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ABSTRACT
We present RecD (Recommendation Deduplication), a suite of end-to-end infrastructure optimizations across
the Deep Learning Recommendation Model (DLRM) training pipeline. RecD addresses immense storage,
preprocessing, and training overheads caused by feature duplication inherent in industry-scale DLRM training
datasets. Feature duplication arises because DLRM datasets are generated from interactions. While each user
session can generate multiple training samples, many features’ values do not change across these samples. We
demonstrate how RecD exploits this property, end-to-end, across a deployed training pipeline. RecD optimizes data
generation pipelines to decrease dataset storage and preprocessing resource demands and to maximize duplication
within a training batch. RecD introduces a new tensor format, InverseKeyedJaggedTensors (IKJTs), to deduplicate
feature values in each batch. We show how DLRM model architectures can leverage IKJTs to drastically increase
training throughput. RecD improves the training and preprocessing throughput and storage efficiency by up to
2.48×, 1.79×, and 3.71×, respectively, in an industry-scale DLRM training system.

1 INTRODUCTION

Machine learning (ML) infrastructure is one of the most
dominant components of industry-scale datacenters. For
example, ML consumes over 70% of FLOPs at Google (Pat-
terson et al., 2022). To support the computational de-
mands of ML, and especially training, companies such as
Google (Lardinois, 2022), Meta (Mudigere et al., 2022;
Meta, 2022), and AWS (AWS, 2022) are deploying massive
clusters consisting of tens of thousands of accelerators.

Deep learning recommendation model (DLRM) training is
a principal industrial use-case for these clusters. For exam-
ple, DLRM training dominates ML capacity across Meta’s
fleet (Naumov et al., 2020). This demand is driven by the
ubiquity of DLRMs across industry, as they underlie criti-
cal services from Google (Anil et al., 2022; Li et al., 2020;
Zhao et al., 2019), Taobao (Ge et al., 2018), Meta (Meta,
2019; Hazelwood et al., 2018; Acun et al., 2021), and oth-
ers. DLRM training clusters are fed by a data storage and
ingestion (DSI) pipeline — systems that generate, store,
and preprocess training data — which can demand more
power consumption than what is required by the training
accelerators (trainers) themselves (Zhao et al., 2022). To
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train larger, more complex, and more accurate models, it
is critical to improve the performance and efficiency of the
end-to-end DLRM training pipeline, from DSI to trainers.

To this end, this paper presents a suite of optimizations,
called RecD, spanning the DLRM training pipeline. RecD
exploits the inherent session-centric nature of DLRM
datasets. DLRM training samples are generated from user
interactions which query industrial recommendation mod-
els. Each user’s session typically requires numerous in-
ferences, and thus produces many training samples (Wang
et al., 2021). However, the features that largely compose
each sample likely remain static throughout each session.
For example, an e-commerce DLRM dataset may contain a
user feature representing the sequence of the last N items
added to a shopper’s cart. The e-commerce site may serve
recommendations throughout a user’s shopping session, but
if the shopper does not add a new item, each of the session’s
samples will contain the same values for that feature.

While prior work has mentioned feature duplication (Ge
et al., 2018; Gai et al., 2017), none has characterized its
prevalence in industry-scale datasets nor provided solutions
that optimize for it across the training pipeline. Current
pipelines spend considerable resources storing, preprocess-
ing, and training over duplicate features. These overheads
constrain industry-scale training infrastructures from sup-
porting larger datasets, longer features, and more complex
modeling techniques (e.g., attention) that yield more accu-
rate models (Ardalani et al., 2022; de Souza Pereira Moreira
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Figure 1. Industrial DLRM training pipeline composed of DSI and training services.

et al., 2021; Fang et al., 2020; Li et al., 2019).

We begin the paper with an in-depth characterization of
how session-centricity generates significant feature value
duplication in datasets used by an industrial DLRM training
pipeline. Each session produces many samples (16.5 on
average), and feature values are largely duplicated across
the session’s samples (81.6 − 89.4% on average). RecD
addresses the significant storage, preprocessing, and training
overheads caused by duplication throughout the DLRM
training pipeline.

RecD begins at data generation by sharding raw infer-
ence logs by session ID to improve compression ratios in
Scribe (Karpathiotakis et al., 2019), a distributed message
passing system. These logs are ingested by ETL engines to
produce training samples. RecD coalesces each session’s
samples within a training batch. Not only does this reduce
dataset sizes due to native compression, it also allows RecD
to convert each batch to a new tensor format during data
reading, InverseKeyedJaggedTensors (IKJTs), that dedupli-
cates feature values.

