficient I/O overlap strategy, prompting us to propose a
novel level of parallelism for memory operations, as demon-
strated in Figure 5c. The diagram illustrates our hybrid
heterogeneous parallelism. To elaborate, building upon the
parallelism of CPU computation and CPU-GPU communi-
cation, we introduce a new form of parallelism dedicated to
communication. This communication parallelism is divided
into two components: pin memory and memory transfer,
both of which operate concurrently using multithreading.
However, this parallelism introduces a higher level of asyn-
chrony since it necessitates the prior pinning of the current
weight. We prepare the current pinned weight for transfer
and proactively pin the next weight in the upcoming layer.

HeteGen: Heterogeneous Parallel Inference for Large Language Models on Resource-Constrained Devices

COM

CPU

GPU

Act CPUPin GPUCom

(a) Naive heterogeneous parallelism.

COM

CPU

GPU

(b) Heterogeneous parallelism with pinned memory.

COM

CPU

GPU

(c) Hybrid heterogeneous parallelism.

Figure 5. Demonstration of different heterogeneous parallelism
strategies.

This enables simultaneous execution of CPU computation,
weight pinning, and weight transfer. Given the division
of communication into pinning and transferring, our het-
erogeneous formulas in Equation 4 and Equation 7 require
updating as follows:

TCPU = TGPU + TCOM

= TGPU +max(TPIN , TTRANS) (8)

α ≈ T ′
CPU

T ′
CPU +max(T ′

PIN , T ′
TRANS)

(9)

4.3 Asynchronous Parameter Manager

Given that the hybrid heterogeneous parallelism requires
the asynchronous pinning of parameters for each heteroge-
neous module before computation, HeteGen introduces an
asynchronous parameter manager. This manager is specifi-
cally designed to efficiently manage the temporary pinned
parameter memory of our hybrid heterogeneous parallelism
for each module.

The management of this process serves two primary objec-
tives: maintaining asynchrony without affecting operational
speed and minimizing memory and I/O costs associated

Q K V O FFN1 FFN2

L
a
y
e
r
s

Figure 6. Illustration of asynchronous heterogeneous scheduler.
The arrows refer to the pinned memory pass.

with cached memory. Since the pinning time is contingent
on parameter size, we categorize all heterogeneous parame-
ters into two groups based on their size: linear in attention
and linear in mlp. As depicted in Figure 6, within each
group, for every layer, the preceding heterogeneous module
prepares the pinned weights for the subsequent parameters
while acquiring its own pinned weights from the previous
parameter. In the event that it is the last module within a
layer, it proceeds to process the weights for the first parame-
ter in the following layer. This approach offers two distinct
advantages. Firstly, since the weight sizes within a group are
uniform, the pinning times are nearly identical, preventing
any bubble time during the process. Secondly, the approach
restricts the system memory overhead to just a maximum of
one pinned parameter per group.

In the scheduler, our initial step involves determining the
alpha ratios for different modules. Based on these results,
we make informed decisions about whether each module
should undergo Hete Parallelism. If the answer is affirma-
tive, we assign the corresponding α value to the module.
Within each module, we execute computations utilizing the
heterogeneous parallelism method described in the previous
section. This approach ensures that, at any given moment,
the GPU’s memory is occupied by parameters equivalent
to only α times the parameter size. As a result, our GPU
memory requirements are significantly reduced without any
adverse impact on efficiency. Building on this foundation,
we further enhance the determination of alpha values and
parameter scheduling, taking into account the specific char-
acteristics of the computations.

