
SPARSITY-AWARE MEMORY INTERFACE ARCHITECTURE USING STACKED
XORNET COMPRESSION FOR ACCELERATING PRUNED-DNN MODELS

Younghoon Byun * 1 Seungsik Moon * 1 Baeseong Park 2 Se Jung Kwon 2 Dongsoo Lee 2 Gunho Park 1

Eunji Yoo 1 JungGyu Min 1 Youngjoo Lee 1

ABSTRACT
This paper presents a new algorithm-hardware co-optimization approach that maximizes memory bandwidth
utilization even for the pruned deep neural network (DNN) models. Targeting the well-known model compression
approaches, for the first time, we carefully investigate the memory interface overheads caused by the irregular data
accessing patterns. Then, the sparsity-aware memory interface architecture is newly developed to regularly access
all the data of pruned-DNN models stored with the state-of-the-art XORNet compression. Moreover, we introduce
the novel stacked XORNet solution for minimizing the number of data imbalances, remarkably relaxing the
interface costs without slowing the effective memory bandwidth. As a result, experimental results show that our
co-optimized interface architecture can achieve almost the ideal model-accessing speed with reasonable hardware
overheads, successfully allowing the high-speed pruned-DNN inference scenarios.

1 INTRODUCTION

In the last few years, the size of deep neural networks
(DNNs) has been continuously increased to achieve bet-
ter performance, and now we can easily find a number of
large-scale transformer models even, including more than
several billions of trained weights for various applications,
e.g., GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al.,
2022), and Dall-E (Ramesh et al., 2021). Due to the imprac-
tical memory requirements, therefore, model compression
approaches have been essentially applied for deploying prac-
tical services associated with the recent large-scale networks
(Kwon et al., 2022), i.e., building the memory-reduced com-
pact model from the original one without degrading the
application performances (Wang et al., 2020; Cheng et al.,
2017). After applying the weight quantization considered
as a very beginning model compression step (Jacob et al.,
2018; Bondarenko et al., 2021), more precisely, the pruning-
based network sparsification is commonly followed as the
next technique to allow sparse matrix operations by elimi-
nating less important weights (Han et al., 2015). Then, we
only store the compressed network in the memory to reduce
the total memory footprint, where the compressed format
includes the extra information denoting the survived weight
positions (Buluç et al., 2009; Moon et al., 2019a).

*Equal contribution 1Department of Electrical Engineering, Po-
hang University of Science and Technology, Pohang, Republic of
Korea 2NAVER Cloud, Seongnam, Republic of Korea. Correspon-
dence to: Youngjoo Lee <youngjoo.lee@postech.ac.kr>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

However, accelerating pruned-DNN models is difficult as
we have to find the survived elements in sparse matrices
from the compressed data structure. Some commercialized
GPUs may support software kernels that perform the on-
the-fly sparsity-aware computations directly from the com-
pressed forms, such as compressed sparse row (CSR) and
coordinate (COO) formats; however, those kernels are only
effective for the extremely-spare matrix operations generally
developed for the super-computing applications (Gale et al.,
2020). Comparing two well-known software kernels as a
case study, i.e., NVIDIA cuBLAS and cuSPARSE for dense
and sparse matrices, respectively, it is clearly shown in Fig.
1 that the cuSPARSE kernel with the CSR format provides
a meaningful performance improvement under the sparsity
ratio of more than S = 0.97. Note that the current DNN ac-
celerators have similarly offered the sparsity-aware dynamic
data scheduling with the dedicated matching hardware; how-
ever, the state-of-the-art designs still accept the sparse but
dense-format matrices in general for maximizing the pro-
cessing efficiency of pruned-DNN computations (Cai et al.,
2022). Considering the practical sparsity ratio of pruned
large-scale DNN models, which ranges 0.5 ≤ S ≤ 0.8 not
to severely degrade the application performances of original
dense models (Gale et al., 2019), as a result, it is reasonable
to decompress the compressed model by utilizing the ded-
icated memory interface architecture in prior to activating
the massive-parallel processing engines (Park et al., 2020).

Suppose we focus on the achievable system performance
during the design or selection of computing platforms,
which can be analyzed using the well-known roof-line anal-

Sparsity-Aware Memory Interface Architecture using Stacked XORNet Compression for Accelerating Pruned-DNN Models

Figure 1. Runtime evaluation of previous software kernels for mul-
tiplying two 2048×2048 FP32-valued matrices with different spar-
sity ratios (Tested on an Nvidia RTX 3090 GPU with CUDA 11.3).

ysis in Fig. 2. First, an ideal effective bandwidth denoted
as a black line in the upper left represents ideally obtain-
able data per time from the view of the processing part.
The ideal effective bandwidth is only attainable when the
pruned model is ideally stored by collecting only the sur-
vived values. In that case, it is natural to decide the number
of processing engines for the given ideal bandwidth as well
as the intrinsic arithmetic intensity of the target DNN model.
However, due to the limitation of the model compression
technique, we can observe that the effective memory band-
width is always lower than the ideal one. In other words,
the original computational-bounded system dedicated to the
ideal model compression becomes the memory-bounded
system after applying the practical pruning-based model
compression as depicted in Fig. 2, causing the unwanted
performance degradation as we cannot transfer a sufficient
number of weights to the parallel processing engines de-
signed for the ideal bandwidth. When the conventional
CSR format is used to compress the sparse weight matrices
of pruned-DNN models, for example, reconstructing the
dense-format matrices should manage the irregular access
patterns on the survived weights, making the effective mem-
ory bandwidth far from the ideal value (Lee et al., 2018).
Achieving a similar compression quality, the recent works
from (Kwon et al., 2020; Park et al., 2021) have reported
that the model compression with XOR gates (XORNet) can
be an alternative option to store the pruned-DNN models
by forcing the regular memory interface for compressed
weights, increasing the effective memory bandwidth close
to the ideal bandwidth. However, the interface complexity
for the previous XORNet impractically increased due to the
irregular patch distribution.

