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ABSTRACT
As the Large Language Model (LLM) becomes increasingly important in various domains, the performance of
LLM inference is crucial to massive LLM applications. However, the following challenges still remain unsolved
in accelerating LLM inference: (1) Synchronized partial softmax update. The softmax operation requires a
synchronized update operation among each partial softmax result, leading to ∼20% overheads for the attention
computation in LLMs. (2) Under-utilized computation of flat GEMM. The shape of matrices performing GEMM
in LLM inference is flat, leading to under-utilized computation and 50% performance loss after padding zeros in
previous designs (e.g., cuBLAS, CUTLASS, etc.). (3) Performance loss due to static dataflow. Kernel performance
in LLM depends on varied input data features, hardware configurations, etc. A single and static dataflow may lead
to a 50.25% performance loss for GEMMs of different shapes in LLM inference.

We present FlashDecoding++, a fast LLM inference engine supporting mainstream LLMs and hardware back-ends.
To tackle the above challenges, FlashDecoding++ creatively proposes: (1) Asynchronized softmax with unified
max value. FlashDecoding++ introduces a unified max value technique for different partial softmax computations
to avoid synchronization. Based on this, the fine-grained pipelining is proposed, leading to 1.18× and 1.14× for the
prefill and decoding stage in LLM inference, respectively. (2) Flat GEMM optimization with double buffering.
FlashDecoding++ points out that flat GEMMs with different shapes face varied bottlenecks. Then, techniques
like double buffering are introduced, resulting in up to 52% speedup for the flat GEMM operation. (3) Heuristic
dataflow with hardware resource adaptation. FlashDecoding++ heuristically optimizes dataflow using different
hardware resource (e.g., Tensor Core or CUDA core) considering input dynamics. The design leads to up to
29% speedup compared with the static dataflow. Due to the versatility of optimizations in FlashDecoding++,
FlashDecoding++ can achieve up to 4.86× and 4.35× speedup on both NVIDIA and AMD GPUs compared
to Hugging Face implementations. FlashDecoding++ also achieves an average speedup of 1.37× compared to
state-of-the-art LLM inference engines on mainstream LLMs.

1 INTRODUCTION

As the Large Language Model (LLM) achieved unprece-
dented success in various domains (Thirunavukarasu et al.,
2023; Anil et al., 2023; Clusmann et al., 2023; Cui et al.,
2023), the LLM inference workload is skyrocketing. For
example, OpenAI reports that GPT-4 inference with 8K con-
text length costs $0.03 per 1K input tokens and $0.06 per
1K output tokens (OpenAI, 2023). Currently, OpenAI has
180.5 million users and receives over 10 million queries
per day (Nerdynav, 2023). Consequently, the cost to op-
erate OpenAI’s model like ChatGPT is approximately $7

*Equal contribution 1Tsinghua University 2Infinigence-AI
3Shanghai Jiao Tong University 4Peking University. Correspon-
dence to: Guohao Dai <daiguohao@sjtu.edu.cn>, Yu Wang
<yuwang@tsinghua.edu.cn>.

Proceedings of the 7 th MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

5

10

15

20

25

30

70 90 110 130

30

40

50

60

70

80

3200 3800 4400 5000SOTA w/ FlashDecoding++

38

92
83

107

NVIDIA Tesla A100
AMD MI210

LL
M

 in
fe

re
nc

e 
th

ro
ug

hp
ut

Token/s

first token
latency/ms

first token
latency/ms

ea
ch

 to
ke

n
la

te
nc

y/
m

s
ea

ch
 to

ke
n

la
te

nc
y/

m
s

input length = 1K

input length = 32K

Hugging Face/PyTorch
FlashDecoding

vllm

DeepSpeed
OpenPPL

FlashDecoding++ (ours)

×
+

fas
ter

fas
ter

Figure 1. Overview of comparison between FlashDecoding++ and
state-of-the-art designs. The results in the figure are reported with
Llama2-7B model (Touvron et al., 2023). The left is with batch
size=1 and input length=1K, and TensorRT-LLM and Hugging
Face are the SOTA baseline for NVIDIA/AMD according to our
experimental results. The right shows the comprehensive compari-
son of both first token latency and each token latency.
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Figure 2. Overview of Large Language Model inference dataflow. FlashDecoding++ proposes three solutions for corresponding challenges
in Large Language Model inference. (a) The dataflow comparison between the prefill phase and the decode phase. The prefill phase mainly
involves the GEMM operation, while the decode phase mainly involves the GEMV/Flat GEMM operation. (b) FlashDecoding++ proposes
the asynchronized softmax with unified max value technique, avoiding synchronized update to previous partial attention results. (c)
FlashDecoding++ optimizes flat GEMM by improving computation utilization. (d) FlashDecoding++ heuristically optimizes dataflow.

million per day for the necessary computing hardware (DY-
LAN PATEL, 2023). Thus, optimizations on LLM inference
performance will have a huge impact considering massive
LLM inference scenarios. Many recent works have pro-
posed techniques to accelerate LLM inference tasks, includ-
ing DeepSpeed (Aminabadi et al., 2022), FlexGen (Sheng
et al., 2023), vLLM (Kwon et al., 2023), OpenPPL (Sense-
time, 2023a), FlashDecoding (Dao et al., 2023), TensorRT-
LLM (Vaidya et al., 2023), and etc (Sensetime, 2023b; TGI,
2023; mlc, 2023; Sensetime, 2023a).