4.4 Alpha Benchmark

As per our heterogeneous formula introduced in Equation
9, the determination of the final weight distribution ratio
α requires measurements of CPU computation speed and
CPU-to-GPU transfer speed. Nevertheless, CPU computa-
tion and I/O speed do not exhibit a direct proportionality to
the number of parameters, which is governed by α. Bench-
mark results may also be influenced by system conditions,

HeteGen: Heterogeneous Parallel Inference for Large Language Models on Resource-Constrained Devices

Q K V O FFN1 FFN2

L
a
y
e
r
s

g: 2.1 2.1 2.1 2.1 4.5 4.5

Stop

Figure 7. Illustration of heterogeneous module scheduler. The
arrows refer to the order to place parameters to GPU.

rendering them less stable and potentially divergent from
their actual values.

To obtain more precise results, we employ a refined ap-
proach. Building upon the prior benchmark value α, we
adjust its value within a small range of [α + γ, α − γ] in
steps of λ for minimum cost. This adjustment is followed
by testing the times T ′

CPU and max(T ′
PIN , T ′

TRANS) as
mentioned in Equation 9. We then utilize polynomial for-
mulas to model their speeds corresponding to different α
values. This enables the calculation of the α value at which
both speeds are equal, as depicted in Figure 4. This value is
denoted as:

FCPU (α) = FCOM (α) (10)

where F refers to the fitted function.

TCPU = FCPU (α) (11)

TCOM = max(TPIN , TTRANS) = FCOM (α) (12)

4.5 Heterogeneous Module Scheduler

Our scheduling approach effectively addresses the issue of
high GPU memory demand by minimizing the parameters
on the GPU. This ensures efficient memory utilization and
low GPU memory usage. However, in scenarios with ample
memory space available, our approach falls short of fully
exploiting the GPU’s resources.

To overcome this limitation and better utilize GPU mem-
ory, we introduce the Heterogeneous Module Scheduler.
This technique dynamically transfers a portion of param-
eters from the CPU to the GPU when sufficient memory
is available, reducing the original communication costs as-
sociated with these parameters. By allocating parameters
between the CPU and GPU on the fly, the parameter sched-
ule optimizes resource allocation, leveraging GPU capa-
bilities while minimizing communication overhead. This

enhancement positively impacts system performance and
GPU utilization for our scheduling task.

The order in which parameters are allocated to the GPU is
crucial, as the benefits of moving different weights to the
GPU can vary. To assess the advantages of placing a module
on the GPU, we can quantify it by considering the ratio of
the time saved to the GPU memory consumption. Based
on our previous formula, the saved time equals the module
computation time, which is equivalent to our benchmarked
CPU time TCPU . Thus, this metric can be denoted as:

g =
TCPU

Mem
(13)

In particular, as illustrated in Figure 4, we can establish
the ranking of each parameter by comparing their schedule
gain (g). We then proceed to migrate the weight with the
highest g to the GPU for each layer until the memory limit
is reached.

5 EXPERIMENTS

Table 1. Hardware for Evaluation.

GPU CPU PCIE

NVIDIA A10 Intel Xeon @ 2.30GHz 30GB/s

Hardware. We run experiments on NVIDIA A10(24GB)
GPU. GPU and CPU communicate via PCIE. The hard-
ware specifications are listed in Table 1. Our methods and
implementations do not depend on specific hardware ar-
chitectures. Some architecture with better GPU and CPU
communication speed could be more friendly to our method.

Model. We use OPT models (Zhang et al., 2022) ranging in
size from 6.7B to 30B to test HeteGen and other baseline
methods. Although we do not evaluate other models, the
offloading in HeteGen can be applied to other large language
models, e.g., LLaMA (Touvron et al., 2023), GPT-3 (Brown
et al., 2020), and BLOOM (Workshop et al., 2023) because
they all share a similar transformer structure.

Workload We tested with prefill lengths 512 with batch
size 1, and compare the throughput of generating tokens
under different scenarios where the generated length is 64 to
evaluate the effectiveness of different methods on a single
GPU and limited CPU memory. And we limit CPU cores
using to be at most 16.