In this work, for the first time, we quantitatively inves-
tigate the interface overheads of different compression
techniques for pruned-DNN models. Then, we present a
novel sparsity-aware memory interface architecture with
vertically-arranged patches for realizing the cost-efficient
parallel decompressors, supporting the on-the-fly decom-

Figure 2. Roofline analysis describing the performance reduction
from pruned-DNN models with previous compression methods.

pressing of compressed pruned-DNN models to increase the
effective memory bandwidth. In addition, the stacked XOR-
Net (sXORNet) is newly developed by modifying the previ-
ous XORNet compression, which makes more imbalance-
aware compression results to relax the extra on-chip buffer
costs. Various experiments were performed to reveal that the
proposed algorithm-hardware co-design approach allows the
most attractive interface architecture in terms of effective
memory bandwidth and hardware complexity. Targeting the
practical compressed transformer model whose sparsity ra-
tio is S = 0.6 (Gale et al., 2019), for example, the proposed
sparsity-aware memory interface adopting the sXORNet
compression reduces the area costs by 82.3% while utiliz-
ing 1.34 times faster effective memory bandwidth when
compared with the conventional CSR-based interface ar-
chitecture. As a result, we can fully enjoy the achievable
performance of the original computational-bounded system
by maximally utilizing the given memory bandwidth even
for the pruned-DNN processing.

2 EVALUATING INTERFACE OVERHEADS
FROM MODEL COMPRESSION

2.1 Previous Model Compression Techniques

In this paper, the previous compression methods, includ-
ing CSR (Buluç et al., 2009), Viterbi (Ahn et al., 2019),
and XORNet (Kwon et al., 2020) approaches are firstly
considered to investigate their interface-level overheads to
support the on-the-fly decompression procedures. The con-
ventional CSR format provides a reasonable compression
ratio with an acceptable amount of extra information to
represent the given sparse matrix by using index pointers
and index values as depicted in Fig. 3(a) (Capra et al.,
2020). More precisely, the index pointer represents an accu-
mulated number of survived weights in each row, and the
index value represents its corresponding position. As the
pruned-DNN models generally have locally different spar-
sity ratios (Moon et al., 2019b), it is impossible to guarantee
the fixed decompression latency for finding the exact loca-

Sparsity-Aware Memory Interface Architecture using Stacked XORNet Compression for Accelerating Pruned-DNN Models

Figure 3. Decompression steps of compressed data using (a) CSR
(Buluç et al., 2009) and (b) XORNet formats (Kwon et al., 2020)

tions of survived non-zero weights under the given physical
memory bandwidth, i.e., the size of decoded data from the
same amount of compressed data varies depending on the
local sparsity of the original data. Therefore, the memory
interface should access weights irregularly, and the effective
memory bandwidth is naturally reduced for supporting the
pruned-DNN, as shown in Fig. 2.

In contrast to the CSR case, the recent Viterbi-based com-
pression supports the fixed decompression latency by utiliz-
ing the bit-by-bit sequence generation mechanism from the
fixed-size encoded seeds (Lee et al., 2018; Ahn et al., 2019).
The Viterbi compression draws a trellis path and back-trace
it to choose the best match input. However, the compression
technique shows a limited level of compression ratio and
accuracy despite of retraining process. Therefore, the previ-
ous Viterbi-based approach cannot be the practical solution
when we have to exploit massive-parallel decompressors to
increase the effective bandwidth demanded by the advanced
large-scale ML models.

For q-bit quantized DNN model, the recent XORNet com-
pression in (Kwon et al., 2020; Park et al., 2021) introduces
a bit-level look-up table (LUT) to encode sparse weight
matrices of arbitrary ML models, which can be realized by
fixed-level XOR gates for providing a deterministic decom-
pression latency. As detailed in Fig. 3(b), to decompress
the stored DNN model with the pruning ratio of S, the bit-
level LUT denoted as XORNet(x, y) accepts x-bit vector
u from memory and generates y-bit vector v in every cy-
cle, where the ratio between x and y is carefully chosen
to follow x/y ≃ 1 − S. In other words, we sequentially
generate y decompressed weights bit by bit from x-bit com-
pressed data, and each q-bit weight is potentially obtained
by appending q consecutive LUT outputs. When we target
the same physical memory bandwidth as the CSR compres-

sion generating the word-level decompression results, note
that the bit-level LUT of XORNet compression manages
a q times larger dense matrix at a time, performing the de-
compression q times for generating the same dense-format
results as shown in Fig. 3(b). Due to the limited number
of representable outputs, the LUT results can sometimes
differ from the original weights. Therefore, it is required
to utilize the correction step shown in Fig. 3(b), access-
ing the extra patches from the memory to denote the error
positions. To increase the compression ratio approach to
the pruning ratio, reducing the number of LUT errors is
important, i.e., minimizing the extra patches as many as
possible. The recent study from (Park et al., 2021) shows
that including the previous LUT inputs with additional shift,
registers can enlarge the representable options, especially
for the locally-dense cases, significantly reducing the erro-
neous LUT outputs. In contrast to the conventional CSR
method, note that the XORNet compression removes the
irregular accessing patterns of compressed weights, which
increases the effective memory bandwidth even close to the
physical memory speed. However, we still observe irregular
memory accessing patterns for extra patches, requiring a
considerable amount of hardware overheads to complete the
correction step within a few cycles.

