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ABSTRACT
Transformers have emerged as the underpinning architecture for Large Language Models (LLMs). In generative
language models, the inference process involves two primary phases: prompt processing and token generation.
Token generation, which constitutes the majority of the computational workload, primarily entails vector-matrix
multiplications and interactions with the Key-Value (KV) Cache. This phase is constrained by memory bandwidth
due to the overhead of transferring weights and KV cache values from the memory system to the computing units.
This memory bottleneck becomes particularly pronounced in applications that require long-context and extensive
text generation, both of which are increasingly crucial for LLMs.

This paper introduces “Keyformer”, an innovative inference-time approach, to mitigate the challenges associated
with KV cache size. Keyformer leverages the observation that approximately 90% of the attention weight in
generative inference focuses on a specific subset of tokens, referred to as “key” tokens. Keyformer retains only
the key tokens in the KV cache by identifying these crucial tokens using a novel score function. This approach
reduces both the KV cache size and memory bandwidth usage without compromising model accuracy. We
evaluate Keyformer’s performance across three foundational models: GPT-J, Cerebras-GPT, and MPT, which
employ various positional embedding algorithms. Our assessment uses a variety of tasks, with an emphasis on
summarization and conversation tasks involving extended contexts. We show that Keyformer reduces inference
latency by 2.1× and improves token generation throughput by 2.4×, while preserving the model’s accuracy.

1 INTRODUCTION

Transformers have proven to be particularly successful in
tasks such as language modeling (Lewis et al., 2019; Brown
et al., 2020; Raffel et al., 2020), image recognition (Doso-
vitskiy et al., 2020), recommendations (Sun et al., 2019;
de Souza Pereira Moreira et al., 2021; Adnan et al., 2023;
Zhao et al., 2023), and text generation with the advent of
Large Language Models (LLMs). Unfortunately, LLM de-
ployment presents critical inference latency and through-
put concerns. This is primarily attributed to the sequen-
tial autoregressive nature of generative inference, particu-
larly when handling inputs with larger contexts. Despite
advancements, modern LLMs face challenges in efficiently
processing longer input sequences, as evidenced by recent
studies (Bai et al., 2023; Li et al., 2023; Chen et al., 2023;
Huang et al., 2021a). Unfortunately, the increased memory
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and compute requirements associated with longer sequences
exacerbate LLM inference latency and reduce throughput.
This paper proposes inference-time strategies for accuracy-
preserving, low-latency, high-throughput LLM systems.

LLMs employ Transformers and rely on the ‘attention mech-
anism’ to understand the relationships between words within
a given input sequence (Vaswani et al., 2017). As the atten-
tion mechanism scales quadratically with the size of the in-
put sequence, it tends to present the largest latency overhead
during inference (Sukhbaatar et al., 2019; Dao et al., 2022;
Choromanski et al., 2020). Additionally, due to the autore-
gressive nature of token generation in LLMs, there is a need
to recompute key and value vectors for all previous tokens.
To mitigate this, LLMs utilize a storage structure known as
a Key-Value Cache (KV cache) (Ott et al., 2019). KV cache
retains previously computed key-value pairs, eliminating
the need for costly re-computation of these vectors.

However, KV cache presents scalability challenges. Ac-
cessing the KV cache from off-chip memory during token
generation introduces additional memory latencies and is
constrained by memory bandwidth limitations. For instance,
in the MPT-7B model illustrated in Figure 1(a), increasing
the sequence length by 16× (from 512 to 8K) results in a
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Figure 1. (a) Inference latency normalized to sequence length of
512. We measure the KV cache data movement for MPT-7B (Mo-
saicML, 2023) model with varying sequence length (50% context
+ 50% text generation). (b) The KV cache size and model size as
sequence length varies. The studies are performed on an NVIDIA
A100 GPU with a batch size of 1 and beam size of 4.

more than 50× increase in inference latency. Moreover,
approximately 40% of the total inference time (highlighted
in green) is consumed by KV cache data movement. Impor-
tantly, a larger context not only increases the size of the KV
cache but also prolongs the time required for other opera-
tions (depicted in blue). Similarly, as shown in Figure 1(b)
for the MPT-7B model, the KV cache size surpasses the
model size when the sequence length exceeds 8K. Thus,
KV cache sizes present a roadblock to enabling low-latency,
high-throughput inference for large sequences.

Previous studies have explored mitigating attention mecha-
nisms’ memory and computation requirements when dealing
with longer sequences (Zaheer et al., 2020; Kitaev, 2020;
Wang et al., 2020; Beltagy et al., 2020). While system-
level optimizations like FlexGen (Sheng et al., 2023), Flash
Attention (Dao et al., 2022), Paged Attention (Kwon et al.,
2023), and multi-dimensional partitioning (Pope et al., 2023)
aim to improve the scalability of generative AI, they of-
ten overlook the fundamental challenge of expanding KV
cache size. Techniques like multi-query (Shazeer, 2019)
and group-query attention (Ainslie et al., 2023) propose
reducing KV cache size by eliminating specific attention
heads from writing to the KV cache, but these methods
typically require resource-intensive model retraining or fine-
tuning. This becomes complex as various accelerators are
already deployed in the field. Thus, there is a pressing need
for inference-time techniques for KV cache reduction. This
is even more challenging as any proposed technique must
conform to the strict constraints for model accuracy. For
instance, MLPerf (Reddi et al., 2020) mandates that any
optimization applied to LLMs maintain a model accuracy
between 99% to 99.9% of the baseline.

