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ABSTRACT
Federated Learning (FL) is a practical approach to train deep learning models collaboratively across user-end
devices, protecting user privacy by retaining raw data on-device. In FL, participating user-end devices are highly
fragmented in terms of hardware and software configurations. Such fragmentation introduces a new type of data
heterogeneity in FL, namely system-induced data heterogeneity, as each device generates distinct data depending
on its hardware and software configurations. In this paper, we first characterize the impact of system-induced data
heterogeneity on FL model performance. We collect a dataset using heterogeneous devices with variations across
vendors and performance tiers. By using this dataset, we demonstrate that system-induced data heterogeneity
negatively impacts accuracy, and deteriorates fairness and domain generalization problems in FL. To address these
challenges, we propose HeteroSwitch, which adaptively adopts generalization techniques (i.e., ISP transformation
and SWAD) depending on the level of bias caused by varying HW and SW configurations. In our evaluation with
a realistic FL dataset (FLAIR), HeteroSwitch reduces the variance of averaged precision by 6.3% across device

types.

1 INTRODUCTION

Federated learning (FL) enables mobile devices to collabo-
ratively train a shared machine learning (ML) model while
keeping all the raw data on device (McMahan et al., 2017;
Kairouz et al., 2021). As only the model gradients are shared
with the cloud servers for updating the shared global model,
FL has been considered as a practical way to prevent the
privacy leakage (Kairouz et al., 2021; Huba et al., 2022).
Although FL has gained much attention in various applica-
tions, such as computer vision (Li et al., 2022), voice recog-
nition (Guliani et al., 2021), health monitoring (Brisimi
et al., 2018), and recommender system (Hejazinia et al.,
2022), the following key challenges make FL deployment
less practical: high degree of system and data heterogeneity
causing unstable and degraded performance of the global
model (Kim & Wu, 2021; Li et al., 2020).

Data heterogeneity: In FL, the size and distributions of
training data can be significantly heterogeneous depend-
ing on the geographical locations, cultural backgrounds,
personal habits, and device usage patterns of participating
users (Kairouz et al., 2021). For example, in a handwrit-
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ing recognition scenario, users who write the same words
exhibit differences in stroke width and slant. Such data
heterogeneity can lead to imbalanced and biased model up-
dates (Wu & Wang, 2022), eventually degrading the overall
model performance (Zhao et al., 2018) or resulting in dis-
parate accuracy across devices (Li et al., 2019). Thus, many
prior works have tried to mitigate the data heterogeneity
by adopting a regularization method to local models (Li
et al., 2020), sharing a small amount of public data across
local clients (Zhao et al., 2018; Mansour et al., 2020), or
employing weighted averaging for model aggregation (Li
etal., 2019).

System-induced data heterogeneity: In FL, the hardware
of client devices can also be highly diverse: there are more
than ten thousand devices with different SoCs, sensors, and
software systems in the market (Wu et al., 2019; Kim &
Wu, 2020). Such system heterogeneity introduces a new
type of data heterogeneity, namely system-induced data
heterogeneity, in FL. For example, in case of vision tasks,
heterogeneous sensor hardware can produce noticeably dif-
ferent training data (i.e., images) even for the same scene or
object, due to the respective attributes such as focal length,
aperture, and other variables (see Figure 1). The difference
across the training data can get even more severe due to the
fragmented image signal processing (ISP) algorithms em-
ployed onto the devices. This new type of data heterogeneity
eventually contributes to bias across the local models, re-
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Figure 1. End-to-end ISP pipeline for a vision DNN. Devices gen-
erate heterogeneous data due to the SW and HW variations, de-
grading model performance significantly.The accuracy of Homo-
geneous Client is obtained when FL devices are the same, whereas
Heterogeneous Client is obtained with different device types.

sulting in significant model performance degradation (by
23.5%, on average, as shown in Fig. 1).

Despite the significant impact, system-induced data hetero-
geneity has been overlooked in FL research. Most prior
works have primarily focused on label distribution skew,
where a non-IID dataset is formed by partitioning a flat ex-
isting dataset based on the labels (Li et al., 2020; Zhao et al.,
2018; Mansour et al., 2020; Li et al., 2019; McMahan et al.,
2017; Karimireddy et al., 2020). Hence, they cannot con-
sider the characteristics of cross-client heterogeneity which
should be inherently included in the real-world FL datasets
significantly degrading the model performance.

Furthermore, such system-induced data heterogeneity deteri-
orates two notable problems in FL: fairness and domain gen-
eralization. In FL, fairness involves ensuring that the global-
model fairly represents the learning from all devices and
is not biased towards any particular group of devices (Pes-
sach & Shmueli, 2022; Maeng et al., 2022). Domain gen-
eralization (DG), meanwhile, involves designing machine
learning models that can generalize well to new, unseen do-
mains (Wang et al., 2022). In the context of FL, the domain
can be a particular type of devices, each displaying unique
characteristics due to system-induced data heterogeneity.

In this paper, we first characterize the impact of system-
induced data heterogeneity for FL. We collect a vision
dataset using a collection of devices of heterogeneous hard-
ware'. By using the collected dataset, we analyze the vari-
ations and inconsistencies in the global model that arise

'The dataset is available at https://github.com/
CASL-KU/HeteroSwitch.

due to system-induced data heterogeneity originated from
hardware (i.e., sensors) and software (i.e., ISP algorithms).
We also investigate fairness and domain generalization im-
plications which can stem from system-induced data hetero-
geneity in realistic FL. environments. Based on the charac-
terization results, we propose HeteroSwitch — a selective
generalization method that combines the ISP transformation
and SWAD — which counteracts the effects of system-
induced data heterogeneity in FL. Compared with the base-
line, HeteroSwitch reduces the variance of accuracy across
device types by 79.5%, while improving the worst out-of-
distribution (OOD) accuracy by 5.8%.

Key Contributions: We summarize the main contributions
of this work as follows:

* We create a new dataset that takes into account client
devices of heterogeneous hardware to independently
identify the impact of system-induced data heterogene-
ity. We attempt to discern the most influential factors
contributing to system-induced data heterogeneity in
FL models during the data generation process, and ex-
amine the impact of system-induced heterogeneity on
the FL model.

* We investigate the fairness and domain generaliza-

tion implications which can be deteriorated by system-

induced data heterogeneity.

Based on the analysis, we propose HeteroSwitch. By

switching the use of generalization techniques in an

FL environment where each device possesses hetero-

geneous data, HeteroSwitch effectively mitigates the

model performance degradation caused by system-
induced data heterogeneity.

2 BACKGROUND
2.1 Federated Learning

Federated Learning (FL) provides a privacy-preserving alter-
native to conventional machine learning, allowing for collab-
orative model training across various devices while keeping
the data locally stored (McMahan et al., 2017). Given N
local client devices, a server first initializes a global deep
learning model and its global parameters by specifying the
number of local training epochs E, the local training mini-
batch size B, and the number of participant devices K. (B,
E, K) is determined by FL-based services (McMahan et al.,
2017). In each training round, the server selects K devices
from the total N devices. The global model is then broadcast
to the selected devices. Each selected device locally trains
the model using its data samples with the batch size B over
E epochs. Once training is completed, the devices send the
model gradients back to the server. The server averages
these gradients to update the global model. This process is
repeated until the desired accuracy is achieved.



