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ABSTRACT

Data format innovations have been critical for machine learning (ML) scaling, which in turn fuels ground-breaking
ML capabilities. However, even in the presence of low-precision formats, model weights are often stored in both
high-precision and low-precision during training. Furthermore, with emerging directional data-formats (e.g., MX9,
MXG®6, etc.) multiple low-precision weight copies can be required. To lower memory capacity needs of weights,
we explore just-in-time quantization (JIT-Q) where we only store high-precision weights in memory and generate
low-precision weights only when needed. To perform JIT-Q efficiently, in this work, we evaluate emerging
processing-in-memory (PIM) technology to execute quantization. With PIM, we can offload quantization to
in-memory compute units enabling quantization to be performed without incurring costly data-movement while
allowing quantization to be concurrent with accelerator computation. Our proposed PIM-offloaded quantization
keeps up with GPU compute and delivers considerable capacity savings (up to 24%) at marginal throughput loss
(up to 2.4%). Said memory capacity savings can unlock several benefits such as fitting a larger model in the same
system, reducing model parallelism requirement, and improving overall ML training efficiency.

1 INTRODUCTION

Model scaling has been a critical component to unlocking
disruptive machine learning (ML) capabilities. This scaling,
however, has not been matched with commensurate memory
capacity scaling (Rajbhandari et al., 2021). These conflict-
ing trends have led to lower efficiency for ML due to in-
creased reliance on distributed computing (communication
overheads), lower batch-sizes (lower compute efficiency)
and more. As such, techniques which optimize memory
capacity needs of ML stand to lower these overheads and
can lead to increased ML efficiency.

To tackle the memory capacity challenge, there has been con-
siderable interest in quantization of tensors to (increasingly)
low-precision numeric formats such as BF16 (Kalamkar
et al., 2019), FP8 (Micikevicius et al., 2022), and beyond.
By storing and computing on tensors in low-precision for-
mats instead of single-precision (FP32) format, considerable
capacity savings and also compute efficiency can be attained.
As such, data-formats continue to be an active area of in-
vestigation, with emerging shared microexponents (MX)
formats (Darvish Rouhani et al., 2023) further pushing the
precision down to four bits.
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While this data-format evolution has been a key lever in
optimizing ML capacity needs, we believe there exists data
redundancy in ML training which can be optimized for
capacity savings. Specifically, state-of-the-art training tech-
niques which employ low-precision formats, typically em-
ploy mixed-precision training (Micikevicius et al., 2017),
wherein to attain good accuracy, weight tensors are main-
tained in both high-precision and low-precision in memory.
The high-precision copy of weights accumulates the gradi-
ents after each optimizer step. At the same time, a quan-
tized low-precision copy of these high-precision weights
is maintained, which is employed in computations for for-
ward and back-propagation (Figure 1 €9) phases. Further,
with directional (MX) data-formats, which require quantiza-
tion to be applied along the reduction dimension, two low-
precision copies of weights, to be used in forward and back-
propagation respectively, can be necessary (Figure 1 Q).

An observation we make in this work is that as the high-
precision copy of weights is necessary for training, and
the low-precision copy is derived from the high-precision
copy, a mechanism to cheaply create a low-precision copy
of weights, as and when needed, can obviate the need to
store the low-precision copy in memory and thus save mem-
ory capacity. We term this just-in-time quantization (JIT-Q).
Note that, as in Figure 1 @, while a straightforward way
to accomplish this is to read-in the high-precision weight
copy for computations and quantize the weights before use
at the core, this causes increased (and unnecessary) data-
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movement, which is the chief contributor to ML energy
expenditure (Untether Al, 2023). Further, this also places
quantization on the critical path. While this can be mitigated
by scheduling quantization kernels ahead of time and in con-
currence with main GPU computation, doing so causes even
more data-movement as not only will the high-precision
copy be read, the low-precision copy will also be written.

Instead, in this work, we propose harnessing emerging
processing-in-memory (PIM) technology to perform the
aforementioned JIT-Q of weight tensors. With recent func-
tional PIM prototypes from multiple memory vendors (Lee
et al., 2021; 2022), commands are broadcast to in-memory
compute units and data is operated in-place in memory in-
stead of moving data to the accelerator (e.g., GPU). While
the accelerator coupled with memory can access one mem-
ory bank at a time over a shared data bus, by not using
the shared data bus, PIM enables data from multiple banks
to be operated on in tandem. This provides considerable
memory bandwidth boost over that available to accelera-
tor all the while enabling computation over data without
incurring costly data-movement. In this work we focus on
high-bandwidth memory (HBM) PIM (Lee et al., 2021),
as HBM is coupled with GPUs, the most ubiquitous ML
accelerators.

As depicted in Figure 1 @), PIM enables harnessing capac-
ity savings of JIT-Q of weights without incurring costly
data-movement. To do so, we first deduce a quantization
routine that can be offloaded to in-memory compute units
in HBM. We identify data-placement considerations, for
both scalar formats and directional blocked formats, and
in-memory ALU augmentations that lead to an efficient
quantization routine. Further, we discuss how this routine
can be co-scheduled with the main GPU computation to
deliver quantized low-precision weight tensors just-in-time
to the GPU computation.

Our analysis across current and future models shows that
our proposed PIM-offloaded quantization keeps up with
main GPU computation and delivers considerable capacity
savings (up to 24%) at marginal throughput loss (up to
2.4%). Resultant memory capacity savings unlock benefits
that improve overall compute utilization; it enables devices
to fit larger models and/or larger batch-sizes, and reduces
reliance on model parallelism which requires additional
communication.

Overall, our work makes the following key contributions:

* We propose just-in-time quantization (JIT-Q) for weights
which enables storing of only high-precision copy of
weights during training and creates low-precision copies
just when they are needed.

* We evaluate the efficacy of emerging commercial
processing-in-memory (PIM) solutions to perform JIT-
Q. Offloading to PIM enables quantization of weights
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Figure 1. JIT-Q achieves capacity savings while maintaining the
data-movement savings.

without incurring costly data-movement.

* We discuss data-placement and in-memory ALU augmen-
tations necessary to offload quantization to PIM efficiently.
Our evaluations show that our proposed PIM quantization
routine can prepare low-precision weights copy just-in-
time without stalling concurrent GPU computation.

* The proposed JIT-Q of weights delivers memory capacity
savings of up to 24% which can be harnessed in many
ways for efficient ML training.

2 BACKGROUND
2.1 Large Language Models

We focus in this work on Transformer-based (Vaswani et al.,
2017) large language models (LLMs) given their applica-
bility across domains and modalities (Tsimpoukelli et al.,
2021; Sung et al., 2022; Alayrac et al., 2022). From a
computational perspective, LLMs have two training phases,
an expensive, but one-time, pre-training phase for general
learning and another short task-specific fine-tuning phase.
Post learning, LLMs are deployed for inference. The basic
building block of an LLM is an encoder or a decoder layer.
These layers are made of a multi-head attention sub-layer
and a multi-layer perceptron (MLP) sub-layer. Operations
in these sub-layers manifest as matrix multiplication op-
erations (GEMMs) followed by a few element-wise and
reduction operations (e.g., residual connection, layer nor-
malization) which are often fused with the GEMMSs. The
encoder and decoder layers are similar except the decoder’s
attention sub-layer/GEMM input is masked, which causes
different inference behavior computationally but does not
affect training which is the focus of this work. Training
phase involves forward and backward propagation through
the layers, followed by parameter updates. In contrast, infer-
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Figure 2. Directional data formats.

ence phase does not have backward propagation and weight
update. Note, while we anchor on LLMs, ideas proposed in
this work are applicable to other model architectures.