To address these concerns, we introduce Keyformer 1, a
novel method for dynamically reducing the KV cache size
during inference. Keyformer does this by intelligently dis-
carding unnecessary tokens without losing accuracy. The
critical insights of Keyformer are demonstrated in Figure 2,

1https://github.com/d-matrix-ai/keyformer-llm.
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Figure 2. Attention block for generative inference. (a) Full atten-
tion with current token attending all previous tokens. (b) Window
attention (w = 4): Focusing on the most recent 4 tokens. (c)
Dilated window attention (w = 4, dilation = 1). (d) Keyformer
(w = 2, k = 2): A mix of recent window (w) and key tokens (k).
White color indicates no attention, while blue color indicates atten-
tion. The green color identifies the key tokens and their respective
attention. The values of the three consecutive token generation
iterations are t− 1, t, t+ 1.
where we also compare with existing state-of-the-art atten-
tion techniques for inference optimizations. Figure 2(a) il-
lustrates the traditional ‘Full Attention’ (Brown et al., 2020)
mechanism, where each newly generated token attends to
all preceding tokens in the sequence. Figure 2(b) depicts
‘Window Attention,’ (Child et al., 2019) which maintains a
fixed-size sliding window of recent tokens, thereby reduc-
ing the size of KV cache. However, this method restricts
the model’s capacity to capture comprehensive semantic
information from the past, leading to lower-quality text
generation and decreased accuracy. Figure 2(c) presents
a variant called ‘Dilated Window Attention,’ with similar
accuracy limitations to windowed attention.

To address this, Keyformer leverages the insight that cer-
tain tokens carry more significance than others. Specifi-
cally, it observes that nearly 90% of the attention weight fo-
cuses on a small subset known as key tokens. These tokens
are crucial for LLMs to grasp context but may fall outside
the sliding window of window attention. Keyformer intro-
duces a mixed attention approach, depicted in Figure 2(d),
which combines recent tokens with the preceding key tokens
when generating the next token. Our experiments show
that Keyformer demonstrates significant improvements over
state-of-the-art methods such as H2O (Zhang et al., 2023).
This is because, unlike H2O, which identifies “heavy hitters”
solely based on attention scores, Keyformer considers the
importance of discarded tokens in identifying key tokens.
We have open-sourced Keyformer code.

We evaluate Keyformer on multiple models, including GPT-
J (Wang & Komatsuzaki, 2021), Cerebras-GPT (Dey et al.,
2023), and MPT (MosaicML, 2023), across various tasks
like summarization and conversation for long sequences.
Even with a 50% reduction in KV cache, Keyformer pre-
serves accuracy while reducing inference latency by 2.1×
and boosting token generation throughput by 2.4×.
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(c) Accuracy
Figure 3. (a) Default attention sparsity across different models. (b) Average attention score of three different models with 90% of attention
score dedicated to 40% of the tokens called key tokens. (c) Accuracy comparison of three models with different attention schemes.
‘Full Attention’ uses the full KV cache size, while ‘Window Attention’ and ‘H2O’ use 50% of the KV cache size. All models use the
CNN/DailyMail (See et al., 2017) dataset for the summarization task.

2 BACKGROUND AND MOTIVATION

2.1 Inference Process in Large Language Models

In language modeling, the task involves estimating the
probability of the next token based on preceding tokens
x1, x2, . . . , xn. For generative Large Language Models
(LLMs), the inference process unfolds in two phases:

1. Prompt Processing Phase: This phase helps input con-
text undergo causal processing, enabling the model to
generate keys and values for all tokens within the context.
These key-value pairs are then stored in the KV cache.

2. Token Generation Phase: This phase sequentially and
auto-regressively generates text. Each token is produced
by passing through all layers of the generative model.
Notably, the generation of the next token relies on the
previously generated tokens and their order.

To enhance inference efficiency, repeated and complex com-
putations of Key (K) and Value (V) tensors across all layers
are avoided by caching these tensors. This is referred to
as the KV cache. The KV cache is sequentially populated
during each token generation step (Strati et al., 2024), until
the text generation process is completed.

2.2 Reducing KV Cache Size by Exploiting Sparsity

To address the challenge posed by the expanding KV cache,
let us examine a sequence, denoted as Sn, comprising n
tokens and its KV cache contents for a single attention head
and layer. In full attention, the KV cache components in-
volve n keys and values. These grow proportionally with
Sn. To mitigate this, we can shrink the KV cache size to
accommodate shorter sequences, designated as Sk. This
involves using a reduced number of tokens, transitioning
from n to k, where Sk is a subset of Sn, and k is less than n.
This reduction can be achieved by leveraging the inherent
sparsity within the attention mechanism of LLMs.

Despite the substantial computational demands during the
training of transformers, there exists inherent sparsity within

the attention mechanism. However, the extent of sparsity
may vary depending on the particular downstream task.
Figure 3a illustrates the diverse levels of attention sparsity
among different models utilized for summarization tasks
with the CNN/DailyMail dataset. This variability manifests
across various levels of the model, including the overall
model, individual layers, and distinct sections of the model.

2.3 Improving Performance by Using Key Tokens

In Figure 3b, the Cumulative Distribution Function (CDF)
depicts the relationship between attention score and the
fraction of the total context. Notably, a small subset of
tokens receives the most attention during text generation.
This underscores the significance of specific key tokens and
their pivotal role in comprehending context and facilitating
text generation. However, dynamically determining which
tokens serve as key tokens, especially in cases where the
input sequence contains unknown or unseen tokens during
inference, presents a considerable challenge.

2.3.1 Leveraging Score Function to Identify Key Tokens

We introduce a score function fθ for each token to identify
the k key tokens out of a total of n tokens. In the multi-head
attention mechanism, attention scores determine the degree
of connection between a single token and all other tokens.
This is described by Equation 1.

