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ABSTRACT
Secure multi-party computation (MPC) allows users to offload machine learning inference on untrusted servers
without having to share their privacy-sensitive data. Despite their strong security properties, MPC-based private
inference has not been widely adopted due to their high communication overhead, mostly incurred when evaluating
non-linear layers. This paper presents HummingBird, an MPC framework that reduces the ReLU communication
overhead significantly. HummingBird leverages an insight that determining whether a value is positive or negative
mostly does not need full-bit communication. With its theoretical analyses and an efficient search engine,
HummingBird discards 66–72% of the bits during ReLU without altering the outcome, and discards 87–91%
when some accuracy can be degraded. On a realistic MPC setup, HummingBird achieves on average 2.03–2.67×
end-to-end speedup without introducing any errors, and up to 8.42× when some accuracy degradation is tolerated.

1 INTRODUCTION

Machine learning (ML) inference often uses privacy-
sensitive user data. A model that predicts disease by looking
at an X-ray image (Ho et al., 2022) uses the patients’ private
X-ray data. Smart home devices that take in the user’s ver-
bal command (Amazon, 2023; Home, 2023; Meta, 2023a)
collect raw microphone inputs that can contain sensitive
information. As models powering these services become
larger and are often proprietary, an increasing trend is to
host these models on a remote server owned by the service
provider, to which the users send their input data. This
emerging trend creates a dilemma for the users — to use
these services, the users have to send their privacy-sensitive
input data to a third party, risking potential privacy leakage.

Secure multi-party computation (MPC; Goldreich (1998)) is
gaining wide interest as a potential solution to this dilemma.
MPC allows users to offload ML inference to untrusted
servers without having to reveal their private data to the
servers (Liu et al., 2017; Mishra et al., 2020; Juvekar et al.,
2018; Demmler et al., 2015; Mohassel & Rindal, 2018;
Knott et al., 2021; Kumar et al., 2020; Rathee et al., 2020;
Huang et al., 2022c; Jha et al., 2021; Cho et al., 2022b). In
MPC, instead of sending their raw data, users send secret
shares of their data, from which the servers cannot infer
the users’ raw data. The servers run inference using the
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Figure 1. Compared to CrypTen (Knott et al., 2021), Humming-
Bird achieves 2.24× speedup without any error and 4.41× when
some accuracy can be degraded. Details can be found in Section 5.

secret shares and send the result back to the user, who can
retrieve the output of the inference from the results. Figure 2
summarizes MPC-based private inference.

Despite their strong security guarantees, MPC-based private
inference has not been widely adopted in the real world
yet due to their high runtime overheads. Even the most
efficient schemes (Knott et al., 2021; Huang et al., 2022c)
experience multiple orders of magnitude slowdown over a
non-private baseline. Unlike non-private inference that are
computation- or memory-bound, the majority of the over-
head in MPC comes from communications between parties
during non-linear operations, e.g., ReLU. In a particular
setup we studied, ReLU was accountable for over 93% of
the total overhead (Figure 1, leftmost bar), which is in line
with observations from prior works (Jha et al., 2021). Recent
works have designed a faster algorithm for ReLU (Demmler
et al., 2015; Mohassel & Rindal, 2018; Rathee et al., 2020;
Wagh et al., 2019; 2021) or model architectures that use
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1. User creates and 
sends secret shares

2. Servers run computation 
with the secret shares

3. User aggregates the output and gets the final result

Figure 2. Overview of a multi-server MPC protocol.

fewer ReLUs (Jha et al., 2021; Cho et al., 2022a;b; Jha &
Reagen, 2023; Kundu et al., 2023) to tackle the overhead.

We explore an orthogonal approach that accelerates exist-
ing MPC ReLU algorithms further. The key insight is that
simply guessing the sign, unlike high-precision arithmetic,
can be done exactly correctly using only a small subset of
the bits. We theoretically show that discarding certain high-
order bits of a secret share during ReLU can still maintain
the computation mathematically equivalent to that of the
original computation, while significantly reducing the com-
munication. We also show that discarding low-order bits is
similar to performing magnitude-based activation pruning,
which is known to have little effect on accuracy (Kurtz et al.,
2020; Oh et al., 2021; Haberer & Landsiedel, 2022; Li et al.,
2023b; Gupta et al., 2021). We can reduce the communica-
tion even further using this second insight, when a moderate
accuracy degradation is tolerated.

Based on the theoretical insights, we propose Humming-
Bird, a framework that automatically selects proper bits to
discard for each ReLU layer and uses an optimized ker-
nel to translate the reduced bits into speedup. Compared
to the popular CrypTen framework (Knott et al., 2021) on
a typical LAN setup, HummingBird achieves 1.81–3.04×
end-to-end speedup while keeping the computation mathe-
matically equivalent, and 3.74–7.28× speedup when some
accuracy degradation is tolerated. The idea of Humming-
Bird can be applied to many other popular MPC frameworks
immediately. Below summarizes our contributions:

1. We theoretically show that discarding certain high-
order bits of the secret shares during a ReLU evaluation
does not alter the outcome for a large family of MPC
protocols. HummingBird leverages the fact to improve
the performance without altering the result.

2. We show that discarding low-order bits during ReLU
renders the result similar to activation pruning. Hum-
mingBird leverages the fact to further improve the per-
formance when small accuracy degradation is allowed.

3. We propose a search algorithm to decide how many
high- and low-order bits to remove for each ReLU layer
given a budget, and present an efficient search engine

that performs the search on a lightweight simulator.
Within a reasonable amount of time (several minutes to
an hour), HummingBird finds a configuration that min-
imally impacts the model accuracy while significantly
improving the communication overhead.

4. We implemented a runtime library as an extension to
CrypTen that can bring up to 8.42× average end-to-
end speedup and 8.76× communication reduction with
the configuration found by the search engine. We will
open-source the codebase upon paper publication.

2 BACKGROUND AND MOTIVATION

2.1 Private Inference with Multi-party Computation

Existing works on MPC-based inference can be broadly
classified into either a client-server setup or a multi-server
setup. Client-server MPC (Liu et al., 2017; Juvekar et al.,
2018; Mohassel & Zhang, 2017; Mishra et al., 2020; Huang
et al., 2022c; Rathee et al., 2020; Chandran et al., 2019)
assumes a client holding data and a server holding a model.
In these protocols, the server runs most of the linear com-
putations using a mixture of homomorphic encryption (HE)
and MPC protocols. Non-linear layers are collaboratively
evaluated (Garimella et al., 2023). These protocols provide
strong security as the client need not worry about collusion.

