
Schrödinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

A OUR HARDWARE APPROACH

This section presents the Schrödinger’s FP hardware en-
coder/decoder units that efficiently exploit the potential
created by our quantization schemes. Without the loss of
generality, we describe compressors/decompressors that pro-
cess groups of 8 FP32 values. This section assumes that
the reader is aware of prior work that demonstrated why
it is possible and desirable to encode tensor values using
variable length containers when storing them to external
DRAM, e.g., (Han et al., 2016c; Judd et al., 2016a; Han
et al., 2016a).

Overview of Hardware: At high-level, our hardware com-
pressors/decompressors transparently encode/decode tensor
values just before the memory controller. When values are
stored to external DRAM, the encoders efficiently encode
the values to use as few bits as necessary. When values
are read back from external DRAM, the decoders, expand
the values to the original format. This way the rest of the
on-chip memory hierarchy and compute units can remain
as-is.

Compressor: The compressor accepts one row of 8 num-
bers per cycle. In the compressor’s first stage, it subtracts
the fixed bias from the exponents. The resulting differences
along with mantissas are then processed by 8 Packer units
and a width detector as shown in Figure 9. The mantissa
quantizer method, whether Quantum Mantissa or BitWave,
provides the same mantissa length for all values. Each value
within the row is encoded using the same number of bits,
calculated as the sum of the provided mantissa bitlength and
the bitlength needed to store the largest exponent difference
across the row. The width detector, as its name suggests,
will detect how many bits are needed to represent the ex-
ponents of the entire row. This step is accomplished by
performing an OR operation on all 8 exponent values, and
then detecting the leading 1. It will output a 3b number to
the packer and compressor output. The exponent lengths
need to be stored as metadata per row. These are stored
separately, necessitating two write streams per tensor; both
streams are sequential, thus DRAM-friendly. Furthermore,
because there are only 3 bits per group of 8 values, a single
access to this metadata structure yields metadata for multi-
ple groups. Accesses to this metadata structure will thus be
much less frequent than that for the value containers.

To avoid wide crossbars when packing/unpacking, values
remain within the confines of their original format bit po-
sitions as per the method proposed in Proteus (Judd et al.,
2016b). In contrast to Proteus, however, here every row
uses a different bitlength, the values are floating-point, the
bitlengths vary during runtime and per row, and we target
training. Each packer, shown in Figure 11, takes a single
FP32 number masks out unused exponent and mantissa bits,
and rotates the remaining bits to a position to fill in the

Figure 9: Compressor.

Figure 10: Decompressor.

output row. The mask is created based on the exp width and
man width inputs. The rotation counter register provides the
rotation count which is updated to (exp width+man width)
every cycle. The (L,R) register pair is used to tightly pack
the encoded values into successive rows. They are needed
since a value may now be split across two memory rows.
This arrangement effectively packs the values belonging
to each column tightly within a column of 32b in memory.
Since each row is the same total bitlength, the 8 packers op-
erate in tandem filling their respective outputs at exactly the
same rate. As a result, the compressor produces 8×32b at a
time. The rate at which the outputs are produced depends on
the compression rate achieved, the higher the compression,
the lower the rate.

Decompressor: As Figure 10 shows, the decompressor
mirrors the compressor. The inputs to the unit are a 3b
exp width, a 5b man width, and a 8× 32b compressed data
input. Since the data is compressed, a single row of 8× 32b
will typically contain data from more than one original
uncompressed row of FP32 numbers. The compressed data
values are packed into 8 virtual columns withing each row.
Accordingly, each of the 8 virtual columns of 32b is fed into
a dedicated unpacker.

Each unpacker, shown in Figure 12, has a wide 64b register
that is internally divided into L and R registers of 32b.
They are used in a similar fashion as the corresponding
registers of the packer unit. At any point in time, one of
the registers is used to accept a new row of 32b packed



Schrödinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

Figure 11: Packer.

Figure 12: Unpacker.