The LLM inference task generates tokens (e.g., words) from
the input sequence autoregressively, and can be organized
into two typical phases: the prefill phase and the decode
phase. The prefill phase generates the first token by process-
ing the input prompt, and previous research (e.g., FlashAt-
tention (Dao et al., 2022; Dao, 2023)) optimizes latency for
this phase. The decode phase generates the following to-
kens sequentially, and many works (Aminabadi et al., 2022;
Sheng et al., 2023; Kwon et al., 2023; Sensetime, 2023b;
Dao et al., 2023; Vaidya et al., 2023; Pham et al., 2023) fo-
cus on improving the throughput of generating tokens (i.e.,
reducing latency of each token). The prefill phase dominates
total time for scenarios of long-sequence input or generat-
ing short outputs (Dai et al., 2019; Dong et al.), while the
decode phase constitutes a significant portion of the time
when processing long output sequences (Xiao et al., 2023).

Figure 2(a) shows the main dataflow of the LLM inference
with one transformer layer for both the prefill phase and
the decode phase. A transformer layer can be divided into
linear GEMM (General Matrix Multiplication) operations
(e.g., K, Q, V, O weight projection and the feedforward)
and the attention/softmax computation. For the attention
computation, a softmax operation is adopted for a row in
the attention matrix. To improve the parallelism, previous
designs (Dao et al., 2022; 2023) divide the attention ma-
trices into smaller tiles and rows are also split to compute
partial softmax results. A synchronized softmax operation
is adopted to update previous partial softmax results when
a new partial softmax result is calculated. Such a synchro-
nized partial softmax update accounts for 18.8% for the
attention computation of Llama2-7B inference according
to our profiling on NVIDIA Tesla A100 GPU with 1024
input length, resulting in the first challenge for accelerat-
ing LLM inference. Secondly, the computation resources
is under-utilized for the flat GEMM operation during
the decode phase. Because the decode phase sequentially
generates tokens, the linear GEMM operation tends to be
flat-shape (even turning into the GEMV (General Matrix-
Vector Multiplication) operation when the batch size is 1).
For the small batch size (e.g., 8), previous designs (NVIDIA,
2017c;a) pad the matrix with zeros to perform GEMMs of
larger sizes (e.g., 64), leading to over 50% computation
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under-utilization. Thirdly, the performance of LLM in-
ference suffers from the static dataflow considering input
dynamics and hardware configuration. For example, the
small batch size makes the decode phase of LLM inference
memory-bounded and the large batch size makes it compute-
bounded. A single and static dataflow may lead to 50.25%
performance loss for GEMMs of different shapes in LLM
inference.

To tackle these challenges and enable a faster Large Lan-
guage Model (LLM) inference, we present FlashDecod-
ing++ in this paper. FlashDecoding++ creatively proposes
the following contributions:

• Asynchronized softmax with unified max value.
FlashDecoding++ leverages a unified max value for
different partial softmax computations. Each partial
softmax result can be processed individually without
synchronized update. Such a technique leads to 1.18×
and 1.14× speedup for attention computation in the
prefill stage and decoding stage, respectively.

• Flat GEMM optimization with double buffering.
FlashDecoding++ only pads the matrix size to 8 rather
than 64 in previous designs for flat-shaped GEMM to
improve computation utilization. We point out that flat
GEMMs with different shapes face varied bottlenecks,
and further improve the kernel performance by up to
52% with techniques like double buffering.

• Heuristic dataflow with hardware resource adap-
tion. FlashDecoding++ takes both input dynamics
and hardware configurations into consideration and
dynamically applies kernel optimization for the LLM
inference dataflow. Such a technique leads to up to
29% speedup.

Because of the versatility of optimizations, the effective-
ness of FlashDecoding++ can be proved on both NVIDIA
and AMD GPUs. FlashDecoding++ achieves up to 4.86×
and 4.35× speedup on both NVIDIA and AMD GPUs com-
pared with Hugging Face implementations, respectively.
Our extensive results show that FlashDecoding++ achieves
an average of 1.37× speedup compared with FlashDecod-
ing (Dao et al., 2023), a state-of-the-art LLM inference
engine on various LLMs (e.g., Llama2, ChatGLM2, etc.).

The rest of this paper is organized as follows. Section 2 in-
troduces preliminaries of LLMs and related works on LLM
inference acceleration. Our three techniques, the asynchro-
nized softmax with unified max value, the flat GEMM opti-
mization with double buffering, and the heuristic dataflow
with hardware resource adaption are detailed in Section 3, 4,
and 5, respectively. Section 6 presents the evaluation re-
sults. Related works on LLM inference are introduced in
Section 7, and Section 8 concludes the paper.

2 BACKGROUND

2.1 LLM Inference Dataflow Overview

The task of LLM inference is to generate tokens from the
input sequence, which can be used to complete a sentence
or answer a question. An overview of the LLM inference
dataflow is shown in Figure 2(a). As we can see, the LLM
inference dataflow can be organized into two typical phases
with similar operations: one prefill phase and several decode
phases. The prefill phase “understands” the input sequence
(i.e., “What is the largest ocean?”). Each token (we set one
word as a token in Figure 2(a)) is encoded as an embedding
vector, and the input sequence is organized into a matrix.
The main output of the prefill phase is a new token, which is
predicted to be the next token after the input sequence (i.e.,
“Pacific” in this figure). The decode phase “generates” the
output sequence (i.e., “Pacific”, “Ocean”, etc.) The output
token of the prefill phase is taken as the input of the decode
phase. The decode phase is executed autogressively, and
each output token is used as the input token for the next The
decode (e.g., “Ocean” is further used as the input).

2.2 Operations in LLM Inference

The main operations in LLM inference are depicted as oper-
ation ① to ⑥ in Figure 2(a), including the linear projection
(① and ⑤), the attention (②, ③, and ④), and the feedforward
network (⑥). For simplicity, operations like position embed-
ding (Vaswani et al., 2017), non-linear activation (Nair &
Hinton, 2010; Ramachandran et al., 2017), mask (Vaswani
et al., 2017), and others are not shown in the figure. Opera-
tions in the prefill phase and the decode phase are different
in the shape of data. Because only one token (batch size=1)
or few tokens (batch size>1) are processed at one time, in-
put matrices in the decode phase are flat-shape matrices
or even vectors.