IKJTs require minimal resource overheads to generate and
use for preprocessing and training. Meanwhile, they allow
readers, which preprocess data, and trainers to operate on
deduplicated tensors, significantly reducing resource de-
mands across the training pipeline. We explore these ben-
efits. We present how DLRM architectures can leverage
IKJTs to reduce GPU compute, network, and memory re-
source requirements — improving training throughput and
enabling more powerful modeling techniques. In summary:

• We provide a characterization using petabyte-scale in-
dustrial DLRM datasets showing how feature duplication
is inherent in DLRM training pipelines. We discuss the
opportunities and challenges of deduplication.

• We present necessary optimizations made in the data stor-
age and ingestion pipeline to enable a novel tensor format,
IKJTs, that deduplicates features in each training batch.

• We show how IKJTs improve DLRM training throughput
and resource utilization by eliminating redundant com-
pute, memory, and network usage during training.

• We evaluate on industrial DLRMs. RecD improves train-
ing and preprocessing throughput and storage efficiency

by up to 2.48×, 1.79×, and 3.71×, respectively.

2 BACKGROUND

Figure 1 shows an end-to-end industrial training
pipeline (Zhao et al., 2022), with DSI and training services.

2.1 Data Storage and Ingestion

Data Generation. Training data is continuously gener-
ated from deployed recommendation services. User-facing
services request batches of inferences throughout a user’s
session. For each batch of requests, features corresponding
to the user and potentially recommended items are retrieved
from a feature store and are used as input to the DLRM to
generate relevant predictions. Since features continuously
change, inference servers log features for each request to
avoid data leakage (Kaufman et al., 2012). Given predic-
tions, user-facing services generate relevant impressions
of items and log events (i.e., impression outcomes). Logs
are aggregated in Scribe, a global distributed messaging
system (Karpathiotakis et al., 2019).

Streaming and batch processing engines, such as Spark (Za-
haria et al., 2012), ingest data from Scribe. These engines
join raw features and events to produce labeled samples.
Training samples are subsequently landed into time parti-
tioned (e.g., hourly) Hive tables (Thusoo et al., 2009). To
maintain data freshness, new table partitions are constantly
landed and old partitions are deleted.

Dataset Schema and Storage. Each training sample, cor-
responding to an impression and outcome, is stored as a
structured row containing features and labels. Features rep-
resent almost all of the bytes within a sample. DLRMs
require two types of features: dense and sparse. Dense
features represent continuous values, such as time, and are
stored as a map from feature key to a float value. Sparse
features represent categorical values, such as item IDs, and
are stored in map columns that map a feature key to its value,
typically a variable-length list of item IDs. Compared to
dense features, sparse features require significantly more
storage, preprocessing, and training resources across the
DLRM training pipeline (Zhao et al., 2022; Naumov et al.,
2020; Sethi et al., 2022).

Hive partitions are stored as columnar DWRF (Zhao et al.,
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Figure 2. How DLRMs are synchronously trained using hybrid
parallelism across multiple GPUs. Dashed lines show collective
communication across model-parallel and data-parallel modules.

2022) files similar in format to ORC (ORC, 2022). Files
are composed of regions, called stripes, that represent a
small set of rows. Within a stripe, rows are stored as
columnar streams. Feature columns are first flattened (i.e.,
each feature key becomes a separate column). Values for
each flattened column (e.g., ID lists) are then encoded and
compressed into streams. Files are stored in Tectonic, an
exabyte-scale distributed filesystem (Pan et al., 2021).

Data Reading and Preprocessing. Each DLRM training
job specifies its dataset (table partitions) and preprocessing
needs via a DataLoader specification (PyTorch, 2023). A
reader tier, composed of stateless readers, is launched for
each job. Readers scan through the dataset partitions and
preprocess rows into tensors. Each reader fills a batch of
rows by reading files from Tectonic and converts the batch
into raw tensors. The reader then processes the tensors
according to the job’s specifications by applying transfor-
mations such as normalization and hashing. Preprocessed
tensors are sent to trainers. The number of readers for each
job is scaled to meet trainers’ ingestion bandwidth demands.

2.2 DLRM Training at Scale

Figure 2 shows how a typical DLRM (Naumov et al., 2019)
is synchronously trained across multiple GPUs. DLRMs pri-
marily consist of multilayer perceptrons (MLPs) and embed-
ding tables (EMBs) composed into three main architectural
components. EMBs ingest sparse feature lists and produce
a dense activation vector for each list element. A pooling
function (e.g., average, sum, or max) aggregates activations
for each sparse feature. Meanwhile, a bottom MLP trans-
forms dense features into a dense representation with the
same dimensionality as embedding vectors. An interaction
layer explicitly computes second-order interactions across
dense and sparse features (e.g., via pairwise dot product).
A top MLP and sigmoid processes the result to produce a
probability output (e.g., click-through rate).

