SCHRODINGER’S FP: TRAINING NEURAL NETWORKS WITH DYNAMIC
FLOATING-POINT CONTAINERS

Milos Nikoli¢ ! > Enrique Torres Sanchez! Jiahui Wang®* Ali Hadi Zadeh*® Mostafa Mahmoud >
Ameer Abdelhadi®* Kareem Ibrahim' Andreas Moshovos '?

ABSTRACT
The transfer of tensors from/to memory during neural network training dominates time and energy. To improve
energy efficiency and performance, research has been exploring ways to use narrower data representations. So far,
these attempts relied on user-directed trial-and-error to achieve convergence. We present methods that relieve
users from this responsibility. Our methods dynamically adjust the size and format of the floating-point containers
used for activations and weights during training, achieving adaptivity across three dimensions: i) which datatype
to use, ii) on which tensor, and iii) how it changes over time. The different meanings and distributions of exponent
and mantissas lead us to tailored approaches for each. We present two lossy pairs of methods to eliminate as many
mantissa and exponent bits as possible without affecting accuracy. Quantum Mantissa and Quantum Exponent are
machine learning compression methods that tap into the gradient descent algorithm to /earn the minimal mantissa
and exponent bitlengths on a per-layer granularity. They automatically /earn that many tensors can use just 1 or 2
mantissa bits and 3 or 4 exponent bits. Overall, the two machine learning methods reduce the footprint by 4.74 x.
Alternatively, BitWave observes changes in the loss function during training to adjust mantissa and exponent
bitlengths network-wide, yielding a 3.19x reduction in footprint. Finally, we present an optional method, Gecko,
to exploit the naturally emerging, lop-sided exponent distribution to losslessly compress resulting exponents from

Quantum Exponent or BitWave and, on average, improve compression rates to 5.64x and 4.56 .

1 INTRODUCTION

While training neural networks is both computationally
and data demanding, it is the memory transfers to off-chip
DRAM for stashing (i.e., saving and much later recovering)
activation and weight tensors that dominate execution time
and energy (Jain et al., 2018). The per batch data volume
easily surpasses on-chip memory capacities, necessitating
off-chip DRAM accesses which are up to two orders of
magnitude slower and more energy expensive (Horowitz,
2014). Reducing this overhead has been receiving attention
throughout the software/hardware stack and is also our goal.

The most direct way to reduce tensor volume is by
using datatypes that use fewer bits per value, e.g.,
BFloat16 (Kalamkar et al., 2019), half-precision floating-

“Work completed at the University of Toronto 'Department
of Electrical and Computer Engineering, University of Toronto,
Toronto, Canada >Vector Institute for Artificial Intelligence,
Toronto, Canada 3Qualcomm, Toronto, Canada 4 1QBit, Toronto,
Canada > AMD, Toronto, Canada ®Department of Computer Engi-
neering, McMaster University, Hamilton, Canada. Correspondence
to: Milo§ Nikoli¢ <milos.nikolic@mail.utoronto.ca>, Enrique
Torres Sanchez <enrique.torres @mail.utoronto.ca>.

Proceedings of the 7th MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

point (FP16), dynamic floating-point (Das et al., 2018), flex-
point (Koster et al., 2017)), or fixed-point (Das et al., 2018;
Micikevicius et al., 2018; NVIDIA; Drumond et al., 2018)).
This reduces memory traffic and footprint, improving en-
ergy efficiency and execution time. In the past, training
typically used single precision 32b floating-point (FP32), as
it was believed to yield the best accuracy. However, recent
research has shown that using more compact datatypes can
still achieve good results while reducing memory usage.
Some works have even pushed the limits of datatype effi-
ciency by using 8b (Wang et al., 2018b) and 4b (Sun et al.,
2020) datatypes in certain cases. Industry is even exploring
the use of 8b floating point with different mantissa/exponent
ratios to meet the specific needs of tensors (Micikevicius
et al., 2022) and even shorter formats (Rouhani et al., 2023b).
As industry is expanding support for leaner datatypes the
following challenges remain:

* To achieve convergence current approaches rely exclu-
sively on trial-and-error: It is up to the user to carefully
select which datatype to use for each tensor. This of-
ten necessitates changes to the training recipe and the
inclusion of additional operations such as loss scal-
ing (NVIDIA). Convergence is not guaranteed and can
be evaluated only post mortem.

Schrodinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

* Universally, all methods store weights in full-precision
as the backward pass performs minuscule updates that
cannot be represented with the leaner datatype.

* The datatypes are statically chosen offering no oppor-
tunity to amend the choice if accuracy suffers (e.g.,
significant drop with deeper networks identified by
IBM (Sun et al., 2020)).

¢ Even where successful, these methods still use a scant
repertoire of bitlengths (e.g., tensors fitting in 5b have
to use 8b, a nearly 2x increase), leaving a lot of oppor-
tunity for memory overhead reduction untapped.

* They require hardware changes to allow computation
with the leaner datatypes.

This work automates and fuses info training itself the pro-
cess of datatype discovery improving execution time and
energy efficiency. Given that floating-point remains the
datatype of choice to ensure convergence, we focus on auto-
matic floating-point datatype selection with the goal being
to reduce memory traffic during training. Our methods:

* Dynamically and continuously adjust the mantissa and
the exponent bitlengths for floating-point activations
and/or weights for stashed tensors, and do so transpar-
ently at no additional burden to the user.

* Are adaptable across three dimensions: The first two
automate what is currently done by hand: which
datatype to use for which tensor. Uniquely, our meth-
ods adapt these datatypes over time.

» Adapt the exponent bitlengths to their actual content
using only as many bits as necessary to store their
value. Most exponents end up using a lot fewer bits
than statically selected datatypes.

* Store values in memory with only as many bits as nec-
essary while expanding values to the closest available
datatype supported by the accelerator.

¢ In addition to accelerating training, our methods can
inform efforts for selecting more efficient datatypes
for inference such as that by Micikevicius et al. (2022),
Rouhani et al. (2023b) or Sun et al. (2020).

* As a by-product, quantize the networks to efficient
datatypes which benefits inference.

Our solution is Schrodinger’s FP, a family of two methods
that learn exponents and mantissa bitlengths, and an optional
lossless exponent compression method Gecko:

Quantum Mantissa & Exponent: The first method com-
prises Quantum Mantissa (OM) and Quantum Exponent
(QF), and harnesses the training algorithm itself to learn
on-the-fly the per tensor mantissa and exponent bitlengths
which it continuously adapts per batch. QM and QF intro-
duce a learning parameter per tensor and a regularizer that
include the effects of the mantissa and exponent bitlengths.
Learning the bitlengths incurs a negligible overhead com-
pared to the resulting reduction in off-chip traffic. Exper-

iments show that: 1) they reduce bitlengths considerably,
more so for mantissas, 2) the bitlengths vary per tensor and
3) fluctuate throughout, capturing benefits that wouldn’t be
possible with a static network-wide choice of datatype.

BitWave: BitWave approaches the training as a black-box
observing the effect of adjusting mantissa and exponent
bitlengths on its progress. It uses a simple linear regression
of a history of losses (observed per-batch) to adjust the
mantissa and exponent bitlengths for the whole network.
As long as the network seems to be improving, BitWave
will attempt to shorten them; otherwise, it will increase
them. BitWave proves effective, albeit with lower bitlength
reductions compared to QM+QE, since: 1) they harness
the training process to learn the optimal bitlengths, and
2) they adjust bitlengths per layer whereas BitWave does so
network-wide to reduce the search space.

Gecko: On top of QM+QE and BitWave exponent bitlength
reduction, we introduce an optional method, Gecko, which
exploits their biased distribution that naturally occurs during
training (Awad et al., 2021). Gecko stores exponents using
only as many bits as necessary to represent their value, out-
performing any statically chosen bitlength. Gecko chooses
the bitlength per group of values to reduce metadata over-
head achieving high encoding efficiency. Encoding values in
DRAM using variable length containers is standard practice
in systems for deep learning, (Han et al., 2016¢; Lascorz
et al., 2019; Han et al., 2016b).

Reducing Off-Chip Traffic: We demonstrate that our
methods boost energy efficiency and performance by trans-
parently encoding values as they are being stashed to off-
chip DRAM, and decoding them to their original format
as they are being read back. To do so, we introduce
(de)compressor units in front of the memory controller
leaving the rest of the on-chip memory hierarchy and com-
pute cores unchanged. Future work can investigate using
Schrodinger’s FP to boost computation throughput as well.