HeteroSwitch: Characterizing and Taming System-Induced Data Heterogeneity in Federated Learning

2.2 ISP Pipeline

In FL, images collected by each client are used for local-
model training. Each device produces different images de-
pending on a wide range of hardware and software. Fig. 1
depicts the process from image capturing to the formation
of a tensor to be used by the training of a DNN or for in-
ference. (1) At the beginning, the image sensor records the
light signal as RAW data based on its properties like focal
length, aperture, pixel size, and resolution. (2) After that,
a series of image signal processing (ISP) stages (i.e., from
Demosaic to Compress in Fig. 1) are applied to the RAW
data to produce a human visible image (Buckler et al., 2017;
Hansen et al., 2021). The ISP stages include:

* Demosaicing converts RAW data into a color image.

* Denoising removes noise from the image.

e Color transformation (i.e., White Balance adjust-
ments) corrects the colors in the image to make them
natural (Wyszecki & Stiles, 2000).

* Color transformation (Gamut mapping) converts the
colors of the image to a standard gamut.

* Tone transformation adjusts the brightness and con-
trast of the image.

» Image compression reduces file size while attempting
to maintain image quality.

(3) Finally, the images are transformed to a tensor to be used
by model training or inference.

In FL, the heterogeneous combination of sensors and ISP
algorithms from the large collection of client devices cause
system-induced data heterogeneity.

3 SYSTEM-INDUCED DATA
HETEROGENEITY IN FL

This section characterizes the impact of system-induced data
heterogeneity on FL. We create a novel image dataset by col-
lecting images using a collection of representative devices
of different system hardware characteristics (Section 3.1).
By using the dataset, we analyze how system-induced data
heterogeneity introduces bias on the global model in FL.
(Section 3.2). We also attempt to discern the most influential
factors contributing to system-induced data heterogeneity
during the data generation process (Section 3.3 and 3.4).

3.1 Dataset Creation

To isolate and examine the impact of system-induced data
heterogeneity on FL, we create a custom dataset by using a
total of nine smartphones (Table 1). We select three smart-
phones from each of the three different vendors — Samsung,
LG, and Google, representing high-end (H), mid-end (M),
and low-end (L) categories with at least two-year gaps be-
tween their release dates (Kim & Wu, 2020; 2021; Wu et al.,

Table 1. Mobile devices used in dataset creation, categorized by
performance tiers and vendors. (N%) indicates the market share of
respective device. H, M, and L represents high-end, mid-end, and
low-end devices, respectively.

Level Vendor
Samsung LG Google
H GalaxyS22 (12%) VELVET (2%) Pixel5 (1%)
M GalaxyS9 (27%) G7 (5%) Pixel2 (3%)
L GalaxyS6 (38%) G4 (8%) Nexus5X (4%)

2019) — by introducing variations across vendors and per-
formance tiers, we emulate a realistic device composition
for FL and assess how device heterogeneity contributes to
system-induced data heterogeneity.

Each device is fixed with tripod, and used to capture im-
ages displayed on a monitor in a dark room — to isolate
the impact of system-induced data heterogeneity and to
prevent a potential introduction of the other types of fea-
ture distribution skew, we controlled other external factors
(e.g., lighting, position, and object being photographed) that
may affect the captured images (Cidon et al., 2021; Zhang
et al., 2016). For the images, we use 12 non-overlapping
ImageNet (Deng et al., 2009) classes from 12 higher-level
categories for the images displayed: Chihuahua, Altar, Cock,
Abaya, Ambulance, Loggerhead, Timber Wolf, Tiger Bee-
tle, Accordion, French Loaf, Barber Chair, and Orangutan.
This dataset is compact, yet sufficiently challenging to learn
with a higher number of labels and larger image sizes com-
pared to datasets used in previous FL. works (LeCun, 1998;
Krizhevsky et al., 2009; Cohen et al., 2017; Scheuerman
et al., 2021). To separate the impact of hardware (HW) and
software (SW) differences, we collected both RAW data (i.e.
unprocessed and uncompressed data directly obtained from
the image sensor without employing the ISP algorithms)
and images processed by the default camera application of
each device.

3.2 Data Heterogeneity across Device type

In FL, system-induced data heterogeneity can create sig-
nificant bias across different device types. Table 2 shows
quality degradation of the global model across various de-
vice types, compared to when the model is tested on the
same device type it was trained on. The quality of the model
is measured by its accuracy on each deployed device. Each
row represents the device type used by the clients for train-
ing the global model, while each column shows the device
type used for testing the trained global model. The Mean
Others of each device refers to the average model quality
degradation on all devices except the device itself — the
degradation indicates how easily the model is affected by
system-induced heterogeneity alone. The highest accuracy
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Table 2. Model quality degradation in model when deployed to various device types, compared to the training device type.
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Figure 2. Model quality degradation in model when deployed to
various device types using RAW data.

is always achieved when the model is tested on the same
device type it was trained on, and there is an observable
drop (1.0% ~ 50.7%) in accuracy when the model is tested
on the others.

In Table 2, the model quality degradation depends on the
device type. For example, when the model trained on a
G7 is tested on Pixel5, the accuracy degrades by 32.7%
— the accuracy degrades by 20.0% for the reverse case.
This is because the two devices are using significantly dif-
ferent hardware (i.e., camera sensors) and software (i.e.,
ISP algorithms). On the other hand, Pixel 5 and Pixel 2,
which have the smallest differences in HW and SW, show
the least model quality degradation when tested on each
other (5.7% and 1.0%, respectively). These results demon-
strate the unique feature of the system-induced heterogeneity
which depends on the heterogeneous sensor hardware and
ISP algorithms.

To better understand the system-induced data heterogeneity
effect, we further investigate its two primary sources in the
next subsection: 1) HW (i.e., lens and sensor) variations and
2) SW (i.e., ISP algorithm) variations.