2.2 Baseline Memory Interface Architecture with
Parallel Decompressors

To develop the sparsity-aware memory interface architec-
ture, for the first time, we evaluated the baseline designs
dedicated to the previous compression techniques in terms of
the effective memory bandwidth and the required hardware
complexity. Fig. 4(a) depicts the baseline hardware archi-
tecture for the conventional CSR method, including multi-
ple decompressors to support the high-bandwidth memory
(NVIDIA, 2020). Due to the intrinsic weight-level irregular-
ity, each decompressor is designed to accept a different num-
ber of survived weights simultaneously, forcing the interface
hardware to deploy a distributing network internally. Due
to the locally-dense weight distributions in pruned-DNN
models (Park et al., 2021), however, the required number
of survived weights at each memory-accessing cycle some-
times exceeds the maximum one provided by fully utilizing
the peak physical memory bandwidth. In this case, we have
to disable some decompressors that cannot receive sufficient
survived weights, reducing the number of decompressed
dense-format weight matrices, i.e., degrading the effective
memory bandwidth seen from the processing engines.

If we adopt the recent XORNet method, as shown in Fig.
4(b), the decompression hardware consists of an XOR-based
LUT followed by a patch-correction unit. Note that we
now observe the regular accessing patterns of compressed
weights, removing the weight-level distributing network in
Fig. 4(a). Instead, accessing patches for the correction step

Sparsity-Aware Memory Interface Architecture using Stacked XORNet Compression for Accelerating Pruned-DNN Models

Figure 4. Baseline interface architectures with distributing network
for (a) CSR and (b) XORNet methods.

becomes irregular, adding the patch-level distributing net-
work and transferring patches to the proper decompressors
with erroneous outputs. In general, we allocate the physical
memory bandwidth for patches by considering the average
number of patches to fetch a sufficient number of patches
at a time; however, some locally-dense cases sometimes
produce much more errors inducing a few memory stalls.

In order to quantitatively investigate the dedicated memory
interface unit for supporting the compressed pruned-DNN
models, we implemented two interface architectures in Fig.
5, which are equally synthesized in a 28 nm CMOS technol-
ogy at the operating frequency of 1 GHz. Considering the
commercialized GPUs, for fair comparisons, we increase
the number of parallel decompressors denoted as N = 64,
128, and 256 to test existing compression schemes under
the physical memory bandwidths of 240 GBps, 480 GBps,
and 960 GBps, respectively, where accessing the extra in-
formation is assumed to occupy 1/3 of physical bandwidth.
The 0.6-pruned transformer model from (Gale et al., 2019)
is used for this case study, clearly showing the limitation
of each memory interface architecture as shown in Fig. 5.
More precisely, the CSR format severely degrades the ef-
fective memory bandwidth as all the compressed weight
data are accessed irregularly, resulting in a significant num-
ber of memory stalls. On the other hand, the XORNet
compression provides higher effective memory bandwidth
close to the peak speed as the total size of irregular patches
is much smaller than that of irregular weights with CSR
format (Kwon et al., 2020). For a single decompressor,

Figure 5. Area-bandwidth trade-offs of previous interface designs.

however, the bit-level irregular patterns of the XORNet
method naturally require much more input in the worst-case
scenario compared with the word-level irregular accesses
of the CSR format. Therefore, the hardware complexity
of distributing network is drastically increased to support
the XORNet compression, especially for utilizing massive-
parallel decompressors as depicted in Fig. 5. As a result,
both model compression methods cannot be the practical so-
lution to deploy the pruned-DNN models when we consider
the effective memory bandwidth as well as the cost-efficient
implementation at the same time. With the novel algorithm-
hardware co-optimization approach, in this work, we target
much attractive complexity-bandwidth trade-off results as
illustrated in Fig. 5, providing higher effective memory
bandwidths with acceptable hardware overheads.

3 PROPOSED SPARSITY-AWARE MEMORY
INTERFACE ARCHITECTURE

3.1 Vertically-Arranged Patches

To correct the erroneous bits in LUT outputs, for adopt-
ing the XORNet compression, it is necessary to deliver the
required patches to each decompressor correctly. With a
case example of patch distribution, Fig. 6 details this path
delivery process in the interface architecture, where pij rep-
resents the j-th patch for the i-th vector. Utilizing N parallel
decompressors, e.g., N = 4 in this case example, note that
pij is then mapped to the (i mod N)-th decompressor. As
shown in the figure, the straightforward XORNet implemen-
tation fetches N horizontally-aligned (HA) patches from
memory, and the distributing network follows to dynami-
cally construct the proper connections between patches (pij)
and decompressors (Dx). At the first cycle of this example,
more precisely, after initializing N two-depth input FIFOs
shown in Fig. 4(b), the two patches in the first two positions
(p00 and p01) should be delivered to the first decompressor,
where the last patch position should be connected to the

Sparsity-Aware Memory Interface Architecture using Stacked XORNet Compression for Accelerating Pruned-DNN Models

Figure 6. Example of patch-accessing procedures with different memory layouts.

same decompressor for taking p80 at the third cycle. In
other words, the previous HA-patches can be consumed
by any decompressors; therefore, the distributing network
with numerous multiplexers is inevitable for handling the
patch-level irregularity as depicted in Fig. 6. For the recent
XORNet compression with two shift registers (Park et al.,
2021), targeting the 0.6-pruned 8-bit quantized transformer
from (Gale et al., 2019), Table 1 deeply analyzes the area
overheads of the baseline memory interface architecture im-
plemented in a 28 nm CMOS technology. According to the
number of decompressors N , note that the complexity of
the distributing networks rapidly increases compared with
the other modules, actually causing the impractical interface
costs to support the recent ultra-high-bandwidth memories.