2.2 Directional Blocked Data Formats

Continued scaling of ML models has been a key ingre-
dient to their disruptive capabilities. A critical fuel to
this scaling is the evolution of low-precision data for-
mats. Low-precision formats reduce memory capacity re-
quirement and consequently data-movement along with de-
livering performance improvement by harnessing higher
throughput compute. While an active area of research,
in this paper, we focus on shared microexponents (MX)
format (Darvish Rouhani et al., 2023), an emerging low-
precision data format, because of the balance it achieves
between maintaining model accuracy, improving hardware
efficiency, while reducing software friction.

As shown in Figure 2, MX formats are directional blocked
data formats that represent a block of N elements (N=16
BF16 elements in the figure). Instead of using a per-element
sign, exponent, and mantissa bits as in scalar data formats ),
MX formats settles for only sign and mantissa bits per el-
ement @. Based on the number of mantissa bits, there are
three variants of MX formats to tailor to the different needs
of training and inference. Specifically, MX9, MX6, and
MX4 use 7, 4, and 2 mantissa bits per element, respectively.
As for exponent bits, MX format uses two-levels of scaling
factors (exponents) to reduce the negative effects of outliers
and provides additional quantization noise reduction. That
is, an 8b exponent is shared across all N elements, and a
second-level 1b exponent is shared among a subblock of two
elements. Finally, as shown in €y, for a GEMM operation
where both interacting tensors are MX-quantized, to harness
benefits of MX formats, the tensors have to be quantized
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Figure 3. HBM PIM overview.

along the reduction dimension (blocking/quantization along
row for one, blocking/quantization along column for other).

2.3 Commercial PIM Solutions

To cater to increasing demands for memory bandwidth
from emerging applications, memory vendors like Samsung
and SK Hynix have proposed commercial processing-in-
memory (PIM) solutions for DRAM based memories (Lee
et al., 2021; Kim et al., 2022; Lee et al., 2022; 2019; He
et al., 2020). With PIM, compute units are placed on the
periphery of core DRAM structures, thus avoiding changes
to internal DRAM structures and making commercialization
easier. In a recent real PIM prototype (Samsung, 2022),
Samsung has integrated PIM with high bandwidth memory
(HBM), which is coupled with GPUs. Figure 3 depicts the
PIM design we focus on in this work.

HBM provides high bandwidth and energy efficiency via
high density interconnects and in-package 2.5D integration
with the processor (JEDEC, 2013) €. HBM memory ac-
cess requires similar set of basic operations as conventional
DRAM; however, HBM offers wider interface. Each HBM
die comprises multiple pseudo-channels (pCHs) @. Each
pCH contains multiple banks sharing the data bus of the
pCH. Further, similar to generic DRAM, a bank is com-
prised of multiple rows and columns. On a memory access
from the GPU, a row worth data is brought into the per-
bank row-buffer @ (incurring row activation overhead) and
from there on column worth data (or multiples of it) can be
accessed over the data bus from the GPU.

In the HBM-PIM prototype (Lee et al., 2021), each PIM
unit includes a 256b wide SIMD PIM ALU (processing on
multiple lanes in parallel) and limited number of register
files to temporarily store data @). To harness performance
while managing area overheads, each PIM unit is shared
by two banks (even and odd) @. To reduce complexity, the
PIM units do not have any instruction fetch capabilities,
rather PIM commands are sent by the GPU to the pCH.
Each PIM command is broadcast to all PIM units inside the
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PIM execution for efficient JIT-Q of weights ).

pCH and the PIM units operate in parallel. Therefore, PIM
has bandwidth advantage over GPU (about 4-8x) - GPU
memory accesses to different banks of a pCH get serialized
over the memory interface, in contrast all PIM units can
independently access the attached banks. To avail such
bandwidth benefit, PIM operable data needs to be allocated
in large physical pages encompassing all the channels and
banks. For example, employing a 2MB page size covers
current, and potential future, memory configurations. This
bandwidth boost can be harnessed to offload bandwidth-
intensive, low compute-to-byte, computations to PIM, while
keeping compute-bound phases on GPU. Such collaboration
is promising for workload acceleration (Aga et al., 2019).

3 CASE FOR JUST-IN-TIME QUANTIZATION
WITH PIM

3.1 Capacity - A Key Performance Determinator

Memory characteristics (capacity, bandwidth, latency) play
a critical role in ML training efficiency. Specifically, in this
work, we focus on capacity, which dictates the amount of
data, and the associated computation, that gets mapped to
an accelerator and as such computation efficiency. Model
scaling in the recent past has surpassed capacity scaling,
especially considering HBM capacity that is coupled with
accelerators such as GPUs, which are commonly employed
for ML training. This in turn has caused training state (opti-
mizer state such as momentum, variance, gradient, weight
tensors, and intermediate state such as input, output tensors)
to be sharded (Narayanan et al., 2021; Zhao et al., 2023)
across accelerators or offloaded away from HBM (Ren
et al., 2021). Such tensor sharding/offloading can have
considerable impact on ML training efficiency. Specifi-
cally, such mechanisms reduce overall compute efficiency;
communication overhead to gather/scatter tensors, smaller
tensors due to sliced weights and lower batch. Given its

multi-dimensional impact, optimizing ML capacity needs is
paramount to attaining better ML efficiency.

3.2 Opportunity: Eliminating Weight Redundancy

Prior works have optimized away memory redundancy in
ML training to better support model scaling. As an example,
works like ZeRo (Rajbhandari et al., 2020), store a single
copy of optimizer state partitioned across accelerators in
a distributed training setup. While these prior works have
considerably reduced memory redundancy, in this work, we
observe that there is still further scope to reduce memory
redundancy for ML training. Consider memory composition
of an accelerator for mixed-precision training (Micikevicius
et al., 2017), the de facto training technique, as depicted in
Figure 4 @. With mixed-precision, weight tensors mani-
fest redundancy as both high and low-precision copies of
weights are stored in memory to be used in the optimizer
computation and forward/back-propagation computations,
respectively. This redundancy is worsened for training with
directional blocked formats such as MX formats (described
in Section 2.2) for two variations of low-precision weights,
quantized along different dimensions, are required (Fig-
ure 4 @). Note that, as high-precision weight tensors are
necessary for effective training (to preserve small-valued
updates), a cheap mechanism which creates low-precision
weight tensors only when needed can eliminate weight ten-
sor redundancy and deliver capacity savings.

3.3 PIM for Just-in-time Weight Quantization

The above identified opportunity can be harnessed with
just-in-time quantization (JIT-Q) of weight tensors. That
is, by storing only high-precision weight tensor in mem-
ory and creating the low-precision weight tensor only when
needed (Figure 4 @), weight tensor redundancy can be
eliminated, and capacity savings can be harnessed. How-
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ever, to truly realize the benefits of this approach, an effi-
cient mechanism to create low-precision weight tensor is
necessary. To that end, note first that a naive mechanism
which reads in high-precision weight tensor during forward
and back-propagation computation causes unnecessary data-
movement and energy expenditure, and additionally adds
quantization to critical path. While the latter of the prob-
lems can be tackled by co-scheduling quantization kernels
ahead of time, such kernels, when executed by the accelera-
tor will further add to data-movement overheads by having
to write-back low-precision weights to memory, as well
as contending with the concurrent main computation for
compute/memory resources.