Multi-server MPC (Tan et al., 2021; Mohassel & Rindal,
2018; Kumar et al., 2020; Wagh et al., 2021; 2019; Riazi
et al., 2018; Chaudhari et al., 2019; Patra & Suresh, 2020;
Byali et al., 2020; Chaudhari et al., 2020; Knott et al., 2021)
assumes multiple non-colluding servers collaboratively run-
ning an MPC-based inference. While users can also act as
one of the parties, it is more common to assume they simply
offload the inference to multiple non-colluding servers (Mo-
hassel & Zhang, 2017) by generating and sending secret
shares of their inputs (Figure 2). The servers cannot learn
about the users’ input from the received secret shares unless
they collude. The model can be shared between the parties
or be private to one of them. If the model is private, other
parties use an encrypted model, and the execution is slower
compared to when the model is shared.

Multi-server MPC is usually faster than the client-server
MPC because it does not involve expensive HE operations
(Huang et al. (2022c) observed a 15× difference between
the two due to the HE operations). The major downside
of a multi-server MPC is that the user data are safe only
when the involved parties do not collude (Knott et al., 2021).
This non-colluding assumption can be realized with policies
and contracts between the parties. Many companies are
forming an alliance (Alliance, 2023) to explore and adopt
MPC technologies, and some simple form of MPC is already
being adopted in the industry (Meta, 2023b).
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Evaluation of ReLU This paper focuses on ReLU-heavy
networks (e.g., CNN) following recent works (Jha et al.,
2021; Cho et al., 2022a;b; Jha & Reagen, 2023; Kundu et al.,
2023). ReLU is evaluated in several different ways: some
of the popular approaches include the Goldreich-Micali-
Wigderson (GMW) protocol (Goldreich et al., 1987), gar-
bled circuit (Yao, 1982), or a variant of SecureNN (Wagh
et al., 2019)’s protocol. Among these, the GMW proto-
col is GPU-friendly and is often used in GPU-based high-
throughput systems (Knott et al., 2021; Tan et al., 2021).

Many of the aforementioned protocols evaluate ReLU by
first evaluating whether the secret is positive, i.e., x ≥ 0?,
and multiplying the boolean result by the original se-
cret (Goldreich et al., 1987; Wagh et al., 2019). Following
prior works (Kumar et al., 2020), we call this sign estima-
tion operator DReLU 1: DReLU(x) = 1 iff x ≥ 0 and 0
otherwise. With DReLU, ReLU is trivially:

ReLU(x) = x×DReLU(x). (1)

As we show in Section 2.3, evaluating DReLU consists of
most of the overhead of ReLU in these protocols.

Scope of HummingBird We describe and evaluate the
idea of HummingBird on top of CrypTen (Knott et al., 2021),
a GMW-based multi-server MPC framework developed and
maintained by Meta. CrypTen is popular due to its high-
speed GPU support and has served as a foundation of several
recent works (Tan et al., 2021; Li et al., 2023a; Wang et al.,
2022; Zhang et al., 2023). However, our idea is relevant to
a wider range of works.

First, the idea is directly applicable to any other protocol
that uses Equation 1 for ReLU and experiences a DReLU
overhead that increases with the number of bits in the secret
share. All the other GMW-based systems (Mohassel &
Rindal, 2018; Tan et al., 2021; Patra & Suresh, 2020) and
other popular frameworks (Wagh et al., 2019; 2021; Kumar
et al., 2020; Rathee et al., 2020) fall into this category.

Second, the same idea can be applied to comparison in
general (x ≥ a? is equivalent to DReLU(x− a)), and can
accelerate other comparison-based operators (e.g., max pool-
ing) or non-linear operators that internally uses comparison
in their approximation. For example, Pang et al. (2023) uses
comparison to approximate Tanh and GELU.

We only consider a setup where two parties participate in
the computation (p = 2 in the notation from Section 2.2),
which is the most efficient (Knott et al., 2021) and common
setup (Mohassel & Rindal, 2018; Kumar et al., 2020; Wagh
et al., 2021; 2019). However, Theorem 1 is applicable to
setups with more parties (p > 2). As in the original CrypTen
paper, we assume an honest-but-curious adversary.

1for derivative of ReLU

2.2 Operation of CrypTen and the GMW Protocol

Notations Let x ∈ Z/QZ be a secret value in an integer
ring of size Q = 2N . We denote p arithmetic secret shares
of x as ⟨x⟩Qp ∈ Z/QZ, where Σp−1

i=0 ⟨x⟩
Q
i ≡ x (mod Q).

We simply denote the set of the shares as ⟨x⟩Q = {⟨x⟩Qp }.
For x represented in an N -bit signed integer representation
(two’s complement), we denote p binary secret shares of x
as ⟨x⟩Bp , where ⊕p−1

i=0 ⟨x⟩Bi = x for a bitwise XOR operation
⊕. Throughout the paper, we assume an element in a ring of
size 2n is always in an n-bit signed integer representation for
any n. We express bits from the m-th bit to the k − 1-th bit
in x (m ≤ k) as x[k : m]. For example, if x = 11011101b,
x[5 : 1] = 1110b. Note that the k-th bit is excluded. We
treat the resulting x[k : m] as an element on a smaller ring
Z/2k−mZ unless stated otherwise. Similarly, we denote the
k-th bit of x as x[k].

Operation of CrypTen Here, we briefly explain how
CrypTen works. An in-depth understanding of CrypTen
is not necessary for the rest of the paper, and we encourage
curious readers to read the original paper for more details.

In CrypTen, users split their secret input x ∈ Z/QZ into
p (p ≥ 2) arithmetic secret shares and send each share
⟨x⟩Qp to participating servers Pp. When p = 2, secret
shares can be easily generated by the client generating a
random number r and making ⟨x⟩Q0 = x+ r, ⟨x⟩Q1 = −r.
Floating-point values xf are converted to an integer ring el-
ement x by multiplying with a large integer D and rounding
(x = ⌊Dxf⌉). Addition or multiplication by a public value
can be trivially done directly on arithmetic secret shares
(e.g., Σp−1

i=0 a⟨x⟩
Q
i ≡ ax (mod Q)), allowing efficient linear

operations by a public weight. Addition between two secret
shares can also be done trivially. Multiplication between se-
cret shares requires communications between the parties and
a set of random numbers called the Beaver triplets (Beaver,
1991), which can be generated by a trusted third party (TTP)
or by using oblivious transfer (Knott et al., 2021).

Non-linear operations, such as ReLU, are much more expen-
sive. CrypTen evaluates ReLU by first separately evaluating
DReLU (Equation 1). When DReLU is applied to a secret
share ⟨x⟩Q, the output is a secret share of one (⟨1⟩Q) if
x ≥ 0 and ⟨0⟩Q otherwise. Then, ReLU is evaluated by:

ReLU(⟨x⟩Q) = ⟨x⟩Q ×DReLU(⟨x⟩Q), (2)

which requires a multiplication between secret shares and
uses the aforementioned Beaver triplets.