3.3 Deeper Look at Heterogeneity: HW

In this subsection, we further investigate the impact of HW
variations on the data and the trained model performance.
To focus on the impact of HW, especially the type of sensors

Train on Test on (Model Quality Degradation) Mean
Pixel5 Pixel2 Nexus5X VELVET G7 G4 S22 S9 S6 Others
Pixel5 - 5.7% 21.3% 10.0% 20.0% 212% 224% 129% 24.6% | 17.3%
Pixel2 1.0% - 11.4% 5.2% 11.8% 141% 19.0% 10.5% 15.3% | 11.0%
Nexus5X 28.1%  19.6% - 24.9% 6.7% 339% 43.0% 202% 19.8% | 24.5%
VELVET 94%  10.8% 15.6% - 11.0% 119% 20.6% 43% 187% | 12.8%
G7 327% 21.3% 12.5% 17.7% - 191% 42.7% 11.6% 17.9% | 21.9%
G4 14.0% 17.3% 16.7% 13.5% 15.8% - 26.8% 12.0% 13.6% | 16.2%
S22 258% 21.4% 25.9% 18.4% 20.5% 26.4% - 219% 35.8% | 24.5%
S9 29.6% 25.5% 14.7% 10.6% 11.1% 29.4% 50.7% - 16.4% | 23.5%
S6 292%  24.9% 15.5% 24.7% 98% 172% 43.7% 172% - 22.8%
Mean Others | 21.2% 18.3% 16.7% 15.6% 133% 21.7% 33.6% 13.8% 20.3% | 19.4%
& 0 used, we exclude the impact of SW by training the model
E § 20 with RAW data (i.e. unprocessed and uncompressed data
gg 0 directly obtained from the image sensor without employing
2 e the ISP algorithms).
=280
The image sensor heterogeneity is a significant source of the

data discrepancy. Fig. 2 represents the model quality degra-
dation on each target device, when the model is trained with
RAW data of the other devices. The x-axis represents the
target device, while the y-axis represents the model quality
degradation and the error bars indicate the minimum and
maximum deviations across the trained devices. Compared
to the results obtained using post-processed images (i.e.,
the last row in Table 2), the degradation is more signifi-
cant, averaging between 31.74% and 56.41%, when we use
RAW data. This result implies that this severe heterogeneity
among RAW data files should be carefully handled in FL.

3.4 Deeper Look at Heterogeneity: SW

ISP algorithms are applied to RAW data to produce human
visible images (Hansen et al., 2021). To quantify the contri-
butions of the ISP algorithm variations on system-induced
data heterogeneity, we divide the ISP process into six pri-
mary stages, from demosaicing to compression, creating
distinct images at each stage (Buckler et al., 2017). Table 3
lists the algorithms used at each stage. The impact of each
stage on model accuracy is assessed by either omitting a spe-
cific stage or applying another algorithm for each stage> —
we train the global model using data processed by the Base-
line column in Table 3, and test the model while adopting
either Option 1 or Option 2 for each stage.

Although the ISP algorithms are known to reduce the HW
variations (Ebner, 2007; Morovic, 2008), variations in cer-
tain ISP methods still introduce unmanageable heterogeneity
in images that have a detrimental impact on model perfor-
mance.Fig. 3 depicts the model quality degradation due to

*In case of demosaicing, which is a prerequisite for subsequent
stages, we use two different methods rather than omitting the stage.
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Table 3. ISP algorithms applied to each stage. ’-* means we omit this stage.

ISP stage Baseline Option 1 Option 2
Denoisin FBDD j Wavelet-bayesShrink
g (Gozdz, 2010) (Chipman et al., 1997)
Demosaicin PPG Pixel binning AHD
g (Lin, 2003) (Cannistra) (Hirakawa & Parks, 2005)
Color transformation Gray world - White patch
(Ebner, 2007) (Ebner, 2007)
Gamut mapping srgb - Prophoto
Tone transformation srgb gamma correction ) srgb gamma correction
(Stokes, 1996) +tone Equalization
Image compression JP]_EG (Quality=85) ) JPEG(QualityzSO)
g press (Cidon et al., 2021) (Cidon et al., 2021)
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Figure 3. Model quality degradation in model when tested with
adjustment of ISP algorithms at every stage.

the various ISP algorithms. The x-axis represents the stage
omitted (or modified) from the baseline. As shown in Fig. 3,
the model quality degrades when we omit (or modify) each
stage of the ISP algorithms. Notably, omitting or modifying
the color and tone transformation algorithms result in sig-
nificant declines in model quality, regardless of the device
type — the accuracy is degraded by 56.0% and 49.2% when
we exclude Color (specifically, White Balancing) and Tone
transformation from ISP stages, respectively, which is even
more severe compared to that we observe in RAW data. This
result implies that each stage of ISP algorithms, especially
the color and tone transformation stages, significantly con-
tributes to system-induced data heterogeneity and thus there
is a demand for new solutions to tackle ISP heterogeneity
across the devices in FL.

4 FAIRNESS AND DOMAIN
GENERALIZATION ISSUES

In a real-world FL environment, a global model is trained
with a number of client devices. Considering our obser-
vations in Section 3.2, the diverse types of client devices
can contribute differently to the global model due to their
unique data characteristics stemming from HW (Section
3.3) and SW variations (Section 3.4). As a result, certain
characteristics affected by system heterogeneity can make
the global model learn a bias towards those characteristics.
This potential issue can be interpreted through the lens of
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Figure 4. Model quality degradation over the highest accuracy
achieved by dominant devices, Galaxy S9 & S6, showing the bias
in the global model towards dominant devices. The participant
devices used for training followed the ratio specified in Table 1.

two well-established fields in machine learning: fairness
and domain generalization.

4.1 Fairness

In FL, the number of client devices is not always same for
all device types. This uneven distribution makes the fairness
problems3 in FL (Mohri et al., 2019; Maeng et al., 2022).
For example, if a majority of training data comes from a
particular group of devices with the similar HW and SW
configurations, the global model may become more tailored
towards those devices, degrading accuracy for the rest of
the devices. To quantify the fairness problem in a realistic
manner, we allocate device types of clients according to the
vendor market share (StatCounter, 2022) (summarized in
Table 1) and system performance distribution (Wu et al.,
2019). Note, in our analysis, we refer the device types with
the highest percentage of participation as the dominant de-
vices (i.e., Galaxy S9 and S6 in Table 1) — these can be
seen as a privileged group in the context of fairness, bene-
fiting from biases in the global model (Pessach & Shmueli,
2022). To assess the fairness of FL across various device
types, we compute the model quality degradation on each
remaining device compared to the accuracy on the dominant
devices.

3In the realm of FL, fairness ensures the global model per-

forms adequately across all participating devices, rather than being
skewed towards a certain type or group of devices.
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Figure 5. Model quality degradation when a device type is ex-
cluded from training, illustrating the complex relationship of DG
and accuracy with various device types in FL.

Fig. 4 shows the model quality degradation for each device
compared to the dominant devices — the x-axis represents
the device type the model is deployed. As shown in Fig. 4,
the accuracy on the 7 less dominant devices is 3.2% to 16.9%
lower than that on the dominant devices. This implies that
the global model has a bias toward the HW specification and
SW algorithms of the dominant devices. On the other hand,
although Galaxy S22 is the third most used for training,
deploying the model to it yields the lowest accuracy among
the devices. This also implies that a higher participation rate
does not always guarantee a high accuracy, meaning that
there exist the system features, such as the advanced ISP
algorithms, which can smooth out (or deteriorate) the bias.

4.2 Domain Generalization

In the context of FL, deploying the model to a new, un-
seen device type is closely related to the concept of domain
generalization (DG) . This concept involves designing ML
models that can effectively generalize to new, unseen do-
mains (Wang et al., 2022), such as unique device types. In
FL, domains can be characterized by system-induced data
heterogeneity, where each device exhibits distinct features.
To emulate the DG problem in FL, we consider each device
as an unseen domain — note we analyze the ability of the
model to generalize across different device types by training
the global model with all other devices and subsequently
testing it on the selected unseen device.