Linear Projection. The linear projection performs as the
fully connected layer, multiplying the input with weight ma-
trices (i.e., WK ,WQ,WV ,WO, called K,Q, V projection
and O projection). For the prefill phase, the K,Q, V projec-
tion generates matrices K,Q, V . For the decode phase, the
K,Q, V projection generates three corresponding vectors
and concatenated with K and V (i.e., KVcache, yellow and
light blue in Figure 2(a)) in the prefill phase.

softmax(Q×KT )× V (1)

Attention. The attention operation is mainly divided into
three operations (② to ④ Q×K, softmax, Attention×
V ), as shown in Eq. (1). For P = Q × KT , the softmax
operation is performed for each row of the result matrix of P .
The detailed softmax computation is shown in Figure 3(a).
The maximum value m(x) is first calculated. The exponent
of each element divided by em(x), f(x), is then processed.
These exponents are normalized to the summation of all
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Figure 3. Comparison of different softmax computation schemes. (a) Softmax computation for the whole vector. (b) Computing partial
softmax for each partial vector, and a synchronized update operation is required for all partial softmax results. (c) Computing partial
softmax using a unified max value, and each partial vector is processed individually without synchronized update.

exponents (i.e., l(x)) to get the softmax result.

Feedforward Network. The feedforward network primar-
ily comprises two fully connected layers. The first one (⑥
FFN1) expands the feature dimensions to enhance the rep-
resentational capacity. The second one (⑥ FFN2) restores
the feature dimensions and serves as the output layer.

2.3 Attention Optimization

The softmax operation shown in Figure 3(a) requires all
global data to be calculated and stored before it can pro-
ceed. This results in high memory consumption and low
parallelism. Latter works propose the partial softmax tech-
nique to reduce memory consumption (Dao et al., 2022;
Dao, 2023) or improve parallelism (Dao et al., 2023). Fig-
ure 3(b) shows the diagram of the partial softmax operation.
The main idea is to divide the vector x into partial vectors
(i.e, x′ and x′′). The partial softmax results of x′ and x′′

are calculated separately according to Figure 3(a), and then
synchronously updated by each other. The detailed compu-
tation of this synchronized update is shown in Equation (2).
With the implementation of partial softmax, we can achieve
efficient parallelism of computation while reducing memory
cost for attention computation.

m(x) = max(m(x′),m(x′′))

f(x′) = em(x′)−m(x)f(x′)

f(x′′) = em(x′′)−m(x)f(x′′)

l(x) = f(x′) + f(x′′)

softmax([x′, x′′]) = [f(x′), f(x′′)]÷ l(x)

(2)

However, since the partial softmax needs to be updated
according to other partial softmax results, it unavoidably
introduces data synchronization operations. According to
our profiling result, such a synchronized update operation
leads to 18.8% overheads in the attention computation for
Llama2-7B inference on NVIDIA Tesla A100 GPU with
1024 input length.

3 ASYNCHRONIZED SOFTMAX WITH
UNIFIED MAXIMUM VALUE

Motivation. The partial softmax operation requires synchro-
nization among different partial vectors, leading to ∼20%
overheads of the attention operation. As is shown in Fig-
ure 2(b), the synchronization is required after the maximum
value of the partial vector is calculated. The maximum value
is used to update previous partial softmax (i.e., recompute
previous attention) results. Thus, to reduce synchroniza-
tion overheads, the key problem to be solved is how to
compute each partial softmax result without requiring
results from other partial softmax computation.

Challenge. The reason that synchronization is required
lies in that the maximum value of each partial vector is
different. The maximum value is used to avoid overflow of
the exponent operation (f(x) in Figure 3(a)), and exponents
are summed (l(x) in Figure 3(a)) as the denominator of the
softmax operation. Such a non-linear operation on each
partial maximum value makes the synchronization among
each partial softmax computation unavoidable.

Analysis and Insights. According to the formula of softmax
computation, the maximum value is used as the scaling fac-
tor for both the numerator and the denominator (i.e., f(x)
and l(x) in Figure 3(a)). Our key insight is, the scaling
factor can be an arbitrary number rather than using the
maximum value mathematically, shown in Equation (3).
When we set ϕ = 0, it becomes the original softmax com-
putation (Bridle, 1989).

softmax(x) =
[ex1−m(x), ..., exd−m(x)]∑

i e
xi−m(x)

=
[ex1−ϕ, ..., exd−ϕ]∑

i e
xi−ϕ

,∀ϕ ∈ R
(3)

However, the scaling factor cannot be an arbitrary number
considering the overflowing of the exponent computation.
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Figure 4. The statistical distribution of xi (elements in the input
vectors of softmax) in typical LLMs with different inputs.

For the case where xi ≫ ϕ, exi−ϕ overflows and cannot be
represented using a fix-width floating point number (e.g.,
float32 for exponent results in current LLM engines).
For another case where xi ≪ ϕ, exi−ϕ → 0, leading to
precision loss. Thus, a proper scaling factor ϕ should be
carefully selected to avoid the two cases above. Figure 4
shows the statistical distribution of xi (elements in the in-
put vectors of softmax) in typical LLMs with different in-
puts (Merity et al., 2016). Our key insight is, > 99.99% xi

are within a certain range. Specifically, for Llama2-7B,
we have −16.8 < xi < 6.5 for > 99.99% xi. Because
eb−a and ea−b can be represented by a float32 format,
we can set ϕ = a in Equation (3). For OPT-6.7B, we do
not apply the technique in this section because of the large
range in Figure 4.