Attention Score = softmax

(
QKT

√
dk

)
(1)

The natural choice is to utilize the attention score as the
score function, denoted as fθ(acc; attn). This method is
commonly observed in previous state-of-the-art work, such
as H2O (Zhang et al., 2023). It identifies tokens that consis-
tently receive higher attention scores during the prompt and
token generation phases as the most critical or key tokens.

We can choose and retain these k tokens based on their
accumulated attention scores, creating what we refer to as
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Figure 4. Reducing the KV cache introduces a change in the dis-
tribution of attention scores. As tokens are removed, their dis-
tribution becomes uneven among the remaining cached tokens.
Thus, it affects the identification of key tokens according to the
score function fθ(acc attn). The figure shows this effect for the
attention scores for the MPT-7B (MosaicML, 2023) model with a
50% reduction in KV cache.

“Key Attention”. However, relying solely on these k tokens
during attention does not provide the necessary accuracy
and yields poor performance. This is shown in Figure 3c.

In this comparison, both ‘Window Attention’ and ‘Key At-
tention’ demonstrate inferior performance compared to full
attention, even when the window and key tokens parameters
are reduced by n/2. While reducing the sizes of the win-
dow and key tokens relative to the total tokens (n) is crucial
for minimizing the size of the KV cache, it also leads to
a significant decrease in accuracy. This decline primarily
stems from the loss of recent context in key-token attention
and crucial context in window attention. Building on this
observation, we propose a mixed approach that combines
selected key tokens with recent tokens to reduce the KV
cache size while also preserving accuracy.

2.3.2 Problem: Uneven Score Distribution

Figure 4 shows the distribution of attention scores (fθ) for
full attention, as described in Equation 2. When KV cache
is reduced, tokens with lower scores are discarded. This
alters the score function, shown in Equation 3, as the term∑n

m=n−k e
xm becomes zero.

fθ(xi) =
exi∑n
j=1 e

xj
, i = 1, 2, . . . , n (2)

fθ(xi) =
exi∑k

j=1 e
xj +

XXXXXX

∑n
m=n−k e

xm
(3)

This removal of tokens disrupts the distribution of the score
function. This is because the attention weight of the dis-
carded tokens is unevenly distributed among the tokens
within the reduced KV cache. This uneven distribution
arises due to the nature of the inherent softmax function.
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Figure 5. The effect of damping on the model quality for Cerebras-
GPT-6.7B model with 50% KV cache reduction. Even after damp-
ing the score function to counteract the excess attention score, one
does not achieve the model quality of the full attention model.

Figure 4 illustrates this phenomenon by comparing the dis-
tribution of the score function for full attention with that
after KV cache reduction. When the score distribution is un-
even, the model may not attend to the most relevant tokens
in the sequence. Consequently, this can result in a loss of
contextual information, reduced accuracy, and potentially
lower-quality text generation.

2.3.3 Motivation: Damping the Score Function

A straightforward approach involves damping the score func-
tion using a damping factor to counteract the excess atten-
tion score resulting from discarded tokens. Assume α is the
damping factor. It modifies the score function as f̄θ = αfθ.
Ideally, we aim to dampen the score function by a factor
equivalent to

∑n
m=n−k e

xm , where n − k represents the
tokens that have been discarded.

Figure 3b shows that, even with a 50% reduction in the
KV cache size, the average accumulated attention score of
key tokens remains consistently high, ranging from approx-
imately 90% to 95%. We conduct a sweep across a range
of values to explore the impact of different damping factors
(α) on overall model quality. This analysis is performed
with a KV cache size set at 50% and a recent ratio of 20%
(representing the percentage of recently generated tokens)
for the Cerebras-GPT-6.7B (Dey et al., 2023) model.

However, as depicted in Figure 5, even after the application
of a damping factor, it is not possible to achieve the same
quality as the full attention model. This discrepancy stems
from a significant change in the score distribution of the
remaining tokens within the reduced KV cache. These find-
ings underscore the inadequacy of relying solely on the accu-
mulated attention score-based score function fθ(acc; attn)
for identifying key tokens. Hence, addressing the impact
of discarded tokens within the score function is crucial to
achieve higher model accuracy or meet the accuracy require-
ments of benchmarks like MLPerf.
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3 KEYFORMER: INTUITION AND DESIGN

Keyformer leverages the inherent sparsity within decoder
layers by identifying key tokens using a mixture of recent
tokens. It adjusts the changes in the score function resulting
from discarded tokens by applying regularization to the
unnormalized logits for the identification of key tokens.

3.1 Logits Regularization

We strategically remove n − k tokens from the context in
the prompt processing phase. This helps us maintain a
constant KV cache size with k tokens during generation
and prevents unwarranted memory expansion. Thereafter,
Keyformer uses logits regularization technique. The intro-
duction of added distribution (ζ) to regularize the reduced
logits enables our model to remain robust and adaptive. It
helps identify the key tokens even in the presence of un-
known contexts during inference-time. Keyformer adds this
noise to the unnormalized logits derived from QKT , as il-
lustrated in Equation 4. Also, the type of distribution added
significantly impacts the resulting probability distribution.

yi = xi + ζi, where xi =
Q[i, :]K[:, i]T√

dk
(4)

Here, yi are the adjusted logits, xi are the unnormalized
logits, and ζi is the added distribution for regularization.

3.2 Choice of Distribution for Regularization

The regularization distribution added to unnormalized logits
impacts key tokens identification and model quality. Thus,
we aim to draw intuition using the semantics of LLMs.