CrypTen estimates DReLU(⟨x⟩Q) using the GMW proto-
col. First, the arithmetic shares ⟨x⟩Q are converted into
binary shares ⟨x⟩B . This arithmetic-to-binary (A2B) con-
version is done by each party Pp generating binary shares
of their arithmetic shares, ⟨⟨x⟩Qp ⟩B , and adding their binary
shares ⟨⟨x⟩Q⟩Bp locally using an adder circuit. For an N -bit
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secret x, an adder circuit of depth logN is required, with
each depth incurring O(N) communication (O(NlogN)
total communication overhead). Many other popular pro-
tocols experience similar A2B overhead that grows with
N (Mohassel & Rindal, 2018; Tan et al., 2021; Patra &
Suresh, 2020; Wagh et al., 2019; 2021; Kumar et al., 2020;
Rathee et al., 2020). After the conversion, the most signif-
icant bit (MSB; sign bit) of ⟨x⟩B (⟨x⟩B [N−1] if Q = 2N )
holds the binary secret share of 0 if x is positive and 1 if neg-
ative. Converting ⟨x⟩B [N−1] back into arithmetic shares
(binary-to-arithmetic; B2A) and subtracting it from ⟨1⟩Q
gives us our desired DReLU(⟨x⟩Q) (Knott et al., 2021).

2.3 Detailed Overhead Characterization

How fast can we currently get? Despite recent advance-
ments, there is widespread pessimism that MPC is inherently
too slow to be deployed in the real world. To see exactly
what the current state-of-the-art looks like, we evaluated
a carefully designed setup that maximizes throughput, a
metric that is crucial for an industry-scale deployment.

We used CrypTen on two servers (p = 2), each with an A100
GPU, connected with a 10 Gbps LAN. The LAN-based
setup shows what can be achieved when multiple companies
forming an MPC alliance (Alliance, 2023) install their own
servers at the same datacenter for a high-performance MPC.
We assumed that the model is unencrypted, which makes the
linear layers more efficient. The unencrypted model setup
represents cases when the parties are running public models,
or the parties abide by some confidentiality contract (e.g.,
NDA) and cannot steal the model. We focused on CNNs
with max pooling replaced with average pooling as in recent
works (Garimella et al., 2023; 2021a), as they are the closest
to becoming practical. Transformers, on the other hand,
report a throughput only around 0.02 samples/s (Zhang
et al., 2023; Zeng et al., 2023) and require more innovations
to become near-practical. Again, HummingBird is not only
relevant to the particular setup we studied and can accelerate
other setups as well (e.g., max pooling, Transformers, etc.),
as discussed in Section 2.1.

The leftmost bar of Figure 1 shows the measured over-
head breakdown for ResNet18 (He et al., 2016) and CI-
FAR10 (Krizhevsky et al., 2009) with a batch size of 512.
Encouragingly, the numbers are already quite efficient (19.1
samples/s), thanks to various design choices to maximize
throughput. However, the overhead is still significant — you
can run millions of non-private inference per second with
the same setup — and the community has a long way to go
before this becomes truly practical. See Section 5 for details
on the evaluation setup.

Detailed overhead characterization To study how the
throughput can be further improved, we measured the major

Circuit (82.76%)

Mult (6.90%)
B2A (3.45%)
Others (6.90%)

Figure 3. Communication incurred by each part of ReLU.

overheads of the aforementioned setup. As the leftmost bar
in Figure 1 shows, the first thing we noticed is that 93% of
the overhead comes from ReLU layers. This is because we
carefully eliminated other major overheads, such as max
pooling or encrypted models, but the ReLU overhead could
not be easily avoided.

Figure 3 further breaks down the large overhead of ReLU
into different components. Circuit refers to the adder cir-
cuit explained in Section 2.2 during the A2B conversion
(82.76%). Mult refers to the multiplication shown in Equa-
tion 2 that is done between the secret share and the DReLU
output (6.9%). B2A refers to the B2A conversion of the
1-bit DReLU output. Unlike the A2B counterpart that per-
forms N -bit to N -bit conversion, B2A converts only one
bit (sign bit) and is much cheaper (3.45%). Others are
AND operations happening inside A2B other than what is
captured by Circuit (6.9%). Evidently, the vast majority of
the communication comes from the adder circuit during the
A2B conversion, which is our main target for optimization.

3 USING LESS BITS FOR DRELU
To further improve the performance of CrypTen, we need
to optimize the A2B inside DReLU. As explained in Sec-
tion 2.2, the A2B overhead is O(NlogN), growing with
the size of the secret share, N . In MPC protocols, N is
usually large (N = 64 for CrypTen) to avoid arithmetic
wrap-around (Knott et al., 2021) during linear layers.

Our core insight is that DReLU only determines whether the
secret (x) is positive or negative, which can often be done
exactly correctly by only looking at a small subset of the
bits. We first show how we can use only a fraction of the bits
and still produce precise results. Then, we show how we
can even cut down more bits, if some accuracy degradation
is allowed. Using fewer bits immediately improves the
O(NlogN) overhead of A2B.

For a high-level insight into our proposed optimization, con-
sider secret shares of x = 9, ⟨x⟩Q = {47, −38}. Note that
adding the two secret shares retrieves the original secret.
DReLU can be seen as a process of comparing the absolute
values between the positive and the negative secret shares
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Figure 4. A motivating example of why dropping some high- and
low-order bits still gives precise DReLU results.

(Figure 4, left). As it can be seen from the right of Fig-
ure 4, the comparison result would not change even when
we discard some high-order bits, as it is equivalent to per-
forming a modulo, or throwing away an equal amount from
both values and doing the comparison (Figure 4, top right).
Similarly, discarding some low-order bits is equivalent to
performing a division and a floor operation, or dividing both
values with the same value and comparing the quotient (Fig-
ure 4, bottom right). Both operations do not change the
comparison result if done moderately. From the intuition,
we propose to only use ⟨x⟩Q[k : m] during DReLU:

ReLU(⟨x⟩Q) ≈ ⟨x⟩Q ×DReLU(⟨x⟩Q[k : m]). (3)

Equation 3 reduces the A2B communication overhead sig-
nificantly from O(NlogN) into O((k − m)log(k − m)).
Again, as long as DReLU correctly estimates the sign, Equa-
tion 3 is not an approximation but an exact computation.
Next, we theoretically show when Equation 3 is exact.

3.1 Theoretical Analysis

The insight from Figure 4 was not rigorous and does not
always work. Here, we discuss when Equation 3 can be
correct. Consider ⟨x⟩Qp ∈ Z/QZ, arithmetic secret shares of
x ∈ Z/QZ, where p ∈ {0, 1}. Assume ⟨x⟩Qp is represented
in an N -bit signed integer representation.

First, we state the condition when discarding the k-th bit
and above is still correct. Proof is in Appendix:Section A.4.