DLRMs are trained using hybrid parallelism across multi-

ple GPUs. MLPs are copied across GPUs in a distributed
data parallel (DDP) fashion, while EMBs are sharded across
GPUs via distributed model parallelism (DMP) due to their
large size. During each training iteration, each GPU ingests
a local batch from the reader tier. A sparse data distribution
(SDD) step first aggregates the appropriate feature values,
across all local batches, to the corresponding GPU using an
all-to-all collective (NVIDIA, 2022) across all GPUs. After
the EMB lookup and pooling, another all-to-all distributes
embedding vectors back to their original GPUs, as feature
interaction and the top MLP is data parallel. After calcu-
lating the loss, an all-reduce aggregates gradients to update
MLPs. Similarly, an all-to-all synchronizes EMB parameter
updates during the backward pass. Thus, the iteration time
is determined by both the per-GPU compute and memory
bandwidth resources (for MLPs, interactions, pooling, and
EMB lookups), as well as the backend network bandwidth
and latency (for collective communications).

Scaling Systems for DLRMs. Improving DLRM accuracy
necessitates systems efficiency and throughput optimiza-
tions across the training pipeline. For example, (Ardalani
et al., 2022) showed that data scaling significantly improves
DLRM performance. Supporting growing dataset volumes
requires not only more efficient storage, but also improved
reader and trainer throughputs to complete training within
a reasonable amount of time. Meanwhile, recent DLRM
architectures focus on capturing users’ long-term interests
via a sequential history of interactions (Pi et al., 2019; Li
et al., 2019; Chen et al., 2019). These architectures use
long sequence features and attention mechanisms, such as
transformers (Vaswani et al., 2017), to pool embeddings
across many sequence features. They demand significant
GPU compute, memory, and network resources. Thus, opti-
mizing for DSI and training performance and efficiency is
increasingly urgent as resource demands continue to grow.

3 UNDERSTANDING DATA REUSE

To understand the opportunity for RecD, we explore the
prevalence of duplication within industry-scale datasets. We
focus on sparse features because they a) are prone to dupli-
cation as we characterize next, and b) demand significantly
more training pipeline resources than dense features (Sec-
tion 2) and thus present a more attractive optimization target.

Duplication arises because sparse user features rarely
change across impressions within a session1. For exam-
ple, consider social media features flike and fshare, which
contain a user’s last N posts they liked and shared, respec-
tively. During a session, a user may view multiple posts
(impressions). While each impression may generate a train-
ing sample, flike and fshare will be exactly the same across

1A session is a set of user impressions in a fixed time window.
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Figure 3. Histogram of the number of samples per session within
an hourly partition (left) and 4096 batch (right) from the partition.

Figure 4. Percent of exact (left) and partial (right) duplicate values
across sparse features within an hourly partition.

samples if the user did not like or share a post. Some fea-
tures, such as fshare, may rarely change, and even if they
do, their lists will be shifted with most elements being the
same. In summary, duplication depends on the number of
samples per session, and is a per-feature property depending
on how often each feature’s value changes across samples.

Each session generates multiple training samples, but
they are distributed across training batches. Figure 3
shows a histogram of the number of training samples gen-
erated by each session in a representative, O(100PB)-scale
industrial DLRM dataset. We show graphs for an hourly ta-
ble partition and a batch of 4096 samples from the partition.

We observe that, on average, each session generates 16.5
samples within an hourly partition with a significant tail of
over 1000 samples per session. While this shows that there
is significant opportunity for deduplication, the training
pipeline operates on a relatively small subset of training
samples at a time (e.g., file splits and training batches).
Deduplicating a session’s samples requires us to co-locate
the samples closely together within the table.

However, the data generation infrastructure typically orders
samples based on inference time. The large volume of infer-
ence requests across services naturally interleaves samples
across sessions. Figure 3 demonstrates how within each
batch of 4096 samples, this interleaving results in only 1.15
samples per session on average. Optimizations must be co-
designed alongside data generation infrastructure to fully
coalesce and deduplicate samples within each session.

Within a session’s samples, there is a large amount of
exact and partial feature duplication. It is also impor-
tant to validate that feature values (i.e., lists) themselves are
largely duplicated across these samples. We first quantify

the amount of exact duplicate feature values across samples.
Specifically, for given feature x, we analyze the percent
of samples within the hourly partition that contained ex-
actly the same list as another sample from the same session
within the partition. For example, if feature x is never up-
dated across 16.5 samples per session, we would expect
a maximum of 15.5/16.5 = 93.9% of exact duplicates in
the partition. Figure 4 shows this result across 733 sparse
features in the hourly partition. We observe that on average
across all features, 80.0% of feature values are an exact
duplicate. This validates our assumption that many DLRM
features are not updated across a session’s samples.