To relax the hardware complexity without degrading the
effective memory bandwidth, in this work, we present a
new data storing strategy to keep the generated patches in
a vertically-arranged (VA) form. Each vertical patch posi-
tion is now dedicated to a fixed decompressor, which can
allow N one-to-one fixed connections between the fetched
patches and decompressors. More specifically, as exempli-
fied in Fig. 6 with four-parallel decompressors, we now
have four vertical patch streams, each of which is directly
connected to the corresponding decompressor, totally re-
moving the previous high-complexity distributing network.
Therefore, fetching N row-wise VA-patches from memory
distributes a single patch to each decompressor equally at
a time. Note that the previous input FIFOs for collecting
the first four HA-patches are also distributed to individual
decompressors, each of which is now keeping the patches to
be only consumed internally at the same decompressor. As

Table 1. Area overheads of baseline memory interface architecture.

AREA COMPLEXITY (mm2)
N

64 128 256
LUT 0.053 0.106 0.213

CORRECTION 1.689 6.758 27.032
DISTRIBUTING NETWORK 3.311 22.403 111.863

TOTAL 5.053 29.268 139.109

described in Table 2 showing the average number of patches
per XORNet(20, 20/(1 − S)), which is dedicated to the
pruned transformer (Gale et al., 2019), feeding one patch
per decompressor per memory access is statistically enough
to correct XORNet outputs regardless of the pruning ratio of
S. If we consider the actual distribution of patch counts per
XORNet output shown in Table 2, however, there exist some
error cases containing several patches, which may affect the
effective memory bandwidth. In addition to introducing the
VA-patches, as a result, the proposed memory interface ar-
chitecture needs to carefully deal with the patch-consuming
speed of parallel decompressors, eventually improving the
effective memory bandwidth with acceptable hardware costs
while supporting the pruned-DNN models.

3.2 Interface Architecture for Patch-Level Imbalance

Fig. 7 shows the proposed memory interface architecture
associated with VA-patches, removing the previous distribut-
ing network and even adopting the bit-level XORNet com-
pression. To maintain the effective memory bandwidth by
adopting the proposed VA-patches, however, we now have

Sparsity-Aware Memory Interface Architecture using Stacked XORNet Compression for Accelerating Pruned-DNN Models

Table 2. Generated patches for compressing pruned transformers.

SPARSITY 0.6 0.7 0.8 0.9
AVERAGE # OF PATCHES 0.26 0.28 0.28 0.38

OF
XORNET
RESULTS

0 PATCH 986K 759K 502K 244K
1 PATCH 175K 126K 74K 39K

>1 PATCHES 59K 54K 34K 23K

Figure 7. Proposed memory interface based on VA-patches.

to solve the patch-consuming imbalance problem by adjust-
ing the size of the imbalance FIFO of each decompressor.
As depicted in Fig. 6, decompressors, in general, consume
a different number of patches depending on the correspond-
ing LUT outputs. Deploying multiple decompressors for
ultra-high-bandwidth memories, the current N VA-patches
fetched together might be consumed at different decom-
pression cycles. If we cannot keep a sufficient number of
fetched yet unused patches in a locally-fast decompressor,
extra memory cycles should be taken for re-accessing N VA-
patches to guarantee the correct decompressed results, poten-
tially reducing the effective memory bandwidth. Therefore,
it is important to design a sufficiently-large imbalance FIFO
that can temporarily store all the previously-fetched patches
before being consumed at the proper correction cycle.

As the locally-slow decompressor should catch up with
faster ones by consuming the incoming patches as soon as
possible, the corresponding imbalance FIFO always stays
in an empty state. Therefore, the maximum amount of
patch-level imbalance (Imax) can be defined to be the max-
imum number of patches remaining in the fastest decom-
pressor. As depicted in Fig. 8, to find the optimal FIFO size
considering the peak patch-level imbalance, we carefully
investigated imbalance changes for processing 0.6-pruned
transformer model reported in (Gale et al., 2019). Regard-
less of N , it clearly shows that the proposed decompressor
architecture requires an imbalance FIFO size of at least sev-
eral hundred to operate the practical pruned-DNN models
using the XORNet compression with VA-patches. If we
naively set the FIFO size to contain at least Imax patches by
analyzing the given pruned-DNN model, the patch-level im-
balance is perfectly handled. Comparing the hardware costs

Figure 8. Investigating the peak patch-level imbalances of pruned
transformer models.

of a N -to-N distributing network in the previous design and
N Imax FIFOs added in the proposed work, for the case of
0.6-pruned 8-bit transformer model, our approach utilizing
enlarged imbalance FIFOs with VA-patches saves the area
costs by 50 times, definitely leading to more pleasurable
results for implementing the cost-efficient yet high-speed
memory interface architecture.

For the practical applications, we also present the general-
ized interface architecture by designing the fixed-size im-
balance FIFOs, e.g., keeping up to 128, 256, or 512 patches
so that the proposed work with VA-patches can decompress
arbitrary pruned-DNN models. When Imax of the com-
pressed model exceeds the maximum size of imbalance
FIFO, for the worst-case decompression scenario, extra cy-
cles are used to relax the current imbalance by re-accessing
the missed VA-patches. In contrast to the prior designs that
only offer the fixed hardware design due to the irregular
memory accesses, for the first time, we can now provide
the design-level trade-offs between the hardware complex-
ity and the effective bandwidth for realizing the memory
interface architecture. Moreover, the design options become
even more cost-efficient if we apply the imbalance-aware
data compression described in the following Section.