Theorem 1. For k < N , DReLU(⟨x⟩Q) is equal to
DReLU(⟨x⟩Q[k : 0]) if −2k−1 ≤ x < 2k−1.

CrypTen (Knott et al., 2021) uses N = 64, while a floating
point representation xf is converted into an integer ring
element with x = ⌊216xf⌉. As intermediate activations
(xf ) in a DNN are usually close to zero, x = ⌊216xf⌉ only
occupies a small subset of the full range represented by
N = 64. For the datasets we studied, k between 18–22 was
sufficient for −2k−1 ≤ x < 2k−1 to always hold. The result
indicates that 42–46 high-order bits (accounting for 66–
72%) of the secret shares can be safely discarded without
causing any mathematical errors. N being much larger
than a typical value of x is, in fact, deliberate; it prevents
wrap-around errors during arithmetic operations (Mohassel

& Zhang, 2017), and simply using a smaller N breaks the
entire system. However, DReLU does not cause any wrap-
around and does not need to operate with a large N .

Next, we discuss what happens when bits below the m-th
bit are discarded. Proof is in Appendix:Section A.4.

Theorem 2. If each party uses ⟨x⟩Qp [N : m] ∈ Z/2N−mZ
for DReLU, the ReLU output is mostly equivalent to per-
forming ReLU precisely and zeroing-out values below 2m,
except for rare cases where x < −2N−1 + 2m+2.

Theorem 2 shows that, unlike high-order bits, discarding
low-order bits is not safe. Specifically, non-zero secrets
smaller than 2m becomes zero, and very large negative val-
ues (x < −2N−1 + 2m+2) are flipped to become positive.
Thus, if we want to maintain precisely the same computa-
tion, we must not discard any low-order bits.

However, Theorem 2 simultaneously shows how we can
additionally improve the performance if some amount of
accuracy degradation is tolerated. Note that the latter case is
unlikely with a large N , and the former only zeros out posi-
tive values below 2m. We note that the behavior is precisely
magnitude-based activation pruning, which is empirically
known to have little impact on the final model accuracy
when used in moderation (Kurtz et al., 2020; Oh et al., 2021;
Haberer & Landsiedel, 2022; Li et al., 2023b; Gupta et al.,
2021). The rest of the ReLU outcomes are not approximated
and exact. Thus, a careful choice of m is expected to not
harm the model accuracy significantly.

Comparison with compression Our optimization is sim-
ilar in spirit with compression or quantization (Han et al.,
2016), in that we aim to reduce the number of bits com-
municated. However, we emphasize that our optimiza-
tion is not compression/quantization. Traditional compres-
sion/quantization aims to make the value of the compressed
result close to the original value, i.e., Compress(⟨x⟩Qp ) ≈
⟨x⟩Qp ; however, as ⟨x⟩Qp are random values fully occupy-
ing the N -bit representation space (very high entropy), it
cannot be compressed much. In contrast, our proposed
method does not preserve the values of the secret shares at
all (⟨x⟩Qp [k : m] ̸= ⟨x⟩Qp ), but it instead ensures that the
DReLU result is similar before and after the bits are dis-
carded (DReLU(⟨x⟩Q[k : m]) = DReLU(⟨x⟩Q)). More-
over, unlike compression and quantization which always
induce errors, our optimizations do not introduce any errors
(Theorem 1), or only incur errors for specific, predictable
range of inputs (Theorem 2).

4 HUMMINGBIRD SYSTEM DESIGN

HummingBird is an MPC framework that accelerates Re-
LUs using the insights from Section 3. HummingBird sup-
ports two modes. HummingBird-eco is the default mode,
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which discards as many bits as possible while keeping the
computation mathematically equivalent. HummingBird-eco
does not discard any low-order bits and only discards high-
order bits while meeting the requirement of Theorem 1. We
additionally provide HummingBird-b, which trades off per-
formance and accuracy. Given a budget b, HummingBird-b
statically searches how many high- and low-order bits to
discard for each ReLU layer to maximize accuracy.

HummingBird consists of an offline and an online phase. In
the offline phase, a search engine finds bits to throw out (i.e.,
select k, m in ⟨x⟩Q[k : m]) for each ReLU layer to mini-
mize accuracy degradation while maximizing performance.
In the online phase, HummingBird uses an efficient runtime
library that uses the searched parameters and runs DReLU
with a subset of bits to achieve an end-to-end speedup. Fig-
ure 5 summarizes HummingBird.

4.1 Offline Phase: Finding Bits to Discard

HummingBird’s offline search engine consists of three key
components: (1) an efficient MPC simulator, (2) a search
algorithm, and (3) a model finetuning process.

4.1.1 MPC Simulator

Evaluating any configuration on a real MPC setup during the
search process is time-consuming. To save the search time,
HummingBird performs the search on an efficient simulator
instead. The simulator simply performs a single-node non-
private ML inference for all layers except ReLU. Only for
ReLU layers, the simulator simulates what HummingBird
would do during a real MPC-based inference: converts the
floating point values into an integer ring, generates secret
shares, discards bits, and calculates DReLU using GMW.

Although the simulator does not simulate what Humming-
Bird does exactly from the beginning to the end, we ob-
served that the final accuracy trend from the simulator
matches well with what we observe on a real MPC setup. At
the same time, evaluating a configuration on a simulator is
much more efficient than running a real MPC, because (1) all
the other layers except for ReLU run a vanilla single-node
inference and incur no additional MPC-related overhead,
and (2) even for the ReLU layers, there is no communication
overhead as both the parties are simulated on the same node.
The efficient simulator allows the search engine to evaluate
numerous configurations within a reasonable time.

4.1.2 Efficient Search Algorithm

The goal of the search algorithm is to find the subset of
bits in the secret shares to use for DReLU for each ReLU
layer. For HummingBird-eco, the search engine does not
throw away any low-order bits as it always introduces errors
(Theorem 2). k-th and higher-order bits can be safely thrown

Offline phase Online phase

Search Engine §4.1

val data
model

budget P1
P0Co

nv

Co
nv …

Re
LU

Extract DReLU
§4.2

Searched k, m

simulator
efficient search algo

finetuning

Figure 5. Overview of HummingBird.

away if −2k−1 ≤ x < 2k−1 (Theorem 1). The search
engine runs a validation set through each layer, records the
minimum and the maximum values of the output, and uses
them to select k. The process is very efficient.

HummingBird-b takes in the relative amount of bits to re-
tain as the budget b and finds a configuration that meets
the budget while maximizing accuracy. For example, when
the search budget is given as b = 4/64, it means the total
number of bits used in each DReLU combined must be 4/64
or less than the original number of bits combined. The bud-
get can be met by using only 4 bits among the 64-bit secret
shares for all ReLU layers, or by retaining different numbers
of bits for different layers (e.g., retain only 2 bits for some
layers and 8 bits for other layers). Different ReLU layers
have different output dimensions — usually for CNNs, ear-
lier ReLU layers have larger dimensions — and discarding
bits from the earlier layers reduces the budget more quickly.