Approach: Asynchronization. Based on the insights above,
each partial softmax computation shares a unified maxi-
mum value, ϕ. After the softmax operation, an inner prod-
uct operation is executed between the softmax result and
a column of V (i.e., v). Assume that the input vector x
can be divided into p partial vectors, x = [x(1), ..., x(p)]
(v = [v(1), ..., v(p)] correspondingly), we have:

⟨softmax(x), v⟩ =
∑

i e
xi−ϕ · vi∑
i e

xi−ϕ

=

∑p
j=1

∑d/p
i=1 e

x
(j)
i −ϕ · v(j)i∑p

j=1

∑d/p
i=1 e

x
(j)
i −ϕ

(4)

The inner accumulation in both the numerator and the de-
nominator only take the partial vectors x(j) and v(j) as input,
thus they can be processed asynchronously and individu-
ally. The outer accumulation is only processed after all
partial vectors are processed. As we can see in Figure 3(c),
each f(x(j)) is calculated individually, and softmax(x) is
calculated after all x(j) is calculated.

Approach: Recomputation. Without loss of generality, we
assume a < xi − ϕ < b for each xi to ensure precision
and avoid overflow. Then, the partial softmax operation
is processed individually. However, when xi − ϕ ≤ a or

x1=4 x2=5 x3=6 x4=7 v1 v2 v3 v4

numerator +=
e4-6·v1+e5-6·v2
denominator+=

e4-6+e5-6

calculate
e6-6, e7-6

numerator +=
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calculate
e4-6, e5-6
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x v
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recomputation process

(a) Calculate softmax(x)×vT

(b) Calculate softmax(y)×vT

Figure 5. Example of asynchronized partial softmax computation.
(a) Each partial softmax result is process individually without the
synchronized update. (b) The recomputation process for all parital
softmax computation is required when overflow happens.

xi − ϕ ≥ b, the asynchronized partial softmax computation
is terminated for the vector x where xi belongs to. The
softmax is then recomputed using the synchronized partial
softmax scheme (used in FlashAttention (Dao et al., 2022;
Dao, 2023) and FlashDecoding (Dao et al., 2023)) shown
in Figure 3(b). Such a recomputation scheme avoids over-
flow while introducing negligible overheads based on the
statistical data shown in Figure 4.

Example. Figure 5 shows an example of the asynchronized
softmax scheme. We set a = −3, b = 3, ϕ = 6. Two
vectors x and y are calculated from Q×KT in Equation (1),
and are divided into 2 partial vectors. We omit the process
from Q × KT to these partial vectors. For each xi, we
have a < xi − ϕ < b, we process ex1−ϕ · v1 + ex2−ϕ · v2
and ex1−ϕ + ex2−ϕ for the first partial vector of x using
two asynchronized threads. Then, each thread moves to the
next partial vector for the corresponding computation (i.e.,
ex3−ϕ · v3 + ex4−ϕ · v4 and ex3−ϕ + ex4−ϕ). Two threads
are synchronized when all partial vectors are processed, and
perform the division operation in Equation (4). For y, the
first partial vector is processed similarly. However, we find
that y3 − ϕ > b, then two threads are terminated and the
first thread recomputes all partial vectors according to the
synchronized partial softmax scheme in Figure 3(b).

4 FLAT GEMM OPTIMIZATION WITH
DOUBLE BUFFERING

Motivation. The process of the decode phase is mainly
composed of GEMV (batch size=1) or flat GEMM
(batch size>1) operation. Without loss of general-
ity, GEMV/GEMM operations can be represented using
M,N,K, where the sizes of two multiplied matrices are
M × K and K × N . Tiling is a common technique for
computing GEMMs on GPUs. The original matrices are
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Figure 6. Normalized flat GEMM performance under different
N−dimension sizes and N−dimension tiling sizes. We set
M = 8 and execute GEMM on the NVIDIA Tesla A100 GPU.

tiled into multiple sub-matrices, and then distributed across
different computing units to enable parallel processing. Pre-
vious LLM inference engines utilize Tensor Core to acceler-
ate these operations using libraries like cuBLAS (NVIDIA,
2017c) and CUTLASS (NVIDIA, 2017a). Although modern
Tensor Core architectures (NVIDIA, 2023) process GEMM
with M = 8, these libraries usually tile the M−dimension
to 64 to hide memory latency. However, for GEMV or flat
GEMM operations in the decode phase, we usually have
M ≪ 64 and the M−dimension is padded to 64 with ze-
ros. The padding leads to under-utilized computation, and
the key problem is to process GEMV or flat GEMM
operations with smaller tiles (i.e., padding to 8 corre-
sponding to modern Tensor Core architectures) in the
M−dimension.

Challenge. Processing GEMV or flat GEMM operations
is non-trivial when the M−dimension is padded to 8. The
tiling technique in modern libraries like cuBLAS (NVIDIA,
2017c) and CUTLASS (NVIDIA, 2017a) can only be ap-
plied to the N−dimension and the K−dimension. Tiles
on the K−dimension are processed sequentially in a GPU
block to avoid atomic operations during reduction. Tiling
on the N−dimension affects both parallelism and compu-
tation/memory ratio, which are both important for GEMV
and flat GEMM acceleration.

Analysis and Insights. Assume that tiling sizes of the
N−dimension and the K−dimension are BN and BK , re-
spectively. The computation of each GEMM tile is 2×M ×
BN ×BK with total B = N×K

BN×BK
GEMM tiles. The total

memory access is (M ×BK +BN ×BK)×B +M ×N .
Thus, the computation/memory ratio is:

2×M ×BN ×BK ×B

(M ×BK +BN ×BK)×B +M ×N

=
2×M ×K

K + M×K
BN

+M

(5)

On the other hand, the parallelism is N
BN

. Thus, the compu-
tation/memory ratio shows a positive correlation with BN

while the parallelism shows a negative correlation with BN ,
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Figure 7. Double buffering for flat GEMM when N−dimension is
large. The M− dimension is padded to 8 and not tiled.

exposing a contradiction on improving the performance of
GEMV or flat GEMM. We depict the normalized perfor-
mance of the flat GEMM in Figure 6 with different N and
BN . Our key insight is, for the smaller N , the flat GEMM
is parallelism-bounded. There are 108 Streaming Multi-
processors (SMs) in the NVIDIA Tesla A100. N

BN
tends

to be a constant (e.g., 128 or 256), which is related to the
hardware parallelism (number of SMs). Another key insight
is, for the larger N , the flat GEMM becomes memory-
bounded. The performance of these cases can be improved
by hiding memory access latency.