4 PRUNED-DNN COMPRESSION USING
IMBALANCE-AWARE STACKED XORNET

4.1 Analyzing the Patch-Level Imbalance

In this section, we deeply analyze how the patch-level imbal-
ance occurred. Although the XORNet(x, y) is normally de-
signed for support the average sparsity of v vectors (Kwon
et al., 2020), denoted as Save = 1− x/y, the local sparsity
of each y-bit LUT output vector Slocal is in general differ-
ent from Save. As depicted in Fig. 3(b), the LUT output
vector v may include the errors identified by the additional
patches, especially when the Slocal is much smaller than
Save. To validate this patch-generating condition, for the
different local sparsity, we tested the number of patches from

Sparsity-Aware Memory Interface Architecture using Stacked XORNet Compression for Accelerating Pruned-DNN Models

Figure 9. Average number of patches per XORNet(8, 80) output
vector according to the local sparsity.

Table 3. Analysis on patches from the encoding part of 0.6-pruned
transformer model using XORNet(8, 20) compression.

LAYERS
VECTOR GROUP TOTAL

NP
IMAX

DD D S SS

EMB
NV 12K 292K 403K 143K

113K 702
E 0.45 0.24 0.09 0.02

ENC1
NV 9.8K 53K 55K 38K

42K 781
E 0.91 0.44 0.18 0.01

ENC2
NV 3.2K 48K 82K 23K

22K 875
E 0.52 0.27 0.09 0.01

ENC3
NV 1.5K 44K 94K 16K

16K 890
E 0.47 0.19 0.06 0.01

ENC4
NV 1.2K 44K 98K 14K

14K 899
E 0.52 0.18 0.06 0.01

ENC5
NV 1.0K 43K 99K 14K

14K 906
E 0.46 0.17 0.06 0.01

ENC6
NV 1.2K 43K 99K 14K

14K 903
E 0.61 0.18 0.06 0.01

XORNet(8, 80) that is originally designed for compressing
vectors of Save = 0.9, i.e., expecting eight survived bits on
average. As depicted in Fig. 9 showing the average number
of patches per v, which is denoted as E, it is clear that we
observe more errors for generating locally-dense vectors due
to the limited number of representable options (Park et al.,
2021). Considering the XORNet operations with parallel
decompressors, as depicted in Fig. 3, an increased number
of patches induces patch buffer imbalance, increasing the
overall interface costs with large imbalance buffers not to
degrade the effective memory bandwidth.

For the practical case study of the 0.6-pruned transformer
model (Gale et al., 2019), we investigated the layer-wise
relations between the locally dense v vectors and the in-
duced patch-level imbalances. More precisely, the XOR-
Net(8, 20) is used to compress the pruned model, where the
patches are stored in VA-patch format to make the regular
access patterns to 256-parallel decompressors. Table 3 ana-
lyzes the patches generated by encoding part of the pruned
transformer, i.e., one embedding layer (emb) followed by

six encoding layers (enc1 ∼ enc6), where all the layers
are individually pruned to make the identical layer-level
sparsity of 0.6 (Gale et al., 2019). For the sake of simplic-
ity, we define four v groups depending on the local spar-
sity; the extremely-dense (DD), dense (D), sparse (S), and
extremely-sparse (SS) groups, including vectors whose lo-
cal sparsity values are Slocal < 0.25, 0.25 ≤ Slocal < 0.5,
0.5 ≤ Slocal < 0.75, and 0.75 ≤ Slocal, respectively. In
the table, in addition, we denote the numbers of vectors
and patches as NV and NP, respectively. Considering the
average sparsity of this case study, i.e., Save = 0.6, it is rea-
sonable that group S includes most of the vectors. In terms
of the average number of patches per vector (E), the sparse
groups (S and SS) definitely contain the patch-free vectors,
whereas the vectors in dense groups (D and DD) require
much more patches, as we expected. As shown in the table,
as a result, the maximum patch-level imbalance (Imax) is
significantly increased from the first three layers (emb ∼
enc2) that have lots of vectors in dense groups with large
E values. Therefore, reducing the number of patches, es-
pecially for the locally-dense vectors, is definitely effective
for relaxing patch-level imbalances.

4.2 Imbalance-Aware Stacked XORNet

In the previous XORNet compression (Kwon et al., 2020),
we normally build a single bit-level LUT that generates the
fewest patches by checking all the vectors in the pruned-
DNN model; therefore, the locally-dense vector may gen-
erate much more patches increasing the patch-level imbal-
ance as summarized in Fig. 10(a). To relax the imbalance
problem causing the large-sized FIFOs in Fig. 8, in this
work, the stacked XORNet (sXORNet) is newly proposed,
allowing multiple compression options to reduce the num-
ber of patches from the locally-dense vectors. As shown
in Fig. 10(b), for the given Save, we prepare two LUTs
denoted as the half-size XORNet(x, y1) and the full-size
XORNet(x, y2), which are optimized for lower sparsity ra-
tio of Sh < Save and higher sparsity ratio of Sf > Save,
respectively. In fact, the LUT of full-size XORNet is con-
structed by stacking more parts on that of the half-size XOR-
Net. Based on the local sparsity Slocal, the proposed sX-
ORNet chooses either half-size or full-size LUT for the
decompression process as depicted in Fig. 10(b). As we
allow the half-size LUT, the compressed data in the memory
now includes more u vectors, each of which additionally
includes a LUT-selection bit. By utilizing the full-size LUT
dedicated to the local sparsity larger than the average one,
moreover, we may slightly increase the number of patches
from the locally-sparse vectors, which are weakly related to
the patch-level imbalance. Therefore, adopting the proposed
sXORNet compression may increase the overall memory
footprint to store the pruned-DNN model compared with
the previous XORNet method.