To maximize benefits, we present a hardware-assisted im-
plementation of Schriodinger’s FP (a software-only imple-
mentation is possible as well but is left for future work);
the inclusion of specialized hardware units is now common-
place among all hardware vendors. Appendix A presents
efficient hardware (de)compressors that operate on groups
of unmodified floating-point values. The units accept exter-
nal mantissa and exponent length signals and pack values
maintaining DRAM-friendly long, sequential accesses. The
decompressors expand such compressed blocks back into
the original floating-point format.

Schrodinger’s FP will generally work in conjunction with
methods that partition, distribute, or reschedule the training
work to improve energy efficiency and performance, or
that can improve accuracy for a preselected datatype. We

Schrodinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

highlight the following key contributions and experimental
findings from Schrodinger’s FP:

* We introduce two machine learning based methods:
Quantum Mantissa (QM) and Quantum Exponent (QE),
which harness the training algorithm itself to dynami-
cally learn per-tensor mantissa and exponent bitlengths,
adjusting them continuously with each batch. QM+QF
reduces the memory footprint by 4.74x on average
(range: 3.35% to 13.23%). The QM +QF experiments
demonstrate variability in the mantissa and exponent
bitlengths across different tensors, thereby highlighting
the superiority of this per-tensor approach.

We introduce two loss observation based methods: Bit-
Wave Mantissa (BWM) and BitWave Exponent (BWE),
which approach the training process as a block-box,
and observe the effect of adjusting mantissa and expo-
nent bitlengths, via the loss function. BitWave reduces
the memory footprint without noticeable loss of accu-
racy by 3.19x on average (range: 2.24x to 8.91x).
Crucially, BitWave stays transparent to the process and
has negligible overhead.

We introduce Gecko, a lossless exponent group com-
pression method for training. Our work shows that this
method can further boost the QM+QF and BitWave
footprint reduction to 5.64 x on average (range: 3.73x
to 17.66x) and 4.56x on average (range: 3.07x to
9.74x), respectively.

L]

Indicatively, for an accelerator using BFloatl6 and
with a peak throughput of 16 TFLOPS, SFPq, ¢ and
SEFPpw 4+ ¢ improve energy efficiency by 3.07x and
2.71x. When the accelerator uses FPS8 instead, our
aforementioned methods improve energy efficiency by
2.26x and 2.00x respectively.

2 TRAINING WITH EFFICIENT DATATYPES

The question of which training datatype strikes the right
balance among accuracy, energy and time remains open.
Recently, we have seen success in training with more
compact floating-point such as half-precision FP16 and
BFloat16 (Kalamkar et al., 2019). These approaches can
match single-precision (FP32) accuracy and provide signifi-
cant cost reduction, however, they are still over-provisioned
and leave potential unexploited. There has been limited
success at using very small datatypes with 8b (Wang et al.,
2018b) and 4b (Sun et al., 2020) extremes for some cases.
Similarly, major hardware manufacturers are investigating
how to use narrower floating point with different man-
tissa/exponent ratios according to perceived needs of ten-
sors (Micikevicius et al., 2022; Rouhani et al., 2023b).
These datatypes are often tailored to specific network ar-
chitectures and current selection approaches cannot match

FP32 accuracy outside of a narrow subset of shallow net-
works. Other energy efficient datatypes have been proposed
including dynamic floating-point (Das et al., 2018), flex-
point (Koster et al., 2017), hybrid block floating-point (Dru-
mond et al., 2018; Rouhani et al., 2023a) and combinations
with other datatypes like fixed-point (Das et al., 2018; Mi-
cikevicius et al., 2018; NVIDIA).

These tailored methods require careful trial-and-error inves-
tigation of where, when, and which datatypes to use. This is
challenging because different tensors, tasks, architectures,
or layers require different datatypes. The methods require
full trial-and-error training runs and post mortem analysis as
whether the choice of datatypes is viable. Moreover, since
the datatypes are statically chosen they offer no opportunity
to amend the choice if accuracy suffers (e.g., significant
drop with deeper networks (Sun et al., 2020)).

It’s important to recognize that for preselected datatype
methods, rwo key decisions have to be made: 1) the mean-
ing of the bits, and 2) the required number of bits. The first
decision — defining the meaning of the bits — has usually
been the bigger contribution. It involves choosing between
options like integer or exponential representations, shared or
individual exponents for floating points, or using lookup ta-
bles. Traditionally, the number of bits is determined through
experience or experimentation. Our methods automate this
selection process for any chosen representation. Moreover,
the principles from Schrodinger’s FP are independent of
the bit meaning and can determine the optimal number and
type of bits required. This enhances the process with au-
tomation, adaptability, and granularity, moving beyond the
conventional, fixed approach.

Adaptable methods are gathering attention. Open-loop meth-
ods modify the datatype based on a predetermined schedule
but require trail-and-error runs to find an adequate schedule.
Closed-loop solutions that monitor some metric other than
loss or task accuracy (e.g., quantization error) comparing
against a preset allowable error schedule (based on time,
layer depth, or other network features) run into the same
issue (Qian Zhang et al., 2022; Zhang et al., 2020).

ACGC (Evans & Aamodt, 2021) determines leaner
datatypes to use in mixed-precision fixed-point quantization
for activations. It periodically determines the maximum per-
missible quantization error bound for each activation tensor
based on a user-selected maximum allowable increase in
loss and adjusts the bitlength they use. ACGC can not com-
press weights and is not applicable where weights dominate
such as most natural language processing networks. Deter-
mining the permissible bounds is also expensive, however,
its overhead is kept down by performing it infrequently.

Obviously, knowing in advance which compact datatypes
to use, and when, would be the best. However, given that

Schrodinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

this goal still eludes us, our work asks whether we can
harness the training process itself to automatically learn
them, 1) automatically tailoring datatypes to each tensor,
layer, and network, and 2) continuously adjusting them as
training progresses, adapting to the changing needs.

We present a fully automatic closed-loop solution that tracks
the loss. Our approach redefines mantissa and exponent
quantization to make them differentiable and includes the
reduction of datatype size as part of the objective of gradient
descent, without high overhead.

Effective closed-loop solutions for finding the most effi-
cient datatype exist for inference. They use reinforcement
learning (Wang et al., 2018a), differentiable datatype defini-
tions (Nikoli¢ et al., 2020; Huang et al., 2022), architecture
search (Wu et al., 2018), learnable parameters for every
weight bit (Yang et al., 2021), and profiling (Nikoli¢ et al.,
2018), etc., and have been proposed for fixed-point infer-
ence mixed precision quantization. However, all of these are
too expensive for training and their overheads would over-
shadow the benefits of a more compact training datatype.
Moreover, some are specifically targeting weights or activa-
tions, and can not adapt to different architectures where the
main footprint contributors may change (weight vs activa-
tion heavy cases).

3 ADJUSTING VALUE CONTAINERS

In general, maintaining accuracy on most real-world tasks
requires floating-point-based training. These formats com-
prise a sign S, a mantissa M, and an exponent E:

V(S,M,E) = (-1)% x (14 M) x 2F (1)

Each part is differently distributed and requires unique ap-
proaches to effectively compress. The sign S only needs 1
bit and when V is limited to only positive numbers, it can be
omitted. M, including its implied one, is the fractional part
of the multiplier and, denormals aside, has a range [1, 2).
Reducing M’s length reduces the precision of the full value.
Finally, E is the exponent of the second multiplier. Reducing
E’s length narrows the range of the full value:

V(S, M, E) S [*‘/maxa *szn] U{O}U [Vmin7 ‘/nzaac] (2)

where V.. and V,,;, are the absolute val-
ues of the limits of V with the exponent range
[Emin, Emaz] and maximum mantissa M,

Vmaw = (1 +Mma$) X 2Ema1 (3) Vmin = 2Emi'n, (4)

Sections 3.1 and 3.2 present respectively machine learning
and hardware-inspired approaches for learning mantissa and
exponent bitlengths. Both methods omit the sign bit when-
ever possible. Section 3.3 complements either approach
with an optional lossless exponent compression method.