To tackle above challenges, in this work, we propose to
harness processing-in-memory (PIM) technology and of-
fload JIT-Q to in-memory compute units. With PIM, high-
precision weight tensors are read by in-memory compute
units, which quantize them to low-precision and store
back the result to memory without incurring costly data-
movement from memory to the processor. By co-scheduling
PIM computation with main acceleration computation (Fig-
ure 4 @), said low-precision tensors are only temporarily
created just when needed and discarded thereafter. Overall,
this enables JIT-Q of weights to harness capacity savings
while avoiding costly data-movement. However, to do so,
quantization should be efficiently offloaded to PIM so as to
keep up with main acceleration computation. We discuss
techniques to do so next.

4 EFFICIENT JIT-Q WITH PIM

To efficiently offload a computation to PIM, a programmer
first deduces a computation-conscious data mapping to ex-
ploit the strengths of the target PIM design (e.g., command
broadcasts) while avoiding its shortcomings (e.g., no inter-
bank communication and no cross SIMD compute). Next, a
PIM kernel which expresses the computation orchestration
on the in-memory compute units is launched. In this sec-
tion, we discuss the key considerations for offloading JIT-Q
computation to PIM in terms of compute orchestration, data
mapping, and augmentations to existing PIM design.

4.1 PIM Quantization Routine

To initiate the required PIM computations on commercial
PIM designs, host GPU launches PIM kernels (Lee et al.,
2021; Samsung, 2022). These kernels are like existing GPU
kernels except they issue pim instructions. A pim instruc-
tion effectively enqueues a pim command at the memory
controller which in turn instructs PIM unit to execute either
SIMD compute operation (e.g., add, multiply, etc.) or data-
movement (moving data between row-buffer and register
file) along with necessary row activation. Finally, to feed
the independent memory channels in GPUs, different work-
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Figure 5. MX quantization pseudo-code and resultant PIM quanti-
zation kernel (left). PIM quantization kernel orchestration (right).

groups (groups of threads or thread blocks), within the PIM
kernel, issue PIM commands to different channels, which
in turn are broadcast to banks within a channel. In addition
to PIM ALU functionality supported in current PIM proto-
types (Lee et al., 2021), to effectively support quantization,
we assume the PIM ALU to support two operations: com-
pare two operands (pim-CMP) and single-bit intra-SIMD
lane shift operation (pim-bitSHIFT). Given their simplicity
and support for related functionality in existing PIM proto-
types, such as activation functions in Hynix-PIM (Lee et al.,
2022) and ReLU in Samsung-PIM (Lee et al., 2021), we
believe this to be a reasonable assumption.

We describe this PIM routine for the MX format (Sec-
tion 2.2) as tackling quantization for them is more involved
than for scalar formats. For MX quantization from scalar
data formats, the input tensor is broken into blocks of N
elements (N=16). Then, for each N-element block, two
key steps are performed as shown in Figure 5. First, the
quantization routine computes the shared level-1 exponent
using a reduction function (e.g., max) of all exponents in
the NV input elements €. Then, using this level-1 exponent,
level-2 exponents are deduced for every two-input element
block. Second, the per-element mantissa bits are adjusted,
using bit-level shift operations, to compute the m-bit man-
tissa per output element ). We translate this pseudo-code to
PIM quantization kernel via deducing the PIM instructions
necessary to realize the computation. As an example, for
exponent calculation, a series of pim-MAX commands @
are used, while for mantissa adjustment pim-bitSHIFT com-
mands are used. Using our PIM kernel, we broadcast these
commands to banks in a channel (and to multiple channels)
to fully exploit PIM parallelism ).

Optimization. In contrast to scalar data format quantiza-
tion, the shift amount can differ for each input element
as it depends on the level-2 exponent and the per input ele-
ment’s original exponent. To efficiently support the different
bit-level shift amounts, we augment the SIMD PIM ALU
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with counter-based conditional intra-lane shifts. This stores
the per-lane shift amount in a register, then per each pim-
bitSHIFT instruction, it checks the stored shift amount per
lane (S;). If S; > 0, then the shift is processed for the corre-
sponding lane, then .S; is decremented. Otherwise, the shift
is skipped for the corresponding lane. Without such sup-
port, three PIM instructions (pim-CMP, pim-bitSHIFT, and
pim-ADD) are used for a single bit shift, which increases
the PIM quantization time (evaluated in Section 5).

4.2 Weight Tensor Placement

Placement of data in memory is an important consideration
for efficient computation offload to PIM for several reasons.
First, our evaluated PIM design (Lee et al., 2021) places
a PIM compute unit, with a SIMD ALU, per two DRAM
banks. Therefore, unless any interacting elements in the of-
floaded computation are mapped to the same bank (or banks
sharing a PIM unit), inter-bank communication overhead
is incurred. With the absence of direct inter-bank commu-
nication in current commercial PIM designs, the GPU per-
forms this communication by copying data from one bank
to another, which is expensive. Second, PIM broadcasts
the same command to multiple banks in the same pseudo-
channel to achieve its significant memory bandwidth boost.
Therefore, proper interleaving of input/output data across
banks/channels is required to harness the broadcast feature
of PIM. Finally, while the SIMD ALU in the PIM com-
pute unit helps harness data parallelism, it lacks support for
cross-lane computations, resulting in lane-level shift opera-
tions. With the limited number of metal layers in the current
DRAM technology, supporting different levels of bit shifts
(single-bit shift for mantissa bits processing and lane-level
shift for cross-SIMD computations) is likely to be costly.
Given these considerations, we discuss our data mapping
tailored to JIT-Q of MX formats as shown in Figure 6.

Avoiding Inter-bank Communication. First, as MX for-
mats require the input weight tensor to be quantized along
the reduction dimension, supporting both row and column
quantization is required as discussed in Section 2.2. There-
fore, the overall quantization computation involves elements
along both row and column dimensions ). A naive MX-

oblivious row-major mapping of the input tensor that divides
the elements among the available PIM ALUs, to exploit the
inherent parallelism of PIM, would map the row elements
to same bank (or banks sharing a PIM compute unit) but not
the column elements thus, triggering inter-bank communica-
tion during column quantization. To avoid this, we propose
a tiled data mapping in which we break the input tensor into
N x N tiles @, where N is number of elements per MX
block, and map each 2D tile to a single bank @. The per-tile
elements are mapped in a row-major fashion. We term this
tiled mapping as pim-jitg-tiled. Using row-major mapping
within a tile is beneficial for row quantization as it mini-
mizes the number of occupied DRAM rows per MX block,
reducing the row activations overhead. In contrast, it results
in higher row activations overhead for the column quanti-
zation. To reduce this overhead, we exploit the sharing of
the PIM ALU between pair of DRAM banks and propose to
spread the input tile over the even and odd banks @®.

Harnessing PIM Parallelism. To unlock PIM’s full poten-
tial, we process multiple independent tiles in different PIM
units via command broadcasting. The large weight tensors
in state-of-the-art LLMs guarantee that there are sufficient
tiles to concurrently utilize all available PIM units.