Baseline. We used DeepSpeed Inference (Aminabadi et al.,
2022b), HuggingFace Accelerate (Sylvain et al., 2022), and
FlexGen (Sheng et al., 2023) as baselines, all of which sup-
port offloading the weight parameters of the model. Deep-
speed Inference and HuggingFace Accelerate implements

HeteGen: Heterogeneous Parallel Inference for Large Language Models on Resource-Constrained Devices

0 5 10 15 20
GPU Memory Usage(GB)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Th
ro

ug
hp

ut
(to

ke
n/

s)

 OPT-6.7B
DeepSpeed
Accelerate
FlexGen
HeteGen

0 5 10 15 20
GPU Memory Usage(GB)

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
(to

ke
n/

s)

 OPT-13B

0 5 10 15 20
GPU Memory Usage(GB)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Th
ro

ug
hp

ut
(to

ke
n/

s)

 OPT-30B

Figure 8. Throughput comparison under different memory constraints for OPT models from 6.7B to 30B with batch size=1, prefill
length=512, decode length=64. DeepSpeed Inference and Accelerate cannot set setting the parameter offloading ratio. And DeepSpeed
Inference is out of memory for OPT-13B and OPT-30B.

naive offloading strategy and FlexGen utilize CPU compu-
tation for attention and batch schedule to improve efficiency
for large batch. In our experiments, since HeteGen focuses
on reducing the latency of running large models, we did not
offload data to disk.

Implementation. HeteGen is implemented based on Py-
Torch (Paszke et al., 2019) and uses CUDA streams and
CPU threads to enable overlap.

5.1 End-to-End Performance

We conducted an evaluation of the throughput for each
method, considering various GPU memory utilization sce-
narios by adjusting the offload parameter ratios. We com-
pared their throughput when operating under similar mem-
ory consumption conditions. The performance comparison
results are presented in Figure 8, revealing that our approach
consistently outperforms all other methods while achieving
lower memory utilization for the same level of speed. Het-
eGen also offers a wider range of dynamic offload adjust-
ments.

Accelerate and DeepSpeed Inference lack the capability for
automatic dynamic adjustment of GPU and CPU weight
proportions based on offload ratios, so they are presented
as dots in the figure. DeepSpeed Inference experiences
out-of-memory (OOM) issues when handling OPT-13B and
OPT-30B models. Both FlexGen and HeteGen demonstrate
support for dynamic workload adjustments between the
GPU and CPU. However, under equivalent GPU memory
consumption conditions, HeteGen consistently showcases
superior throughput compared to FlexGen. HeteGen demon-
strates an increase of up to 317% in the case of OPT-30B
models. And the dynamic adjustment range of HeteGen
significantly surpasses that of FlexGen, owing to our more
advanced scheduling strategy. Specifically, for OPT-30B

models, HeteGen effectively adapts to GPU memory usage
ranging from 6.5% to 88.7%, whereas FlexGen is limited to
supporting scenarios ranging from just 6.5% to 26.5%, and
it encounters OOM issues beyond this threshold.

Moreover, HeteGen underscores the fact that, irrespective of
the different memory constraints, as long as your hardware
cannot accommodate all model parameters solely on the
GPU, it has the potential to enhance inference latency by a
large margin, proving its effectiveness and genericity.

5.2 Runtime Breakdown

Table 2. HeteGen runtime break down for OPT-13B in a heteroge-
neous linear module.

All CPU I/O Pin GPU

100% 97.8% 96.9% 72.4% 0.1%

As shown in Table 2, we illustrate the breakdown time
of HeteGen for OPT-13B within a heterogeneous linear
module, to be specific, the first linear in MLP. It is evident
that the CPU and I/O are nearly fully utilized, with the
exception of kernel launch time. Additionally, the time
taken for pin memory operations is shorter than that for I/O,
so it is easy to be overlapped. This observation suggests that
the CPU, I/O, and pin operations are effectively overlapped,
substantiating the efficiency of HeteGen.