We study Schrodinger’s FP with ResNetl8, ResNet50
(He et al.,, 2015) and MobileNet V2 (Sandler et al.,
2018) trained on ImageNet (Russakovsky et al., 2014),
DLRM (Naumov et al., 2019) trained on Kaggle Criteo,
Vision Transformer (Dosovitskiy et al., 2020) pretrained on
Cifar10 (Krizhevsky, 2009), BERT (Devlin et al., 2018) fine-
tuned on GLUE (Wang et al., 2019) and GPT-2 (Radford
et al., 2019) finetuned on Wikitext 2 (Merity et al., 2016).
We report detailed results with ResNet18 and conclude with
overall results for all models.

3.1 Machine Learning Approach

Quantum Mantissa and Quantum Exponent learn mantissa
and exponent bitlengths, respectively. Both use inexpensive
procedures for both the forward and the backward pass of
training and rely on making quantization differentiable and
penalizing the larger bitlengths in the loss function. We
begin by defining a conventional quantization scheme for
integer mantissa and exponent bitlengths in the forward
pass, and then expand it to the non-integer domain to allow
gradient descent to learn bitlengths. A parameterizable loss
function guides this learning by penalizing larger bitlengths.
We then touch on the compute overhead of our methods
and the plan for the final selection of mantissa bitlengths.
Ultimately, we demonstrate the benefits of this approach on
memory footprint during ImageNet training.

Quantum Mantissa (QM): The greatest challenge for learn-
ing bitlengths is that they represent discrete values with
no obvious differentiation. To overcome this, we define
our quantization for non-integer bitlengths, starting with
an integer quantization of the mantissa M with n,,, bits by
removing all but the top n,, bits:

P(M,np)=MAQ2" —1) << (m—npy) (O)
where P(M, n,,) is the mantissa with bitlength n,,,, m the
maximum bitlength and A a bitwise AND.

This scheme does not allow the learning of bitlengths
with gradient descent due to its discontinuous and non-
differentiable nature. To expand the definition to real-valued
N = |nm] + {nm}, the values used in inference during
training are stochastically selected between the nearest two
integers with probabilities {n,} and 1 — {n,, }:

P(M, [nm]),
P(M, |nm,]+1),

w/ prob. 1—{n, } ©)

P(M, n'm){ w/ prob. {nm}

where |n,, | and {n,,} are floor and fractional parts of 7,,.

This mantissa approach faithfully represents the relationship
between bitlength and precision in an inexpensive way. The
overhead is limited to the single bitlength parameter and a
random number (in the forward pass) per value group (e.g.,

Schrodinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

a tensor), and a single multiply-accumulate operation (in
the backward pass) per value.

Quantum Exponent (QE): The exponent range is parame-
terized as follows:

~Vinaz, VE€(=00,~Vinaz)
‘/7 [maxy 7”171]
*me; (miny mm/Q]
R(V.Vinaz;Vimin) =1 0, VE(—Vinin/2,Vinin/2)
Vel
Vel

len7 mln/2 len)
‘/7 ‘/"L’L’NJ‘/;VL(LL]
Vma'r7 (Vm(l’l'))

(N

where V.4, and V,,,;,, are boundaries from Equation 2.

The partial derivatives of this function with respect to V,
Vinaz and Vi, are:

0, Ve (-0, —Viaz)

OR
W - 1, Ve (_Vmaxa ‘/vnaac) (8)
07 Ve [V;nam; OO)
-1 V - _Vmaa;
or_ _ 0 7 \%4 » ;O’ V, |)
avmam -) S (* maxy mar)
1, V€ [Viag,)
07 (0, szn]
]-7 (mzna mzn/Q]
1 2
OR _) (mzn/ 0 (10)
OVinin -1, € (0, Vinin/2)
17 [mzn/z szn)
0, Vmin <V

The next challenge of finding the exponent bitlength gradi-
ent is to connect the value range with the exponent range:

Vinag = (14Mpmaz) X250 (1) Vi =270 (12)
Where M., is the largest possible mantissa, E,, 4, iS
the largest possible exponent, and F,,;, is the small-
est possible exponent. For simplicity, we choose
our exponent range to be symmetrical around O:

Epin = =271 (13) Epaa =2%"' =1 (14)

where the integer n! is the integer exponent bitlength. The
bias can also be learned, however, this is not essential as the
important exponents will be around 0. As with OM, we ex-
pand this definition to the continuous domain stochastically:

ni _ I_nEJa
¢ [ne] +1,

where 7. is the learnable exponent bitlength.

w/ prob. 1 — {n.} (15)

w/ prob. {n.}

Similar to QM, this approach faithfully represents the rela-
tionship between exponent bitlength and the range in an in-
expensive way. Its overhead is limited to the single bitlength
parameter and a random number (in the forward pass) per
value group sharing a datatype (e.g., tensor), and a single
operation (in the backward pass) per value.

Finally, in order to obtain the fully quantized value we first
bound the input with R to remove the exponent bits and
then apply P to remove the mantissa bits.

Datatype Learning: These schemes are applied to each
activation and weight tensor separately. Since the minimum
bitlength is 0, n,,, and n, are clipped at 0. This extension of
the bitlengths in the continuous domain allows the loss to
be differentiable with respect to both E and M bitlengths.

The formulae above are applied during the forward pass.
Quantized values are saved and used in the backward pass.
This strategy reduces the footprint of training because only
quantized values are used in forward and backward passes.

Loss Function: We augment the loss L to penalize M and
E bitlengths by adding a weighted average of their volume:

L=Li+%mx Y (A xnb)+7 x> (A xnl) (16)

where L; is the original loss, v,, and 7. are regularization
coefficients determining quantization aggressiveness, \; is
the 1mportance of the i*" group of values (one per tensor),
and n,, and n, are the mantissa and exponent bitlengths of
the activations or weights in that tensor.

Competing Objectives: Our augmented loss adds a compet-
ing objective for training. Overemphasizing bitlength choice
may sacrifice task performance, while underemphasizing it
may sacrifice potential gains. Balancing the objectives via
~ selection proves straightforward for two reasons. First,
from our experience, selecting v such that the bitlength loss
component is 1-2 orders of magnitude smaller than the main
task objective loss is enough to squeeze out most of the
reduced datatype benefits whilst being sufficiently small to
not adversely influence final accuracy. Second, finding the
best v isn’t necessary since learning the bitlengths is a very
coarse task, and at the end, the bitlengths have to be rounded
to appropriate integer ones. For all experiments setting both
Ym and 7, to 0.1 proved sufficient.

Target Criteria: Our loss function can target any quantifi-
able criteria by a suitable selection of \;’s. Since our goal
is to minimize the total footprint of training, we weigh each
tensor according to its memory footprint.

Overhead: QM and QF add minimal computational and
memory overheads. In the forward pass, random numbers
are needed at a chosen granularity as per eq. 6 and 15. Our
experiments show that a random number per tensor per
batch is sufficient and is of a negligible cost.

Schrodinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

To update the bitlength parameters in the backward pass,
we need to compute their gradients. These are a function
of the quantized values and gradients, which are calculated
during the regular backward pass. The extra calculations are
proportional to the number of values. This overhead is neg-
ligible in comparison to the total number of computations.
For instance, for ResNet18 the overhead is less than 1%.

The only new parameters that are stashed are the four floats
per layer (mantissa and exponent bitlength for weights and
activations), negligible in comparison with the total foot-
print. All other values are consumed as they are produced.

Bitlength Selection Schedule: QM+QF use non-integer
bitlengths. We arrive at integer bitlengths, by disabling
learning bitlengths when they are not needed at which point
we round up the bitlengths and freeze them. Our exper-
iments show that bitlengths converge quickly to the final
ones within a couple of epochs. Accordingly, we freeze
the bitlengths after epoch 5. This avoids the small over-
head for most of the training. In our experiments, we found
that when both methods are used concurrently some ten-
sors might need more bits later in training. Accordingly,
we re-enable QM and QF for an additional 5 epochs on
every learning rate change. This allows precision to in-
crease where necessary to accommodate the reduction in
update magnitudes. Regardless of whether QM and QF are
enabled or disabled, the benefits of reduced bitlengths ap-
ply throughout training. This ”fancy” schedule is not fully
needed. Experiments where we fixed the bitlengths after 5
epochs still converged and achieved slightly lower accuracy.

Evaluation: Bitlengths and Accuracy: We report mea-
surements for per-layer weights and activations quantized
separately using a loss function weighted to minimize over-
all memory footprint. We train ResNet18 on the ImageNet
dataset over 90 epochs, with regularizer strength of 0.1,
learning rate of 0.1, 0.01 and 0.001 respectively at epochs 0,
30, and 60 and weight decay of 0.0001.