Sparsity-Aware Memory Interface Architecture using Stacked XORNet Compression for Accelerating Pruned-DNN Models

Figure 10. Handling locally dense or sparse vectors with (a) a
single LUT in the previous XORNet method, and (b) two dedicated
stacked LUTs in our imbalance-aware sXORNet compression.

However, we can now select the dedicated XORNet option
to reduce the number of patches generated from the locally-
dense vectors, which mainly increases the patch-level imbal-
ance as depicted in Table 3. Therefore, even if we slightly
increase the total memory requirements, it is expected to re-
markably decrease the value of Imax, accordingly relaxing
the imbalance buffer costs in Fig. 7. Thanks to the stacked
LUT architecture shown in Fig. 10(b), in addition, the extra
hardware complexity for realizing the proposed sXORNet
compression can be negligible as we only require additional
control complexity for providing multiple decompression
options depending on the local sparsity. For the transformer
models with different pruning ratios, Fig. 11 shows the
reduced maximum imbalance Imax by adopting the pro-
posed sXORNet compression. It is clear that our approach
leads to a more balanced patch-consuming speed that allows
smaller imbalance buffers not to degrade the effective mem-
ory bandwidth, e.g., reducing Imax by 76% compared to
the previous state-of-the-art method for decompressing 0.6-
pruned transformer model with 256 parallel decompressors.
As a result, the proposed sXORNet approach drastically
relaxes the interface overheads by reducing the maximum
patch-level imbalance compared with the previous XORNet
solution with a single LUT focusing on the average sparsity.

5 EXPERIMENTAL RESULTS

5.1 Testing Environments

In order to validate the performance improvements from
the proposed methods, we designed four different memory

Figure 11. Reducing Imax with the proposed sXORNet method.

Figure 12. Compression quality to store 8-bit quantized trans-
former models with different compression schemes.

interface architectures handling the pruned-DNN models
with specialized data compression schemes; 1) the conven-
tional CSR method in Fig. 4(a) (Buluç et al., 2009), 2) the
previous XORNet approach with HA-patches in Fig. 4(b)
(Kwon et al., 2020), 3) the XORNet method adopting the
proposed VA-patches in Fig. 7, and 4) the fully-optimized
version based on the proposed sXORNet compression. To
evaluate the area complexity, all the interface architectures
were designed and synthesized in a 28 nm CMOS technol-
ogy by allowing the same timing margins for achieving the
operating frequency of 1 GHz. For testing the effective mem-
ory bandwidths under various pruning ratios, three INT8-
quantized pruned-DNN models were used in our case stud-
ies, including transformer for machine translation (Vaswani
et al., 2017), GPT-2 for natural language processing (Rad-
ford et al., 2019), and ResNet-50 for image recognition
(He et al., 2016). Note that the pruned transformer models
were directly obtained from the previous work1, whereas
the pruned GPT-2 and ResNet-50 models were constructed
by magnitude based pruning, without retraining process.

5.2 Compression Quality

The compression quality of each compression technique is
defined by the ratio between the ideal memory footprint
counting only the survived weights and the actual one stor-

1https://github.com/google-research/google-
research/tree/master/state of sparsity

Sparsity-Aware Memory Interface Architecture using Stacked XORNet Compression for Accelerating Pruned-DNN Models

Table 4. Implementation results of interface architectures based on the proposed VA-patches with different imbalance FIFO sizes.

N

EFFECTIVE BANDWIDTH (TBps) AREA COMPLEXITY (mm2)

XORNET SXORNET XORNET SXORNET

B=IMAX B=512 B=256 B=IMAX B=512 B=256 B=IMAX B=512 B=256 B=IMAX B=512 B=256

64 0.31 0.22 0.17 0.34 0.34 0.30 1.339 0.401 0.244 0.386 0.428 0.271

128 0.61 0.44 0.34 0.68 0.68 0.63 2.354 0.801 0.489 0.699 0.855 0.542

256 1.22 1.08 0.90 1.36 1.36 1.36 2.783 1.603 0.977 1.061 1.711 1.085

Table 5. Area complexity and effective bandwidth of the conventional and proposed interface architecture for three different models.

N

EFFECTIVE BANDWIDTH (TBps) AREA COMPLEXITY (mm2)

IDEAL CSR
XORNET XORNET SXORNET

CSR
XORNET XORNET SXORNET

HA-PATCH
VA-PATCH
(B=256) HA-PATCH

VA-PATCH
(B=256)

TRANSFORMER (VASWANI ET AL., 2017) (S = 0.6)

64 0.60 0.25 0.33 0.17 0.30 1.057 5.053 0.244 0.271

128 1.20 0.51 0.66 0.34 0.63 3.165 29.268 0.489 0.542

256 2.40 1.01 1.32 0.90 1.36 9.687 139.109 0.977 1.085

GPT-2 SMALL (BROWN ET AL., 2020) (S = 0.6)

64 0.60 0.25 0.33 0.09 0.27 1.057 5.053 0.244 0.271

128 1.20 0.50 0.66 0.23 0.58 3.165 29.268 0.489 0.542

256 2.40 0.99 1.32 0.61 1.21 9.687 139.109 0.977 1.085

RESNET-50 (HE ET AL., 2016) (S = 0.7)