5.3 Ablation Study

In ablation study, we evaluated the performance of our
optimizations, including heterogeneous parallelism, asyn-
chronous parameter manager, alpha benchmark, and het-
erogeneous module scheduler. As shown in Table 3, we
evaluate the effectiveness of these optimizations. We can

HeteGen: Heterogeneous Parallel Inference for Large Language Models on Resource-Constrained Devices

Table 3. Ablation study for HeteGen.

Methods Performance

All 100%
no hybrid heterogeneous parallelism 77.7%
no asynchronous parameter manager 94.9%
no alpha benchmark 92.8%
no heterogeneous module scheduler 32.1%

see in the table that alpha benchmark and async parallel
contributes a lot to the performance. And buffer I/O indeed
reduce I/O time with 2.1%.

6 RELATED WORK

6.1 Memory Optimization

Numerous studies are currently investigating ways to im-
prove inference efficiency on devices with limited resources.
In this paper, we will examine how existing research has
accelerated large language model inference and reduced
resource consumption from three perspectives: low-level
optimization, model optimization, and offload optimization.

6.1.1 Offloading

Offloading is currently one of the most effective methods
for reducing GPU memory usage. By temporarily storing
unused parameters in memory or disk, offloading greatly
reduces the demand for GPU memory. Techniques such as
DeepSpeed Inference and Hugging Face Accelerate have
utilized offloading to reduce memory usage during infer-
ence. However, this approach introduces data transfer as
a bottleneck in inference, as transfer speeds are generally
slower than computation speeds by one to two orders of
magnitude. To address this issue, FlexGen (Sheng et al.,
2023) effectively increased system throughput by designing
an offload strategy with larger batch sizes and using het-
erogeneous methods to compute attention. However, the
latency of offload systems has yet to be well resolved.

6.1.2 Model Compression

Model optimization includes techniques such as quantiza-
tion, pruning, and distillation. Quantization (Xiao et al.,
2022; Frantar et al., 2022) compresses the number of bits
used to represent the model parameters and activations to
reduce their memory usage. Pruning (Liu et al., 2017) re-
duces memory usage by removing redundant parameters,
connections, or layers from the model. Distillation (Hinton
et al., 2015)uses a smaller model to learn the knowledge
contained in a larger model. These methods can effectively
reduce memory usage. However, as previously mentioned,
they can only reduce a portion of the parameters and mem-

ory usage, which may still be insufficient for low-resource
devices.

6.1.3 Low-level Optimization

Low-level optimization techniques, such as module schedul-
ing, memory management (Fang et al., 2021), and kernel
optimization (Dao et al., 2022a), are crucial factors for
improving inference efficiency. Many existing inference
methods have significantly enhanced their speed and effi-
ciency by utilizing these low-level optimization techniques,
such as FasterTransformer, TurboTransformer (Fang et al.,
2021), Energon-AI (Du et al., 2022), DeepSpeed Inference
(Aminabadi et al., 2022a), and Hugging Face Accelerate
(Sylvain et al., 2022). Although low-level techniques can
significantly increase inference speed, they are unable to
effectively reduce GPU memory consumption.

6.2 Parallelism

There are three common parallelism for deep learning: data
parallelism, tensor parallelism and pipeline parallelism.
Data parallelism splits data into batches, processes them
concurrently on multiple devices, and aggregates gradients
for parameter updates. Tensor parallelism involves split-
ting a deep learning model’s weight and activation across
multiple devices, enabling the training of large, memory-
intensive models. It partitions the model’s layers or compo-
nents across devices. Pipeline parallelism divides a model
into stages, each processed by different devices. Data flows
through these stages sequentially, improving efficiency for
complex models.