Approach: Double Buffering. In order to hide memory
access latency, we introduce the double buffering technique.
for the flat GEMM operation. We allocate two separate
buffers in the shared memory. The tile in one buffer per-
forms the GEMM operation, while another buffer loads a
new tile for the next GEMM operation. Thus, the computa-
tion and the memory access are overlapped. We apply such
a technique when N is large in our practice.

Example. Figure 7 shows the example of our flat GEMM
optimization with double buffering. For M < 8, the
M−dimension is first padded to 8 considering modern Ten-
sor Core architectures. Workloads in the K−dimension
are processed within one GPU block (e.g., A1, A2, A3, ...),
while workloads in the N−dimension are processed in par-
allel using different GPU blocks (e.g., C1, C2, ...). We take
GPU Block1 as an example, the first tile for each matrix
in the K−dimension (i.e., A1 and B1) is loaded to the left
buffer in the shared memory. Then, the GEMM operation is
performed between A1 and B1. Consequently, A2 and B2

are loaded to the right buffer in the shared memory. The fol-
lowing tiles are processed similarly according to the double
buffering scheme.

5 HEURISTIC DATAFLOW WITH
HARDWARE RESOURCE ADAPTION

Motivation. Although FlashDecoding++ optimizes the
flat GEMM operation in Section 4, it does not cover all
operations (even only for GEMMs) in the LLM inference.
As mentioned in Figure 2(a), the shapes of GEMMs in dif-
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Operation M N K

Prefill
phase

K, Q, V projection SeqLen*B HD*3 HD

O projection SeqLen*B HD HD

FFN1 SeqLen*B FD HD

FFN2 SeqLen*B HD FD

Decode
phase

K, Q, V projection B HD*3 HD

O projection B HD HD

FFN1 B FD HD

FFN2 B HD FD

HD: Hidden dimension size
FD: Dimension size after the first FFN
B: Batch size
SeqLen: Input sequence length

Only 4 shapes!

……
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M=16

……
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Using cuBLAS/CUTLASS…

Using our flat GEMM optimization

Using GEMV on CUDA Core (e.g., FastGEMV)

ImplA = FastGEMV
ImplB = our flat GEMM
ImplC = CUTLASS

Impl.B > 
Impl.A?

Impl.C > 
Impl.B?

Find 
M1

M++

M++

Find 
M2

End

M=1

For a certain LLM, traverse four [N, K] selections

(a)  Different shapes of GEMMs in LLM (b) Decision flow   (c) Example of heuristic dataflow with hardware resource adaption

M1

M2

M1

M2

M1

M2
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M2

Figure 8. Heuristic dataflow with hardware resource adaption in FlashDecoding++. (a) Only four [N,K] shapes exist for a certain LLM.
(b) The decision flow. We traverse all [N,K] selections and profile the performance of three representative implementations. M is
increased to find two inflection points for runtime heuristic dataflow. (c) FlashDecoding++ heuristically utilizes Tensor Core/CUDA Core
with the corresponding GEMV/GEMM implementation by referring to a lookup table.

ferent operations and two phases vary. Thus, the GEMM
workload in the LLM inference can be GEMV (batch size=1
for the decode phase), flat GEMM (small batch size for
the decode phase and short sequence length for the prefill
phase) and conventional GEMM (large batch size or long
sequence length for the prefill phase). In order to leverage
the powerful computational ability of Tensor Core, cur-
rent frameworks like FasterTransformer (NVIDIA, 2017b)
and DeepSpeed (Aminabadi et al., 2022) tend to utilize the
highly optimized GEMM implementation from cuBLAS
(NVIDIA, 2017c) to deal with different workloads. How-
ever, the Tensor Core implementation fails with the GEMV
workload. The GEMV workload can be optimized by utiliz-
ing CUDA Core in previous designs like FastGEMV (Wang,
2023). For a Llama2-7B linear layer in the decode phase, the
Tensor Core implementation from cuBLAS only achieves
82.15% of the performance of CUDA Core implementation
using FastGEMV on an NVIDIA A100 GPU. On the other
hand, using CUDA Core to do the projection on a batch-
size=4 decoding input only achieves 49.75% performance
compared with the Tensor Core implementation. Thus, in
order to approach the optimal computation performance, a
heuristic dataflow is supposed to be exploited for differ-
ent workloads.

Challenge. Although a heuristic dataflow potentially exists
in the implementation of different linear workloads, it is
challenging to build the mapping from a certain workload
to an optimal implementation. In the scenario of LLM infer-
ence, there are various factors that influence the implemen-
tation performance of linear workloads: (a) Input dynamics.
The variety of the batch size and the input sequence length
brings dynamic workloads. (b) Model diversity. The linear
workload varies with different model structures and sizes.
(c) GPU capacities. The relative performance between im-
plementations changes with GPU characteristics, such as
memory bandwidth, cache size, and computational ability.
(d) Engineering effects. The engineering effort also highly

impacts the kernel performance. All these influential factors
build a large search space, making it non-trivial to generate
an effective mapping between the linear workload and the
corresponding optimal implementation.

Analysis and Insights. Although all influential factors form
a large search space, the homogeneity of different layers
in LLM significantly reduces the search space for operator
optimization. Figure 2(a) shows four linear GEMV/GEMM
operations in the prefill phase and the decode phase, i.e.,
K,Q, V projection, O projection, and two feedforward op-
erations. Each GEMV/GEMM operation can be can be
abstracted as a multiplication between an (M ×K)-shaped
matrix and a (K × N )-shaped matrix. Our key insight is,
there are only four [K,N ] shapes for a certain LLM.
Moreover, M is only related to the input sequence length
and the batch size for the prefill phase, and the batch size
for the decode phase. Figure 8(a) shows limited shapes of
GEMV/GEMM operations in the LLM inference.