Table 3: Hardware Area Overhead.

module area per unit (um2) unit number total area (mm2)
compressor 31575.60 16 0.505

decompressor 37133.28 16 0.594
accelerator 38533.68 8000 308.27

data whereas the other contains whichever bits from the
previous row of 32b have not been used yet. The combine-
and-shift will combine the input data and previous data in
the register then shift to the left. The number of shifted bits
is determined by the exponent and mantissa lengths of this
row. The 32b data on the left of the register are taken out and
shifted to the right (zero extending the exponent). Finally,
the unpacker reinserts the mantissa bits that were trimmed
during compression. Since each row of data uses the same
total bitlength, the unpackers operate in tandem consuming
data at the same rate. The net effect is that external memory
see wide accesses on both sides.

B HARDWARE EVALUATION
METHODOLOGY

Best practices for the evaluation of custom hardware ar-
chitectures necessitate exploration and validation first via
analytical modelling or via cycle-accurate simulation. Since
training these networks takes several days on actual hard-
ware, cycle-accurate simulation of the full process is im-
practical. To estimate performance and energy, we use the
best practice approach by analytically modelling the time
and energy used per layer per pass of a baseline accelera-
tor. To do so, we use traffic and compute counts collected
during the aforementioned full training runs. We record
these counts each time a layer is invoked using PyTorch
hooks. We model time and energy for memory accesses via
DRAMSIM3 (Li et al., 2020). For modeling on-chip struc-
tures we use CACTI (HewlettPackard) for the buffers and
layout measurements for the compute units and the Gecko
compressors/decompressors. We use a commercial 65nm
process to model the processing units and Gecko hardware.
We implement the units in Verilog and perform synthesis via
the Synopsys Design Compiler and layout using Cadence
Innovus with a target frequency of 500MHz. Synthesis uses
Synopsys’ commercial Building Block IP library for the
target tech node. We estimate power via Innovus using
traces over a representative input sample to model properly
signal activity. We used nominal operating conditions to
model power and latency. There are two Gecko compres-
sor/decompressor units per channel.

Due to the complexity and time cost of cycle-accurate hard-
ware simulation, we have opted for an estimated time and
energy consumption analytical model based on the proposed
hardware description and the compressor-decompressor ar-



Schrödinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

chitecture. To compute the analytical model, we first ana-
lyze the network and retrieve its structure (layer input and
output sizes, kernel sizes for convolutional layers, stride,
bias and padding). We then calculate the compute opera-
tions that will happen for the general batch size (N) in both
the forward and backward pass, as well as the number of
parameters that must be stored in memory for activations,
weights and gradients.

To take advantage of data reuse where possible we perform
the forward pass in a layer-first order per batch. This al-
lows us to read the weights per layer only once per batch.
For the backward pass, we utilize the on-chip buffers for
mini-batching with a layer-first order over a mini-batch of
samples. Mini-batching reduces overall traffic by processing
as many samples as possible in a layer-first order avoiding ei-
ther having to spill gradients or reading and writing weights
per sample per layer. The number of samples that can fit in
a mini-batch depends on the layer dimensions and the size
of the on-chip buffer.

Both SFPQ and SFPBW sample bitlengths per batch to a
log file for both mantissas and exponents. These bitlengths
are used to compute the number of mini-batches that can fit
at every training step per layer on chip. Based on the number
of sampled mini-batches (K) we compute the memory foot-
print generated on the forward pass for each method. After
this, we calculate the footprint that stays on-chip and can be
loaded from on-chip for the backward pass, and the footprint
that goes to off-chip and has to be loaded to on-chip again
for it. Based on these memory accesses, we use DRAM-
sim to simulate the number of compute-cycles that take the
memory accesses to finish and we use the maximum cy-
cles between compute and memory as the time constraint to
calculate total computation time in the proposed hardware.