Both QM and QF excel at minimizing the memory foot-
print whilst not introducing accuracy loss. Figure 1a shows
that throughout training, our methods introduce minimal
changes in validation accuracy converging to a solution
within 0.4% of the FP32 baseline. Minor accuracy loss oc-
curs when the methods are actively pushing bitlengths to
their limits. Any loss is quickly regained when bitlenghts
are frozen and rounded up since this relaxes the value range.

OM: Figure 1b shows how QM quickly (within a couple
of epochs) reduces mantissas below 2b on average. The
large spread in bitlengths across layers shows that OM’s
granular, per tensor approach is the right choice for boost-
ing benefits. In comparison, FP8 would use 2-3b (out of 8)
everywhere (Micikevicius et al., 2022). While QM some-
times allocates more than 3b for some tensors, this slack

boosts overall footprint reduction since it enables shorter
bitlengths for larger tensors. Finally, the results show a mi-
nor increase of bitlengths across period boundaries of our
bitlength learning schedule. The total training cumulative
mantissa footprint is reduced to 8.4% of the FP32 mantissa
footprint (8.3% for activations and 9.8% for weights).

QE: Figure lc shows that learning exponent bitlengths via
QF exhibits similar behavior. Bitlengths quickly converge
to 4b or less for activations, and on average down to around
5b for weights. In comparison, FP8 would use 4-5b (out of
8) everywhere, a fair choice for network-wide bitlength (Mi-
cikevicius et al., 2022). QF sometimes uses longer expo-
nents for some tensors enabling short exponents for large
tensors. As a result, QF outperforms FP8 in exponent
footprint. Compared to mantissas, the spread in exponent
bitlengths across layers is lower yet significant while there
is a more noticeable increase of bitlengths from one learning
period to the next. The cumulative training memory foot-
print is reduced to 43.1% of the FP32 exponent footprint
(42.7% for activations and 62.8% for weights).

OM+QE: Figure 1d shows the total bitlength of the datatype
for each tensor, including sign, mantissa, and exponent.
It further amplifies the conclusions from above. Massive
footprint reduction, significantly varying bitlength tensor
to tensor justifying the fine-grained approach, and slightly
increasing bitlength for some tensors learning period to
period. To further emphasize the importance of the fine-
grained approach we can look at the average and worst-case
bitlengths. For instance, the worst-case activation tensor
requires 11b while the average is less than 6b.

The variability of total, exponent and mantissa bitlenghts
for weights and activations at the beginning of every epoch
is shown in Figure 2. This figure shows that, while there
are some tensors that share bitlenghts, for instance, weight
exponents, most bitlengths vary wildly. The most important
message from this graph though is that choosing datatypes
is hard and complicated. If we want to squeeze as much of
a reduction of footprint as possible, we need an automated
method. It is impossible to guess the bitlengths in advance.

Cumulatively, on average, the datatype footprint is reduced
by 3.86x (8.28 bits), 5.92x (5.40 bits) and 5.86x (5.46
bits) vs FP32 for weights, activations, and total footprint.
Similarly, footprint reduction in comparison with BFloat16
is 1.93 %, 2.96x, and 2.93x for weights, activations, and
total, respectively. This is furhter emphasized in Figure 3.
Finally, QM+ QE datatype is 32% smaller than FPS§.

OM+QE as a datatype selection advisor: QM+QFE quickly
learns bitlengths that can be used to learn the per tensor
datatypes to use for training the network, e.g., if we need to
retrain the network we can use bitlenghts from the previous
run as-is. The accuracy of such a run increased 0.2% of pre-

Schrodinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

o
o

N oW oA’
S o o

=)

% Validation Accuracy

-
1Sy

o

—— Baseline
QM + QE

0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Epoch

(a) Validation accuracy

—— Weights
—— Activations

12

Weights
Activations
10 .
o .
3 :
gl e . . .
]
@ T e o e e o e e 92 e 92 ¢ o o o e o o &
3) e [$
26 o R | . : x ! o o
1) i g o ! . 5
#* * X X X X X X X X X X X X X X X X ¥ % x
% X % 3 3
48 X x 8 X K X x X X x 2 £ x i X X x x §
[] I 3 o 1 H B +
x X ¥ ox x ¥ X X X + X X + x + + %
L | ¥ t
2 + 0+ 4+ F + F o+ o+ o+ o+ + 4+ + + X
b o ¢ £ 0¥ 4 8 &t v 4 4 + ¢ + %
+ + 4+ + o+ +
P13 i

0

Layer - Breadth first

(E/

of Mantissa bits
O - N WA U O N ©

of Exponent bits
O = N WA U O N O

0

:

Figure 2: Quantum Mantissa and Quantum Exponent on
ResNet18/ImageNet: mantissa (+), exponent (<), and total
(-) bitlength datatypes of each tensor at the end of each

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Epoch

(b) Mantissa bitlength

—— Weights
—— Activations

0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

epoch. Darker colors indicate multiple occurrences.

30

25

of bits

30

25

N
S

-
&

=
)

30

25

of blts

= Wgt Signs

mmm_\Wgt Mantissa

mmm Wgt Exponent

mz@ Wgt Gecko

Act Sign

mmm Act Mantissa
mmm Act Exponent

T Act Gecko

Epoch
(c) Exponent bitlength

—— Weights
—— Activations

of Total bits
P R
O HF N WS UONOOMWOKFENWbRUUO

@ "

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Epoch

(d) Total bitlength
Figure 1: QM and QF on ResNetl8/ImageNet through-
out training: (a) Validation accuracy, (b) Weighted man-
tissa bitlengths with their spread, (c) Weighted expo-
nent bitlengths with their spread, and (d) Weighted total
bitlengths with their spread.

vious training with QM+QE. Similarly, bitlenghts learned
in the first 5 epochs can be used with a small accuracy
drop (0.7%). This capability is particularly useful given that
industry is introducing a wide selection of leaner datatypes.
It can aid or completely replace the current, manual, trial-
and-error selection process allowing users to automatically
benefit from the datatypes their hardware supports.

3.2 BitWave

Methods that do not interject into the training implementa-
tion, no matter how little, and that do not have any overhead
are appealing. BitWave is such a method. BitWave monitors
training progress as an outside observer adjusting the man-

pre @*15 8c O/W*Og

«

20
2
3
S1s
#*
10
s - =
ol —— - Fu

/%j &1

sy s S0 O/"&o

SC O/L;
Activations Total

Figure 3: Schrddinger’s FP: Relative training footprint of
ResNet18 with FP32, BFloat16, SFPgy and SFPq.

Weights

tissa bitlength and exponent ranges accordingly: as long
as the network is improving, BitWave will attempt to use a
shorter mantissa (BWM) and to reduce the available expo-
nent value range (BWE). The ideal scenario for BitWave is
one where past observations of training progress are good
indicators of forthcoming behavior. Fortunately, training
is a long process based on trial-and-error, which may be
forgiving for momentary lapses in judgement.

The main design decision that impacts how successful Bit-
Wave will be is the information to use as a proxy for training
progress. BitWave should strike a balance between reducing
bitlengths while avoiding over-clipping and hurting learn-
ing progress. We have experimented with several options
and arrived at the following choices: 1) Using the slope
of a simple linear regression over a history of the loss as a
proxy for network progress, 2) observing training progress
and adjusting bitlengths every batch, and 3) using the same
bitlengths for the entire network.

While the loss improves over time, at batch granularity it
exhibits non-monotonic (sometimes erratic) behavior. Bit-
Wave compensates for this by calculating a least squares
regression (minimization of total sum of squared differences
between predicted and history values) over a history of pre-
vious loss values. It uses the slope of the linear regression
at each batch to smooth the non-monotonic behavior.

BitWave Mantissa (BWM): BitWave adjusts the mantissa

Schrodinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

-
=]

—— Baseline
—— BitWave

% Validation Accuracy
O Y N =
o o & & 5 3 3

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Epoch

(a) Validation accuracy
Mantissa Bitlength

j /\ /\ —— Exponent Bitlength
6
5
4
3
2
1
0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Epoch

of bits

(b) Average bitlengths over time

2000

1500

1000

of times used in epoch
o
S

°

0 1 2 6 7

Maat\ssa bme:gm
(c) Distribution of mantissa bitlengths

Figure 4: BitWave on ResNetl18/ImageNet: (a) Validation

accuracy throughout training, (b) Average mantissa and

exponent bitlengths per epoch throughout training, (c) Dis-

tribution of BitWave’s mantissa bitlengths throughout the

5005 batches of epoch 5 of training.

length (unchanged, lower, or higher) by observing the slope
of the linear regression. A negative slope indicates learning
is improving, allowing for further mantissa trimming. A
positive slope indicates no learning progress and BitWave
responds by increasing mantissa bitlength. If the slope
is within a small threshold 7" of 0.0, then BitWave keeps
observing and does not alter the bitlength.