Approach: Decision flow for inflection points. Because
only four [K,N ] shapes exist for a certain LLM, we use
three types of implementations for GEMV/GEMM opera-
tions when M varies: FastGEMV for the GEMV and flat
GEMM operations (ImplA), our flat GEMM optimization
in Section 4 (ImplB), and the CUTLASS (NVIDIA, 2017a)
libraries optimized for the conventional GEMM (ImplC).
Thus, it is important to decide whether applying ImplA or
ImplB for a small M , and ImplB or ImplC for a large M .
Figure 8(b) shows the decision flow. FlashDecoding++
profiles the performance of ImplA and ImplB for a certain
M , and increases M to find an inflection point M1 where
the performance of ImplB is better than ImplA. Another in-
flection point M2 is found similarly where the performance
of ImplC is better than ImplB. Note that each [N,K] gets
its individual M1 and M2.

Approach: Heuristic dataflow. For the runtime LLM
inference, FlashDecoding++ adopts ImplA using CUDA
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Figure 9. Speedup of the decode phase on NVIDIA GPUs, normalized to FlashDecoding++. Blank bars represent the model cannot be
executed: (1) Hugging Face and DeepSpeed run out of memory with long sequences. (2) vLLM does not support OPT-6.7B with sequence
length > 2k and ChatGLM2-6B. (3) TensorRT-LLM fails to compile for OPT-6.7B and ChatGLM2-6B with sequence length >= 8k. (4)
FlashDecoding and ppl only supports Llama2 models.

Table 1. Hardware Platforms
NVIDIA AMD

GPU
Tesla A100 RTX3090 MI210 RX7900XTX

80 GB 24 GB 64GB 24GB
CUDA 12.1 CUDA 11.6 ROCm 5.7 ROCm 5.6

CPU
Intel Xeon Intel Xeon AMD EPYC Intel Core

Silver 8358P Gold 6226R 7K62 i9-10940X
2.60 GHz 2.90GHz 2.60GHz 3.30GHz

Core when M < M1, and ImplB/ImplC using Tensor Core
when M1 ≤ M < M2/M2 ≤ M . Note that the decision
flow are executed offline, it does not affect the performance
of runtime LLM inference.

Example. Figure 8(c) shows an example of applying the
heuristic dataflow for the Llama2-7B model. Four [N,K]
shapes are [12288, 4096] for K,Q, V projection, [4096,
4096] for O projection, [11008, 4096] and [4096, 11008] for
FFN. For each [N,K], the inflection points are found based
on the decision flow in Figure 8(c). Then, a lookup table
is formed, and each GEMV/GEMM operation is executed
according to corresponding implementations during runtime.
In this example, FastGEMV is adopted for the K,Q, V
projection when batch size=1 (M = 1) for the decode
phase, and our flat GEMM optimization is applied when
batch size=1/input sequence length=8 for FFN1 (M = 8).

6 EVALUATION

6.1 Experiments Setup

We evaluate the performance of FlashDecoding++ on dif-
ferent GPUs with various Large Language Models. We
compare the performance with several state-of-the-art LLM
inference engines.

Table 2. Model Configuration

Model Dimension Heads Layers Context
Length

Llama2-7B 4096 32 32 4k
Llama2-13B 5120 40 40 4k
OPT-6.7B 4096 32 32 2k
ChatGLM2-6B 4096 32 32 32k

6.1.1 Hardware Platforms

We evaluate the performance of FlashDecoding++ and
other LLM engines on both NVIDIA and AMD platforms
to make a comprehensive comparison. We choose two dif-
ferent GPUs for each platform: Tesla A100 and RTX3090
for NVIDIA, MI210 and RX7900XTX for AMD. We show
the detailed configuration in Table 1.

6.1.2 LLM Engine Baselines

We implement our FlashDecoding++ using the Pytorch-
based front-end with the C++ and CUDA backend for
NVIDIA GPUs while ROCm for AMD GPUs. We com-
pare the inference performance in both prefill phase and
decode phase with the following LLM engine baselines:
Hugging Face (HF) v4.34.1 (Wolf et al., 2020), vLLM
v0.1.7 (Kwon et al., 2023), DeepSpeed v0.11.1 (Aminabadi
et al., 2022), TensorRT-LLM v0.5.0 (Vaidya et al., 2023),
OpenPPL (Sensetime, 2023a), FlashAttention v2.3.5 (Dao,
2023) and FlashDecoding (Dao et al., 2023). These base-
lines are introduced in Section 7.

6.1.3 Models

We evaluate the performance of FlashDecoding++ with
other LLM inference engines on three typical Large Lan-
guage Models: Llama2, OPT, and ChatGLM2. Table 2
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Figure 10. Speedup of the prefill phase on NVIDIA GPUs, normal-
ized to FlashAttention. Blank bars represent failed execution: (1)
Hugging Face, DeepSpeed and TensorRT-LLM run out of memory
with long sequences. (2) vLLM does not support ChatGLM2-6B.
(3) TensorRT-LLM fails to compile on RTX 3090 GPUs with 24GB
memory, and fails to compile for ChatGLM2-6B with sequence
length >= 8k. (4) ppl only supports Llama2 models.

shows the detailed configuration of these models. Note that
there may be several models in one LLM (e.g., Llama2-7B,
Llama2-13B) with different configurations (e.g., number of
heads and layers).

• Llama2 (Touvron et al., 2023) is a mainstream open-
source LLM set released by Meta in 2023. It is a
collection of pretrained and fine-tuned generative text
models ranging in scale from 7B to 70B parameters.