To calculate energy consumption and efficiency, we use
the information gathered in terms of on-chip memory ac-
cess cycles, off-chip memory access cycles and compute
cycles. We estimate energy consumption for all components
including the compressors and decompressors. We use the
following equations to estimate energy consumption for our
methods (all symbols are defined in Table 4):

E forward = E compute fwd + E offchip in actmem+

E offchipwgtmem + E offchip out actmem + E onchip in actmem+

E onchipwgtmem + E onchip out actmem + E read opsmem+

E decompact + E decompwgt + E compact

(17)

E backward = E compute bck + E offchip in actmem+

E offchipwgtmem + E onchip in actmem+

E onchipwgtmem + E read opsmem+

E decompact + E decompwgt

(18)

where,

E offchip in actmem =
MemCh× PDRAM

Freqcompute
×Cycles offchip in act

(19)

E offchipwgtmem =
MemCh× PDRAM

Freqcompute
×

(Cycles offchipwgt + Cycles offchipwgt grad)

(20)

E offchip out actmem =
MemCh× PDRAM

Freqcompute
×Cycles offchip out act

(21)

E onchip in actmem = Cycles onchip in actwrite×P onchipwrite

(22)

E onchipwgtmem = Cycles onchipwgt read × P onchip read

(23)

E onchip out actmem = Cycles onchip out act read × P onchip read+

Cycles onchip out actwrite × P onchipwrite

(24)

E decomp = P decomp (comp ratio) ×
Cycles comp to decomp

Freqcompute

(25)

E comp = P comp (comp ratio) ×
Cycles decomp to comp

Freqcompute

(26)

E decompact = E decompact(comp ratio) (27)

E decompwgt = E decompwgt(comp ratio) (28)

E compact = E compact(comp ratio) (29)



Schrödinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

Table 4: Symbols definition table.

Symbol Definition

E compute fwd
Energy consumption of the compute module for

the entirety of the computations in the forward pass

E compute bck
Energy consumption of the compute module for

the entirety of the computations in the backward pass

E offchip in actmem
Energy consumption of the offchip memory transfers

for the network input activations

E offchipwgtmem
Energy consumption of the offchip memory transfers

for the network weights

E offchip out actmem
Energy consumption of the offchip memory transfers

for the network output activations

E onchip in actmem
Energy consumption of the onchip memory transfers

for the network input activations

E onchipwgtmem
Energy consumption of the onchip memory transfers

for the network weights

E onchip out actmem
Energy consumption of the onchip memory transfers

for the network output activations

E read opsmem
Energy consumption of loading

operations from memory

E decompact
Energy consumption of decompressing

activations in the decompressor

E decompwgt
Energy consumption of decompressing

weights in the decompressor

E compact
Energy consumption of compressing

activations in the compressor

P decomp (comp ratio)
Power consumption by the decompressor when loading data

from offchip memory at a specific compression ratio (see Table 5)

P comp (comp ratio)
Power consumption by the compressor when writing data

to offchip memory at a specific compression ratio (see Table 5)
MemCh Number of available memory channels
PDRAM Power consumption of offchip DRAM

Freqcompute Clock frequency of the hardware accelerator
Cycles offchip in act Compute cycles taken to read input activations from offchip memory
Cycles offchipwgt Compute cycles taken to read weights from offchip memory

Cycles offchipwgt grad Compute cycles taken to read weight gradients from offchip memory
Cycles offchip out act Compute cycles taken to read output activations from offchip memory

Cycles onchip in actwrite Compute cycles taken to read input activations from onchip memory
Cycles onchipwgt read Compute cycles taken to read weights from onchip memory

Cycles onchip out act read Compute cycles taken to read output activations from onchip memory
Cycles onchip out actwrite Compute cycles taken to write output activations to onchip memory

P onchipwrite Power consumption of a word write to onchip memory
P onchip read Power consumption of a word read from onchip memory

Cycles comp to decomp Compute cycles taken to decompress compressed data
Cycles decomp to comp Compute cycles taken to compress data



Schrödinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

Table 5: P () terms: Power consumption as a function compression ratio.

Compression ratio Compressor power (mW) Decompressor power (mW)
0.143 - 0.263 10.87 13.84
0.264 - 0.388 12.18 14.72
0.389 - 0.513 12.65 15.97
0.514 - 0.638 13.44 15.76
0.639 - 0.763 14.98 15.42