Avoiding Cross-SIMD Compute. As discussed in Sec-
tion 4.1, to compute the exponents on the MX block, the in-
dividual exponents of the elements are compared. With only
pim-jitg-tiled, elements of the same MX block (or subset of)
are mapped to same DRAM word, resulting in cross-SIMD
computations @). To avoid that, we propose to stride the tile
across DRAM words, mapping each element to the same
lane in each DRAM word @. This ensures that elements of
the same tile are aligned. To eliminate the memory waste
due to utilizing a single SIMD lane, we pack elements from
independent tiles in the same DRAM word @. We term
this mapping as pim-jitq-strided. As discussed above, the
tensors from the evaluated LLMs have enough tiles to fully
pack the SIMD lanes.

Note that, our proposed weight tensor placement spreads
weight tensor across memory channels/banks and as such,
as in baseline, can exploit memory parallelism effectively.
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S5 EVALUATION
5.1 Methodology
5.1.1 Performance Models

We analyze performance using analytical models as PIM
is currently only available as part of functional proto-
types (Samsung, 2022). Additionally, we aim to study
highly optimized GPU implementations of the evaluated
LLMs to provision a stronger GPU baseline to show PIM
benefits over. This makes relying on GPU simulators diffi-
cult and lends well to analytical models. Furthermore, using
GPU simulators to model end-to-end ML training with large
model sizes can be impractical as a single GEMM simula-
tion can take several hours to multiple days (Avalos Bad-
douh et al., 2021; Villa et al., 2021) based on model/input
size. Also, solutions based on kernel sampling (Avalos Bad-
douh et al., 2021) are insufficient given the need to simulate
the overlapping impact of JIT-Q and other kernels (as dis-
cussed in Section 5.1.3). This makes simulating an entire
transformer block with several kernels more challenging.

GPU Performance Model. Our baseline GPU performance
is assumed to be max(GPU compute time, GPU memory
time), where GPU compute time considers GEMM opera-
tions (multiplies and adds) with peak compute throughput,
while memory time considers only reading GEMM’s input
tensors from HBM with 90% of peak memory bandwidth.
In other words, we assume executing the vector operations
in the transformer block, as well as writing the output of
the transformer block’s computation, to be free. This is
because, in optimized implementations, we observe that
the non-GEMM (element-wise) operations are increasingly
getting fused with the GEMMs, to avoid kernel launch and
global memory access overheads. Additionally, to have an
even stronger GPU baseline, we assume zero-overhead con-
current execution of weight and input gradient computations
in the backward propagation phase of training which results
in shorter LLM execution time on GPU.

PIM Performance Model. We assume a PIM architec-
ture in which the GPU issues PIM commands as special
load/store accesses which bypass the caches and are issued
in-order by the memory controller to multiple banks in par-
allel (Lee et al., 2021). We take a detailed DRAM command
orchestration approach in which, for a given weight matrix,
we consider necessary data mapping (Section 4.2) and or-
chestration (Section 4.1). Next, we deduce the exact DRAM
commands needed to orchestrate the computation. We aug-
ment a detailed DRAM model for modeling PIM instruction
timing that incorporates the PIM DRAM timing restrictions,
including row activation overheads. We assume the param-
eters listed in Table 1. Note that we assume a PIM-aware
GPU which can issue pim-instructions and pim-commands
at issue-rate. With the available thread parallelism at the

Table 1. Parameters for performance model (JEDEC, 2023).

#Banks per Stack (4-high) 512

Bandwidth per Pin 4.8 Gb/s
GPU Memory Bandwidth 614.4 GB/s
per Stack
Row Buffer Size 1024 B
tRP = 15ns, tCCDL=3.33ns,
DRAM Parameters {RAS=33ns

#PIM Units per Stack =256

PIM Parameters #PIM Registers per ALU = 16

Table 2. Future LLMs. L = #layers, H = hidden dimension, A =
#attention heads, P = #parameters, SL = sequence length, B =
batch size, TP/PP = tensor/pipeline parallelism degree.

LLM L H A SL B TP PP
future-1T 80 32K 128 4K 1 128 2
future-10T 200 64K 128 8K 1 128 8

future-100T 500 128K 128 16K 1 128 32

GPU, we believe this to be a reasonable assumption.

5.1.2 Evaluated LLMs

In this work, we evaluate LLMs of different hyperparameter
combinations and distributed setups for training. Specifi-
cally, we evaluate behavior of models similar to the follow-
ing LLMs (model name-parameter count): bert-345M (De-
vlin et al., 2019), gpt-2-1.5B (OpenAl, 2019), mega-Im-
8.3B (Shoeybi et al., 2020), t-nlg-17B (Microsoft, 2020),
gpt-3-175B (Brown et al., 2020), mega-nlg-530B (Smith
et al., 2022), and palm-540B (Chowdhery et al., 2022). Ad-
ditionally, given the trend of how LLMs evolve, we project
three future LLMs of sizes 1 trillion (future-1T), 10 trillion
(future-10T), and 100 trillion (future-100T) parameters in
Table 2. For these future models, we scale the number of
layers, hidden dimension, and sequence length.

5.1.3 Evaluated Metrics

JIT-Q Slack. To showcase the efficacy of offloading JIT-Q
to PIM, we evaluate JIT-Q slack as shown in Figure 7. We
define JIT-Q slack as the difference between the execution of
GEMM ¢ on GPU, and the quantization time of the weights
of the next GEMM i+1 on PIM . Bigger slack indicates
faster quantization on PIM. Throughout this section, for
simplicity, we model the next transformer block quantiza-
tion instead of the next GEMM as shown in @. That said,
JIT-Q at the operator level should at least retain the capacity
savings gained at the transformer block level.

Memory Capacity Savings. We evaluate the capacity sav-
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Figure 7. Quantization slack indicates PIM ability to perform JIT-
Q without stalling concurrent GPU computation.
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Figure 8. Compute interference between GPU and PIM execution
can negatively impact training throughput.

ings unlocked by JIT-Q on PIM due to storing a single
temporary copy of the quantized weights of the next trans-
former block. For that, we estimate the capacity consumed
by weights, gradients, activations, and optimizer state based
on the following. We assume a mixed precision training
setup similar to FP8-based training (Wang et al., 2018;
Mellempudi et al., 2019; Graphcore, 2023) with BF16 high-
precision master weights and optimizer state, MXn low-
precision weights, MXn activations for GEMMs, and FP§
otherwise. Additionally, for weights, we assume two copies
for row and column quantization. Finally, for activations,
we assume a selective recomputation strategy (Korthikanti
et al., 2022). We also discuss implications with other mixed
precision setups (e.g., FP32 master weights) in Section 5.6.

Training Throughput Loss. As PIM quantization kernel
is orchestrated by the GPU, running other training com-
putation on GPU concurrently will require GPU compute
resources (compute units or CUs or GPU cores) to be shared
amongst the two as shown in Figure 8. This loss of compute
resources, along with contention for shared HBM resource
can slowdown the concurrent GPU computation €. This in
turn, can lead to training throughput loss @.