BitWave Exponent (BWE): Considering the range of FP32
exponents ([—126, 127]), BitWave adapts the range of values
symmetrically by adjusting both limits. Exponents below
the minimum are clamped to 0, whereas those above the
maximum value saturate at that. This gradual change even-
tually reduces or increases the exponent bitlength. BitWave
adjusts the exponent range (unchanged, lower, or higher) by
examining the slope of the calculated linear regression. A
negative slope (with a threshold 7T') is assumed to indicate
improvement, allowing the range to shrink. A positive slope
(with the same threshold 7"), indicates deteriorating learning
so BitWave widens the exponent range.

Bitlength Selection Schedule: Similarly to OM+QFE, Bit-
Wave produces non-deterministic datatypes due to its intrin-
sic fluctuations throughout training because of its heuristic
nature. To avoid this non-determinism and provide usable

Fraction of exponent - Resnet18
1.0

0.8

0.6

0.4

0.2
—— Weights
—— Activations

0.0

0 50 100 150 200 250
exponent

(a)

Fraction of exponent - RetNet-18
10 ey =

0.8

0.6

Fraction

0.4

P — Weights

02 —— Activations
S Single Layer Weights
————— Single Layer Activations

0.0

1 2 3 4 5
exponent bitlength

(b)
Figure 5: Gecko on ResNetl8/ImageNet: (a) Cumulative
distribution of exponent values. (b) Post-encoding cumula-
tive distribution of exponent bitlength.

7 8

bitlengths for inference, BitWave fixes the mantissa bitlength
and the exponent range after a few epochs of training, by
calculating the average of all the bitlengths up to that point
of training, as well as the average of the exponent range.
BitWave then uses these averages for the rest of training.
Experiments on the convergence of BitWave show that the
networks converge to the same accuracies (+0.1%) whether
the bitlengths are fixed or not, and there are evident benefits
of creating deterministic inference-capable bitlengths.

Evaluation: Bitlengths and Accuracy: We report Bit-
Wave’s effect on footprint and accuracy during training of
ResNetl18. Figure 4a shows that validation accuracy is un-
affected. Figure 4b shows that BitWave reduces mantissa
bitlengths to 3b on average from baseline precision. How-
ever, mantissa bitlengths may vary slightly per batch as
illustrated in the histogram (Figure 4c) of bitlengths used
throughout a sample epoch. This shows that training some-
times requires the entire range whereas other times it only
requires O bits. Across the training process, BitWave reduces
the total mantissa footprint to 14.3% of baseline, and the to-
tal exponent footprint to 83.8%. While BitWave might miss
bitlength reductions per layer and not reduce the exponent
bitlength as much, it is non-intrusive and has no overhead.

3.3 Exponent: Gecko (+G)

Exponents are biased 8b integers under the BFloat16 and
FP32 formats, and even narrower when optimized with QF
or BWE. Despite this, all exponents per tensor are recorded

Schrodinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

Table 1: SFPgw and SFPq: Validation metrics and total memory footprint reduction vs. FP32.

SFPq SFPgw
Network Task Metric :::ii Score | OM QE QE+G | QM+QE Ql‘i "GQE Score | BWM BWE BWE+G | BWM+BWE © W”i *GB WE
ResNet18 Image Classification Accuracy 69.94 | 69.50 | 11.91x 2.322x 3.649x | 5.857x 7.599x | 69.95 [6.961x 1.193x 3.235x 3.197x 5.539%
ResNet50 Image Classification Accuracy 76.06 | 75.58 | 14.10x 2.277x 3.513x | 6.192x 8.138x | 75.80 | 7.385x 1.224x 2.688x 3.316x 5.254x
MobileNet V2 Image Classification Accuracy 71.62 | 71.44 | 8.380x 2.073x 3.169x | 4.818x 6.030x 7135 | 7.320x 1.252x 2.390x 3.358x 4.931x
DLRM Recommendation Accuracy 79.42 | 79.39 | 14.58x 2.123x 2.724x | 5.334x 6.191x | 7945 | 7.041x 1.167x 2.563x 4.113x 5.011x
ViT Image Modeling Pre-training Evaluation Loss 0.087 | 0.087 | 313.5x 5.947x 10.84x 13.23x 17.66x | 0.092 | 151.68x 3.095x 7.426x 8.909x 9.741x
GPT-2 Language Modeling Fine-tuning Perplexity 20.95 | 21.13 | 5.506x 1.822x 2.357x | 3.345x 3.734x | 21.12 | 4.159x 1.065x 2.165x 2.454% 3.469x
BERT - CoLA | Text Classification Fine-tuning - COLA ~ M: Correlation | 55.99 | 57.03 | 9.878x 1.996x 2.680x | 4.362x 5.069x 56.11 6.864x 1.034x 2.085x 2.886x 4.452x
BERT - SST-2 | Text Classification Fine-tuning - SST-2 Accuracy 93.23 | 91.97 | 15.31x 2.114x 2.806x | 5.090x 5976x | 9244 | 6.180x 1.032x 2.080x 2.789x 4.228x
BERT - MRPC | Text Classification Fine-tuning - MRPC ~ Accuracy 84.56 | 84.80 | 9.189x 1.988x 2.601x | 4.252x 4.864x | 84.59 | 3.574x 1.016x 2.082x 2.237x 3.114x
BERT - STS-B | Text Classification Fine-tuning - STS-B Pearson 88.92 | 88.81 | 6.322x 1.821x 2.465x 4.059x 89.11 3.501x 1.051x 2.078x 2.257x 3.071x
BERT - QQP fication Fine-tuning - QQP Accuracy 90.71 | 90.30 | 11.69x 1.970x 2.585x 5.278x | 9043 | 6.689x 1.119x 2.073x 3.022x 4.385%
BERT - MNLI | Text Classification Fine-tuning - MNLI Matched Accuracy 83.87 | 84.16 | 9.786x 1.884x 2.470x 4.856x | 84.03 | 6.732x 1.069x 2.073x 2.936x 4.398x
BERT - QNLI | Text Classification Fine-tuning - QNLI Accuracy 90.54 | 90.28 | 9.342x 1.903x 2.486x 4.791x | 90.54 | 6.552x 1.503x 2.071x 3.005x 4.340x
Geo Mean 11.94x 2.126x 2.972x 5.637x 7.556x 1.228x 2.492x 3.185% 4.558x

using the same bit count. During training, these values tend
to cluster heavily around a number, as shown in Figure 5a,
which depicts the exponent distribution for ResNet18 after
the 10th epoch. Leveraging this skewed distribution, we
apply a variable-length, lossless encoding that adjusts bit
usage to the actual value of each exponent, such as using
only 2 bits for the value 3. This method involves subtracting
a bias value from each exponent, allocating fewer bits to fre-
quent values and more to rare ones, thus minimizing average
bit usage. A 3b metadata field records the bitlength, shared
across multiple exponents to minimize metadata overhead.
We also observe that these values are spatially correlated,
with proximal values often being similar.

Gecko encoding operates as follows: Given a tensor, Gecko
groups values into sets of 8. Exponents are encoded as
E — bias, where E is the original exponent and the bias
is a fixed value; our experiments show that using 127 as
the bias provides the best compression ratio. A leading 1
detector finds how many bits are needed for the largest ex-
ponent. That bitlength is recorded as metadata using 3 bits.
All exponents of the group are stored using this bitlength.
Using variable bitlengths for encoding values complicates
random access, as it precludes direct computation of ad-
dresses in the tensor using their indices. However, deep
learning workloads typically do not require random access
to DRAM. Instead, blocking for data reuse leads to long se-
quential accesses to DRAM, which are conducive to the use
of variable length containers. Variable bitlength encoding of
values is common in quantization and memory compression
methods (Han et al., 2016¢;b; Lascorz et al., 2019).