7 CONCLUSION

In summary, our work introduces HeteGen, a heterogeneous
parallel inference system aimed at significantly reducing la-
tency in the context of Large Language Models (LLMs) on
resource-constrained devices. It achieves this by harnessing
the combined capabilities of both CPUs and I/O resources,
making it a versatile solution, even when a system struggles
to accommodate all parameters, including advanced GPUs.
This marks a significant step forward in addressing the chal-
lenges posed by the ever-expanding models in the field of
AI, with the ultimate objective of enhancing their accessi-
bility and fostering democratization. Furthermore, further
research and development in this direction hold the promise
of even more remarkable advancements in facilitating effi-
cient AI inference across diverse computing environments,
potentially entailing the integration of quantization tech-
niques and methods to reduce memory costs.

HeteGen: Heterogeneous Parallel Inference for Large Language Models on Resource-Constrained Devices

ACKNOWLEDGEMENTS

Yang You’s research group is being sponsored by NUS
startup grant (Presidential Young Professorship), Singapore
MOE Tier-1 grant, ByteDance grant, ARCTIC grant, SMI
grant (WBS number: A-8001104-00-00), Alibaba grant, and
Google grant for TPU usage.

REFERENCES

Aminabadi, R. Y., Rajbhandari, S., Zhang, M., Awan, A. A.,
Li, C., Li, D., Zheng, E., Rasley, J., Smith, S., Ruwase,
O., and He, Y. Deepspeed inference: Enabling efficient
inference of transformer models at unprecedented scale,
2022a.

Aminabadi, R. Y., Rajbhandari, S., Zhang, M., Awan, A. A.,
Li, C., Li, D., Zheng, E., Rasley, J., Smith, S., Ruwase,
O., and He, Y. DeepSpeed Inference: Enabling Efficient
Inference of Transformer Models at Unprecedented Scale,
June 2022b. URL http://arxiv.org/abs/2207.
00032. arXiv:2207.00032 [cs].

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., and et al. Language Models are
Few-Shot Learners, July 2020. URL http://arxiv.
org/abs/2005.14165. arXiv:2005.14165 [cs].

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness, 2022a.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C.
FlashAttention: Fast and Memory-Efficient Exact At-
tention with IO-Awareness, June 2022b. URL http://
arxiv.org/abs/2205.14135. arXiv:2205.14135
[cs].

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
LLM.int8(): 8-bit Matrix Multiplication for Transformers
at Scale, November 2022. URL http://arxiv.org/
abs/2208.07339. arXiv:2208.07339 [cs].

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding, May 2019. URL http://
arxiv.org/abs/1810.04805. arXiv:1810.04805
[cs].

Du, J., Liu, Z., Fang, J., Li, S., Li, Y., Lu, Y., and You,
Y. Energonai: An inference system for 10-100 billion
parameter transformer models, 2022.

Fang, J., Yu, Y., Zhao, C., and Zhou, J. Turbotransformers:
an efficient gpu serving system for transformer models.
In Proceedings of the 26th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, pp.
389–402, 2021.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Fu, D., Li, X., Wen, L., Dou, M., Cai, P., Shi, B., and Qiao,
Y. Drive Like a Human: Rethinking Autonomous Driving
with Large Language Models, July 2023. URL http://
arxiv.org/abs/2307.07162. arXiv:2307.07162
[cs].

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M. X.,
Chen, D., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and Chen,
Z. GPipe: Efficient Training of Giant Neural Networks
using Pipeline Parallelism, July 2019. URL http://
arxiv.org/abs/1811.06965. arXiv:1811.06965
[cs].

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L.,
Yu, C. H., Gonzalez, J. E., Zhang, H., and Stoica,
I. Efficient Memory Management for Large Lan-
guage Model Serving with PagedAttention, Septem-
ber 2023. URL http://arxiv.org/abs/2309.
06180. arXiv:2309.06180 [cs].

Li, E., Zeng, L., Zhou, Z., and Chen, X. Edge AI: On-
Demand Accelerating Deep Neural Network Inference
via Edge Computing, October 2019. URL http://
arxiv.org/abs/1910.05316. arXiv:1910.05316
[cs].