To evaluate this loss in LLM training throughput, we na-
tively measure how the interference between GPU and PIM

08 @ pim-laneSHIFT ®pim-bitSHIFT Bother

0.8
0.7
20.6

c

g§05

I

€04
0.3
0.2
0.1

PIM time norm. to tiled

pim-jitg-tiled pim-jitg-strided pim-jitq-opt
Figure 9. PIM row quantization time of the different weight tensor
placements and optimizations (for BF16 to MX6).

execution can slowdown the execution on GPU. Our sys-
tem setup consists of an AMD Instinct™ MI210 Accelerator
comprising GPU with 104 CUs and four stacks of HBM2E
memory for a total capacity of 64GB and a peak memory
bandwidth of 1638.4 GB/s (AMD, 2023a). First, we use
Omniperf (AMD, 2023b), a system performance profiling
tool for machine learning/HPC workloads running on AMD
MI GPUs, to measure the slowdown of GPU compute while
disabling 16 out of available 104 CUs. Our experiments
show that a single CU can sustain the necessary PIM com-
mand issue rate for two physical HBM channels. As such,
with 32 channels in our system, we set aside 16 CUs to
orchestrate PIM kernel. Note that software and hardware
optimizations can lower the CUs needed for PIM orches-
tration, but we make a conservative assumption of 16 CUs
to study worst-case resource requirement for PIM. Second,
we scale our modeled GPU compute time by the measured
slowdown. Specifically, the execution on GPUs observes a
slowdown only while concurrently running with PIM quan-
tization. For example, with a large JIT-Q slack, the GPU
and PIM execution interfere for a small portion of the exe-
cution, in which the GPU computations observe slowdown.
Third, we estimate the LLM training time and its breakdown
using an analytical performance model for LLMs as pro-
posed in (Pati et al., 2023). Finally, with the updated GPU
execution slowdown, we estimate the training throughput
loss.

5.2 Evaluating PIM Mapping & Orchestration

In this section, we evaluate the performance of our proposed
PIM JIT-Q mapping and orchestration. Specifically, we com-
pare the tiled mapping (pim-jitq-tiled in Section 4.2), strided
tiled mapping (pim-jitq-strided in Section 4.2), and strided
mapping with the optimization in Section 4.1 (pim-jitg-opt).
Figure 9 depicts the PIM quantization time of these PIM
flavors normalized to baseline tiled mapping (pim-jitq-tiled)
on the y-axis for a representative LLM. Further, we break
down the PIM quantization time into that spent executing
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Figure 10. PIM JIT-Q slack (for BF16 to MX6).

shift-related PIM instructions (pim-laneSHIFT and pim-
bitSHIFT), and rest of the time as other (contains DRAM
row-open overhead, data-movement from register to row-
buffer, compare, etc.). We observe that pim-jitg-strided is
superior to pim-jitq-tiled (48% lower quantization time) be-
cause of avoiding lane-level shifts (i.e., pim-laneSHIFT in-
structions). Also, using pim-jitq-strided not only eliminates
pim-laneSHIFT, but reduces other PIM instructions as well.
For example, by packing multiple tiles with strided map-
ping, fewer pim-CMP instructions are used to process the
packed tiles compared to unpacked mapping. Also, utilizing
the augmented PIM design pim-jitq-opt (Section 4.1) fur-
ther reduces PIM quantization time to 70% lower compared
to pim-jitq-tiled as it reduces the number of instructions
required for bit-level shifting to a single PIM instruction.

5.3 PIM Quantizes without Stalling GPU

Next, we evaluate if, via offload to PIM, weights can be
quantized without stalling the GPU execution using the
JIT-Q slack metric (Section 5.1.3). Figure 10 shows the
JIT-Q slack for BF16 to MX6 as PIM quantization time
normalized to GPU compute time (y-axis, lower is better) for
the evaluated LLMs (x-axis). We observe that quantization
with PIM exhibits sufficient slack for both forward and
backward phases. Specifically, on average, we observe that
the GPU computation time is at least 2.4 x the quantization
time with PIM. The large slack holds for narrower MX4 and
wider MX9 formats with GPU time at least 1.6x and 3.7
PIM time, respectively (not shown).

We also observe that the varying slack across the evaluated
LLMs is due to their sequence length (SL) and batch-size
(B), which affect the quantization work on PIM and the
compute work on GPU differently. Specifically, increasing
SL or B, as in bert-340M, gpt-2-1.5B, or models larger
than future-1T, increases the input tensor size, but does not
impact weight tensors. Thus, GEMM compute increases,
while quantization time on weights remains the same.

Additionally, we evaluate the performance of row and col-
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Figure 11. PIM JIT-Q capacity savings (for BF16 to MX6).

umn quantization. We observe row quantization to have
better slack compared to column quantization under for-
ward and backward phases. This is due to the tiled data
mapping discussed in Section 4.2. Specifically, with the row-
major mapping of the tile in a bank, column elements end
up in multiple DRAM rows resulting in additional DRAM
row opens for column quantization. This results in an 18%
increase in column quantization time compared to row quan-
tization.

5.4 Capacity Savings of PIM JIT-Q

Figure 11 shows capacity savings for BF16 to MX6. We
observe a significant capacity savings of 12.5%, on average,
which continues to hold for future LLMs with trillions of
parameters (up to 17.6%). For MX4 (not shown), the av-
erage capacity savings drops to 9% (up to 12.5%) as the
overall capacity overheads of the low-precision weights gets
smaller. In contrast, for MX9 (not shown), the average
capacity savings increase to 16.8% (up to 24.2%).

The capacity savings unlock multiple benefits (not in tan-
dem) such as training larger LLMs with the same available
resources. For example, with MX6, it enables training a
20% larger model compared to gpt-3-175B. Also, given
that tensor slicing degree is largely dictated by underlying
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Figure 12. PIM JIT-Q training throughput loss (for BF16 to MX6).

memory capacity, the capacity savings can lower the tensor-
slicing degree needed. This can lower the overall training
cost, as well as potentially improving computation efficiency
because of running larger GEMMs (less tensor slicing) per
GPU and reducing model-parallel related communication.
For example, the saved capacity enables the use of 12.5%
reduction in the tensor-slicing degree. Further, the savings
can allow larger batch-sizes to be used which in turn can
improve computation efficiency. For example, we estimate
an increase in the per-GPU batch-size from two to four for
a gpt-3-175B-like model because of the capacity savings
JIT-Q provides during training. Finally, with the capacity
savings, more activations can be stored which can decrease
the frequency of forward phase re-computation.

Finally, we also evaluate a baseline that maintains a single
copy of the low-precision weights, either row or column,
and observe that JIT-Q delivers capacity savings of 4.8%
(up to0 6.6%), 6.7% (up to 9.7%), and 9.3% (up to 13.8%)
for MX4, MX6, and MXO9, respectively, averaged across the
evaluated LLMs. Note that such baseline would incur higher
data-movement due to reading the high-precision copy to
generate the required low-precision copy.

5.5 Effect of PIM JIT-Q on Training Throughput

Assuming the methodology in Section 5.1.3, we estimate
the training throughput loss shown in Figure 12. We ob-
serve, for BF16 to MX6 quantization that PIM delivers ca-
pacity savings at small training throughput loss of 1.6%
on average (up to 5% for mega-lm-8.3B). For BF16 to
MX4 (not shown), the average throughput loss is 2.4% due
to the increased overlap between GPU and PIM. In con-
trast, the average throughput loss for BF16 to MX9 is 1.1%
(not shown). It is worth noting that the reduction in for-
ward phase re-computation enabled by the capacity savings
can positively affect training throughput and possibly re-
gain/improve throughput loss due to interference. Further,
larger batch-sizes, enabled by the capacity savings due to
JIT-Q, can also help recover this loss. Finally, in future PIM
designs that offload PIM orchestration to dedicated engines

instead of GPU, this compute interference will not pose a
challenge.