Evaluation: Bitlength: We measure the number of bits
needed for the exponents using Gecko during the training of
ResNet18. Figure 5b reports the cumulative distributions of
exponent bitlength for a batch across: 1) all layers and 2) a
single layer, for weights and activations. After encoding,
more than 90% of the weight exponents require 4b or fewer,
while almost 90% of activation exponents require 2b or
fewer. Across training, the compression ratios for weight
and activation exponents are 0.60 and 0.38, respectively.

4 EVALUATION

We study the effects of QM+QF and BWM+BWE with, and
without Gecko (+G). We fully train ResNet18, ResNet50 and

MobileNet V2 on ImageNet, DLRM on Kaggle Criteo as
well as pre-train ViT on Cifar10, finetune BERT on GLUE
and GPT-2 on Wikitext 2, using an RTX3090/24GB with
PyTorch v1.10. We implement QM +QE by modifying the
loss function and adding the gradient calculations for the
per tensor parameters. We simulate BWM+BWE in soft-
ware. For both methods, we faithfully emulate all bitlength
arithmetic effects by truncating the mantissa bits and encod-
ing/decoding exponents at the boundary of each layer using
PyTorch hooks and custom layers. We measure Gecko’s
effects in software via hooks. These changes allow us to
measure the effects our methods have on traffic and accu-
racy. The following discussion is illustrated for ResNet18 in
Figure 3 and shown in full detail for all networks in Table 1.

4.1 Memory Footprint Reduction

First, we report cumulative memory footprint reduction and
validation accuracy in comparison with FP32 in Table 1.
Our compression techniques excel at reducing footprint,
with little effect on accuracy.

OM+QE reduces the total training footprint by 3.35% to
13.23x with an average of 4.74x. While QM+ QFE works
great on exponent as well, it is exceptionally good at com-
pressing mantissas. With the addition of +G, the benefits
further extend to 3.73 < to 17.66 x with an average of 5.64 x.
BWM+BWE on the other hand reduces the total training foot-
print by 2.24 x to 8.91x with an average of 3.19x without,
and 3.07x to 9.74x with an average of 4.56 x with +G, re-
spectively. While BWM+BWE provides great compression
rate for mantissas, it is less effective for exponents. The
addition of +G recovers most of the compression gap. In
the end, QM +QF outperforms BWM+BWE in every single
case. However, this comes with the slightly larger overhead.

The optional +G boosts the compression rate by 19% and
43% on top of QM+QE and BWM+BWE, respectively. It
works far better for BWM+BWE because the method greatly
removes outliers by focusing on exponent range, and helps
it recover almost all of the exponent compression gap. This
comes at the cost of variable tensor sizes, and therefore
inability of random memory accesses to the off-chip mem-
ory. Fortunately, training only requires sequential access to
off-chip memory, and sequential/strided/random accesses to
on-chip memory which are fully supported by our design.

Schrodinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

Table 2: Quantum Integer: ResNetl18 Validation Accuracy

and total memory reduction vs. FP32.
FP32 Quantum Integer
Network ‘ Accuracy ‘ Accuracy Footprint Reduction
ResNet18 | 69.94 | 69.15 6.21x

-
o

= SFPQ
- SFP-Q-+-G
. SFP BW
mmm SFPBW + G

[
o N &

Performance improvemnt (x)

o N & O ®

& & & & & o}
S O % % % %,
o

¥ N s,
% 474/(/ O,p(/ %,

' g e g
> S %, S
4 G N R S

(a) Performance

N

= SFPQ
== SFPQ+G
= SFPBW
- SFPBW + G

Energy Efficiency improvemnt (x)

o B N W & U o

(b) Energy Efficiency
Figure 6: Comparison with FP32.

4.2 Quantization Alternatives

Alternative quantization approaches require selecting a
datatype for training and sticking to it. The choice prac-
tically boils down to FP32, Bfloat16, and FPS. Table 1
shows memory reduction in comparison with FP32. Assum-
ing that the network converges with the smaller datatype,
Bfloat16 would always reduce the footprint by 2 x and FP8
by 4. Every single combination of our methods/networks
outperforms FP32 and BFloat16 by a significant margin.

Furthermore, QM +QE produces a 16% smaller footprint
than FP8 with GPT-2 being the only network where FP8
wins. With +G, QM+QE’s advantage increases to 29%.

The case for BWM+BWE vs FP8 isn’t as clear cut, outper-
forming FP8 in all non CNNs. With +G, BWM+BWE, on
average, produces a 12% smaller footprint than FP8.

Another key benefit of our methods is that they are adapt-
able. Choosing FP8 is risky, since the results of training
is only evident at the end. Micikevicius et al. (2022) show
that FP8 is a good choice for many networks, but they also
note that there are architectures for which it is not sufficient.
Our method provides a greater certainty of success, whilst
obtaining better footprint.

4.3 Quantum Integer (QI): Fixed-Point Datatype

For some models, fixed-point training is possible. While our
main goal is to learn the optimal floating-point datatypes,

= SFPQ
- SFPQ+ G
== SFP BW
= SFP BW + G

> o ©

N

Performance improvemnt (x)

o

Gy &
73 2L,
%

S &
i
Ko

0,
Xy % e Ry

o

= SFPQ
== SFPQ+G
= SFPBW
== SFPBW + G

«

>

N

[

Energy Efficiency improvemnt (x)
w

o

(b) Energy Efficiency
Figure 7: Comparison with BFloat16.

OM can easily be adapted to learn optimal fixed-point
datatypes. One common way to train for fixed-point infer-
ence is by representing the activations in fixed point during
training and to use integer arithmetic during the forward
pass. The only modification we need is to switch out Eq. 5
for one that represents fixed-point. Other aspects of QM
stay the same, while exponent is not used.

We present the footprint reduction and accuracy effect of the
resulting QI by showing results with ResNet18 on ImageNet
in Table 2. This simple, yet effective, modification learns
the per-tensor optimal bitlengths for uniform quantization
training with minimal accuracy cost. This is also a good
choice for training when we are confident that the task the
network is solving can be done in low bitlength fixed-point.
The QI behavior is very similar to QM.

5 PERFORMANCE AND ENERGY
EFFICIENCY

We evaluate execution time and energy efficiency with
Schrodinger’s FP for all networks listed in Table 1. Fig-
ures 6, 7 and 8 report execution time and energy improve-
ments in comparison with FP32, BFloat16 and FP8 base-
lines, respectively. The baseline datatype is used for weight
updates and gradients. We further assume that all the net-
works can be trained to baseline accuracy with FP8 and
BFloat16. However, this is not given.

5.1 Hardware Evaluation Methodology

We assess the execution time and energy efficiency by inte-
grating Schrodinger’s FP units into a hardware accelerator
that reflects state-of-the-art designs. The accelerator has 8k

Schrodinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

®

= SFPQ
= SFP-Q+G
. SFP BW
== SFP BW + G

<

Performance improvemnt (x)

o B N W & U O

(a) Performance

o

= SFPQ
== SFPQ+G
= SFPBW
== SFPBW + G

«

>

N

[

Energy Efficiency improvemnt (x)
w

o

(b) Energy Efficiency
Figure 8: Comparison with FP8.

units (each capable of performing 4 MACs per cycle on the
baseline datatype), and a SO0MHz clock for a peak compute
bandwidth of 16TFLOPS. It uses 8 channels of LPDDR4-
3200 DRAM memory and 32MB of on-chip buffers.

Our evaluation relies on an analytical model of the accelera-
tor. We use CACTI (Muralimanohar & Balasubramonian) to
model on-chip structures and DRAMSIM3 (Li et al., 2020)
to estimate the time and energy for off-chip memory ac-
cesses. The hardware units are implemented in Verilog,
synthesized using the Synopsys Design Compiler (Synop-
sys), and are laid out with Cadence Innovus (Cadence). The
area overhead for the compressor and decompressor proves
negligible, taking only 0.36% of the total accelerator area,
excluding on-chip memory.

Power estimation is performed in Innovus using traces from
a representative sample to accurately model signal activity.
Appendix A describes our hardware units and the acceler-
ator. Appendix B explains in more detail the evaluation
methodology and the analytical model used for execution
time and energy efficiency estimation.

5.2 Hardware Evaluation

We first compare Schrodinger’s FP with the FP32 and
BFloatl6 baselines. FP32 has been the safe choice for
training. Similarly, BFloat16 is another common choice
for training. Figures 6 and 7 show that all versions of
Schrodinger’s FP greatly outperform both the FP32 and
BFloat16 baselines in performance and energy efficiency,
for every single network.