64 0.80 0.26 0.41 0.31 0.40 1.227 5.067 0.258 0.271

128 1.60 0.51 0.82 0.62 0.79 3.804 29.295 0.515 0.542

256 3.20 1.02 1.64 1.23 1.57 11.925 139.163 1.031 1.085

ing the pruned-DNN model with the extra information after
applying a specific compression method (Kwon et al., 2020).
By changing the pruning ratio of the 8-bit transformer model
(Vaswani et al., 2017), Fig. 12 compares different compres-
sion techniques in terms of the required memory size to store
the pruned model. For storing CSR format, as described in
Section 2, we need to store the extra indexing information
that directly describes the survived weight locations. On the
other hand, the previous XORNet compression requires two
types of extra data; the patches for the correction step and
the bit-wise masking patterns. In the proposed sXORNet
method, we additionally store the selection information that
allows the on-demand XORNet size selection depending on
the local sparsity. However, the compression quality of the
proposed work is still comparable with the other approaches,
e.g., increasing the storage size by only 0.3% and 6.8% for
storing 0.8-pruned model compared with CSR and XORNet
methods, respectively, as we can reduce NV by utilizing
larger LUT for locally-sparse vectors. Note that such over-
heads of compression quality can be totally acceptable if
we consider the hardware-level performance enhancements
from the proposed optimization schemes.

5.3 Analyzing Hardware-Level Performances

To estimate the hardware-level performances of the pro-
posed interface architecture, we first observed the effects of
the imbalance FIFO. Targeting the 0.6-pruned 8-bit trans-
former model, Table 4 shows the total area complexity and
the effective bandwidth of interface designs adopting the
proposed VA-patches, where B denotes the size of imbal-
ance FIFO in Fig. 7. If the FIFO is implemented to support
the maximum patch-level imbalance, Imax, the interface
architecture can achieve the fastest effective bandwidth with-
out causing extra memory-accessing cycles. Due to the re-
duced numbers of vectors as well as the peak imbalance, for
this extreme-case implementation, note that the proposed
sXORNet compression even provides faster effective band-
width than the previous XORNet method. If we design the
fixed-size FIFO for the generalized interface, the proposed
sXORNet approach further improves the effective band-
width by remarkably reducing Imax, e.g., the 256-depth
FIFO is enough to support the similar bandwidth as the
Imax-depth case in this example. In terms of the hardware
complexity, for the same B-sized imbalance buffer, note the

Sparsity-Aware Memory Interface Architecture using Stacked XORNet Compression for Accelerating Pruned-DNN Models

Figure 13. Evaluating interface architectures for various pruned transformers in terms of (a) area complexity and (b) effective bandwidth.

proposed work requires a negligible amount of additional
costs by introducing the stacked LUT shown in Fig. 10.

Table 5 compares implementation results of memory inter-
face architectures for different compression techniques to
support the pruned-DNN models. Note that the conven-
tional CSR method severely degrades the effective memory
bandwidth compared with the ideal peak speed, whereas the
previous XORNet approach with HA-patches requires an
impractical hardware complexity for increasing the mem-
ory bandwidth. Utilizing the fixed imbalance FIFO size
(B = 256), the proposed VA-patches definitely lead to a
cost-efficient interface design by totally removing the dis-
tributing network. Moreover, the proposed sXORNet com-
pression greatly enhances the effective bandwidth regardless
of the DNN styles, which is even close to the XORNet ap-
proach without memory stalls with HA-patches.

For different transformer-based models, i.e., the original
transformer from (Vaswani et al., 2017) and GPT-2 small
from (Brown et al., 2020), Fig. 13(a) investigates the inter-
face complexity required by each compression technique,
where 256 decompressors are processed in parallel to con-
sider the physical memory bandwidth of 960 GBps. Allow-
ing the regular memory accesses on both the compressed
weights and the extra data, as we expected, utilizing VA-
patches achieves the most cost-efficient interface hardware
by replacing the complicated distributing network with the
small-sized imbalance FIFOs. Compared with the state-of-
the-art XORNet compression with HA-patches, for example,
the area complexity is relaxed by 128 times to support the
0.6-pruned original transformer by introducing the proposed
VA-patches. As depicted in Fig. 13(b), in addition, the op-
timized architecture adopting the proposed sXORNet com-
pression offers comparable effective bandwidths compared
to the previous XORNet method with HA-patches. Consid-

ering the hardware costs of the distributing network, as a
result, the proposed VA-patches show the most attractive ef-
fective bandwidth by precisely adjusting patch distributions
for locally-dense vectors.

Fig. 14 illustrates the complexity-bandwidth trade-offs by
adopting different compression methods. To handle the
0.6-pruned transformer model, the proposed work finally
achieves the effective memory bandwidth of 1.36 TBps
while requiring the interface-level area complexity of 1.71
mm2. With the regular memory accessing patterns, the hard-
ware cost for supporting the proposed work is relaxed by 8.9
times and 128.2 times when compared with those for realiz-
ing the conventional CSR format (Buluç et al., 2009), and
the previous XORNet compression (Kwon et al., 2020; Park
et al., 2021), respectively. At the same time, the reduced
peak patch-level imbalance from the proposed sXORNet
compression allows the fastest effective memory bandwidth,
i.e., increasing the memory speed by 34% compared with the
CSR method. As a result, the proposed algorithm-hardware
co-optimization approach successfully provides the practical
memory interface design for accelerating the pruned-DNN
models, eventually improving the system-level performance
with the recent large-scale networks.