5.6 PIM JIT-Q with FP32 Master Weights

The single bit shifts to deduce the output MX mantissa bits
(pim-bitSHIFT) are proportional to the number of mantissa
bits in the input scalar format. Therefore, for FP32 mas-
ter weights, the bit-level shift commands increase, which
increases PIM quantization time, and subsequently affects
the quantization slack. Specifically, on average, we observe
that the GPU compute time is at most 0.51x and 0.76 x of
the PIM quantization time for MX4 and MX6, respectively,
while maintaining the slack for MX9. That said, although
PIM is not able to quantize the weights for the next trans-
former block ¢+1, PIM JIT-Q can prepare for i+2 instead. In
other words, we maintain the quantized weights for the next
two transformer blocks instead of one. Compared to keep-
ing the low-precision copies for all the weight tensors in
the baseline, JIT-Q delivers capacity savings of 5.6%, 7.9%,
and 11.1% at throughput loss of 4.4%, 4.2%, and 3.6% for
MX4, MX6, and MX9, respectively, averaged across the
evaluated LLMs.

6 DISCUSSION

Master Weights Sharding. @ Works such as Zero-
Redundancy parallelism (ZeRO) (Rajbhandari et al., 2020)
and FSDP (Zhao et al., 2023) shard the model states (param-
eters, gradients, and optimizer state) across GPUs instead of
replicating them. The required tensor is reconstructed (com-
municated) on-demand before computations. Our proposed
JIT-Q can be utilized per each (PIM-enabled) GPU to locally
quantize its shard of the master weights before communi-
cating the parameters. That said, for directional blocked
formats (MX), the partitioning of the master weight tensors
should be in tiled fashion (Section 4.2). Finally, JIT-Q can
also be used for or in conjunction with recent works that
further quantize weights (and gradients) to reduce overall
communication volume (Wang et al., 2023).

Master Weights Placement. In scenarios where mas-
ter weights are offloaded to CPU memory, and only the
low-precision copy is sent to/resides in GPU (Ren et al.,
2021; Rajbhandari et al., 2021), JIT-Q can be done on
PIM-enabled CPU memory to eliminate the persistent low-
precision weight copies in GPU memory. In this case, JIT-Q
only changes when to send the low-precision weights from
CPU to GPU, not the CPU-GPU traffic volume.

Blocked Formats Variants. We discuss MX formats as
an exemple of blocked data formats. As such, JIT-Q nei-
ther relies on nor prescribes MX formats and is applicable
wherever weights are maintained at multiple precisions (e.g.,
mixed precision training with BF16 and FP32 weight ten-
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sors (Micikevicius et al., 2017)). That said, PIM routines for
other block sizes with more/fewer exponent levels (Rouhani
et al., 2023) and different sub-block granularity can be de-
duced and employed.

Scalar-to-scalar JIT-Q. Quantization from one scalar for-
mat to another (e.g., from FP32 to BF16), used in existing
training setups, is simpler compared to MX quantization.
This is because each input is independent (no blocking)
making the computation element-wise, thus even more PIM-
amenable. Also, it does not involve computing the shared
exponents, and the bit shift amount is the same across all
the inputs. Therefore, we can simplify our PIM quantization
routine and mapping to perform such quantization.

Weight Tensor Placement Implications. The proposed
tiled data placement (Section 4.2) is key to harnessing PIM
bandwidth boost for MX formats and has minor impact on
data read/write performance. This is realized by modifying
the weight update stage during training. Specifically, while
baseline calculates and writes both high and low-precision
weight tensors to memory, JIT-Q only requires writing high-
precision weight tensors to memory. This simplifies and
lowers data-movement in weight update stage. Addition-
ally, these tiled writes of the high-precision weight tensor
result in their interleaving across channels/banks in memory.
Therefore, the efficiency of the writes is not adversely af-
fected. Furthermore, with such interleaving, the parallelism
extracted from memory is preserved on reading the weight
tensors. Finally, for ML training employing scalar-to-scalar
quantization, JIT-Q has no special placement implications
or requirements other than allocating data in large physical
pages (Section 2.3).

7 RELATED WORK

Several ML techniques are employed to reduce per-device
memory requirements. Distributed techniques help increase
the effective memory capacity by slicing model parameters
across multiple devices; pipeline parallelism maps layers to
devices (Huang et al., 2019; Narayanan et al., 2019), ten-
sor/sequence parallelism slices individual layers (Narayanan
et al., 2021; Li et al., 2022), and ZeRO/FSDP shards model
states across data-parallel devices (Rajbhandari et al., 2020;
Zhao et al., 2023). Other works offload model states to het-
erogeneous system memory (e.g., CPU, NVMe) (Ren et al.,
2021; Rajbhandari et al., 2021). Finally, activation check-
pointing trades-off computation for capacity (Chen et al.,
2016; Korthikanti et al., 2022). JIT-Q reduces the reliance
on such techniques and can also be used in conjunction to
limit the required distributed device count, communication
overheads, and extraneous compute.

Similarly, compression can provide memory sav-
ings (Nikoli¢ et al., 2022; Zadeh et al., 2022) or reduce

communication (Wang et al.,, 2023; Bai et al., 2021;
Zhang et al., 2022; Rhu et al., 2018). One class of
compression is quantization which is used for both training
and inference (Micikevicius et al., 2022; Noune et al., 2022;
Darvish Rouhani et al., 2023). While we focus on MX
formats, our proposal can be extended to other data formats.

Additionally, ML algorithm-aware techniques such as
model pruning (Anwar et al., 2017) and knowledge dis-
tillation (Hinton et al., 2015) reduce capacity needs by re-
moving unnecessary model parameters. However, these are
employed during deployment and do not help with capacity
savings during training. Furthermore, these techniques re-
quire algorithmic understanding and/or additional training
to preserve model accuracy.

Finally, many works leverage PIM’s data-movement and
performance benefits to accelerate ML (Lee et al., 2021;
Pati et al., 2022; Oliveira et al., 2022; Aga et al., 2019).
To the best of our knowledge, this is the first work which
showcases PIM’s ability to limit capacity requirements via
efficient JIT quantization.

8 CONCLUSION

Memory capacity is a key determinator of ML efficiency.
This work proposes harnessing processing-in-memory
(PIM) for just-in-time quantization of weight tensors. This
eliminates weight tensor redundancy to deliver memory
capacity savings. We show that our proposed PIM quantiza-
tion routine can keep up with GPU computation and deliver
up to 24% memory capacity savings at marginal throughput
loss (up to 2.4%) for LLM training. Resultant capacity sav-
ings can be harnessed to train larger models, to reduce the
number of GPUs required for training, or for better compute
efficiency.

ACKNOWLEDGEMENTS

The authors thank Nuwan Jayasena and the anonymous
MLSys reviewers for helping improve the paper. AMD, the
AMD Arrow logo, AMD Instinct, and combinations thereof
are trademarks of Advanced Micro Devices, Inc. Other
product names used in this publication are for identification
purposes only and may be trademarks of their respective
companies.

REFERENCES

Aga, S., Jayasena, N., and Ignatowski, M. Co-ML: A Case
for Collaborative ML Acceleration Using near-Data Pro-
cessing. In Proceedings of the International Symposium
on Memory Systems (MEMSYS), 2019.