Fig. 5 shows the model quality degradation of global model
accuracy when the device is excluded from training, com-
pared to when all device types equally participate in FL
(this practical is widely used in DG (Dou et al., 2019; Segu
et al., 2023)). The x-axis represents the device type that was
excluded from training, while the y-axis shows the model
quality degradation on the excluded (i.e., unseen) device. In
DG, it is typically expected that a domain excluded from
training would show lower accuracy, since the global model
lacks exposure to its specific characteristics (Dou et al.,

4Given that more than 500 new smartphones are released every
year (Arena Com, Ltd., 2022), it is common to see unseen devices
for FL-based services.

2019; Segu et al., 2023). Interestingly, excluding a device
from training does not consistently affect accuracy as they
generate different details for samples, such as color, texture,
and contextual details (Tommasi et al., 2017). For example,
the accuracy for S9 drops when it is not part of the training.
Conversely, older devices like S6, Nexus5X and G4, which
have lower resolutions and simpler ISP algorithms, com-
monly exhibit increased accuracy, even though they were
excluded from training. This inconsistent result demon-
strates system-induced data heterogeneity can deteriorate
the complexity of DG in FL.

Our observations highlight the importance of considering
system-induced data heterogeneity and its potential impact
on fairness and DG in FL. There is a need for a careful
strategy that ensures stable performance of global model for
various device types.

5 PROPOSED DESIGN: HETEROSWITCH

As we observe in Section 4, system-induced data heterogene-
ity causes significant accuracy degradation of the deployed
DNNs on the typical device types. To mitigate the prob-
lem, we propose HeteroSwitch — a selective generalization
technique. Fig. 6 shows the overview of HeteroSwitch. As
shown in Fig. 6, HerteroSwitch incrementally applies gen-
eralization techniques to the clients that have biased data
due to system-induced data heterogeneity. For each round,
HeteroSwitch measures the amount of bias in the data of
participating clients, by comparing their initial loss L;,¢
with the Exponential Moving Average (EMA) of the ag-
gregated loss L gs4.(Section 5.1). Based on the measured
bias, HeteroSwitch determines whether it applies the gener-
alization techniques to the client data or not (Section 5.2).
The algorithm detail is explained in Algorithm 1.

5.1 Bias Measurement

In the context of FL, every client has a unique dataset —
each data differently contributes to the global model. More-
over, The dynamic nature of FL causes the datasets used
for training not to remain constant every round (McMahan
et al., 2017). With this constraint, applying a "one-size-fits-
all” approach may not yield the best results. For example,
applying the same level of generalization technique to all
clients could negatively affect the learning process for those
using less common device types, leading to unnecessary
performance degradation for them. To mitigate these ef-
fects, HeteroSwitch selectively employs the generalization
techniques to the data of participating clients based on the
training loss. We use the Exponential Moving Average
(EMA) loss from previous communication rounds or the val-
idation loss as the criteria for switching the generalization
techniques on the client side.
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If the test loss on dataset of a client before updating the local
model is lower than the aggregated training loss calculated
during the previous round, the dataset is considered to have
a potential bias. This indicates that the characteristics of the
dataset are already learned by the global model.

5.2 Generalization Techniques

Fairness and DG share similar objectives, as discussed in
(Creager et al., 2021). To solve the fairness problem, it is im-
portant to elevate the accuracy of devices that underperform.
On the other hand, the domain generalization problem seeks
to improve the accuracy for unseen devices. In essence, if
consistent accuracy is achieved across all devices, regard-
less of their presence during training, it may be sufficient
to address both fairness and DG problems. To achieve this,
we propose a two-pronged method focusing on the dataset
diversification and the model generalization. The method
is used on the client-side during the training, adapting to
system-induced data heterogeneity.

Dataset Diversification with ISP Adjustment: Given
heterogeneity across the data from different device types,
we propose to expand the diversity of the data via random
transformation during training — such transformation, in-
cluding geometric, color adjustments, and random erasing,
does not change the inherent label or meaning of the image,
encouraging the model to learn from more varied range of
data (Shorten & Khoshgoftaar, 2019).

Motivated by our observations in Section 3.4, which high-
lighted the need for addressing Tone and Color (especially
White Balance (Wyszecki & Stiles, 2000)) variations, we
temporarily adopt random White Balance and tone transfor-
mations (via random gamma application (Wyszecki & Stiles,

2000)) to the dataset of each client during local training.
Random WB:

With 1, 9,73 ~ U(1 — degree, 1 + degree),
R T1 0 0 R

2
G = 0 T2 0 G
B out 0 0 r3| |B in
Random Gamma:
With v ~ U(1 — degree, 1 + degree), 3)

Imgout = Ingn

However, data diversification does not necessarily need to be
applied to every data. Given distinct ISP methods employed
by each device, some data may pass through ISP stages that
are not learned by the global model. To make the global
model learn diverse characteristics of the ISP stages, we do
not employ the data diversification in such a case.

Model Generalization through SWAD: Even with data
diversification that accounts for ISP adjustments, biases
may still arise to the global model due to extreme differ-
ences between devices. We employ a weight averaging
method (Izmailov et al., 2018; Cha et al., 2021) for further
generalization. Fig. 7° shows the comparative robustness of
two different weight averaging methods, Stochastic Weight
Averaging Densely (SWAD) (Cha et al., 2021) and con-
ventional SWA (Izmailov et al., 2018), for three training
scenarios: applying only data random transformation, apply-
ing SWAD with transformation, and applying conventional

SFor this experiment, we use the original 12-class ImageNet
dataset that we utilized for dataset creation (Section 3.1). In each
training scenario, we train the model for 10 epochs, applying a
random data transformation at a low degree (degree=0.3). After
training, we measure the accuracy on the original dataset. Then,
we compare this accuracy with the accuracies on the transformed
datasets (degrees ranging from 0.3 to 0.9) to assess the robustness
of the model.
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Algorithm 1 ClientUpdate of HeteroSwitch

Input: Model Parameters W, Client’s Dataset D, EMA of
Aggregated Loss Lgyra(eq. 1)

Parameter: Learning Rate 7, # of Epochs E, Batch Size B
Output: Updated Model Parameters W.¢yyn, Train Loss

Ltrain
ClientUpdate(W, Lgns4):
1: Switchy, Switchy = False

Calculate L;,;; = L(D, W)
if L;it < Leara then

Switch, = True
end if
if Switch; == True then

Random Transformation on D(eq. 2, eq. 3)
end if
B < (split D into batches of size B)
10: Initialize Wy 4 as copy of W
11: Initialize batch index Idx, = 0, Train Loss Lyqin = 0
12: for epoche =1to E do

13:  for batch b € 3 do
14: Lt'rain — W

R A A S

Idxy+1
15: W+ W —nVL(b,W)
16: if Switch; == True then
17: Wswa 7wswle:£iwlb+w
18: end if
19: Idxy < Idxry + 1
20:  end for
21: end for
22: if Switchy == True and Lyyq;n < LEya then
23:  Switchy = True
24: end if

25: if Switchy == True then

26: Wreturn = Wsw a

27: else

28: Wieturn = W

29: end if

30: return Wi cturns Lirain tO S€IVEr

SWA with transformation. The x-axis shows different ran-
dom transformation methods.