FP8 is a riskier datatype for training. For some networks
and tasks it is sufficient, but for others it is not. Figure 8

shows that both QM+ QFE and QM +QFE+G noticeably out-
perform FP§ in both performance and energy efficiency, for
all networks. The figure also shows that BWM+BWE gener-
ally outperforms FPS8, having a better average performance
and energy efficiency. The outliers where results would be
better with FP8 are all for ImageNet CNNs. MobileNet V2,
one of the three outliers, can not be trained in FP8 because
doing so introduces a noticeable accuracy loss. However,
BWM+BWE can be used as shown in Table 1. Finally, our
methods coupled with Gecko outperform FP8 on every net-
work, both in performance and energy efficiency.

In general, as the baseline gets smaller, training becomes
riskier, and the margins by which all Schrddinger’s FP meth-
ods outperform become smaller. At the boundary where the
accuracy starts to degrade, our methods are still significantly
faster and more energy efficient.

OM+QE outperforms BWM+BWE across all networks.
However, when used with Gecko the difference between
our two methods is not as pronounced. QM+QE+G is still
better but the difference is smaller and in some cases it even
reverses (e.g. GPT-2).

Finally, we assumed that all benefits from smaller datatypes
come from off-chip memory transfers. For accelerators
where compute can also be made more efficient through
using smaller, spatially composable or bit serial compute
units, improvement with our methods would be even greater.

6 CONCLUSION

We introduced methods that dynamically adapt the
bitlengths and containers used for floating-point values dur-
ing training. The different distributions of the exponents and
mantissas led us to tailored approaches for each. We target
the largest contributors to off-chip traffic during training for
both activations and weights. In addition, in the case where
fixed-point training is preferred, we showed the effective-
ness of our approach to determine the best containers used
for fixed-point values during training. To our knowledge,
this is the first work that demonstrates how to: (1) deter-
mine and (2) continuously adjust the memory containers
(how many bits should be used when storing floating-point
mantissas and exponents in memory), and to do so (3) on-
the-fly, for the purpose of (4) making training itself faster
and/or more energy efficient. There are several directions
for improvements and further exploration including expand-
ing the methods to also target the gradients and refining
the underlying policies they use to adapt mantissa lengths.
Regardless, this work has demonstrated that the methods are
effective and superior to using fixed preselected datatypes.
The key advantages of our methods are: 1) they are dynamic
and adaptive, 2) they do not modify the training algorithm,
3) they will naturally extend to future algorithms without
modifications and 4) they take advantage of value content.

Schrodinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

REFERENCES

Awad, O. M., Mahmoud, M., Edo, 1., Zadeh, A. H., Bannon,
C., Jayarajan, A., Pekhimenko, G., and Moshovos, A.
Fpraker: A processing element for accelerating neural
network training. In MICRO °21: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, Virtual
Event, Greece, October 18-22, 2021, pp. 857-869. ACM,
2021. doi: 10.1145/3466752.3480106. URL https:
//doi.org/10.1145/3466752.3480106.

Cadence. Innovus implementation system.
https://www.cadence.com/content/
cadence-www/global/en_US/home/
tools/digital-design-and-signoff/

hierarchical-design-and-floorplanning/

innovus—implementation—-system.html.

Das, D., Mellempudi, N., Mudigere, D., Kalamkar, D. D.,
Avancha, S., Banerjee, K., Sridharan, S., Vaidyanathan,
K., Kaul, B., Georganas, E., Heinecke, A., Dubey, P.,
Corbal, J., Shustrov, N., Dubtsov, R., Fomenko, E., and
Pirogov, V. O. Mixed precision training of convolutional
neural networks using integer operations. In 6th Inter-
national Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings, 2018. URL https:
//openreview.net/forum?id=H135uzz0-.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:

pre-training of deep bidirectional transformers for lan-

guage understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers
for image recognition at scale, 2020. URL https:
//arxiv.org/abs/2010.11929.

Drumond, M., Lin, T., Jaggi, M., and Falsafi, B. Training

DNNs with hybrid block floating point. In Proceedings of

the 32Nd International Conference on Neural Information

Processing Systems, NIPS’18, pp. 451-461, USA, 2018.

Curran Associates Inc. URL http://dl.acm.org/
citation.cfm?id=3326943.3326985.

Evans, R. D. and Aamodt, T. AC-GC: Lossy activation com-

pression with guaranteed convergence. In Beygelzimer,
A., Dauphin, Y., Liang, P.,, and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?
id=MwFdqFRxIFO.

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz,
M. A., and Dally, W. J. EIE: efficient inference engine

on compressed deep neural network. In 43rd ACM/IEEE
Annual International Symposium on Computer Architec-
ture, ISCA 2016, Seoul, South Korea, June 18-22, 2016,
pp. 243-254, 2016a.

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz,
M. A., and Dally, W. J. Eie: Efficient inference engine
on compressed deep neural network. In Intl’ Symp. on
Computer Architecture, 2016b.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural network with pruning, trained
quantization and huffman coding. In Bengio, Y. and Le-
Cun, Y. (eds.), 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016c. URL
http://arxiv.org/abs/1510.00149.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.
URL http://arxiv.org/abs/1512.03385.

HewlettPackard. CACTI. https://github.com/
HewlettPackard/cacti.

Horowitz, M. 1.1 computing’s energy problem (and what we
can do about it). In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
pp- 10-14, 2014. doi: 10.1109/ISSCC.2014.6757323.

Huang, X., Shen, Z., Li, S., Liu, Z., Xianghong, H.,
Wicaksana, J., Xing, E., and Cheng, K.-T. SDQ:
Stochastic differentiable quantization with mixed pre-
cision. In Chaudhuri, K., Jegelka, S., Song, L.,
Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 9295-9309. PMLR, 17-23 Jul
2022. URL https://proceedings.mlr.press/
v162/huang22h.html.

Jain, A., Phanishayee, A., Mars, J., Tang, L., and Pekhi-
menko, G. Gist: Efficient data encoding for deep neural
network training. In Proceedings of the 45th Annual In-
ternational Symposium on Computer Architecture, ISCA
18, pp. 776-789, Piscataway, NJ, USA, 2018. IEEE
Press. ISBN 978-1-5386-5984-7. doi: 10.1109/ISCA.
2018.00070. URL https://doi.org/10.1109/
ISCA.2018.00070.

Judd, P., Albericio, J., Hetherington, T., Aamodt, T. M.,
Jerger, N. E., and Moshovos, A. Proteus: Exploiting
numerical precision variability in deep neural networks.
In Proceedings of the 2016 International Conference on
Supercomputing, 1CS °16, pp. 23:1-23:12, New York,
NY, USA, 2016a. ACM. ISBN 978-1-4503-4361-9. doi:
10.1145/2925426.2926294. URL http://doi.acm.
org/10.1145/2925426.2926294.

https://doi.org/10.1145/3466752.3480106
https://doi.org/10.1145/3466752.3480106
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://openreview.net/forum?id=H135uzZ0-
https://openreview.net/forum?id=H135uzZ0-
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
http://dl.acm.org/citation.cfm?id=3326943.3326985
http://dl.acm.org/citation.cfm?id=3326943.3326985
https://openreview.net/forum?id=MwFdqFRxIF0
https://openreview.net/forum?id=MwFdqFRxIF0
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1512.03385
https://github.com/HewlettPackard/cacti
https://github.com/HewlettPackard/cacti
https://proceedings.mlr.press/v162/huang22h.html
https://proceedings.mlr.press/v162/huang22h.html
https://doi.org/10.1109/ISCA.2018.00070
https://doi.org/10.1109/ISCA.2018.00070
http://doi.acm.org/10.1145/2925426.2926294
http://doi.acm.org/10.1145/2925426.2926294

Schrodinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

Judd, P., Albericio, J., Hetherington, T., Aamodt, T. M.,

Jerger, N. E., and Moshovos, A. Proteus: Exploiting
numerical precision variability in deep neural networks.
In Proceedings of the 2016 International Conference on
Supercomputing, ICS 16, pp. 23:1-23:12, New York,
NY, USA, 2016b. ACM. ISBN 978-1-4503-4361-9. doi:

10.1145/2925426.2926294. URL http://doi.acm.

org/10.1145/2925426.2926294.

April 30 - May 3, 2018, Conference Track Proceedings,
2018. URL https://openreview.net/forum?
id=rlgs9JgRZ.