6 CONCLUSION

In this paper, we have presented the cost-efficient yet high-
speed memory interface architecture that can successfully
generate sparse dense-format weight matrices from the com-
pressed data. For the first time, we fairly investigate the
interface-level overheads to support different compression
types, revealing the existing limitations in terms of the mem-
ory bandwidth as well as the hardware complexity. Then,
the new memory layout with VA-patches is introduced to

Sparsity-Aware Memory Interface Architecture using Stacked XORNet Compression for Accelerating Pruned-DNN Models

Figure 14. Investigating the complexity-bandwidth trade-offs to
support the 0.6-pruned transformer model.

guarantee regular memory-accessing patterns, eliminating
the previous distributing network. In addition, the patch-
consuming speed per decompressor is evaluated to find the
maximum patch-level imbalance, which can be greatly re-
laxed by adopting the proposed imbalance-aware sXORNet
compression. Compared with the recent XORNet com-
pression, experimental results show that the proposed work
saves the area complexity by more than 120 times while pro-
viding a similar effective bandwidth, providing a sufficient
number of weights to the following processing engines for
accelerating the pruned-DNN processing.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their feedback in the
blind review process. This work was supported in part by the
National Research Foundation (NRF) funded by the Korean
government (MSIT) under Grant 2020M3H6A1085498 and
Grant 2022R1A2C2092521.

REFERENCES

Ahn, D., Lee, D., Kim, T., and Kim, J.-J. Double viterbi:
Weight encoding for high compression ratio and fast on-
chip reconstruction for deep neural network. In Interna-
tional Conference on Learning Representations, 2019.

Bondarenko, Y., Nagel, M., and Blankevoort, T. Under-
standing and overcoming the challenges of efficient trans-
former quantization. arXiv preprint arXiv:2109.12948,
2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

Advances in Neural Information Processing Systems, 33:
1877–1901, 2020.

Buluç, A., Fineman, J. T., Frigo, M., Gilbert, J. R., and
Leiserson, C. E. Parallel sparse matrix-vector and matrix-
transpose-vector multiplication using compressed sparse
blocks. In Proceedings of the 21th Annual Symposium on
Parallelism in Algorithms and Architectures, pp. 233–244,
2009.

Cai, H., Lin, J., Lin, Y., Liu, Z., Tang, H., Wang, H., Zhu,
L., and Han, S. Enable deep learning on mobile devices:
Methods, systems, and applications. ACM Transactions
on Design Automation of Electronic Systems (TODAES),
27(3):1–50, 2022.

Capra, M., Bussolino, B., Marchisio, A., Masera, G., Mar-
tina, M., and Shafique, M. Hardware and software opti-
mizations for accelerating deep neural networks: Survey
of current trends, challenges, and the road ahead. IEEE
Access, 8:225134–225180, 2020.

Cheng, Y., Wang, D., Zhou, P., and Zhang, T. A survey
of model compression and acceleration for deep neural
networks. arXiv preprint arXiv:1710.09282, 2017.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. PALM: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Gale, T., Zaharia, M., Young, C., and Elsen, E. Sparse gpu
kernels for deep learning. In SC20: International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–14, 2020.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 2704–2713, 2018.

Sparsity-Aware Memory Interface Architecture using Stacked XORNet Compression for Accelerating Pruned-DNN Models

Kwon, S. J., Lee, D., Kim, B., Kapoor, P., Park, B., and Wei,
G.-Y. Structured compression by weight encryption for
unstructured pruning and quantization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1909–1918, 2020.

Kwon, S. J., Kim, J., Bae, J., Yoo, K. M., Kim, J.-H., Park,
B., Kim, B., Ha, J.-W., Sung, N., and Lee, D. Alphatun-
ing: Quantization-aware parameter-efficient adaptation of
large-scale pre-trained language models. arXiv preprint
arXiv:2210.03858, 2022.

Lee, D., Ahn, D., Kim, T., Chuang, P. I., and Kim, J.-J.
Viterbi-based pruning for sparse matrix with fixed and
high index compression ratio. In International Confer-
ence on Learning Representations, 2018.

Moon, S., Byun, Y., Park, J., Lee, S., and Lee, Y. Memory-
reduced network stacking for edge-level cnn architecture
with structured weight pruning. IEEE Journal on Emerg-
ing and Selected Topics in Circuits and Systems, 9(4):
735–746, 2019a.

Moon, S., Lee, H., Byun, Y., Park, J., Joe, J., Lee, S., and
Lee, Y. FPGA-based sparsity-aware CNN accelerator
for noise-resilient edge-level image recognition. In Proc.
Asian Solid-State Circuits Conference, 2019b.

NVIDIA. NVIDIA ampere GA102 GPU architecture,
second-generation RTX whitepaper. 2020.

Park, B. S., Kwon, S. J., Oh, D., Kim, B., and Lee, D. Encod-
ing weights of irregular sparsity for fixed-to-fixed model
compression. In International Conference on Learning
Representations, 2021.

Park, J., Yoon, H., Ahn, D., Choi, J., and Kim, J.-J. OP-
TIMUS: OPTImized matrix multiplication structure for
transformer neural network accelerator. Proceedings of
Machine Learning and Systems, 2:363–378, 2020.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-
to-image generation. In International Conference on
Machine Learning, pp. 8821–8831, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

Wang, T., Wang, K., Cai, H., Lin, J., Liu, Z., Wang, H., Lin,
Y., and Han, S. Apq: Joint search for network architecture,
pruning and quantization policy. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2078–2087, 2020.