Utilizing diverse data transformations with SWAD consid-
erably enhances the model robustness. As depicted in Fig-
ure 7, SWAD with data transformations consistently exhibits
superior robustness across all transformations. This is high-
lighted by observed improvements in metrics for Affine,
Gaussian noise, WB, and Gamma by 14.0%, 0.4%, 14.6%,
and 3.26%, respectively, over models trained only with
transformations. The application of SWA also provides bet-
ter resilience against the Affine transformation, showing a
12.0% improvement over models using only transformations
without weight averaging. However, transformations with
SWA shows increased vulnerability to transformations such

£2,0 i bkl Bl
=5
S 40
< E 60
2 %0
(=
=100
Affine Gaussian WB Gamma
noise
B No WA B SWAD O SWA

Figure 7. Comparison of Model Quality Degradation for different
training methods and transformations

as Gaussian noise, WB, and Gamma, resulting in greater
quality degradation. Consequently, SWAD shows better
generalization performance compared to SWA.

SWA averages the model weights per every epoch while
SWAD averages the model weights per every batch which
is coarser than epoch. Hence, the integration of SWAD with
random transformation, designed to average out significant
variability with fewer samples (Dekking et al., 2005), en-
ables DNN models to have enhanced adaptability to both
geometric (e.g., Affine) and appearance-based (e.g., WB &
Gamma) variations during training.

6 EVALUATION RESULTS AND ANALYSIS

To assess the effectiveness of HeteroSwitch, we evaluate
its impact on both fairness and domain generalization in
FL by using the test accuracy of the global model (Shi
et al., 2023) on each deployed device type. For fairness, we
measure the average variance of accuracy across devices —
the portion of participation of each device type follows the
market share summarized in Table. 1. For DG, we use the
worst-case accuracy across devices as the metric to ensure a
minimum required performance across all devices (Sagawa
et al., 2019; Krueger et al., 2021).

We configure FL experiments with total devices N = 100,
minibatch size B = 10, selected devices for training for
each round K = 20, local epoch £ = 1, and number of
rounds 1" = 1000. For a DNN model, we use MobileNetv3-
small (Howard et al., 2019), which is widely used in mo-
bile execution environments. We implement HeteroSwitch
using PyTorch, and compare it with a baseline method, Fe-
dAvg (McMabhan et al., 2017), and prior works for data het-
erogeneity: q-FedAvg (Li et al., 2019), FedProx (Li et al.,
2020), and Scaffold (Karimireddy et al., 2020).

We also evaluate HeteroSwitch with a realistic FL dataset,
Flair (Song et al., 2022) — this dataset includes images
collected by real end-users with more than one thousand
device types. Since Flair targets multi-label classification,
we compare the averaged-precision across device types and
variance of HeteroSwtich with a baseline of FedAvg and
prior works (i.e., g-FedAvg and FedProx).
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Table 4. Evaluation of HeteroSwitch on fairness and DG

DG Fairness
Method Acc (%) ) Acc (%)
Variance

(worst case) (average)
(Baseline) FedAvg 61.17 8.63 64.01
ISP Transformation 63.83 2.58 66.81
+ SWAD 64.50 2.74 66.29
HeteroSwitch 64.71 1.77 67.38
g-FedAvg 59.38 5.40 64.95
FedProx 61.50 8.43 65.16
Scaffold 57.50 7.53 66.18

6.1 HeteroSwitch Evaluation

HeteroSwitch shows a significant variance and accuracy im-
provement in both fairness and DG as depicted in Table 4.
Notably, the use of our proposed generalization methods -
ISP (WB&Tone) transformation and SWA per every update -
in a incremental manner leads to the improvement compared
to the one-fits-all counterparts. As the ISP transformation
adds further diversity into the dataset, it reduces the 4.4%
higher worst-case accuracy over the baseline, handling the
DG problem with system-induced heterogeneity. It also
mitigates the difference between learned device types due
to ISP, improving variance and average accuracy by 68.2%
and 4.4%, respectively. per-batch SWA further improves
the worst-case accuracy by 1.0% showing better generaliza-
tion capability — it is designed for stronger generalization
technique by averaging updates with different ISP transfor-
mation. However, this degrades the variance and average
accuracy by 6.2% and 0.8%, respectively, compared to ISP
transformation alone. This is because a one-size-fits-all
excessive generalization can cause the unnecessary perfor-
mance degradation for marginalized devices during training.

HeteroSwitch overcomes this limitation by selectively ap-
plying the generalization techniques based on the loss com-
parison with the previous training rounds. As a result, it
shows the highest worst-case accuracy, i.e., 5.8% over the
baseline, demonstrating the highest generalization capabil-
ity. HeteroSwitch also demonstrates its ability to handle
marginalized devices, showing the best variance and average
accuracy (79.5% and 5.3% over the baseline, respectively).

6.2 Comparison with Prior Works

We compare HeteroSwitch with three prominent FL prior
works: g-FedAvg (Li et al., 2019), FedProx (Li et al., 2020),
and Scaffold (Karimireddy et al., 2020).

q-FedAvg aims to minimize the accuracy variance among
clients owing to data heterogeneity, by assigning weights to
each client dataset based on the loss. However, q-FedAvg
does not consider system-induced data heterogeneity across
different device types in FL. As a result, it fails to generalize

to unseen device type with 2.9% decrease in worst-case
accuracy; it improves the variance and average accuracy by
37.4% and 1.5%, respectively, over the baseline though.

FedProx mitigates data heterogeneity in FL by adjusting
the magnitude of local updates with an additional L2 reg-
ularization. Similar to gq-FedAvg, this method does not
focus on system-induced data heterogeneity. Hence, al-
though it improves the worst-case accuracy, variance and
average accuracy by 0.5%, 2.3%, and 1.8%, respectively,
over the baseline, it shows lower performance compared to
HeteroSwitch.

Scaffold, which employs client control variates, to adjust
global update directions, addresses non-IID data variance.
Still, it faces a similar challenge to q-FedAvg in generalizing
to unseen devices, with a 6.0% drop in worst-case accuracy.

HeteroSwitch, which is designed to effectively handle
system-induced data heterogeneity, shows better variance,
average accuracy, and worst-case accuracy, compared to all
the above methods. This distinction highlights the unique
contribution of HeteroSwitch in addressing heterogeneous
device environments of FL, providing a more balanced and
generalized solution.