The search space for HummingBird-b grows exponentially
with the number of ReLU layers and quickly becomes in-
tractable. HummingBird-b enumerates all possible bit as-
signments to all ReLU layers using a depth-first-search
(DFS). With l ReLU layers and N possible bits that can
be assigned to each layer, the combinations of possible bit
assignments are already O(N l). To make matters worse,
each ReLU layer has to choose k and m that satisfies the
number of assigned bits. For example, if one decides to re-
tain 4 bits for all ReLU, each ReLU has to choose k and m
from (k,m) ∈ {(4, 0), (5, 1), ..., (64, 60)}. This leads to a
combined O(N2l) search complexity. To navigate through
the search space within a reasonable amount of time, Hum-
mingBird uses several optimizations: using locally optimal
k and m values, early stopping for unlikely paths, and al-
lowing a coarser search.

First, HummingBird visits each layer and greedily selects a
locally optimal k and m values, instead of trying to find a
global optimum. When a certain number of bits is assigned
to a layer during the DFS, the search engine (1) uses the
already-selected k and m for layers that have been visited,
and (2) uses k = N , m = 0 (i.e., no bit discarded) for layers
that haven’t been visited yet, and linearly searches for k and
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m values for the current layer that yield the best validation
accuracy. When the locally optimal values are found, those
values are recorded, and the search moves on to the next
layer. This greedy heuristic reduces the search complexity
from O(N2l) to O(N l).

We further reduce the O(N l) search space of the DFS by
pruning branches that are likely to yield suboptimal configu-
rations. When selecting the locally optimal k and m values
for a certain layer, the search engine evaluates the validation
accuracy while assuming unexplored layers will not discard
any bits (discussed in the previous paragraph) — this vali-
dation accuracy serves as an upper bound of the accuracies
any configurations following this branch will achieve. If this
upper bound is already worse than a predefined threshold
or the best configuration found so far, the search engine
immediately stops exploring that branch. The search engine
also tracks the total number of bits assigned to each layer
and immediately stops when the budget is exceeded.

For additional efficiency, the search engine allows grouping
multiple ReLUs and making them share the same param-
eters. For models with a repeating block structure, e.g.,
ResNet (He et al., 2016), a natural choice is to group the
ReLUs within the same block. All these optimizations com-
bined allow our search engine to find a good configuration
usually within several minutes, making the search practical.

When zero bit is assigned to a layer, that ReLU layer be-
comes an identity layer. HummingBird can be seen as a
generalization of ReLU culling (Jha et al., 2021) which re-
places a ReLU layer with an identity layer for performance.

4.1.3 Model Finetuning

When HummingBird-b degrades accuracy, we go through
a model finetuning process to regain some of the accuracy.
The finetuning process re-trains the model for a small num-
ber of epochs on the simulator, while using the selected k
and m for each layer. We found that finetuning was not
necessary for b = 8/64 and above as the approximation
does not degrade the accuracy much; however, finetuning
was essential for aggressive budgets below b = 8/64, where
non-negligible accuracy drops occurred (Section 5.3).

4.2 Online Phase: Efficient DReLU with Less Bits

Using k and m found for each ReLU layer, HummingBird
uses Equation 3 during online MPC inference. Note that
k and m are selected during the offline phase using the
validation data and are fixed during the online phase, not
leaking any information about the online user data. With
the reduced number of bits, HummingBird speeds up the
DReLU process, especially the adder circuit (Section 2.3),
with mainly two optimizations. First, it runs a circuit of
depth O(⌈log(k − m)⌉) instead of O(logN). Second, it

efficiently packs and unpacks the subset of bits into a 64-bit
tensor before and after each communication to reduce the
overhead. While the circuit depth change only impacts the
adder circuit overhead (Circuit; Section 2.3), the reduced
communication due to bitpacking also improves Mult and
B2A from Section 2.3. We implemented HummingBird’s
online phase on top of CrypTen with Python. The added
code accounts for less than 2% of the total execution time.

5 EVALUATION RESULTS

In this section, we answer the following questions: (1) How
fast is HummingBird in different settings? (2) How much
communication is reduced? (3) What are the major over-
heads of HummingBird? (4) How long is the search time?
(5) How important is each component of HummingBird?

5.1 Evaluation Setup

We evaluated HummingBird in several representative setups.
The first setup runs two parties on two nodes connected with
a 10 Gbps LAN, each with one A100 GPU. The second
setup is otherwise identical, but uses a less powerful V100
GPU. The third setup runs two parties on two A100 GPUs on
a single node, representing a setup with a very high network
bandwidth. We do not model the overhead of generating
Beaver triplets, assuming they are generated and stored
offline (Garimella et al., 2023) or sent by a trusted third
party (TTP) asynchronously. Unlike in a client-server MPC
setup where the clients have limited storage, we assume the
servers have enough storage to hold pre-generated triplets.

Following prior works (Garimella et al., 2023; 2021a; Cho
et al., 2022b), we evaluated HummingBird with ResNet18
and ResNet50 (He et al., 2016), models that are popu-
lar in MPC literature. Models like MobileNet (Sandler
et al., 2018) have components not suitable for MPC (e.g.,
ReLU6) and are not commonly used. We evaluated with
CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky
et al., 2009), and TinyImageNet (Stanford, 2023) datasets.
All the models were trained to match the accuracy reported
in prior works (Cho et al., 2022b), and details of the models
are summarized in Appendix:Section A.1. For the search en-
gine, we used a validation set of 1024 samples and grouped
ReLUs following the five layer groups of ResNet. We used
the search budget of 8/64 and 6/64.

5.2 HummingBird Performance Analysis

End-to-end performance improvement Figure 6 and
7 show the speedup of HummingBird over the baseline
CrypTen in A100 and V100 GPUs. Both figures show
that HummingBird improves the end-to-end performance
significantly. Without adding any errors (HummingBird-
eco), HummingBird improves the average performance
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Figure 6. On A100 GPUs, HummingBird improves the end-to-end performance by 1.81–3.04× (HummingBird-eco), 3.74–6.89×
(HummingBird-8/64), and 4.03–7.28× (HummingBird-6/64) over CrypTen. Any accuracy degradation is shown above the bar.
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Figure 7. On V100 GPUs, HummingBird improves the end-to-end performance by 1.55–2.22× (HummingBird-eco), 2.57–3.67×
(HummingBird-8/64), and 2.66–4.03× (HummingBird-6/64) over CrypTen. Any accuracy degradation is shown above the bar.

by 2.49× and 1.90× on A100 and V100, respectively.
When some accuracy degradation is tolerated, the average
performance improvement becomes 4.93× and 3.04× (-
0.3%; HummingBird-8/64), and 5.34× and 3.26× (-1.2%;
HummingBird-6/64), for A100 and V100. The performance
improvement is less on the less powerful V100 GPUs be-
cause the linear layer computation (e.g., convolution), which
HummingBird does not accelerate, is slower on V100.