3.2.1 Intuition: Bias Towards Initial Tokens

Previous research, such as streaming LLMs (Xiao et al.,
2023) and the H2O model (Zhang et al., 2023), has shown a
bias towards initial tokens. This bias stems from accumu-
lated attention scores favoring initial tokens due to cumula-
tive effects during decoding iterations. We propose using
a skewed distribution to leverage this bias and effectively
model the distribution of maximum values (key tokens).
This distribution favors initial tokens while maintaining an
asymmetric profile, enhancing the representation of tokens
drawn from the recent context window.

Gumbel Logit Adjustment: Our choice of distribution
is inspired by the Gumbel distribution (Cooray, 2010). The
Gumbel distribution is particularly well-suited for our key
tokens identification task, as it characterizes the distribution
of maximum values within a set of samples and is skewed
towards initial tokens. This makes it an ideal candidate for
modeling key tokens for long sequences.

fGumbel(ζi) = e−ζi−e−ζi (5)

fGumbel(yi) = e−(yi−xi)−e−(yi−xi) (6)

Equation 5 presents the standard Gumbel pdf applied to
unnormalized logits, while Equation 6 displays the pdf of
logits adjusted with Gumbel addition. Additionally, it is
noteworthy that the Gumbel distribution holds significance
in statistical theory. It captures the essence of the Gum-
bel limit theorem, which asserts that common probability
distributions (such as normal, exponential, uniform, etc.)
converge to the Gumbel distribution. This underscores its ap-
propriateness for modeling the identification of key tokens.

In theory, selecting a regularization distribution that pro-
motes uniformity after normalization aids in key tokens
identification. This is crucial during inference when infor-
mation about discarded tokens is unavailable. To quantify
the spread of probability distributions post-normalization,
we employ entropy, defined as H (p) = −

∑
pi log(pi).

Our analysis indicates that Gumbel-based logit adjustment
fosters a more uniform distribution, suggesting its effective-
ness as a regularization technique for key tokens identifica-
tion, as demonstrated in Equation 7 and Equation 8.

z = softmax(y) (7)

H (E[zGumbel]) > H (E[z]) (8)

3.3 Keyformer Score Function

We propose a novel score function for Keyformer, denoted
as fθ(Keyformer), to address the limitations of the accumu-
lated attention-based score function (fθ(acc attn)). This
new score function integrates the Gumbel noise distribution
into the unnormalized logits. However, it fails to account for
the discarded tokens in forming the underlying probability
distribution. To rectify this, we introduce a temperature
parameter, denoted as τ , as shown in Equation 9.

fθ(xi) =
e(xi+ζi)/τ∑k
j=1 e

(xj+ζj)/τ
, i = 1, 2, . . . , k (9)

The probabilistic score functions described above are akin
to the concept of Gumbel Softmax (Jang et al., 2016). This
score function offers a continuous relaxation of discrete
random variables (Maddison et al., 2016). This alignment
corresponds with our primary objective of identifying a sub-
set of past tokens Sk ⊂ Sn that conveys the same semantic
information as the original complete set of tokens.

3.3.1 Significance of the Temperature Parameter (τ)

The ‘temperature’ parameter (τ) is pivotal in regulating the
smoothness of the probabilistic distribution. Higher values
of τ (τ →∞) yield uniform probabilities, assigning equal
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Figure 6. The overview of Keyformer: 1 Initial decoding step involves token generation with n tokens in KV cache. Keyformer induces
noise for key tokens identification, selecting w tokens from the recent window and (k − w) tokens from the remaining (n − w) to
maintain (k) tokens in KV cache. 2 Subsequent decoding step uses the reduced KV cache from the previous iteration. 3 The design
of Keyformer from the perspective of a single decoder layer involves taking unnormalized logits from QKT and introducing ’Gumbel’
noise. This is done using a Gumbel-based probability distribution and helps address the issue of key tokens being discarded. The score
function (fθ) accumulates over decoding steps for each layer and head.

scores to all tokens. Conversely, lower values of τ (τ → 0)
produce a sharper distribution, prioritizing specific tokens
based on their unnormalized logits. This parameter governs
the degree of randomness in probabilities. It is crucial when
tokens are removed from the KV cache, as they cannot be
reintroduced without recomputing their keys and values.

In Equation 10, we illustrate the dynamic nature of τ at each
decoding iteration t. To achieve this, we define a range for
τ spanning from τinit to τend. In each decoding step, we
increment τ by ∆τ , a value determined by the range of τ
and the length of the text being generated, denoted as T .

τ = τinit + t∆τ, ∆τ =
τend − τinit

T
(10)

This strategy is based on the premise that we need a more
uniform or randomized probability distribution as more to-
kens are discarded. Through empirical analysis, we discov-
ered that setting τinit = 1 and τend = 2 produces optimal
outcomes (refer to Appendix A.8). This decision aligns
with our objective of maintaining a non-random score func-
tion during the prompt phase, where all tokens are available.
When τ is set to one, the Gumbel softmax approach is nearly
equivalent to a standard softmax. As we advance through
decoding iterations and discard more tokens to maintain a
static KV cache size, we systematically increase the ran-
domness in our score function fθ. This is achieved by
incrementally raising τ with ∆τ .

3.3.2 Leveraging Score Function Accumulation

The accumulation of the score function is essential for identi-
fying key tokens based on their consistent behavior through-
out decoding steps. Without accumulation, token discarding

would rely solely on the current token’s correlation with
previous tokens. Although the correlation of the current
token is significant in identifying key tokens, their behavior
should remain consistent across most generated tokens. To
discern key tokens based on this consistent behavior, we
accumulate the score function (fθ) across both the prompt
and token generation phases, as depicted in Figure 6.