6.3 Effectiveness to DNN Models

In the previous section, we primarily used MobileNetv3-
small, which is widely used in mobile execution environ-
ment (Howard et al., 2019; Qian et al., 2021). Here, we
conduct additional experiments with ShuffleNet (Ma et al.,
2018) and SqueezeNet (Iandola et al., 2016), which are also
mobile friendly light-weight models. Table 5 shows the
worst-case accuracy for DG and the variance and average
accuracy for fairness with various models. As shown in
Table 5, HeteroSwitch always shows better worst-case ac-
curacy compared to FedAvg, demonstrating its robustness
to domain generalization problem. Although ShuffleNet
exhibits a decline in average accuracy with HeteroSwitch, it
shows improvement in variance. Conversely, SqueezeNet,
which initially fails to learn with FedAvg, showing perfor-
mance equivalent to random guessing, experiences a dra-
matic increase in accuracy with HeteroSwitch. These results
suggest that, with some adjustments, Shufflenet could work
even better with our method if the observed effects are not
inherent to the model structure. In short, HeteroSwitch can
be used to a variety of mobile-friendly models dealing with
the problems caused by system-induced data heterogeneity.

6.4 Impact on Realistic FL Dataset

We evaluate HeteroSwitch with a realistic FL dataset,
Flair (Song et al., 2022). The distribution of averaged preci-
sion (AP) across device types is shown in Table 6. Because
of the increased complexity of system-induced data hetero-
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Table 5. Evaluation of HeteroSwitch with different Model architectures

FedAvg HeteroSwitch
Models DG Fairness DG Fairness
Acc (%) Variance Acc (%) Acc (%) Variance Acc (%)
(worst case) (average) | (worst case) (average)
MobileNetV3-small 61.17 8.63 64.01 64.71 1.77 67.38
Shufflenet_v2_x0_5 62.21 10.92 67.09 62.67 4.24 64.76
Squeezenet]_1 8.75 0.00 8.33 16.13 1.70 31.86
_ 60
Table 6. Evaluation of HeteroSwitch with Flair 2 50
40
Method Averaged Precision (%) | Variance ? 30
(Baseline) FedAvg 4772 265.79 EN)
HeteroSwitch 47.80 249.02 2w P
q-FedAvg 47.25 257.32 0
FedProx 47.07 313.67 P23 et 2 10| 123 Bduym® 2 10
FedAvg HeteroSwitch

geneity, FedAvg exhibits a diverse AP distribution across
device types.

As the problem becomes more complex, q-FedAvg and Fed-
Prox fail to handle the high variance properly. q-FedAvg
reduces variance by 3.2% at the expense of averaged preci-
sion compared to the baseline. FedProx performs worse with
a 1.4% decline in averaged precision and an 18% increase
in variance compared to the baseline, indicating its insuffi-
ciency to address the problem. In contrast, HeteroSwitch
reduces the variance by 6.3% improving the averaged pre-
cision by 0.2%. This indicates that HeteroSwitch still mit-
igates system-induced data heterogeneity even in the pres-
ence of more diverse device types in the wild.

6.5 Impact on Synthetic Dataset

In alignment with our findings on collected dataset, we
further explore the impact of system-induced heterogeneity
using the synthetic CIFAR-100 dataset (Krizhevsky et al.,
2009). To emulate the diverse characteristics observed in
real device data (Section 3.4), we inject the heterogeneity
into the CIFAR-100 dataset by implementing 10 different
randomized settings for contrast, brightness, saturation, and
hue. A simple CNN model is used to quantify the impact
of these modifications in FL setting. The distribution of
accuracy across synthetic device types with FedAvg and
HeteroSwitch is illustrated in Figure 8.

Under synthetic condition, FedAvg achieves an average ac-
curacy of 38.34% but exhibits a variance of 212.97 across
the synthetic devices. This scenario underscores the chal-
lenges posed by system-induced data heterogeneity, as cer-
tain device types show decreased accuracy. In contrast,
HeteroSwitch significantly outperforms FedAvg, enhancing
accuracy by 24.4% and reducing variance by 43.9%, demon-
strating its effectiveness in managing device heterogeneity.

Figure 8. Model accuracy on 10 different synthetically generated
device types with CIFAR-100

6.6 Impact on Non-vision Dataset

We expand our evaluation to non-vision data, an Electrocar-
diogram (ECG) dataset. This dataset comprises data from
four distinct sensor types, each introducing unique noise
patterns and thereby contributing to heterogeneity in the
dataset (Vollmer et al., 2022). A simple DNN model, de-
signed to calculate heart rates from ECG signals, is used to
quantify the impact of sensor heterogeneity.

Using FedAvg, heart rate predictions from the same individ-
ual ECG data show a significant divergence, with an average
deviation of 31.8% due to sensor variability. In contrast,
HeteroSwitch, equipped with a Random-Gaussian Filter,
notably reduces this deviation to 18.3%. This demonstrates
that system-induced data heterogeneity is not confined to
vision data and highlights the capability of HeteroSwitch to
mitigate such heterogeneity across diverse data types.

7 RELATED WORK

System Heterogeneity in ML: In Centralized Training,
several research have shown that neural networks can be
vulnerable to system heterogeneity. — e.g., they may suf-
fer quality distortions like blurring and noise (Dodge &
Karam, 2016), be affected by simulated camera parameters
such as pixel size and exposure (Liu et al., 2020) or display
unstable inference with different devices if trained with Im-
ageNet (Cidon et al., 2021). However, no previous work has
thoroughly explored which specific steps within the signal
processing process introduce biases into the ML training
using real devices. Moreover, we are the first to highlight
the potential challenges this could pose within a FL context,
where a variety of devices can participate.
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Data Heterogeneity in FL: Federated Learning, with an
increased number of clients, inherently produces diverse
data, reflecting variations in class distribution, participant
geography, culture, and device usage patterns (Kairouz et al.,
2021), leading to data heterogeneity. Prior works have tried
to mitigate this user-induced heterogeneity by adopting a
regularization method to local models (Li et al., 2020), shar-
ing a small amount of public data across local clients (Zhao
et al., 2018; Mansour et al., 2020), or employing weighted
averaging for model aggregation (Li et al., 2019). Despite
these efforts, differences between devices remain evident
even after addressing the user-induced heterogeneity. Given
that different causes of data heterogeneity result in unique
characteristics in the feature space (where each potentially
requires own distinct solution) we focus on the system-
induced heterogeneity in this work. To the best of our
knowledge, our work is the first to analyze the problems
caused by system-induced data heterogeneity in FL. where a
range of device types can participate in the learning process
and propose a solution that addresses the aforementioned
challenges while still preserving the data privacy in FL.

8 CONCLUSION

In this paper, we first introduce system-induced data hetero-
geneity in FL. By using the dataset that we created, we show
that system-induced data heterogeneity can negatively affect
the accuracy of FL. models. We also demonstrate the fairness
and domain generalization problems which can stem from
system-induced data heterogeneity in realistic execution sce-
narios of FL. To mitigate system-induced data heterogeneity,
we propose HeteroSwitch, a selective generalization tech-
nique based on the ISP transformation and SWAD. Our
evaluation results demonstrate that HeteroSwitch reduces
the variance of accuracy by 79.5% and improves the worst
out-of-distribution (OOD) accuracy by 5.8%, compared to
the baseline. We believe our work will pave the path forward
by enabling future work on system-induced data heterogene-
ity in a variety of realistic FL execution environment for a
practical deployment of FL.