• OPT (Zhang et al., 2022), is a suite of decoder-only
pre-trained transformers ranging from 125M to 175B
parameters released by Meta AI.

• ChatGLM2 (Du et al., 2022) is an open-source LLM
supporting bilingual (Chinese-English) chat.

6.2 Comparison with State-of-the-art

We compare FlashDecoding++ with state-of-the-art LLM
inference engines in Figure 9 and Figure 10 on NVIDIA
GPUs, Figure 11 and Figure 12 for AMD GPUs. For the
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Figure 11. Speedup of the decode phase on AMD RX7900XTX.
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Figure 12. Speedup of the decode phase on AMD MI210. There
are blank bars for vLLM because it doesn’t support sequence
length over 2k for OPT-6.7B.

decode phase, FlashDecoding++ achieves up to 4.86×
speedup compared with Hugging Face implementations
on three LLMs and two GPUs. The average speedup
over vLLM, DeepSpeed, TensorRT-LLM, OpenPPL, and
FlashDecoding is 1.24×, 1.44×, 1.13×, 1.24×, and 1.21×
(1.37× on Tesla A100 compared with FlashDecoding), re-
spectively. For the prefill phase, FlashDecoding++ achieves
up to 1.40× speedup compared with Hugging Face im-
plementations. The average speedup over DeepSpeed,
TensorRT-LLM, OpenPPL, FlashAttention2 and FlashDe-
coding is 1.05×, 1.06×, 1.08×, 1.09×, and 1.08×, respec-
tively. For prefill phase, FlashDecoding++ performs worse
than some baselines with short sequences but always gains
speedup with long sequences. The reason is that, for prefill
phase, we only optimize the attention operation, and the at-
tention operation occupies more of the latency as sequence
length grows.

We also show the decode results on two AMD GPUs. Cur-
rently, only Hugging Face and vLLM can be executed on
AMD GPUs as the baselines, and vLLM does not support
RX7900XTX yet. FlashDecoding++ achieves up to 2.41×
and 4.35× compared with Hugging Face on RX7900XTX
and MI210, respectively. And on MI210, the average speed
of FlashDecoding++ compared to vLLM is 1.86×.
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6.3 Ablation Studies

6.3.1 Asynchronized Softmax Computation

Benefits. The asynchronized softmax scheme can be ap-
plied to both the prefill phase and the decode phase. We test
the proposed scheme against state-of-the-art attention imple-
mentations in Figure 13 and Figure 14 on NVIDIA GPUs.
For the prefill phase, FlashDecoding++ achieves 1.52× and
1.19× average speedup compared with xformers (Lefaudeux
et al., 2022) and FlashAttetion2. For the decode phase,
FlashDecoding++ outperforms the decoding-tailored im-
plementation of xformers (denoted as xformers-decoder in
Figure 14) with short KV cache length, and achieves up to
2.02× speedup over FlashDecoding with long context.

Correctness. The absolute difference between the proposed
attention method and PyTorch is average 99.7% < 1e-2,
and all < 1e-1 (FlashAttention leads to 99.8% < 1e-2 v.s.
PyTorch). As mentioned in Sec. 3, we introduce a recom-
putation mechanism into the asynchronized softmax, which
automatically selects FlashAttention for computation when
the intermediate results overflow. The frequency of recom-
putation is statistically obtained to be 0.45% on average
across datasets including ARC (Clark et al., 2018), Hel-
laSwag (Zellers et al., 2019) and Winogrande (Sakaguchi
et al., 2019).

Scalability. We extend our approach to models including
CodeLlama-7B (Rozière et al., 2023) and Vicuna-7B (Chi-
ang et al., 2023), which are fine-tuned on Llama2-7B to
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Figure 15. Speedup over cuBLAS with flat GEMM optimization.

be applied in specific domains. For both models, the in-
puts to the softmax operation are obtained through multiple
datasets. 99% of the softmax input in CodeLlama-7B ranges
from -0.25 to 17.6, while that of Vicuna-7B ranges from
-0.8 to 9.8. Thus, the asynchronized softmax method is also
applicable to those fine-tuned models.

6.3.2 Flat GEMM Optimization

Benefits. We test our flat GEMM kernel performance with
state-of-the-art GEMM library, cuBLAS on two NVIDIA
GPUs. The version of cuBLAS is CUDA 11.8. We vary
M from 1 to 16 to demonstrate the flat GEMM operation
in LLM inference, and eight [K,N ] configurations used in
three LLMs (Llama2-7B, OPT-6.7B, and ChatGLM2-6B)
are depicted in Figure 15. The flat GEMM optimization in
FlashDecoding++ achieves an average of 7% and 17% (up
to 52%) speedup on Tesla A100 and RTX 3090, respectively.
Libraries including cuBLAS are designed for general pur-
pose, hence not the best for the flat GEMM practice. The
speedup is 9% and 23% for small M (i.e., 1 and 2), show-
ing that the proposed flat GEMM optimization explores the
computation capability with small batch sizes.

Scalability.The usage of double buffering with large size in
N - dimension is limited by the shared memory (L1 cache)
size of GPUs. The results in Figure 15 demonstrate that
the strategy works with both NVIDIA Tesla A100 GPUs
(192KB L1 cache per SM) and NVIDIA RTX 3090 GPUs
(128KB L1 cache per SM) thanks to the large L1 data cache.
But for AMD GPUs, double buffering fails to benefit the flat
GEMM performance due to a limited L1 data cache (16KB
per CU for AMD MI210). Without double buffering, the
flat GEMM optimization performs badly in many cases. In
fact, on AMD GPUs, we significantly rely on heuristics to
achieve performance gains.