3.4 Keyformer Algorithm

Figure 6 presents an overview of Keyformer. We highlight
its key functionalities in discarding tokens based on spar-
sification, using a mixture of recent and key tokens, and
introducing a novel Gumbel softmax-based score function
for key tokens identification. During the prompt processing
phase, Keyformer calculates keys and values for all n tokens
within the prompt length Sn to predict the first token. Given
the KV cache budget, Keyformer retains a recent window
of w recent tokens while discarding n− k tokens from the
n − w tokens window, thereby identifying k − w tokens.
The top-(k−w) tokens from the n−w window are selected
based on the Keyformer score function. The combination
of key tokens (k − w) and recent tokens (w) forms the re-
duced KV cache. As there are no discarded tokens during
the prompt processing phase, Keyformer uses a temperature
parameter, τinit = 1, to approximate the softmax probability
distribution. This is illustrated in decoding step 1.
In the token generation phase, Keyformer operates with
a reduced KV cache. The first generated token attends
solely to the k tokens within the KV cache, as depicted
in decoding step 2. The recent window w shifts right by
a single token, while the score function fθ accumulates
with the score function from the previous decoding step.
During each decoding step of the token generation phase,
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Algorithm 1 Keyformer

Input: KV cache size: k
Input: Recent Window: w
Input: Text Generation Length: T
Input: Temperature Parameter: τinit, τend, ∆τ
Input: Prompt Sequence Length: Sn

Output: Reduced Sequence Length: Sk

Initialize fθ ← ϕ , τ ← τinit , ∆τ ← τend−τinit

T
Initialize ζi ← Gumbel Distribution
for t = 0 to T do
τ ← τinit + t∆τ
if phase← prompt then
xi ←

QiK
T
Sn√
d

,m← n

else
xi ←

QiK
T
Sk√
d

,m← k

end if
fθ(i)← fθ(i) + e

(xi+ζi)/τ∑m
j=1 e(xj+ζj)/τ

Sw ← Recent w tokens
Skey ← argmax(k−w) fθ[ : −w]
Sk ← Skey ∪ Sw

end for

k − w key tokens are identified from a window of size
k + 1 − w. Consequently, one token has been added, and
another has been removed from the recent window. Since we
add and remove tokens from the ‘key tokens’ window, we
can improve accuracy while maintaining a static KV cache
size equal to Sk. Moreover, the temperature parameter τ
increases by ∆τ to adjust for the number of removed tokens
in the probability distribution of the score function. The
detailed algorithm for Keyformer is provided in Algorithm 1.

4 EVALUATION

We evaluate Keyformer across three significant model fam-
ilies: GPT-J (Wang & Komatsuzaki, 2021), Cerebras-
GPT (Dey et al., 2023), and MPT (MosaicML, 2023), each
using distinct position encoding techniques. GPT-J incorpo-
rates RoPE (Su et al., 2022), Cerebras-GPT employs learn-
able position embeddings, and MPT utilizes ALiBi (Press
et al., 2021). By including models with varied position
encoding methods, we ensure the robustness and generaliz-
ability of our findings across representative model families.
We employed a fixed beam size of 4 for all evaluations.

Setup: We conducted evaluations on two representa-
tive text generation tasks: summarization, utilizing the
CNN/DailyMail (See et al., 2017) and GovReport (Huang
et al., 2021b) datasets, and conversation, employing the
SODA dataset (Kim et al., 2022). The GPT-J model was
fine-tuned specifically for summarization, while Cerebras-

GPT and MPT are pre-trained models. We utilized the
MPT-chat version of the MPT model for conversation tasks,
which was fine-tuned for dialogue generation. All models
were pre-trained with a sequence length of 2k.

To address long document summarization, we utilized the
MPT-storywriter version of the MPT model, fine-tuned for
writing fictional stories. This model accommodates a con-
text length of 65k and can generate content up to 84k tokens
long. Additionally, we evaluated four tasks from the lm-
eval-harness (Gao et al., 2021) framework: PIQA (Bisk
et al., 2020), Winogrande (Sakaguchi et al., 2021), Open-
BookQA (Mihaylov et al., 2018), and COPA (Roemmele
et al., 2011). These tasks involve few-shot evaluation of
autoregressive language models and were executed using
the NVIDIA A100 (80GB) GPUs.

Baselines: To evaluate the accuracy of Keyformer, we
compared it against Full Attention. Full Attention acts as
our benchmark and represents the gold standard for accuracy.
We aim to achieve an accuracy target within the range of
99% to 99.9% of Full Attention. This goal aligns with
the high-quality standards set by industry benchmarking
entities like MLPerf (Reddi et al., 2020). Additionally, we
performed comparisons with Window Attention and the
recent H2O model (Zhang et al., 2023), adjusting the KV
cache size from 20% to 90% of the prompt length.

4.1 Accuracy Results

To assess the impact of KV cache reduction on text gener-
ation quality, we relied on the ROUGE score (Lin, 2004),
a widely-used metric for evaluating fluency and coherence.
ROUGE measures the overlap of n-grams between gener-
ated and reference text, providing a standardized measure
for text quality. According to MLPerf, ROUGE scores, in-
cluding ROUGE-1, ROUGE-2, and ROUGE-L, should reach
99% to 99.9% of their original values for summarization
tasks. Thus, even with reduced KV cache, our model should
maintain the desired ROUGE scores. Figure 7 depicts ac-
curacy comparisons between Keyformer and other meth-
ods (Full Attention, Window Attention, and H2O) across
different KV cache sizes. The illustration focuses on the
ROUGE-2 score, which measures bi-gram overlap. Trends
for ROUGE-1 and ROUGE-L are detailed in Appendix A.5.