ACKNOWLEDGEMENTS

This work was supported in part by National Research
Foundation of Korea (NRF) grants funded by the Korea
government (MSIT) (2021R1C1C1008617 and RS-2023-
00212711), ICT Creative Consilience Program through the
Institute of Information & Communications Technology
Planning & Evaluation (II'TP) grant funded by the Korea
government (MSIT) (II'TP-2024-2020-0-01819), and ITRC
(Information Technology Research Center) support program
through the Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (IITP-2024-RS-2023-

00260091).

REFERENCES

Arena Com, Ltd. Gsmarena. https://www.gsmarena.
com/, 2022. Accessed: 2023-07-11.

Brisimi, T. S., Chen, R., Mela, T., Olshevsky, A., Pascha-
lidis, I. C., and Shi, W. Federated learning of predictive
models from federated electronic health records. Interna-
tional journal of medical informatics, 112:59-67, 2018.

Buckler, M., Jayasuriya, S., and Sampson, A. Reconfiguring
the imaging pipeline for computer vision. In Proceed-
ings of the IEEE International Conference on Computer
Vision, pp. 975-984, 2017.

Cannistra, S. Pixel binning. http://www.
starrywonders.com/binning.html. Ac-
cessed: 2023-08-06.

Cha, J., Chun, S., Lee, K., Cho, H.-C., Park, S., Lee, Y.,
and Park, S. Swad: Domain generalization by seeking
flat minima. Advances in Neural Information Processing
Systems, 34:22405-22418, 2021.

Chipman, H. A., Kolaczyk, E. D., and McCulloch, R. E.
Adaptive bayesian wavelet shrinkage. Journal of the
American Statistical Association, 92(440):1413-1421,
1997.

Cidon, E., Pergament, E., Asgar, Z., Cidon, A., and Katti, S.
Characterizing and taming model instability across edge
devices. Proceedings of Machine Learning and Systems,
3:624-636, 2021.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. Em-
nist: Extending mnist to handwritten letters. In 2017 in-
ternational joint conference on neural networks (IJCNN),
pp- 2921-2926. IEEE, 2017.

Creager, E., Jacobsen, J.-H., and Zemel, R. Environment
inference for invariant learning. In International Con-
ference on Machine Learning, pp. 2189-2200. PMLR,
2021.

Dekking, F. M., Kraaikamp, C., Lopuhad, H. P., and Meester,
L. E. A Modern Introduction to Probability and Statistics:
Understanding why and how, volume 488. Springer,
2005.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248-255. Ieee, 2009.

Dodge, S. and Karam, L. Understanding how image quality
affects deep neural networks. In 2016 eighth international



HeteroSwitch: Characterizing and Taming System-Induced Data Heterogeneity in Federated Learning

conference on quality of multimedia experience (QoMEX),

pp. 1-6. IEEE, 2016.

Dou, Q., Coelho de Castro, D., Kamnitsas, K., and Glocker,
B. Domain generalization via model-agnostic learning
of semantic features. Advances in neural information
processing systems, 32, 2019.

Ebner, M. Color constancy, volume 7. John Wiley & Sons,
2007.

Gozdz, J. Fbdd denoising.
ucsf.edu/svn/"#"micromanager2/trunk/
DeviceAdapters/"#"TetheredCam/LibRaw/

internal/dcb_demosaicing.c, 2010. Accessed:
2023-08-06.

Guliani, D., Beaufays, F., and Motta, G. Training speech
recognition models with federated learning: A qual-
ity/cost framework. In ICASSP 2021-2021 IEEFE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3080-3084. IEEE, 2021.

Hansen, P., Vilkin, A., Krustalev, Y., Imber, J., Talagala,
D., Hanwell, D., Mattina, M., and Whatmough, P. N.
Isp4ml: The role of image signal processing in efficient
deep learning vision systems. In 2020 25th International
Conference on Pattern Recognition (ICPR), pp. 2438—
2445. 1IEEE, 2021.

Hejazinia, M., Huba, D., Leontiadis, 1., Maeng, K., Malek,
M., Melis, L., Mironov, 1., Nasr, M., Wang, K., and Wu,
C.-]. Fel: High capacity learning for recommendation and
ranking via federated ensemble learning. arXiv preprint
arXiv:2206.03852, 2022.

Hirakawa, K. and Parks, T. W. Adaptive homogeneity-
directed demosaicing algorithm. leee transactions on
image processing, 14(3):360-369, 2005.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
et al. Searching for mobilenetv3. In Proceedings of the

IEEE/CVF international conference on computer vision,
pp. 1314-1324, 2019.

Huba, D., Nguyen, J., Malik, K., Zhu, R., Rabbat, M.,
Yousefpour, A., Wu, C.-J., Zhan, H., Ustinov, P., Srinivas,
H., et al. Papaya: Practical, private, and scalable federated

learning. Proceedings of Machine Learning and Systems,
4:814-832, 2022.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and; 0.5 mb model
size. arXiv preprint arXiv:1602.07360, 2016.

https://valelab4.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D.,
and Wilson, A. G.  Averaging weights leads to
wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1-2):1-210, 2021.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S.,
and Suresh, A. T. Scaffold: Stochastic controlled averag-
ing for federated learning. In International Conference
on Machine Learning, pp. 5132-5143. PMLR, 2020.

Kim, Y. G. and Wu, C.-J. Autoscale: Energy efficiency
optimization for stochastic edge inference using rein-
forcement learning. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO),
pp- 1082-1096. IEEE, 2020.

Kim, Y. G. and Wu, C.-J. Autofl: Enabling heterogeneity-
aware energy efficient federated learning. In MICRO-
54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 183—-198, 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Bi-
nas, J., Zhang, D., Le Priol, R., and Courville, A. Out-
of-distribution generalization via risk extrapolation (rex).

In International Conference on Machine Learning, pp.
5815-5826. PMLR, 2021.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207-1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

LeCun, Y. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

Li, T., Sanjabi, M., Beirami, A., and Smith, V. Fair re-
source allocation in federated learning. arXiv preprint
arXiv:1905.10497, 2019.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine learning and systems,
2:429-450, 2020.

Li, Z., Xu, X., Cao, X., Liu, W, Zhang, Y., Chen, D., and
Dai, H. Integrated cnn and federated learning for covid-19
detection on chest x-ray images. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 2022.



HeteroSwitch: Characterizing and Taming System-Induced Data Heterogeneity in Federated Learning

Lin, C.-k. Pixel grouping for color filter array demosaicing,
2003.

Liu, Z., Lian, T., Farrell, J., and Wandell, B. A. Neural
network generalization: The impact of camera parameters.
IEEE Access, 8:10443-10454, 2020.