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C.
Learning efficient convolutional networks through net-
work slimming. In Proceedings of the IEEE international
conference on computer vision, pp. 2736–2744, 2017.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P., Leike,
J., and Lowe, R. Training language models to follow
instructions with human feedback, March 2022. URL
https://arxiv.org/abs/2203.02155v1.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An Imperative

http://arxiv.org/abs/2207.00032
http://arxiv.org/abs/2207.00032
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2208.07339
http://arxiv.org/abs/2208.07339
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2307.07162
http://arxiv.org/abs/2307.07162
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/1910.05316
http://arxiv.org/abs/1910.05316
https://arxiv.org/abs/2203.02155v1

HeteGen: Heterogeneous Parallel Inference for Large Language Models on Resource-Constrained Devices

Style, High-Performance Deep Learning Library, Decem-
ber 2019. URL http://arxiv.org/abs/1912.
01703. arXiv:1912.01703 [cs, stat].

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. ZeRO:
Memory Optimizations Toward Training Trillion Param-
eter Models, May 2020. URL http://arxiv.org/
abs/1910.02054. arXiv:1910.02054 [cs, stat].

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. ZeRO-
Offload: Democratizing Billion-Scale Model Train-
ing, January 2021. URL http://arxiv.org/abs/
2101.06840. arXiv:2101.06840 [cs].

Ross, S. I., Martinez, F., Houde, S., Muller, M., and Weisz,
J. D. The Programmer’s Assistant: Conversational Inter-
action with a Large Language Model for Software Devel-
opment. In Proceedings of the 28th International Confer-
ence on Intelligent User Interfaces, pp. 491–514, March
2023. doi: 10.1145/3581641.3584037. URL http://
arxiv.org/abs/2302.07080. arXiv:2302.07080
[cs].

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Fu,
D. Y., Xie, Z., Chen, B., Barrett, C., Gonzalez, J. E.,
et al. High-throughput generative inference of large
language models with a single gpu. arXiv preprint
arXiv:2303.06865, 2023.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-LM: Training Multi-
Billion Parameter Language Models Using Model Par-
allelism, March 2020. URL http://arxiv.org/
abs/1909.08053. arXiv:1909.08053 [cs].

Sylvain, G., Lysandre, D., Thomas, W., Philipp, S., Zachary,
M., and Sourab, M. Accelerate: Training and inference at
scale made simple, efficient and adaptable. https://
github.com/huggingface/accelerate, 2022.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. LLaMA: Open and Efficient Foundation Language
Models, February 2023. URL http://arxiv.org/
abs/2302.13971. arXiv:2302.13971 [cs].

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion Is All You Need, December 2017. URL http://
arxiv.org/abs/1706.03762. arXiv:1706.03762
[cs].

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang, P.,

Dean, J., and Fedus, W. Emergent Abilities of Large Lan-
guage Models, October 2022. URL http://arxiv.
org/abs/2206.07682. arXiv:2206.07682 [cs].

Workshop, B., Scao, T. L., Fan, A., Akiki, C., Pavlick, E.,
Ilić, S., Hesslow, D., Castagné, R., Luccioni, A. S., Yvon,
F., Gallé, M., Tow, J., Rush, A. M., and Biderman, S.
BLOOM: A 176B-Parameter Open-Access Multilingual
Language Model, March 2023. URL http://arxiv.
org/abs/2211.05100. arXiv:2211.05100 [cs].

Xiao, G., Lin, J., Seznec, M., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. arXiv preprint
arXiv:2211.10438, 2022.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., Mi-
haylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D.,
Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer, L.
OPT: Open Pre-trained Transformer Language Models,
June 2022. URL http://arxiv.org/abs/2205.
01068. arXiv:2205.01068 [cs].

http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1910.02054
http://arxiv.org/abs/1910.02054
http://arxiv.org/abs/2101.06840
http://arxiv.org/abs/2101.06840
http://arxiv.org/abs/2302.07080
http://arxiv.org/abs/2302.07080
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068