The results highlight the importance of the previous con-
text for model performance. For instance, Window Atten-
tion relies solely on recent tokens, leading to a significant
loss of accuracy. Thus, identifying key tokens is crucial for
achieving desired model accuracy. Across various KV cache
budgets, Keyformer consistently outperforms the state-of-
the-art H2O. It shows that the key tokens it identifies are
more important than the heavy hitters identified by H2O.
For instance, Keyformer attains the target ROUGE score
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Figure 7. The accuracy comparison involves Full Attention, Window Attention, H2O, and Keyformer with different KV cache sizes.
The solid black line represents Full Attention without discarding tokens and with a full KV cache. The red dotted line denotes the 99%
accuracy threshold, aligning with the MLPerf guidelines (Reddi et al., 2020). Despite using 90% KV cache, both Window Attention and
H2O fall short of the desired accuracy. In contrast, Keyformer achieves baseline accuracy with only 70% of the KV cache size.

with just 70% of the KV cache, whereas H2O fails to reach
this goal even with a larger KV cache budget. Further-
more, Keyformer surpasses the baseline accuracy by up to
1.73% (0.9% for GPT-J-6B and 1.73% for Cerebras-GPT-
6.7B for summarization task) achieved with full attention.
This demonstrates the regularization effect of the introduced
Gumbel noise in the score function of Keyformer and its
positive impact on key tokens identification.

Long Context Summarization: We assessed the effec-
tiveness of KV cache reduction in Keyformer while main-
taining accuracy for handling long contexts. This evalu-
ation was conducted on the MPT-7B-story writer model,
pre-trained with a context length of 65k. We utilized the
Government report (Huang et al., 2021b) dataset, which
contains reports authored by government research agencies
and features longer summaries and documents. This dataset
requires a deep understanding of context to extract crucial in-
formation for summarization. Figure 8 shows the accuracy
comparison among Keyformer, H2O, and Full Attention.
Notably, even with a 50% KV cache size, Keyformer main-
tains the desired 99% accuracy threshold, while H2O shows
significantly lower accuracy at the same KV cache size.

4.2 Performance Results

To assess the performance advantages of Keyformer with
reduced KV cache, we considered two critical inference
metrics: inference latency and generation throughput for the
target models. Our Keyformer implementation is seamlessly
integrated with Huggingface (Wolf et al., 2019) model cards,
ensuring ease of adoption. We disabled CPU offloading in
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Figure 8. Evaluating long context summarization using MPT-7B-
storywriter for GovReport dataset with 8k sequence length.

cases where the model and KV cache exceeded GPU HBM
memory capacity, ensuring consistent evaluation. We gener-
ated a synthetic dataset to maintain evaluation consistency,
where all prompts were padded with synthetic text. We
employed the MPT-7B-storywriter model to generate an
equal number of tokens for each prompt. We tested various
combinations of prompt and generation lengths.

Figure 9 presents inference latency speedup while Table 1
shows improvement in generation throughput in comparison
to a Full Attention-based method. With a 50% KV cache re-
duction, Keyformer significantly reduces inference latency,
achieving 2.1× with the same batch size. Moreover, the
reduced KV cache size allows Keyformer to handle twice
the batch size compared to full attention, increasing token
generation throughput by 2× with the same batch size and
2.4× with a bigger batch size.
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Figure 9. Speedup of inference in an iso-accuracy setting for the
MPT-7B model. Here, Keyformer reduces KV cache by 50%
and H2O reduces KV cache by 10%. H2O falls short of baseline
accuracy with a 50% KV cache.

Table 1. The generation throughput (tokens/sec) for the MPT-7B
model across different sequence lengths. “1024 + 1024” shows the
sum of the prompt length and the token generation length. “OOM”
stands for out-of-memory and “BS” for batch size.

Sequence Length Full Attention H2O Keyformer
Original cache 90% KV cache 50% KV cache

1024 + 1024 24.9 27.8 32.0
2048 + 2048 15.0 20.5 24.3
4096 + 4096 (BS=1) 8.3 14.1 17.0
4096 + 4096 (BS=2) OOM OOM 19.85

Performance Improvement Breakdown: To understand
the sources of performance benefits with Keyformer-based
KV cache reduction, we primarily consider two factors:

1. Reduced KV cache: A smaller KV cache significantly
reduces the data movement from off-chip GPU HBM.

2. Scaled Dot Product Optimization: The number of to-
kens in the KV cache is reduced from n to k.

The above two factors reduce the overall smaller size of
matrices. Thus, they enable an optimized scaled dot product
within the multi-head attention block (QKT )V .

It is worth noting that in LLMs, which are memory-bound,
the main performance boost comes from reducing KV cache
data movement rather than matrix multiplication. However,
Keyformer’s key tokens identification process introduces
some overhead due to Gumbel softmax. Figure 10 illustrates
the normalized performance improvement for Keyformer,
considering both reduced KV cache data movement and
optimized scaled dot product. These enhancements are
demonstrated for the MPT-7B-storywriter model with a
50% KV cache reduction, including the additional overhead
from Keyformer’s Gumbel softmax. The results indicate
that Keyformer-based KV cache reduction decreases KV
cache data movement by 2.9× and improves computational
efficiency in the attention module’s scaled dot product by
1.3×, particularly for sequences of length 4k.
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Figure 10. Normalized time for KV cache data movement and
Scaled Dot Product (QKT )V with Keyformer 50% KV cache
reduction along with its score function overhead.

Table 2. Few shot results for different tasks. H2O and Keyformer
are with 50% KV cache.