Specifically, DLRM sparse features largely reflect either
user or item traits. User sparse features (e.g., last N liked
item IDs) are largely duplicated across a user’s samples.
Item features (e.g., the item ID that is evaluated for recom-
mendation) are less duplicated since many different items
are ranked in a given session. Figure 4 shows this distinction
– user features comprise the vast majority of dataset volume
and accordingly represent the large subset of features with
high duplication. Meanwhile, item features exhibit less du-
plication, representing the subset of features right of the
knee. We expect increased reliance on user features, and
thus higher feature duplication, since recommender systems
are increasingly focusing on larger user interaction history
features compared to item metadata (Section 2.2).

For highly-duplicated user features, even if its values change
across samples, we expect the majority of its list IDs to re-
main the same. We thus repeated the analysis on an individ-
ual list ID basis. For example, suppose feature x contained
100 IDs across 2 training samples. x may be updated by
appending a new ID and shifting its list by one, resulting
in 99/200 = 49.5% partial duplication. Figure 4 shows
how on average across all features, 83.9% of feature values
within each feature list are duplicated. Many non-exact du-
plicate samples within the session contain partial duplicates.

Finally, it is important to note that not all feature lists have
the same length. To understand how many bytes are dupli-
cated, we weigh each feature in our prior analysis by its
respective average length. We find that 81.6% and 89.4%
of all IDs in feature values (i.e., bytes) are exact and partial
duplicates, respectively, suggesting that longer features have
slightly more exact and partial duplicates.

Summary. The vast majority of feature values are dupli-
cated within the industry-scale DLRM dataset. While sig-
nificant deduplication opportunities exist, they require each
session’s samples to be co-located within training batches.
Thus, trainer-only solutions are insufficient — optimizations
must be co-designed across the end-to-end training pipeline.
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Table 1. Overview of RecD optimizations made throughout the industry-scale training pipeline.
Optimization Target System Benefit

O1: Log Sharding
(§4.1)

Scribe Improves black-box compression ratios to reduce Scribe network RX/TX and storage
demands.

O2: Cluster by Ses-
sion (§4.1)

ETL Session sample co-location enables readers/trainers to exploit duplicate features. Improves
file compression ratios, reducing storage and read IOPS demands.

O3: Inverse KJTs
(§4.2)

Readers New tensor encoding allows downstream preprocessing/training operations to use dedupli-
cated features, enabling significant resource savings.

O4: Deduplicated
Preproc. (§4.3)

Readers IKJT preprocessing modules reduce preprocessing compute demands. Deduplicated
outputs require less NW bandwidth between readers and trainers.

O5: Deduplicated
EMB (§5)

Trainers Reduced per-iteration trainer compute/memory/NW demands by deduplicating EMB
features, lookups, and activations.

O6: JaggedIndex-
Select (§5)

Trainers Reduced memory copy overheads by enabling index select without first converting jagged
tensors to a dense representation.

O7: Deduplicated
Compute (§5)

Trainers Reduced compute for sparse feature modules (especially attention pooling) by allowing
them to operate on deduplicated tensors.

4 RecD IN DATA STORAGE AND INGESTION

RecD implements these optimizations, summarized in Ta-
ble 1, throughout the industrial pipeline shown in Figure 1.

4.1 Data Generation and Storage

Log Sharding. Scribe is a message passing service which
logically aggregates and buffers raw logs from each infer-
ence server. To load balance, Scribe consistently hashes the
message and routes each to a shard on a physical storage
node, which buffers and compresses messages in memory
and on disk. Unfortunately, the default hashing configura-
tion distributes logs for each session randomly across shards.
RecD configures Scribe to instead use session IDs as the
shard key, improving the “compressibility” of data within
each shard. Thus, we can both reduce the number of Scribe
storage nodes and the amount of network bandwidth needed
for downstream ETL jobs to ingest logs.

Clustering by Session. While improved sharding increases
the locality of a session’s logs, it does not guarantee that a
session’s training samples are adjacent within the dataset.
This grouping is needed for downstream systems to dedu-
plicate features. Thus, RecD adds a data generation ETL
job, which clusters partitions by session ID and sorts by
log timestamp. As with Scribe, we also expect two direct
benefits from ETL clustering. First, each file’s stripes are
compressed using black-box compression, e.g. zstd (Zs-
tandard, 2022). Ensuring that each stripe contains multi-
ple rows for a given session increases compression ratios
and thus reduces dataset storage requirements. Secondly,
smaller files also reduce compute and network resources
needed to read samples during online preprocessing.

