
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

DiffusionPipe: Training Large Diffusion Models with Efficient Pipelines

A NOTATIONS USED IN PAPER

Table 4. Notations

Symbol Definition
L Number of layers in backbone model

B, B, b Training batch size, micro-batch size
and number of samples in a partial-batch

S, s Set of model stages and model stage
P

f
l (B),

P
b
l (B)

Forward and backward computation time
of layer l given batch size B

C
f
l,l+1(B),

C
b
l+1,l(B)

Data size of communication in forward and
backward pass between layers l

and l + 1 given batch size B

Rx, Lx
Bandwidth and latency of communication type
x (e.g., allreduce (ar), point-to-point (p2p))

Gl(B) Gradient size of layer l given batch size B
Ol(B) Output size of layer l given batch size B
TS(s) Synchronization time of stage s
TC(s) Compensation time of stage s

T0
Maximum micro-batch execution time

per stage or inter-stage communication time

TS�C
0

Maximum gap between synchronization time
and compensation time per stage

TB Length of a pipeline bubble (idle time)

B PARTIAL-BATCH LAYER PROCESSING

The total number of samples processed by a partial-batch
layer on all devices in a pipeline bubble is smaller than
the batch size (as otherwise it would be a full-batch layer
instead). A partial-batch layer is scheduled in multiple
pipeline bubbles, in order to fully process the training batch.
Especially, after introducing a partial-batch layer (h, uh+kh,
b) in one pipeline bubble (line 5 in Alg. 1), the layer uh+kh
of component h is the first ready layer of that component to
be considered when filling the following pipeline bubbles,
treated as a full-batch layer on the remaining batch in Alg. 1.
In this way, the layer can be scheduled to process all or part
of the remaining batch in a subsequent pipeline bubble.

As a partial-batch layer is executed in multiple pipeline bub-
bles, inputs to and outputs from the layer’s execution in the
bubbles should be properly partitioned and concatenated,
and sent to the correct consumers. As illustrated in Fig. 15,
we split the input batch of the partial-batch layer and dis-
patch the partial batches to devices in the pipeline bubbles
where the layer is scheduled in advance. We concatenate the
outputs of the partial-batch layer from the pipeline bubbles
after the last partial batch is processed.

C OPTIMIZATION TIME

In Table 5 we present the solution time of the dynamic
programming (DP) approach to decide the backbone parti-
tioning and the pipeline bubble filling algorithm (Greedy)

0 1 2' 2'' 2''' 3

Pipeline
bubble 0 Full-batch

layer 2'('') Partial-batch
layer

Partial-batch
input

Partial-batch
output Full-batch output

Split full-batch inputs Concatenate partial-batch outputs

Figure 15. Input split and output concatenation of partial-batch
layer’s processing among pipeline bubbles. The partial-batch layer
2 of a non-trainable component is scheduled in 3 consecutive
pipeline bubbles.

Table 5. Solution time of backbone partitioning (DP) and pipeline
bubble filling (Greedy) algorithms in seconds

Model DP Greedy
Stable Diffusion v2.1 0.5 0.7

ControlNet v1.0 0.5 0.5
CDM-LSUN 145 2.5

CDM-ImageNet 87 1.7

when training models on the largest batch size on 64 GPUs.
We solve the sub-problems in DP algorithm in parallel on
at most 64 CPU cores. For single backbone models, the
solution time is less than 1 second. For cascaded diffusion
models, the solution time of DP is longer, while we still
consider it acceptable to spend one or two minutes to derive
an optimal partitioning scheme offline. The complexity of
the bubble filling algorithm is not high, and we run it on only
1 CPU core. The total solution time for filling all pipeline
bubbles is less than 3 seconds.