6.3.3 Benefits of Heuristic Dataflow

We test speedup of the decode phase by adopting the
heuristic dataflow in three LLMs (Llama2-7B, OPT-6.7B,
and ChatGLM2-6B) on NVIDIA GPUs, and two LLMs
(Llama2-7B, OPT-6.7B) on AMD GPUs. The input length
is set to 1024, and the results are shown in Figure 16. The
heuristic dataflow achieves an average of 10% and 20% (up
to 29%) speedup on Tesla A100 and RTX 3090, respectively.
On AMD GPUs, the extension of FastGEMV implementa-
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Figure 17. Performance on Llama2-13B on two Tesla A100 GPUs.

tion proves to be highly efficient, and leads to significant
performance gains with small batch sizes. The average
speedup of using heuristics is 57% and 37% on MI210 and
RX7900XTX, respectively.

6.4 Multi-GPUs Performance

FlashDecoding++ supports executing large LLMs on mul-
tiple GPUs. We use Llama2-13B running on 2 NVIDIA
Tesla A100 GPUs to evaluate the performance of FlashDe-
coding++. The result in Figure 17 shows that, FlashDe-
coding++ achieves 2.48× and 1.19× higher decode phase
throughput compared with Hugging Face (Wolf et al., 2020)
and DeepSpeed (Aminabadi et al., 2022).

7 RELATED WORKS

Large language model inference acceleration has gained
significant attention in recent research, with several notable
approaches and techniques emerging in the field. Deep-
Speed (Aminabadi et al., 2022) is a comprehensive engine
that optimizes both the training and inference phases for
LLMs. It achieves robust inference performance through
kernel fusion and efficient GPU memory management, with
a particular focus on optimizing memory usage for KV-
cache. vLLM (Kwon et al., 2023) improves GPU memory
utilization by efficient memory management techniques and
the PageAttention method, leading to increased maximum
batch sizes and elevating the upper limit of inference per-
formance. FlashAttention (Dao et al., 2022; Dao, 2023)
optimizes the self-attention computation process during the
prefill phase through improved parallelism and workload
distribution. FlashDecoding (Dao et al., 2023) is an exten-

sion of FlashAttention and enhances the parallelism through
spliting K and V , supporting efficient self-attention compu-
tation for long sequence during the decode phase. Faster-
Transformer (NVIDIA, 2017b) and OpenPPL (Sensetime,
2023a) implement large model inference engines using
C++ to reduce overhead resulting from kernels schedul-
ing, compared to Python implementations. They also em-
ploy memory management techniques and kernel fusion to
achieve efficient LLM inference. TensorRT-LLM (Vaidya
et al., 2023) is built upon the TensorRT (NVIDIA) and the
FasterTransformer (NVIDIA, 2017b) engine (C++) and in-
corporates cutting-edge open-source technologies such as
FlashAttention (Dao et al., 2022; Dao, 2023). Additionally,
it enhances its ease of use by providing the Python API.

8 CONCLUSION

We propose FlashDecoding++, a fast Large Language
Model inference engine in this paper. FlashDecoding++
accelerates mainstream LLMs with multiple hardware back-
end support. FlashDecoding++ proposes three novel de-
signs: the asynchronized softmax with unified max value,
the flat GEMM optimization with double buffering, and
the heuristic dataflow with hardware resource adaption,
achieving up to 4.86× and 4.35× speedup on NVIDIA
and AMD GPUs compared with Hugging Face implementa-
tions. FlashDecoding++ also achieves an average of 1.37×
speedup compared with state-of-the-art LLM inference en-
gines, FlashDecoding, on various LLMs.
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Figure 18. Example of kernel fusion of Llama2 dataflow.

position encoding are fused with linear kernels. We show
an example of kernel fusion of Llama2 dataflow compared
to the original dataflow in Figure 18.

B IMPLEMENTATION ON AMD
Due to the PyTorch’s support for AMD GPUs, we can per-
form large language model inference on AMD GPUs similar
to what we do on NVIDIA GPUs. We have implemented
and validated the effectiveness of our proposed methods on
AMD GPUs using AMD parallel programming. AMD paral-
lel programming shares many similarities with NVIDIA par-
allel programming. Their programming models are divided
into grid, block, warp, and thread. Similar to the CUDA
runtime library of NVIDIA, AMD has the ROCm runtime
library. We can use HIP to develop kernels for AMD GPUs.
HIP has APIs that closely resemble CUDA APIs. We can
easily port CUDA code developed for NVIDIA GPUs to
HIP code for AMD GPUs by modifying the API names or
using the HIPIFY tool (AMD, 2023). However, architectural
differences between GPUs mean that efficient kernels de-
veloped for NVIDIA GPUs may not necessarily be efficient
on AMD GPUs, and in some cases, they may not even run.
For example, consumer-level GPU like the RX7900XTX,
based on the RDNA3 architecture, lacks structures similar
to the Tensor Core and cannot efficiently perform matrix
operations using WMMA instructions as CUDA. In contrast,
compute-level GPU like the MI210, based on the CDNA2
architecture, has the Matrix Core but with a warp size of
64, unlike NVIDIA GPUs. This necessitates optimizations
tailored for each of these GPUs.

We employ different strategies for our implementations
on these two types of AMD GPUs to accommodate
their distinct characteristics compared to NVIDIA
GPUs. Since our asynchronized softmax optimization
for decode phase does not use the Tensor Core, we
migrate CUDA codes to HIP and run them on these

two types of AMD GPUs. However, the flat GEMM
optimization uses the Tensor Core, so we need different
implementation approaches for the RX7900XTX and
MI210. Given that MI210 has Matrix Cores, a hardware
structure similar to Tensor Cores for efficient matrix
computation, we migrate CUDA code and adjust the warp
size to 64 to suit this GPU. RX7900XTX does not have
Matrix Cores, preventing direct code migration. To this
end, we use the WMMA compiler intrinsics, such as
builtin amdgcn wmma f16 16x16x16 f16 w32,

to develop flat GEMM kernels resulting in 20% speedup
than the torch.matmul used in PyTorch on the RX7900XTX.