Performance improvement on different networks Fig-
ure 8 shows the average speedup across all the mod-
els/benchmarks for different network setups. High-BW
represents an ideal setup with very high bandwidth. It is
measured on two GPUs on a single node, connected with
up to 16 Tbps link (NVIDIA, 2023). LAN reports a setup
where two nodes are connected with a 10 Gbps LAN. WAN
reports an analytical projection assuming a 320 Mbps band-
width and a 70 ms round-trip latency, following Huang et al.
(2022b). For WAN, we separately measured the communi-
cation round and time from the High-BW setup and scaled
it according to the assumed bandwidth and latency.

Figure 8 shows that, as expected, HummingBird’s perfor-
mance benefit becomes more notable with limited networks.
Compared to the 2.49–5.34× speedup of LAN, High-BW
setup enjoyed less speedup of 2.03–4.12×, while the WAN
setup enjoyed more speedup of 2.64–8.42×. High-BW and

High-BW LAN WAN
0

5

Sp
ee

du
p

CrypTen
HummingBird-eco

HummingBird-8/64
HummingBird-6/64

Figure 8. Speedup of HummingBird on different network setups.
The bar shows the geometric mean across all the benchmarks. On
WAN, HummingBird’s speedup reaches 2.64–8.42×.

the LAN setup did not show significant differences although
their bandwidth differed by multiple orders, because Hum-
mingBird was not able to fully utilize the 16 Tbps bandwidth
anyways, using only around 20 Gbps.

Communication Figure 9 shows the total bytes commu-
nicated (bar plot) and the number of communication rounds
(line plot). On average, HummingBird reduces the number
of communication rounds by 1.12–1.56×, and reduces the
total bytes communicated by 2.68–8.76×. Communication
does not decrease proportionally with less budgets and starts
to saturate, because there are communications that cannot
be reduced by HummingBird (e.g., Mult from Figure 3).
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Figure 9. Normalized bytes that need to be communicated (bar) and the number of communication rounds (line). HummingBird reduces
the number of communication rounds by 1.12–1.56× and total communicated bytes by 2.68–8.76×.
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Figure 10. Overhead breakdown of CrypTen and Hummingbird-
8/64. HummingBird reduces communication to a degree where
the computation is no longer negligible.

Overhead breakdown Figure 10 shows the overhead
breakdown of CrypTen and HummingBird-8/64, both on
A100 and V100 GPUs. The breakdown shows that Hum-
mingBird reduces the communication overhead to a point
where the computation overhead becomes non-negligible.
With HummingBird-8/64, the portion of the communication
overhead decreased from 93% to 78% (A100) and 78% to
39% (V100), respectively. For high-performance GPUs
like A100, the major bottleneck is still communication
(78%); however, for less-powerful V100 GPUs, Humming-
Bird shifts the bottleneck to computation. The result shows
why HummingBird’s speedup is larger for A100. In V100,
the computation overhead, which HummingBird does not
accelerate, becomes non-negligible (61%).

Search overhead In most cases, HummingBird was able
to find a satisfactory configuration in a few minutes. For
large models (TinyImageNet with ResNet50), the search
time sometimes reached an hour. The search time can be
further reduced by using a smaller validation set or a coarser
ReLU group. See Appendix:Table 2 for more details.

5.3 Ablation Studies

Effectiveness of the search engine HummingBird’s
search engine finds bits to discard (i.e., k, m) per each
ReLU group. A simple alternative approach would be to use
the same k and m for all the ReLU layers. We found that
such a naive alternative does not work well, incurring more
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Figure 11. Retained (green) and discarded (grey hatched) bits for
each ReLU group using different search strategies. Humming-
Bird’s search engine chooses different numbers and positions of
bits for different ReLU groups.

than an 8% accuracy drop for the same search budget. Fig-
ure 11 visualizes the bits that are discarded (gray hatched)
or retained (green) among the 64 bits for the two approaches
with b = 8/64. Unlike the naive approach that discards the
same bits for all the ReLU layers (Figure 11, left), Hum-
mingBird flexibly chooses to discard different amounts of
bits for different layers (Figure 11, right), sometimes dis-
carding more (G3) and sometimes less (G4). As different
ReLU layers have different importance and characteristics,
the search engine is crucial for achieving high accuracy.

Effectiveness of finetuning While finetuning was not nec-
essary when the search budget was reasonably large (e.g.,
HummingBird-8/64) as the accuracy degradation was al-
ready small, we found finetuning to be crucial when the
search budget was small (e.g., HummingBird-6/64), where
non-negligible accuracy degradation occurred. Finetuning
improves the model accuracy by 0.95–7.05% depending on
the dataset and the model. See Appendix:Table 3 for details.

6 ADDITIONAL RELATED WORKS

6.1 Alternative Approaches to Private Inference

Trusted execution environment (TEE) TEEs (Intel,
2021; ARM Ltd., 2021; AMD, 2023; Lee et al., 2020; Suh
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et al., 2007; Lie et al., 2003; Lee et al., 2005; Bourgeat
et al., 2019; Champagne & Lee, 2010; Chhabra et al., 2011;
Costan et al., 2016; Evtyushkin et al., 2014; Fletcher et al.,
2012; McKeen et al., 2013; Szefer & Lee, 2012; Lie et al.,
2000; Watson et al., 2015; Yang et al., 2003) are hardware
that ensures the authenticity of the software running on it,
and the confidentiality and integrity of code and data used
inside. Following the initial proposal from academia (Suh
et al., 2007; Lie et al., 2003; Lee et al., 2005), most ma-
jor vendors have TEEs in their commercial products (In-
tel, 2021; ARM Ltd., 2021; AMD, 2023; Lee et al., 2020;
NVIDIA, 2022). TEEs for emerging heterogeneous accel-
erators are also being actively proposed (Jang et al., 2019a;
Jiang et al., 2022; Zhao et al., 2022; Kang et al., 2021; Lee
et al., 2022; Volos et al., 2018; Jang et al., 2019b; Zhu et al.,
2020; Zuo et al., 2020; Hua et al., 2020). TEEs are efficient
because they eliminate the need for any expensive HE or
MPC operations, and are widely available in commodity
off-the-shelf hardware. However, the security assurance
from a TEE is generally considered to be weaker than cryp-
tographic protection from HE/MPC. Although data inside a
TEE should ideally be secure, TEE implementations may be
vulnerable due to hardware/software bugs (Liu et al., 2021;
Khandaker et al., 2020) or side channels (Wang et al., 2017).