Task Attention Cerebras-GPT-6.7B MPT-7B
Method 0-Shots 5-Shots 0-Shots 5-Shots

COPA
Full 73.0 73.0 80.0 83.0
H2O 68.0 74.0 75.0 82.0

Keyformer 70.0 74.0 76.0 84.0

OpenBookQA
Full 34.8 36.8 41.8 43.4
H2O 32.2 38.0 37.6 44.0

Keyformer 32.6 38.6 40.6 43.2

Winogrande
Full 60.2 58.4 68.7 71.8
H2O 56.7 59.5 63.2 72.1

Keyformer 57.9 59.7 64.1 72.3

PIQA
Full 74.2- 74.4 79.9 80.7
H2O 72.9 73.9 79.4 79.8

Keyformer 73.0 73.6 79.2 80.1

4.3 Few-Shot Evaluation

We performed few-shot experiments using four tasks from
the lm-eval-harness framework and pre-trained mod-
els to evaluate Keyformer’s performance under varying num-
bers of shots during inference. Table 2 presents the results
for 0 and 5 shots, demonstrating that Keyformer consis-
tently surpasses previous approaches across all tasks and
shot settings. Even with a 50% reduction in KV cache size,
it achieves accuracy close to the full attention baseline.

4.4 Ablation Studies

4.4.1 Shared versus Per-Layer Score Function

The score function fθ defines what constitutes a key tokens
in the context. In generative LLMs with stacked decoder
layers, the score function (fθ) can either be shared across all
layers (Shared) or dedicated to each layer (Per-Layer). In
the Per-Layer approach, fθ(Per-Layer) assigns a dedicated
score function to each decoder layer, with accumulation oc-
curring at each decoding stage. Conversely, fθ(Shared) uses
a single global score function for all decoder layers, with
accumulation across decoder layers and decoding stages.

Table 3 illustrates the accuracy comparison between Per-
Layer and Shared score functions, maintaining the original
positional information and KV cache size constant. Notably,
using the Per-Layer score function yields better accuracy
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Table 3. ROUGE Score comparison with different methods and score functions for summarization task using the CNN/DailyMail dataset.

Model Attention Score fn KV Cache ROUGE-1 ROUGE-2 ROUGE-LMethod fθ Size

MPT-7B

Full - Original 38.6373 17.6329 24.506
Full (99% Accuracy) - Original 38.2509 17.4565 24.2609

Window - 60% 18.1296 4.2655 11.5288
H2O Per-Layer 60% 36.9616 16.3865 24.2301

StreamingLLM - 60% 1.3572 0.0179 1.0281
Keyformer (New Pos) Per-Layer 60% 36.9152 16.9092 23.7218
Keyformer (Org Pos) Per-Layer 60% 38.7134 17.5976 24.5724
Keyformer (Org Pos) Shared 60% 38.2537 17.3732 24.2579

than the shared score function. This aligns with the intu-
ition that transformers learn hierarchical text representations
across layers, with lower layers capturing local syntactic and
semantic features and higher layers capturing more abstract
and complex patterns (Geng et al., 2023). Therefore, having
a Per-Layer score function for each layer aids in key tokens
identification specific to that layer.

4.4.2 New vs. Original Positional Information

We investigated how reducing the KV cache size affects
the positional information used for the keys in Keyformer.
We explored two approaches: Keyformer (Org Pos) and
Keyformer (New Pos). In Keyformer (Org Pos), the position
information reflects the original positions of tokens within
the text. Conversely, Keyformer (New Pos) uses positions
based on the new arrangement of tokens within KV cache.

Table 3 presents the accuracy comparison with consistent
KV cache size and score function. Notably, when using the
original positional information, Keyformer excels in accu-
racy. However, incorporating new positional information
during inference leads to a slight drop in accuracy. Never-
theless, even with new positional information, Keyformer
outperforms the state-of-the-art H2O.

4.4.3 Comparison with Alternative Distributions

We conducted an ablation study to assess how different
logit adjustment distributions affect model accuracy or key
tokens identification. We evaluated three regularization
strategies and compared them with Gumbel-based logit ad-
justment. These are no logit adjustment, constant logit ad-
justment, and Gaussian distribution-based logit adjustment.

No Logit Adjustment: To examine the effect of omitting
regularization on unnormalized logits, we experimented
without logit adjustment, where yi = xi +SSζi, mirroring the
approach used in H2O (Zhang et al., 2023).

Constant Logit Adjustment: To study the impact of con-
stant regularization on all unnormalized logits, we experi-
mented with constant logit adjustment, setting yi = xi + c,
where c is the constant that is being added to every unnor-
malized logit.

Gaussian Logit Adjustment: We also used a symmetric
Gaussian distribution for logit adjustment.

fGaussian(ζi) =
1√
2πσ2

exp

(
− (ζi − µ))2

2σ2

)
(11)

fGaussian(yi) =
1√
2πσ2

exp

(
− (yi − (xi + µ))2

2σ2

)
(12)

Equation 11 presents the Gaussian probability density func-
tion (pdf) with mean µ and variance σ2 applied to unnor-
malized logits, while Equation 12 displays the pdf of logits
adjusted with Gaussian addition.

We established the baseline accuracy lower bound for
Gumbel-based adjustments after analyzing the accuracy of
the summarization task on the CNN/Daily Mail dataset.
We evaluated this task with a 60% reduction in KV cache.
Table 4 provides a comparison of different approaches.
We utilized a standard Gumbel pdf with µ = 0.5772 and
σ = 1.2825. For comparison, the Gaussian pdf had an iden-
tical mean and variance, and the constant logit adjustment
employed a constant value of c = 0.5772. The “No logit
adjustment” approach uses the method in prior work, H2O.