4.2 Tensor Encoding for Deduplication

Figure 5 shows how reader nodes generate preprocessed
tensors for each training job. Each reader reads batches of

Sparse (ID List) Features Label
a: [1, 2], b: [3, 4, 5], c: [7, 8], d:[9] 1

b: [4, 5, 6], c: [7, 8], d:[9]
a: [1, 2], b: [3, 4, 5], c: [10], d:[11]

0
1

sparse_features: [a],
dedup_sparse_features: 
  [[b], [c, d]]

DataLoader Config

values: [1, 2, 1, 2],
offsets: [0, 2, 2]

key: feature_a

KeyedJaggedTensor

c: {values:[7, 8, 10],
  offsets: [0, 2]},
d: {values: [9, 11],
  offsets: [0, 1]},
inverse_lookup: [0, 0, 1]

multikey: feature_c,d
b: {values: [3, 4, 5, 4, 5,
6],
offsets: [0, 3]},
inverse_lookup: [0, 1, 0]

key: feature_b

Batch Reading (Fill)

Feature Conversion (Convert)

Reader Tier Reader Node

Preprocessing (Process)

Batch Size

Inverse
KeyedJaggedTensor

Inverse
KeyedJaggedTensor

Preprocessed Tensors

Hive Table
Stored in Tectonic

Trainer NodesKJT IKJT IKJT Trainer Nodes

Figure 5. Each reader node extracts mini-batches from storage.
Batches are converted to tensors, preprocessed, and sent to trainers.

samples, converts rows to tensors, and preprocesses tensors.

A Feature Conversion step copies data from raw batches
of rows, read into memory as byte arrays, into structured
tensors. The typical tensor format used for sparse features is
a KeyedJaggedTensor (KJT) (PyTorch, 2022). A KJT maps
a key (i.e., the feature key) to a JaggedTensor — a tensor
with a jagged dimension (i.e., different length slices). For
example, Figure 5 shows how a batch of 3 rows for feature
a is transformed into a KJT with two slices representing the
feature’s values and offsets for the batch. The offsets
slice has an entry for each row, with offsets[i] pointing to
the starting index in the values slice for row i. The length
of the feature for row i is calculated from offsets[i+ 1]−
offsets[i] (or |values| − offsets[i] for the last row). In
the example, feature a has 2× duplication in the values
slice as rows 0 and 2 both contain [1, 2].
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InverseKeyedJaggedTensor. To deduplicate feature
values, RecD introduces a new inverse KJT format.
Figure 5 shows how ML engineers can specify a
dedup sparse features field in the PyTorch Dat-
aLoader, which is a List[List[featureKey]], con-
taining lists of feature groups to deduplicate. RecD dedupli-
cates each feature group to an InverseKeyedJaggedTensor
(IKJT) during feature conversion. Of course, users can still
generate KJTs for features not exhibiting high duplication.

RecD deduplicates features by detecting and avoiding du-
plicate copies during feature conversion. An IKJT in-
stead adds an additional inverse lookup slice, where
inverse lookup[i] points to the respective entry in the dedu-
plicated offsets slice for row i in the batch. offsets
encodes the values slice as before. In our example, fea-
ture b contains duplicate values for rows 0 and 2. Thus
inverse lookup[0] == inverse lookup[2], with both
pointing to offset[0] which encodes the duplicate values
[3, 4, 5]. IKJTs avoid storing a second copy of [3, 4, 5] in
the values slice. Since exact matches are the vast majority
of duplication (Section 3), we focus on deduplicating exact
matches and discuss supporting partial matches in Section 7.

Grouped IKJTs. Users can deduplicate multiple features
within a single IKJT. Grouped IKJTs are designed for
features updated synchronously across samples and thus
share inverse lookup values. For example, an e-commerce
model may use two features which track the item ID and
seller ID for items added to a user’s cart. Since both fea-
tures track the same item sequence, they are both updated
at the same time (i.e., when a new item is added). As we
explore in Section 5, grouped IKJTs are designed to enable
additional optimizations during each training iteration.

In Figure 5, features c and d are deduplicated as a group. For
both features, rows 0 and 1 are duplicates. Thus, RecD uses
a common inverse lookup to reference the offsets slice
for both features, even if their respective offsets or values
slices are different. For example, inverse lookup[0] will
map to [7, 8] for feature c and [9] for feature d. In the event
that grouped feature values are not synchronously updated
across samples, we will not deduplicate the corresponding
unsynchronized rows to ensure that the inverse lookup
invariant is maintained.

Using IKJTs. Not all features may be worth deduplicat-
ing. To understand the value of deduplication, we use the
following analytical model for a feature f . S is the average
number of samples per session. B is the batch size. d(f)
is the probability that the f ’s value will remain the same
across adjacent rows. l(f) is the average length of f .