Alayrac, J.-B., Donahue, J., Luc, P, Miech, A., Barr, 1., Has-



JIT-Q: Just-in-time Quantization with Processing-In-Memory for Efficient ML Training

son, Y., Lenc, K., Mensch, A., Millican, K., Reynolds, M.,
et al. Flamingo: A Visual Language Model for Few-shot
Learning. Advances in Neural Information Processing
Systems, 2022.

AMD. Instinct™  MI210  Acceler-
ator. https://www.amd.com/en/
products/server—accelerators/
amd-instinct-mi210, 2023a.

AMD

AMD. Omniperf. https://github.com/
AMDResearch/omniperf, 2023b.

Anwar, S., Hwang, K., and Sung, W. Structured pruning
of deep convolutional neural networks. ACM Journal on
Emerging Technologies in Computing Systems (JETC),
2017.

Avalos Baddouh, C., Khairy, M., Green, R. N., Payer, M.,
and Rogers, T. G. Principal Kernel Analysis: A Tractable
Methodology to Simulate Scaled GPU Workloads. In
Proceedings of the IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2021.

Bai, Y., Li, C., Zhou, Q., Yi, J., Gong, P., Yan, F., Chen, R.,
and Xu, Y. Gradient Compression Supercharged High-
Performance Data Parallel DNN Training. In Proceedings
of the ACM Symposium on Operating Systems Principles
(SOSP), 2021.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, 1., and Amodei, D. Language
Models are Few-Shot Learners. In Advances in Neural
Information Processing Systems, 2020.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training Deep
Nets with Sublinear Memory Cost. arXiv, 2016.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G.,
Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev, S.,
Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fe-
dus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph,
B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal,
S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M.,
Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee,
K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O.,
Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean,

J., Petrov, S., and Fiedel, N. PaLLM: Scaling Language
Modeling with Pathways. arXiv, 2022.

Darvish Rouhani, B., Zhao, R., Elango, V., Shafipour, R.,
Hall, M., Mesmakhosroshahi, M., More, A., Melnick, L.,
Golub, M., Varatkar, G., Shao, L., Kolhe, G., Melts, D.,
Klar, J., L’Heureux, R., Perry, M., Burger, D., Chung,
E., Deng, Z. S., Naghshineh, S., Park, J., and Naumoyv,
M. With Shared Microexponents, A Little Shifting Goes
a Long Way. In Proceedings of the ACM/IEEE Inter-
national Symposium on Computer Architecture (ISCA),
2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. arXiv, 2019.

Graphcore. Mixed-Precision Arithmetic for Al: A Hard-
ware Perspective. https://docs.graphcore.
ai/projects/ai-float-white-paper/en/
latest/ai-float.html, May 2023.

He, M., Song, C., Kim, I, Jeong, C., Kim, S., Park, I.,
Thottethodi, M., and Vijaykumar, T. Newton: A DRAM-
maker’s accelerator-in-memory (AiM) architecture for
machine learning. In Proceedings of the IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO),
2020.

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowl-
edge in a neural network. arXiv, 2015.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M. X.,
Chen, D, Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and Chen,
Z. GPipe: Efficient Training of Giant Neural Networks
Using Pipeline Parallelism. 2019.

JEDEC. High Bandwidth Memory (HBM) DRAM. https:
//www.jedec.org/standards—documents/
docs/jesd235a, 2013.

JEDEC. High Bandwidth Memory (HBM3)
DRAM. https://www. jedec.org/
standards-documents/docs/jesd238a,
2023.

Kalamkar, D. D., Mudigere, D., Mellempudi, N., Das, D.,
Banerjee, K., Avancha, S., Vooturi, D. T., Jammala-
madaka, N., Huang, J., Yuen, H., Yang, J., Park, J.,
Heinecke, A., Georganas, E., Srinivasan, S., Kundu, A.,
Smelyanskiy, M., Kaul, B., and Dubey, P. A Study of
BFLOAT16 for Deep Learning Training. arXiv, 2019.

Kim, J. H., Kang, S.-H., Lee, S., Kim, H., Ro, Y., Lee, S.,
Wang, D., Choi, J., So, J., Cho, Y., et al. Aquabolt-XL
HBM2-PIM, LPDDRS5-PIM with in-memory processing,
and AXDIMM with acceleration buffer. IEEE Micro,
2022.


https://www.amd.com/en/products/server-accelerators/amd-instinct-mi210
https://www.amd.com/en/products/server-accelerators/amd-instinct-mi210
https://www.amd.com/en/products/server-accelerators/amd-instinct-mi210
https://github.com/AMDResearch/omniperf
https://github.com/AMDResearch/omniperf
https://docs.graphcore.ai/projects/ai-float-white-paper/en/latest/ai-float.html
https://docs.graphcore.ai/projects/ai-float-white-paper/en/latest/ai-float.html
https://docs.graphcore.ai/projects/ai-float-white-paper/en/latest/ai-float.html
https://www.jedec.org/standards-documents/docs/jesd235a
https://www.jedec.org/standards-documents/docs/jesd235a
https://www.jedec.org/standards-documents/docs/jesd235a
https://www.jedec.org/standards-documents/docs/jesd238a
https://www.jedec.org/standards-documents/docs/jesd238a

JIT-Q: Just-in-time Quantization with Processing-In-Memory for Efficient ML Training

Korthikanti, V., Casper, J., Lym, S., McAfee, L., Andersch,
M., Shoeybi, M., and Catanzaro, B. Reducing Activation
Recomputation in Large Transformer Models. arXiv,
2022.

Lee, S., Kang, S.-h., Lee, J., Kim, H., Lee, E., Seo, S.,
Yoon, H., Lee, S., Lim, K., Shin, H., Kim, J., Seongil,
O, Iyer, A., Wang, D., Sohn, K., and Kim, N. S. Hard-
ware Architecture and Software Stack for PIM Based on
Commercial DRAM Technology: Industrial Product. In
Proceedings of the ACM/IEEE International Symposium
on Computer Architecture (ISCA), 2021.

Lee, S., Kim, K., Oh, S., Park, J., Hong, G., Ka, D.,
Hwang, K., Park, J., Kang, K., Kim, J., Jeon, J., Kim,
N., Kwon, Y., Vladimir, K., Shin, W., Won, J., Lee,
M., Joo, H., Choi, H., Lee, J., Ko, D., Jun, Y., Cho,
K., Kim, I., Song, C., Jeong, C., Kwon, D., Jang, J.,
Park, 1., Chun, J., and Cho, J. A lynm 1.25V 8Gb,
16Gb/s/pin GDDR6-based Accelerator-in-Memory Sup-
porting I TFLOPS MAC Operation and Various Activa-
tion Functions for Deep-Learning Applications. In Pro-
ceedings of the IEEE International Solid-State Circuits
Conference (ISSCC), 2022.

Lee, W. J., Kim, C. H., Paik, Y., Park, J., Park, I., and Kim,
S. W. Design of processing-“inside”’-memory optimized
for dram behaviors. IEEE Access, 2019.

Li, S., Xue, F.,, Baranwal, C., Li, Y., and You, Y. Sequence
Parallelism: Long Sequence Training from System Per-
spective. arXiv, 2022.

Mellempudi, N., Srinivasan, S., Das, D., and Kaul, B. Mixed
Precision Training With 8-bit Floating Point. arXiv, 2019.