Micikevicius, P., Stosic, D., Burgess, N., Cornea, M., Dubey,

P., Grisenthwaite, R., Ha, S., Heinecke, A., Judd, P,
Kamalu, J., et al. Fp8 formats for deep learning. arXiv
preprint arXiv:2209.05433, 2022.

Muralimanohar, N. and Balasubramonian, R. Cacti 6.0: A

Kalamkar, D. D., Mudigere, D., Mellempudi, N., Das, D.,
tool to understand large caches.

Banerjee, K., Avancha, S., Vooturi, D. T., Jammala-
madaka, N., Huang, J., Yuen, H., Yang, J., Park, J.,
Heinecke, A., Georganas, E., Srinivasan, S., Kundu,
A., Smelyanskiy, M., Kaul, B., and Dubey, P. A
study of BFLOAT16 for deep learning training. CoRR,
abs/1905.12322, 2019. URL http://arxiv.org/
abs/1905.12322.

Naumov, M., Mudigere, D., Shi, H. M., Huang, J., Sun-
daraman, N., Park, J., Wang, X., Gupta, U., Wu, C.,
Azzolini, A. G., Dzhulgakov, D., Mallevich, A., Cher-
niavskii, I., Lu, Y., Krishnamoorthi, R., Yu, A., Kon-
dratenko, V., Pereira, S., Chen, X., Chen, W., Rao, V.,
Jia, B., Xiong, L., and Smelyanskiy, M. Deep learning
recommendation model for personalization and recom-
mendation systems. CoRR, abs/1906.00091, 2019. URL
https://arxiv.org/abs/1906.00091.

Koster, U., Webb, T. J., Wang, X., Nassar, M., Bansal,
A. K., Constable, W. H., Elibol, O. H., Gray, S., Hall,
S., Hornof, L., Khosrowshahi, A., Kloss, C., Pai, R. J.,
and Rao, N. Flexpoint: An adaptive numerical format for
efficient training of deep neural networks. In Proceedings
of the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS’17, pp. 1740-1750, USA,
2017. Curran Associates Inc. ISBN 978-1-5108-6096-
4. URL http://dl.acm.org/citation.cfm?
1d=3294771.3294937.

Nikolié¢, M., Mahmoud, M., and Moshovos, A. Characteriz-
ing sources of ineffectual computations in deep learning
networks. In 2018 IEEE International Symposium on
Workload Characterization (IISWC), pp. 86-87, 2018.
doi: 10.1109/IISWC.2018.8573509.

Nikoli¢, M., Hacene, G. B., Bannon, C., Lascorz, A. D.,
Courbariaux, M., Bengio, Y., Gripon, V., and Moshovos,
A. Bitpruning: Learning bitlengths for aggressive and
accurate quantization, 2020.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, 2009.

Lascorz, A. D., Sharify, S., Edo, L., Stuart, D. M., Awad,
O. M., Judd, P, Mahmoud, M., Nikoli¢, M., Siu,
K., Poulos, Z., and Moshovos, A. Shapeshifter: En-
abling fine-grain data width adaptation in deep learn-
ing. In Proceedings of the 52nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO
52, New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450369381. doi: 10.
1145/3352460.3358295. URL https://doi.org/
10.1145/3352460.3358295.

NVIDIA. Training with mixed precision. https:
//docs.nvidia.com/deeplearning/sdk/
mixed-precision-training/index.html.

Qian Zhang, S., McDanel, B., and Kung, H. T. Fast: Dnn
training under variable precision block floating point
with stochastic rounding. In 2022 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), pp. 846-860, 2022. doi: 10.1109/HPCAS53966.
2022.00067.

Li, S., Yang, Z., Reddy, D., Srivastava, A., and Jacob, B.
Dramsim3: A cycle-accurate, thermal-capable dram sim-
ulator. IEEE Computer Architecture Letters, 19(2):106—
109, 2020. doi: 10.1109/L.CA.2020.2973991.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Rouhani, B., Zhao, R., Elango, V., Shafipour, R., Hall, M.,
Mesmakhosroshahi, M., More, A., Melnick, L., Golub,
M., Varatkar, G., Shao, L., Kolhe, G., Melts, D., Klar, J.,
L’Heureux, R., Perry, M., Burger, D., Chung, E., Deng,
Z., Naghshineh, S., Park, J., and Naumov, M. With shared
microexponents, a little shifting goes a long way, 2023a.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. CoRR, abs/1609.07843, 2016.
URL http://arxiv.org/abs/1609.07843.

Micikevicius, P., Narang, S., Alben, J., Diamos, G. F., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaieyv,
0., Venkatesh, G., and Wu, H. Mixed precision train-
ing. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada,

Rouhani, B. D., Zhao, R., More, A., Hall, M., Khodamoradi,
A., Deng, S., Choudhary, D., Cornea, M., Dellinger, E.,
Denolf, K., Dusan, S., Elango, V., Golub, M., Heinecke,

http://doi.acm.org/10.1145/2925426.2926294
http://doi.acm.org/10.1145/2925426.2926294
http://arxiv.org/abs/1905.12322
http://arxiv.org/abs/1905.12322
http://dl.acm.org/citation.cfm?id=3294771.3294937
http://dl.acm.org/citation.cfm?id=3294771.3294937
https://doi.org/10.1145/3352460.3358295
https://doi.org/10.1145/3352460.3358295
http://arxiv.org/abs/1609.07843
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ
https://arxiv.org/abs/1906.00091
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html

Schrodinger’s FP: Training Neural Networks with Dynamic Floating-Point Containers

A., James-Roxby, P., Jani, D., Kolhe, G., Langhammer,
M., Li, A., Melnick, L., Mesmakhosroshahi, M., Ro-
driguez, A., Schulte, M., Shafipour, R., Shao, L., Siu,
M., Dubey, P., Micikevicius, P., Naumov, M., Verrilli, C.,
Wittig, R., Burger, D., and Chung, E. Microscaling data
formats for deep learning, 2023b.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. arXiv:1409.0575 [cs],
September 2014. arXiv: 1409.0575.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. MobileNetV?2: inverted residuals and linear
bottlenecks. In IEEE Conf. on Computer Vision and
Pattern Recognition, 2018.

Sun, X., Wang, N., Chen, C.-Y., Ni, J., Agrawal, A., Cui,
X., Venkataramani, S., El Maghraoui, K., Srinivasan,
V. V., and Gopalakrishnan, K. Ultra-low precision
4-bit training of deep neural networks. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin,
H. (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 1796-1807. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/

13b919438259814cd5be8cb45877d577-Paper.

pdf.

Synopsys. Design Compiler. http://www.
synopsys.com/Tools/Implementation/
RTLSynthesis/DesignCompiler/Pages.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understanding. 2019.
In the Proceedings of ICLR.

Wang, K., Liu, Z., Lin, Y., Lin, J.,, and Han, S.
HAQ: hardware-aware automated quantization. CoRR,
abs/1811.08886, 2018a. URL http://arxiv.org/
abs/1811.08886.

Wang, N., Choi, J., Brand, D., Chen, C.-Y., and Gopalakrish-
nan, K. Training deep neural networks with 8-bit floating
point numbers. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
NIPS’18, pp. 7686—7695, Red Hook, NY, USA, 2018b.
Curran Associates Inc.

Wu, B., Wang, Y., Zhang, P, Tian, Y., Vajda, P., and
Keutzer, K. Mixed precision quantization of convnets
via differentiable neural architecture search. CoRR,
abs/1812.00090, 2018. URL http://arxiv.org/
abs/1812.00090.

Yang, H., Duan, L., Chen, Y., and Li, H. {BSQ}: Explor-
ing bit-level sparsity for mixed-precision neural network
quantization. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=TiX151SCNw8.

Zhang, X., Liu, S., Zhang, R., Liu, C., Huang, D., Zhou, S.,
Guo, J., Guo, Q., Du, Z., Zhi, T., and Chen, Y. Fixed-
point back-propagation training. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 2327-2335, 2020. doi: 10.1109/
CVPR42600.2020.00240.

https://proceedings.neurips.cc/paper/2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages
http://arxiv.org/abs/1811.08886
http://arxiv.org/abs/1811.08886
http://arxiv.org/abs/1812.00090
http://arxiv.org/abs/1812.00090
https://openreview.net/forum?id=TiXl51SCNw8
https://openreview.net/forum?id=TiXl51SCNw8