DedupeLen(f) = l(f) ∗B ∗ (1− (S − 1) ∗ S−1 ∗ d(f))
DedupeFactor(f) = l(f) ∗B/DedupLen(f)

Specifically, DedupeLen(f) expresses the size of the
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Figure 6. Overview of a training iteration, with green arrows show-
ing where RecD optimizations save trainer resources. Dashed
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values slice after deduplicating f for each training batch.
The deduplication factor, DedupeFactor(f), is calcu-
lated as the ratio of the original values slice length to
DedupeLen(f). For example, suppose B = S = 3, l(b) =
3, and d(b) = 0.5 for feature b in Figure 5. Deduplicating
b results in DedupeLen(b) = 6 and DedupeFactor(b) =
1.5. The total amount of feature values deduplicated in-
creases with higher S, l(f), and d(f), which aligns (i.e.,
increases) with data scaling trends (Section 2.2).

While inverse lookup and offsets requires more ele-
ments than offsets alone (up to B), the overhead is negli-
gible as for most features l(f) ∗B >> B. Furthermore, as
we discuss in Section 5, because only values and offsets
tensors are communicated across GPUs, IKJTs strictly de-
crease over-the-network tensor sizes during training. Finally,
DedupeFactor(f) provides an initial guidance on the im-
pact of deduplicating f . We typically deduplicate features
with DedupeFactor(f) > 1.5. However, the actual perfor-
mance benefit depends on how well readers and trainers can
use IKJTs, as we explore next and discuss in Section 7.

4.3 Preprocessing over IKJTs.

After feature conversion, each reader node preprocesses ten-
sors using a set of user-provided TorchScript modules. If a
user deduplicates a feature, we automatically add a wrapper
that transparently supports preprocessing over IKJTs. Since
the original function used KJTs, the wrapper simply pro-
vides the offsets and values slices from the IKJT held in
memory, saving significant compute resources by avoiding
preprocessing duplicate values. Deduplicated preprocessing
functions also output IKJTs. This reduces network band-
width requirements between reader and trainer nodes and
allows trainers to further leverage IKJTs.

5 RecD IN TRAINING

Building on our newly proposed IKJT tensor format, we
design a series of RecD PyTorch modules as direct replace-
ments for DLRM embedding and pooling operations. The
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IKJT format generated by readers enables a host of opti-
mizations at the trainer, summarized in Table 1. As shown
in Figure 6, these modules operate on deduplicated (i.e.,
IKJT) tensors during the forward pass, reducing resources
spent operating over duplicate sparse feature values.

Sparse Data Distribution. After receiving a batch of sam-
ples, each GPU executes a sparse data distribution (SDD)
step. Using an all-to-all collective, SDD coalesces a global
batch only containing the respective features correspond-
ing to each GPU’s model-parallel EMBs. Previously, KJTs
required sending significant amounts of duplicate feature
values over the network. With RecD, deduplicated IKJT
value and offset slices are sent instead (inverse lookup
slices are kept local). RecD thus reduces the amount of
bytes distributed during SDD by DedupeFactor(f) for
each feature f . Since SDD runs before any embedding
lookups, reducing the amount of data over the network in
each iteration directly improves training throughput.

EMB Lookups. After SDD, each trainer needs to translate
every feature value in the KJT into an embedding by per-
forming a lookup in each EMB. By using IKJTs, the length
of the values slice is reduced by DedupeFactor(f), reduc-
ing the overall number of EMB lookups we need to perform
in each iteration and thus required memory bandwidth.

EMB Inputs and Activations. Each GPU also needs to allo-
cate significant dynamic memory to store the feature inputs
and EMB activations of each sparse value. This is especially
true of long length sequence models. For example, a single
feature f with l(f) = 1000, B = 4096, and an EMB dimen-
sion of 128 would require 4096∗1000∗128∗4B ≈ 2GB of
GPU memory to store activations. By performing lookups
using IKJT values, we directly reduce the amount of dy-
namic GPU memory required by DedupeFactor(f).

Deduplicated Pooling. DLRMs use a set of pooling mod-
ules (e.g., sum, avg.) that operate on the EMB activations
prior to feature interaction. Recent trends have motivated
more complex pooling modules, such as transformers and
other attention mechanisms (Pi et al., 2019; Li et al., 2019),
which operate over multiple long-length sequence features.
These modules require significant GPU resources.

To reduce the computational and memory overhead for
these sequential pooling modules, RecD allows users to
run compute modules with IKJTs as inputs. Specifically,
by ensuring that the inverse lookup slice is shared across
all features within an IKJT, we can deduplicate com-
pute by simply operating on the deduplicated values and
offsets. For example, assume a module element-wise
sums values for each row across features c and d in the
example in Figure 5. Using KJTs, the GPU computes
[7 + 8 + 9, 7 + 8 + 9, 10 + 11] = [24, 24, 21]. With IKJTs,
we instead compute [7 + 8 + 9, 10 + 11] = [24, 21] and

simply use the shared inverse lookup to expand the output
to [24, 24, 21]. By applying this technique to expensive at-
tention pooling modules, we reduce the compute demand
by DedupeFactor(f) for each sequence feature f .