Micikevicius, P, Narang, S., Alben, J., Diamos, G. F., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed Precision Training.
arXiv, 2017.

Micikevicius, P., Stosic, D., Burgess, N., Cornea, M., Dubey,
P., Grisenthwaite, R., Ha, S., Heinecke, A., Judd, P,
Kamalu, J., Mellempudi, N., Oberman, S., Shoeybi, M.,
Siu, M., and Wu, H. FP8 Formats for Deep Learning.
arXiv, 2022.

Microsoft. Turing-NLG: A 17-billion-parameter language
model by Microsoft. https://www.microsoft.com/en-
us/research/blog/turing-nlg-a-17-billion-parameter-
language-model-by-microsoft/, Feb 2020.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. PipeDream: Generalized Pipeline Parallelism
for DNN Training. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP), 2019.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V. A., Vainbrand, D., Kashinkunti,
P, Bernauer, J., Catanzaro, B., Phanishayee, A., and Za-
haria, M. Efficient Large-Scale Language Model Training
on GPU Clusters Using Megatron-LM. arXiv, 2021.

Nikolié, M., Sanchez, E. T., Wang, J., Zadeh, A. H.,
Mahmoud, M., Abdelhadi, A., and Moshovos, A.
Schrodinger’s FP: Dynamic Adaptation of Floating-Point
Containers for Deep Learning Training. arXiv, 2022.

Noune, B., Jones, P, Justus, D., Masters, D., and Luschi,
C. 8-bit Numerical Formats for Deep Neural Networks.
arXiv, 2022.

Oliveira, G. F., Gémez-Luna, J., Ghose, S., Boroumand, A.,
and Mutlu, O. Accelerating Neural Network Inference
With Processing-in-DRAM: From the Edge to the Cloud.
IEEE Micro, 2022.

OpenAl. Language Models are Unsupervised Multi-
task Learners. https://openai.com/research/
better—-language—-models, Feb 2019.

Pati, S., Aga, S., Jayasena, N., and Sinclair, M. D. Demysti-
fying BERT: System Design Implications. In Proceedings
of the IEEE International Symposium on Workload Char-
acterization (IISWC), 2022.

Pati, S., Aga, S., Islam, M., Jayasena, N., and Sinclair,
M. D. Tale of Two Cs: Computation vs. Communication
Scaling for Future Transformers on Future Hardware. In
Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC), 2023.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. ZeRO:
Memory Optimizations toward Training Trillion Param-
eter Models. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis (SC), 2020.

Rajbhandari, S., Ruwase, O., Rasley, J., Smith, S., and He,
Y. ZeRO-Infinity: Breaking the GPU Memory Wall for
Extreme Scale Deep Learning. In Proceedings of the In-
ternational Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2021.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. ZeRO-Offload:
Democratizing Billion-Scale Model Training. arXiv,
2021.

Rhu, M., O’Connor, M., Chatterjee, N., Pool, J., Kwon,
Y., and Keckler, S. W. Compressing DMA Engine:
Leveraging Activation Sparsity for Training Deep Neu-
ral Networks. In Proceedings of the IEEE International
Symposium on High Performance Computer Architecture
(HPCA), 2018.


https://openai.com/research/better-language-models
https://openai.com/research/better-language-models

JIT-Q: Just-in-time Quantization with Processing-In-Memory for Efficient ML Training

Rouhani, B. D., Zhao, R., More, A., Hall, M., Khodamoradi,
A., Deng, S., Choudhary, D., Cornea, M., Dellinger, E.,
Denolf, K., Dusan, S., Elango, V., Golub, M., Heinecke,
A., James-Roxby, P., Jani, D., Kolhe, G., Langhammer,
M., Li, A., Melnick, L., Mesmakhosroshahi, M., Ro-
driguez, A., Schulte, M., Shafipour, R., Shao, L., Siu,
M., Dubey, P., Micikevicius, P., Naumov, M., Verilli, C.,
Wittig, R., and Chung, E. Microscaling Data Formats for
Deep Learning. arXiv, 2023.

Samsung. Samsung  Electronics  Semicon-
ductor  Unveils Cutting-edge Memory  Tech-
nology to  Accelerate  Next-generation Al

https://semiconductor.samsung.com/newsroom/tech-
blog/samsung-electronics-semiconductor-unveils-
cutting-edge-memory-technology-to-accelerate-next-
generation-ai/, 2022.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J.,
and Catanzaro, B. Megatron-LM: Training Multi-Billion
Parameter Language Models Using Model Parallelism.
arXiv, 2020.

Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhan-
dari, S., Casper, J., Liu, Z., Prabhumoye, S., Zerveas, G.,
Korthikanti, V., Zhang, E., Child, R., Aminabadi, R. Y.,
Bernauer, J., Song, X., Shoeybi, M., He, Y., Houston,
M., Tiwary, S., and Catanzaro, B. Using DeepSpeed
and Megatron to Train Megatron-Turing NLG 530B, A
Large-Scale Generative Language Model. arXiv, 2022.

Sung, Y.-L., Cho, J., and Bansal, M. VI-adapter: Parameter-
efficient Transfer Learning for Vision-and-Language
Tasks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022.

Tsimpoukelli, M., Menick, J. L., Cabi, S., Eslami, S.,
Vinyals, O., and Hill, F. Multimodal Few-shot Learn-
ing with Frozen Language Models. Advances in Neural
Information Processing Systems, 2021.

Untether AI. Untether Al. https://www.untether.
ai/technology, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
Is All You Need. In Proceedings of the International
Conference on Neural Information Processing Systems
(NeurlIPS), 2017.

Villa, O., Lustig, D., Yan, Z., Bolotin, E., Fu, Y., Chat-
terjee, N., Jiang, N., and Nellans, D. Need for Speed:
Experiences Building a Trustworthy System-Level GPU
Simulator. In Proceedings of the IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), 2021.

Wang, G., Qin, H., Jacobs, S. A., Holmes, C., Rajbhandari,
S., Ruwase, O., Yan, F, Yang, L., and He, Y. ZeRO++:
Extremely Efficient Collective Communication for Giant
Model Training. arXiv, 2023.

Wang, N., Choi, J., Brand, D., Chen, C.-Y., and Gopalakr-
ishnan, K. Training Deep Neural Networks with 8-bit
Floating Point Numbers. arXiv, 2018.

Zadeh, A. H., Mahmoud, M., Abdelhadi, A., and Moshovos,
A. Mokey: Enabling Narrow Fixed-Point Inference for
out-of-the-Box Floating-Point Transformer Models. In

Proceedings of the International Symposium on Computer
Architecture (ISCA), 2022.

Zhang, Z., Zheng, S., Wang, Y., Chiu, J., Karypis, G.,
Chilimbi, T., Li, M., and Jin, X. MiCS: Near-Linear
Scaling for Training Gigantic Model on Public Cloud.
Proceedings of the VLDB Endowment, 2022.

Zhao, Y., Gu, A., Varma, R., Luo, L., Huang, C.-C., Xu, M.,
Wright, L., Shojanazeri, H., Ott, M., Shleifer, S., Desmai-
son, A., Balioglu, C., Damania, P., Nguyen, B., Chauhan,
G., Hao, Y., Mathews, A., and Li, S. PyTorch FSDP: Ex-
periences on Scaling Fully Sharded Data Parallel. arXiv,
2023.


https://www.untether.ai/technology
https://www.untether.ai/technology