Thus, empirical evidence shows that the Gumbel distribu-
tion, known for its skewness to initial tokens, is an effective
regularization mechanism for key token identification.

Table 4. Empirical evaluation with different logit adjustments.
Summarization task with 60% KV cache.

Model ROUGE-2 Score
Gumbel Gaussian Constant None

GPT-J-6B 19.44 14.53 12.49 18.87
Cerebras-GPT-6.7B 15.25 9.54 8.98 12.73
MPT-7B 17.57 10.17 7.56 16.38

4.4.4 Recent Window versus Key token Window Ratio

We conducted a sensitivity study to examine the impact
of varying the ratio of recent tokens w on the size of the
KV cache. This resulted in changes in the number of key
tokens (k − w). Results in Appendix A.4 indicate that the
models perform better when the recent tokens ratio w falls
within the range of 20% to 30%. This observation aligns
with our hypothesis that recent and key tokens are critically
important for LLM inference.
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4.4.5 Comparison with Attention Sinks

Recent research introduced StreamingLLM (Xiao et al.,
2023), which introduced the concept of “attention sinks.”
StreamingLLM enables Language Models (LLMs) trained
with a finite-length attention window to handle infinite se-
quence lengths without fine-tuning. This is achieved by
retaining the first four tokens (known as “attention sinks”)
and a moving window of recent tokens, where w = k−4. To
compare StreamingLLM with Keyformer, we maintained a
KV cache size of 60% for both techniques. Table 3 displays
the accuracy comparison, showing that StreamingLLM
struggles in summarizing text by relying on only the first
four tokens as attention sinks and the remaining tokens from
a recent window (Appendix A.7).

5 RELATED WORK

Attention Speedup: Prior work focus on improving in-
ference speed for transformer (Vaswani et al., 2017) based
models. PoWER-BERT (Goyal et al., 2020) utilizes word-
vector elimination by exploiting redundancy for encoder-
based models. Linformer (Wang et al., 2020) tries to
reduce the attention mechanism from quadratic to lin-
ear. Reformer (Kitaev, 2020) reduces attention complex-
ity by locality-sensitive hash (LSH). Linear transform-
ers (Katharopoulos et al., 2020) store accumulated states
rather than preserving every representation. FLAT (Kao
et al., 2023) suggests optimized dataflow, while other re-
search (Wang et al., 2022) overlaps communication with
dependent computation to enhance attention execution. In
contrast, Keyformer aims to reduce KV cache, speeds up
attention by reducing the tokens.

Sparse Attention: One line of work sparsifies the atten-
tion mechanism to reduce the computational and memory
capacity of the attention block. BigBird (Zaheer et al., 2020)
combines random, windowed, and global attention to main-
tain the accuracy for transformers while sparsifying the
attention block. LongFormer (Beltagy et al., 2020) also uti-
lizes windowed attention with task-based local attention to
achieve sparse attention. Spatten (Wang et al., 2021) intro-
duces sparsity at both the head and token levels. However,
it needs a dedicated architecture to exploit sparsity. Further-
more, these works do not address inference optimizations.

KV Cache Reduction: El-Attention (Yan et al., 2021)
modifies the multi-head attention module to reduce the KV
cache size, leveraging key and value stability during in-
cremental decoding for reuse across layers. In contrast,
H2O (Zhang et al., 2023) identifies heavy-hitters and keeps
them in the KV cache to reduce its size, neglecting the at-
tention score distribution shift that occurs post elimination
of previous tokens from the KV cache, leading to accuracy

trade-offs. Other approaches (Liu et al., 2023; Anagnos-
tidis et al., 2023) introduce sparsity at both coarse and fine-
grained levels, targeting the elimination of specific heads
and tokens during inference. However, these methods re-
quire task-specific predictors and fine-tuning of pre-trained
models. Another method (Mu et al., 2023) compresses
prompts into gist tokens to reduce KV cache. Landmark At-
tention (Mohtashami & Jaggi, 2023) represents token blocks
with an additional landmark token in the vocabulary, neces-
sitating computationally intensive retraining or fine-tuning
for gist or landmark token integration.

6 FUTURE WORK

Recent techniques like Multi-Query Attention
(MQA) (Shazeer, 2019) and Group-Query Attention
(GQA) (Ainslie et al., 2023) aim to train foundation models
with fewer attention heads. However, such models are
typically used after fine-tuning for specific tasks. While
the detailed evaluation of Keyformer with these models is
deferred to future work, it is worth noting that Keyformer
can still be applied on top of MQA or GQA-based models.
This is because it discards redundant tokens regardless of
the number of heads. Additionally, we plan to integrate
Keyformer into the LLM’s attention block by replacing the
standard softmax with a Keyformer-based softmax. This
introduces sparsity during training, addressing the quadratic
computational and memory complexities of transformers.
This direction aims to enhance scalability to longer contexts
without sacrificing accuracy.

7 CONCLUSION

Advancements in large language models (LLMs) are push-
ing for longer contexts and extensive text generation, with
models trained on sequences of millions of tokens. How-
ever, this trend strains system memory bandwidth, leading
to execution costs. In longer contexts, the KV cache size,
primarily responsible for memory bandwidth consumption
and inference latency, exceeds the model parameters’ size.
To address this, we proposed Keyformer, which effectively
reduces the KV cache size upto 50% without sacrificing
accuracy by discarding tokens across heads, layers, and
beams, identifying essential tokens (key tokens) based on
a novel score function. Keyformer can be applied to LLMs
at inference time, without requiring fine-tuning, while also
improving latency and token generation throughput.
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