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. Shufflenet v2:
Practical guidelines for efficient cnn architecture design.

In Proceedings of the European conference on computer
vision (ECCV), pp. 116-131, 2018.

Maeng, K., Lu, H., Melis, L., Nguyen, J., Rabbat, M., and
Wau, C.-J. Towards fair federated recommendation learn-
ing: Characterizing the inter-dependence of system and
data heterogeneity. In Proceedings of the 16th ACM Con-
ference on Recommender Systems, pp. 156167, 2022.

Mansour, Y., Mohri, M., Ro, J., and Suresh, A. T. Three
approaches for personalization with applications to feder-
ated learning. arXiv preprint arXiv:2002.10619, 2020.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273-1282. PMLR, 2017.

Mohri, M., Sivek, G., and Suresh, A. T. Agnostic feder-
ated learning. In International Conference on Machine
Learning, pp. 4615-4625. PMLR, 2019.

Morovic, J. Color gamut mapping. John Wiley & Sons,
2008.

Pessach, D. and Shmueli, E. A review on fairness in machine
learning. ACM Computing Surveys (CSUR), 55(3):1-44,
2022.

Qian, S., Ning, C., and Hu, Y. Mobilenetv3 for image
classification. In 2021 IEEE 2nd International Confer-
ence on Big Data, Artificial Intelligence and Internet of
Things Engineering (ICBAIE), pp. 490-497, 2021. doi:
10.1109/ICBAIE52039.2021.9389905.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case gener-
alization. arXiv preprint arXiv:1911.08731, 2019.

Scheuerman, M. K., Hanna, A., and Denton, E. Do datasets
have politics? disciplinary values in computer vision
dataset development. Proceedings of the ACM on Human-
Computer Interaction, S(CSCW2):1-37, 2021.

Segu, M., Tonioni, A., and Tombari, F. Batch normalization
embeddings for deep domain generalization. Pattern
Recognition, 135:109115, 2023.

Shi, Y., Yu, H., and Leung, C. Towards fairness-aware fed-
erated learning. IEEE Transactions on Neural Networks
and Learning Systems, 2023.

Shorten, C. and Khoshgoftaar, T. M. A survey on image
data augmentation for deep learning. Journal of big data,
6(1):1-48, 2019.

Song, C., Grangvist, F., and Talwar, K. Flair: Federated
learning annotated image repository. Advances in Neural
Information Processing Systems, 35:37792-37805, 2022.

StatCounter. Mobile vendor market share. https://gs.
statcounter.com/vendor-market—-share/
mobile/united-states—-of—-america/2021,

2022. Accessed: 2023-07-11.

Stokes, M. A standard default color space for the internet-
srgb. http://www. w3. org/Graphics/Color/sRGB. html,
1996.

Tommasi, T., Patricia, N., Caputo, B., and Tuytelaars, T.
A deeper look at dataset bias. Domain adaptation in
computer vision applications, pp. 37-55, 2017.

Vollmer, M., Blising, D., Reiser, J., Nisser, M., and Buder,
A. Simultaneous physiological measurements with five
devices at different cognitive and physical loads. Phys-
ionet, 101(23):215-220, 2022.

Wang, J., Lan, C., Liu, C., Ouyang, Y., Qin, T., Lu, W., Chen,
Y., Zeng, W., and Yu, P. Generalizing to unseen domains:
A survey on domain generalization. IEEE Transactions
on Knowledge and Data Engineering, 2022.

Wu, C.-J., Brooks, D., Chen, K., Chen, D., Choudhury, S.,
Dukhan, M., Hazelwood, K., Isaac, E., Jia, Y., Jia, B.,
et al. Machine learning at facebook: Understanding infer-
ence at the edge. In 2019 IEEFE international symposium

on high performance computer architecture (HPCA), pp.
331-344. IEEE, 2019.

Wu, H. and Wang, P. Node selection toward faster con-
vergence for federated learning on non-iid data. /EEE
Transactions on Network Science and Engineering, 9(5):
3099-3111, 2022.

Wyszecki, G. and Stiles, W. S. Color science: concepts
and methods, quantitative data and formulae, volume 40.
John wiley & sons, 2000.

Zhang, H., Li, L., Qiao, K., Wang, L., Yan, B., Li, L.,
and Hu, G. Image prediction for limited-angle tomogra-
phy via deep learning with convolutional neural network.
arXiv preprint arXiv:1607.08707, 2016.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,
V. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.



HeteroSwitch: Characterizing and Taming System-Induced Data Heterogeneity in Federated Learning

A EXPERIMENTAL DETAILS
A.1 Hardware & Software

We implement FL with PyTorch and TensorFlow, and emulate it with our dataset and Flair, respectively, on our servers. The
following is the experimental environment used for our dataset (Section 3.1).

* GPU/CPU models: No GPU, Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz
¢ Amount of memory: 128GiB

* Operating system: Ubuntu 20.04.5

* Version of PyTorch: 1.12.0

The following is the experimental environment used for the Flair (Song et al., 2022).

¢ GPU/CPU models: NVIDIA Tesla V100 GPU, Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
* Amount of memory: 128GiB

* Operating system: Ubuntu 20.04.3

¢ Version of TensorFlow: 2.9.0

¢ Version of TensorFlow-Federated: 0.20.0

A.2 FL Parameters

We set the hyperparameters of FL based on the sensitivity analysis. The hyperparameters that we test are summarized as
follows:

* learning rate € {0.001,0.01,0.1}

* Minibatch size B € {1, 10,20}

* Local epochs E € {1,3,5}

* Number of communication rounds 7' € {100, 500, 1000}

Fig. 9 shows the sensitivity analysis result on the learning rate, minibatch size, local epoch, and number communication
rounds. Based on results presented in Fig. 9, we select 0.1, 10, 1, and 1000 for the learning rate, minibatch size, local epoch,
and the number of communication rounds, respectively, for the rest of our experiments (i.e., characterization and evaluation
in Section 3 and 6, respectively).
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Figure 9. Selection of Learning Rate, Minibatch Size, Local Epoch, and Communication Rounds

For a fair comparison with g-FedAvg and FedProx, we also configure the hyperparameters of q-FedAvg and FedProx based
on the sensitivity analysis. Below are the hyperparameter grids that we searched on for previous works(Section 6.2).
* q-FedAvg g € {le — 6,1e — 5,1le — 4,1e — 3,1e — 2,1e — 1}
» FedProx i € {le —5,1le —4,1le — 3,1e — 2,1e — 1}
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we use ¢ = le — 6 and p = le — 1, for g-FedAvg, and FedProx, respectively.
Below are the hyperparameter grids that we searched on for HeteroSwitch

* Random WB degree € {0.001,0.01,0.1,0.5,0.9}
* Random Gamma degree € {0.1,0.3,0.5,0.7,0.9}

We set the smoothing factor for Exponential Moving Average o = 0.9 for Lg 4, Random WB degree = 0.001 and
Random Gamma degree = 0.9.