Fully homomorphic encryption (FHE) FHE is a crypto-
graphic technique that allows certain computations directly
on an encrypted ciphertext. Using FHE, servers can collect
user data in a ciphertext form and run computation (e.g.,
DNN inference) directly on the ciphertext (Gentry, 2009).
While the first HE schemes and systems were very slow,
subsequent works accelerated HE-based private inference
heavily on CPUs (EPFL-LDS, 2021), GPUs (Jung et al.,
2021; Kim et al., 2023), FPGAs (Roy et al., 2019; Riazi
et al., 2020; Agrawal et al., 2023), and custom accelera-
tors (Samardzic et al., 2021; Kim et al., 2022b;a). Unlike
MPC, FHE cannot evaluate ReLU precisely and must ap-
proximate it with a high-degree polynomial (Kim et al.,
2022b). While recent advances in algorithms and hardware
accelerators significantly reduced the latency of FHE, the
throughput is still limited: using CIFAR10 and ResNet20,
recent studies report a throughput of 8 samples/s on a cus-
tom accelerator (Kim et al., 2022a) and 0.7 samples/s on an
A100 GPU (Kim et al., 2023), which are orders of magni-
tude less than what HummingBird achieves.

Instance encoding Instance encoding (Carlini et al., 2020)
refers to a general concept where the client encodes the
input into a noisy encoding, such that reconstructing the
original input is statistically hard while some useful down-
stream inference or training is still possible. Similar con-
cepts have been explored under many different names
across communities, including split inference (Kang et al.,
2017; Vepakomma et al., 2021; Titcombe et al., 2021; He

et al., 2020; Mireshghallah et al., 2020; 2021), split learn-
ing (Vepakomma et al., 2020; 2018; Poirot et al., 2019), ver-
tical federated learning (vFL; Thapa et al. (2022); Yang et al.
(2019); Li et al. (2022)), learnable encryption (Yala et al.,
2021; Xiao & Devadas, 2021; Xiang et al., 2020), private im-
age publication (Fan, 2018; 2019), etc. Instance encoding is
usually efficient computation-wise, as no cryptographically-
heavy operation is needed. However, these approaches lack
a strong theoretical guarantee on their claimed privacy-
enhancing properties (Carlini et al., 2020; 2021), unlike
MPC or FHE which are cryptographically secure. A few
recent studies provided a theoretical analysis of instance
encoding, using tools like (metric) differential privacy (Fan,
2018; 2019), Fisher information leakage (Maeng et al., 2022;
2023), or PAC theory (Xiao & Devadas, 2022). These the-
ories’ guarantees are still much weaker compared to MPC.
For example, although instance encoding can make input
reconstruction statistically more difficult, it still leaks a non-
trivial amount of information about the input.

6.2 Additional Related Works on MPC

Section 2.1 summarizes popular client-server and multi-
server MPC protocols. Many of these simultaneously in-
troduce orthogonal approaches to accelerate ReLU, which
are often complementary to ours. Some of the popular
approaches include replacing ReLU with an identity func-
tion (Jha et al., 2021; Cho et al., 2022b), replacing ReLU
with a polynomial (Park et al., 2022; Mishra et al., 2020;
Lou et al., 2021; Gilad-Bachrach et al., 2016; Garimella
et al., 2021b), and using a neural architecture search to find
a model with fewer ReLUs (Jha et al., 2021; Jha & Reagen,
2023; Cho et al., 2022a). As most of these works were
not able to fully replace all the ReLUs, HummingBird can
still accelerate their remaining ReLUs. Other works fo-
cused on applying MPC to more complex models other than
CNNs, including RNNs (Rathee et al., 2021), (vision) Trans-
formers (Li et al., 2023a; Wang et al., 2022; Zhang et al.,
2023; Zeng et al., 2023; Pang et al., 2023) and recommen-
dation models (Lam et al., 2023). As these works still uses
ReLU (Li et al., 2023a; Wang et al., 2022; Zhang et al., 2023;
Zeng et al., 2023) and other comparisons internally (Rathee
et al., 2021; Pang et al., 2023), HummingBird is still rele-
vant. Zhou et al. (2022) and Huang et al. (2022a) explore
accelerating MPC with the help of customized TEEs.

7 CONCLUSION

MPC-based private inference is very slow, due to the sig-
nificant communication overhead it incurs. After applying
best-effort optimizations, the majority (> 93%) of the re-
maining overhead comes from ReLUs. In this work, we
theoretically show that most of the bits in the secret shares
can be removed during ReLU evaluation with little to no
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impact on accuracy for many popular protocols. Leveraging
the finding, we propose HummingBird, an efficient MPC
framework that uses a reduced number of bits during ReLU
evaluation. HummingBird carefully selects the bits to retain
for each layer and uses an efficient runtime library, reducing
the communication overhead by up to 8.76× and achieving
up to 8.42× end-to-end speedup over CrypTen.
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M., and Tramèr, F. Neuracrypt is not private. CoRR,
abs/2108.07256, 2021. URL https://arxiv.org/
abs/2108.07256.

Champagne, D. and Lee, R. B. Scalable architectural sup-
port for trusted software. In Jacob, M. T., Das, C. R., and
Bose, P. (eds.), 16th International Conference on High-
Performance Computer Architecture (HPCA-16 2010), 9-
14 January 2010, Bangalore, India, pp. 1–12. IEEE Com-
puter Society, 2010. doi: 10.1109/HPCA.2010.5416657.
URL https://doi.org/10.1109/HPCA.2010.
5416657.

Chandran, N., Gupta, D., Rastogi, A., Sharma, R., and
Tripathi, S. Ezpc: Programmable and efficient se-
cure two-party computation for machine learning. In
IEEE European Symposium on Security and Privacy,
EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019,
pp. 496–511. IEEE, 2019. doi: 10.1109/EuroSP.
2019.00043. URL https://doi.org/10.1109/
EuroSP.2019.00043.

Chaudhari, H., Choudhury, A., Patra, A., and Suresh, A.
ASTRA: high throughput 3pc over rings with application
to secure prediction. In Sion, R. and Papamanthou, C.
(eds.), Proceedings of the 2019 ACM SIGSAC Conference
on Cloud Computing Security Workshop, CCSW@CCS
2019, London, UK, November 11, 2019, pp. 81–92. ACM,
2019. doi: 10.1145/3338466.3358922. URL https:
//doi.org/10.1145/3338466.3358922.