Deduplicated EMB. Since the output of pooling layers are
still in the IKJT format, we can get more network savings
during the all-to-all that broadcasts pooled embeddings back
to each GPU for feature interaction.

Jagged Index Select. Before feature interaction,
IKJTs must be converted back to a KJT to be inter-
acted with other non-deduplicated features. We use
torch.index select to perform this conversion. Prior
to RecD, index select could only operate on dense, not
jagged tensors. We needed to first convert jagged tensors
into dense tensors (e.g., via padding), incurring large mem-
ory overheads. We implemented a jagged index select
to operate over jagged tensors, eliminating this overhead.

Summary. As summarized in Figure 6, IKJTs enable a host
of GPU network, memory, memory bandwidth, and compute
optimizations during training. These optimizations improve
training throughput and reduce GPU resource demands,
allowing us to train more complex models at a faster rate.

6 EVALUATION

6.1 End-to-end Performance Optimizations

RecD improves the performance and efficiency of the entire
training pipeline, including storage, readers, and trainers.
To study each component, we used three representative
industrial DLRMs, RM1, RM2, and RM3, designed around
the core DLRM architecture (Naumov et al., 2019). RM1,
RM2, and RM3 contain O(109), O(1009), and O(1009)
parameters with O(10GB), O(100GB), and O(100GB)
of embedding tables, respectively. Embedding dimensions
range from 64-1024 across each RM .

We evaluate on a trainer tier consisting of ZionEX training
nodes (Mudigere et al., 2022). Each ZionEX node contains
8 NVIDIA A100 GPUs with a total of 320 GB HBM and
12.4 TB/s of memory bandwidth. Intra-node communication
across GPUs occurs via NVLink. Each GPU is equipped
with a 200 Gbps RoCE NIC for inter-node communication
over a dedicated RoCE backend network. Input data is
supplied by 4 host CPU sockets, each with a 100 Gbps
NIC that ingests data from a tier of DPP (Zhao et al., 2022)
readers. Each reader is a general-purpose, x86 CPU server
with 18 cores, a 12.5 Gbps NIC, and 64 GB of memory.
Readers read data from each RM ’s respective O(100PB)
industrial dataset stored within the Tectonic file system (Pan
et al., 2021).

For each RM , we used the default baseline configuration,
with RM1, RM2, and RM3 using a batch size of 2048,
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Figure 7. Trainer, reader, and storage performance using RecD
across three representative RMs, normalized to their baselines.

2048, and 1152, and 48, 48, and 64 GPUs, respectively. We
then enabled the full suite of RecD optimizations for each
RM , which allowed us to increase the batch size for RM1

and RM3 to 6144 and 2048, respectively. For RM2, we
could not substantially increase batch size beyond 2048. For
RM1, we deduplicated 16 sequence features in 5 groups.
RM2 and RM3 deduplicated 6 and 11 sequence features,
respectively, in one group. Each RM also deduplicated an
additional ≈ 100 features that were element-wise (e.g., sum,
max) pooled. DedupeFactor was ≈ 4 − 15 for dedupli-
cated features. We used a clustered table for RecD models
containing the same data as the baseline table. We kept all
other hyper parameters the same and scaled the number of
readers to provide sufficient throughput to avoid data stalls
in all configurations.

Figure 7 shows how trainer throughput, reader throughput,
and storage compression ratio improved with respect to the
baseline for each RM . Trainer throughput is the total sam-
ples per second processed by all trainers. Since we scale the
number of readers based on trainer throughput, we report
the samples per second processed on average by each reader.
Finally, we report the compression ratio of the clustered
table’s Tectonic files relative to the baseline table. RecD im-
proved trainer throughput by 2.48×, 1.25×, and 1.43×, sig-
nificantly decreasing training job latencies. Similarly, each
reader processed samples 1.79×, 1.38×, and 1.36× faster,
reducing the number of readers needed for each training job
by the same amount. We explore in Section 6.2 and 6.3 why
RM1’s increased use of sequence features allowed RecD to
further increase trainer and reader throughput, respectively,
compared to RM2 and RM3. Clustered tables improved the
compression ratio by 3.71× (RM1 and RM2 used the same
table) and 2.06×, directly improving storage efficiency by
reducing the number of storage nodes needed to store and
serve each RM ’s dataset. RM1 and RM2’s table exhibited
higher samples per session than RM3’s table, leading to a
larger increase in compression after co-locating each ses-
sion’s samples within a file stripe. Finally, we increased
the compression ratio at Scribe from 1.50× to 2.25× by
sharding logs by session ID.