Chaudhari, H., Rachuri, R., and Suresh, A. Trident:
Efficient 4pc framework for privacy preserving machine
learning. In 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020. The Inter-
net Society, 2020. URL https://www.ndss-
symposium.org/ndss-paper/trident-
efficient-4pc-framework-for-privacy-
preserving-machine-learning/.

https://doi.org/10.1109/HPCA56546.2023.10070953
https://doi.org/10.1109/HPCA56546.2023.10070953
https://www.mpcalliance.org/
https://www.amazon.com/smart-home-devices/b?ie=UTF8&node=9818047011
https://www.amazon.com/smart-home-devices/b?ie=UTF8&node=9818047011
https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-m
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-m
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-m
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1145/3352460.3358310
https://doi.org/10.1145/3352460.3358310
https://doi.org/10.2478/popets-2020-0036
https://doi.org/10.2478/popets-2020-0036
https://arxiv.org/abs/2011.05315
https://arxiv.org/abs/2108.07256
https://arxiv.org/abs/2108.07256
https://doi.org/10.1109/HPCA.2010.5416657
https://doi.org/10.1109/HPCA.2010.5416657
https://doi.org/10.1109/EuroSP.2019.00043
https://doi.org/10.1109/EuroSP.2019.00043
https://doi.org/10.1145/3338466.3358922
https://doi.org/10.1145/3338466.3358922
https://www.ndss-symposium.org/ndss-paper/trident-efficient-4pc-framework-for-privacy-preserving-machine-learning/
https://www.ndss-symposium.org/ndss-paper/trident-efficient-4pc-framework-for-privacy-preserving-machine-learning/
https://www.ndss-symposium.org/ndss-paper/trident-efficient-4pc-framework-for-privacy-preserving-machine-learning/
https://www.ndss-symposium.org/ndss-paper/trident-efficient-4pc-framework-for-privacy-preserving-machine-learning/


Accelerating ReLU for MPC-Based Private Inference with a Communication-Efficient Sign Estimation

Chhabra, S., Rogers, B., Solihin, Y., and Prvulovic, M.
Secureme: a hardware-software approach to full sys-
tem security. In Lowenthal, D. K., de Supinski, B. R.,
and McKee, S. A. (eds.), Proceedings of the 25th Inter-
national Conference on Supercomputing, 2011, Tucson,
AZ, USA, May 31 - June 04, 2011, pp. 108–119. ACM,
2011. doi: 10.1145/1995896.1995914. URL https:
//doi.org/10.1145/1995896.1995914.

Cho, M., Ghodsi, Z., Reagen, B., Garg, S., and Hegde,
C. Sphynx: A deep neural network design for private
inference. IEEE Secur. Priv., 20(5):22–34, 2022a. doi:
10.1109/MSEC.2022.3165475. URL https://doi.
org/10.1109/MSEC.2022.3165475.

Cho, M., Joshi, A., Reagen, B., Garg, S., and Hegde, C.
Selective network linearization for efficient private infer-
ence. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvári,
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A APPENDIX

A.1 Baseline Models

For CIFAR10, we replaced the max pooling with average
pooling, following (Garimella et al., 2023; 2021a). For the
rest, we simply removed max pooling (as average pooling
did not work well), following (Cho et al., 2022b).

Table 1. Baseline model accuracy.

Dataset Model Accuracy

CIFAR10 ResNet18 92.78%
ResNet50 93.15%

CIFAR100 ResNet18 77.98%
ResNet50 79.36%

Tiny-
ImageNet

ResNet18 65.46%
ResNet50 66.87%

A.2 HummingBird Search Time

Table 2 summarizes the search time of the HummingBird
search engine.

Table 2. HummingBird’s configuration search time.

Dataset Model Search budget
8/64 6/64

CIFAR10 ResNet18 5m 34s 4m 28s
ResNet50 6m 10s 5m 47s

CIFAR100 ResNet18 5m 37s 4m 19s
ResNet50 18m 32s 18m 34s

Tiny-
ImageNet

ResNet18 13m 1s 11m 34s
ResNet50 42m 3s 1h 8m

A.3 Effectiveness of Finetuning

Table 3 summarizes the model accuracy before and after
finetuning.

Table 3. Impact of finetuning (FT) on HummingBird-6/64.

Dataset Model Before FT After TF

CIFAR10 ResNet18 90.09% 91.04%
ResNet50 87.6% 91.12%

CIFAR100 ResNet18 73.04% 75.57%
ResNet50 72.45% 78.49%

Tiny-
ImageNet

ResNet18 60.21% 64.79%
ResNet50 59.82% 66.47%
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A.4 Proofs

We only provide proofs for a 2-party case (p ∈ {0, 1}),
while Theorem 1 can be extended to more parties.

Proof for Theorem 1

Proof. ⟨x⟩Q[k : 0] can be seen as secret shares of x[k : 0]
in Z/2kZ. This is because ⟨x⟩Q[k : 0] ≡ ⟨x⟩Q (mod 2k)
and x[k : 0] ≡ x (mod 2k), and thus, applying (mod 2k)
to both sides of

⟨x⟩Q0 + ⟨x⟩Q1 ≡ x (mod 2N )

results in

⟨x⟩Q0 [k : 0] + ⟨x⟩Q1 [k : 0] ≡ x[k : 0] (mod 2k).

Applying DReLU to ⟨x⟩Q[k : 0] on a smaller ring Z/2kZ
will simply output secret shares indicating whether its
secret (x[k : 0]) is positive. Thus, DReLU(⟨x⟩Q) =
DReLU(⟨x⟩Q[k : 0]) if and only if their secrets (x[k :
0] ∈ Z/2kZ and x ∈ Z/QZ) have the same sign bits, i.e.,
x[k − 1] = x[N − 1]. This is always the case if (but not
only if) −2k−1 ≤ x < 2k−1.

Proof for Theorem 2

Proof. Note that ⟨x⟩Q[N : m] = ⌊ ⟨x⟩Q
2m ⌋. Consequently,

⟨x⟩Q0 [N : m] + ⟨x⟩Q1 [N : m]

≡ ⌊⟨x⟩
Q
0

2m
⌋+ ⌊⟨x⟩

Q
1

2m
⌋

≡

{
⌊ x
2m ⌋ (mod 2N−m), or

⌊ x
2m ⌋ − 1 (mod 2N−m).

In other words, ⟨x⟩Q[N : m] ∈ Z/2N−mZ are secret shares
of either ⌊ x

2m ⌋ or ⌊ x
2m ⌋ − 1 in Z/2N−mZ. The sign of

the former is always the same as x (here, for simplicity
we consider zero as positive, which does not make any
difference for ReLU), so applying DReLU yields the same
sign as x. The latter can cause the sign to flip if (1) 0 < x <
2m (⌊ x

2m ⌋ smaller than 1), or (2) ⌊ x
2m ⌋ − 1 < −2N−m−1

(underflow).

The first case incorrectly consider secrets in 0 < x < 2m as
negative and output secret shares of zero, which will cause
the corresponding ReLU result to become zero. The behav-
ior is equivalent to magnitude-based activation pruning with
a threshold 2m. The second case becomes rare when N is
large enough, compare to the values of x.