Figure 8. Breakdown of trainer iteration latency across RMs, nor-
malized to each RM ’s baseline latency using the same batch size.

6.2 Why does RecD improve trainer throughput?

Iteration Breakdown. To understand where RecD im-
proves training throughput, we ran a training job for each
RM using the same batch size as the baseline. Figure 8
shows a breakdown of the iteration latency of the RecD train-
ing job normalized to the baseline iteration latency, averaged
across all GPUs. Specifically, we show exposed latency (i.e.,
non-overlapping compute/communication), broken down
by GPU time spent on EMB lookups, compute (GEMM),
all-to-all communication (A2A), and other miscellaneous
operations (e.g., all-reduce and reduce-scatter).

First, we observe that RecD halves exposed A2A communi-
cation across all RMs. A2A is a significant component of
each training iteration. RecD significantly improves train-
ing throughput by reducing the amount of over-the-network
bytes via IKJTs. Thus one reason for RM1’s larger training
throughput gains is because it exposes more communication
by using more sequence features that RecD optimizes for.

The second reason is because RM1 uses expensive trans-
formers to pool EMB activations for several user sequence
features; RecD deduplicated the compute for these trans-
formers by grouping each transformer’s features together
using IKJTs. This is evidenced by an additional reduction
(12% of iteration latency) in the amount of time spent in
GEMMs for RM1. Meanwhile, RM2 and RM3 saw slight
increases in exposed GEMM time. This is because less
of it was hidden as RecD reduced A2A latencies, as well
as a slight increase due to the additional index select.
We also observe a small improvement across RMs due to
faster EMB lookups (1− 2% of iteration latency) by elimi-
nating redundant lookups. While this did not significantly
improve trainer throughput given the same batch size, using
fewer EMB activations allowed us to increase batch size to
improve trainer throughput, as we study next.

Finally, Figure 8 shows why translating DedupeFactor
to throughput gains is challenging. RM1 and RM2 used
the same table and features with similar DedupeFactors.
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Figure 9. Ablation study showing normalized trainer throughput
for RM1. O=Table 1 Optimization (O1 & O4 not applicable).
CT=Clustered Table, DE=Dedupe. EMB, JIS=Jagged Index
Select, DC=Dedupe. Compute, B=Batch Size.

Table 2. Breakdown of trainer throughput (QPS) and efficiency for
RM1 with RecD, enabling larger batches and complex models.

Config. Norm.
QPS

Max
Mem.
Util.

Avg.
Mem.
Util.

Norm. Comp.
Efficiency

(flop/s/GPU)

Baseline 1.00 99.90 72.83 1.00
RecD 1.89 27.76 22.20 1.73
RecD +
EMB D256 1.55 40.87 31.17 1.92

RecD +
B6144 2.26 91.78 51.55 2.12

However, RecD reduced RM1’s iteration time by 44% com-
pared to 23% for RM2 due to the differences in model
architectures and exposed compute/communication cycles
as discussed above. We discuss observations on how ML
engineers choose which features to deduplicate in Section 7.

Ablation Study. To understand how specific optimizations
contribute to training throughput, we performed an ablation
study using RM1 as shown in Figure 9. First, simply using
clustered tables provides no training throughput benefit.
While clustering is necessary for RecD, it is not sufficient
alone since KJTs still contain duplicate feature values. By
using IKJTs (and jagged index select) to deduplicate EMB
lookups and activations, we could increase batch size to
4096 and realized a 1.34× gain to training throughput. We
then used multiple IKJT groups, which further allowed us to
deduplicate the compute required by expensive transformers,
which led to a 2.42× increase in throughput. Finally, this
further allowed us to increase batch size to 6144, which
resulted in a final 2.48× increase in training throughput.

Trainer Resource Utilization. Because RecD reduces
GPU resource requirements, we can also tune model hyper
parameters in order to further improve model throughput
and accuracy. To illustrate this, Table 2 shows the through-
put, memory utilization, and GPU compute efficiency for
RM1 as we enabled RecD. Using a baseline batch size of
2048 required the entirety of GPU memory. RecD reduced
the maximum and average memory utilization from 99.9%

Table 3. Reader ingest & egress bytes for a fixed # of samples.
Experiment Read Bytes (GB) Send Bytes (GB)

Baseline 538 837
with Cluster 179 837
with IKJT 179 713

to 27.76% and 72.83% to 22.2%, respectively. This allowed
us memory headroom to devote to EMBs or larger batches to
improve model accuracy or training throughput, respectively.
For example, we were able to increase EMB dimensions
from 128 to 256 or batch size from 2048 to 6144. Further-
more, Table 2 shows how RecD improves the utilization of
GPU compute by increasing realized GPU FLOPS to 2.12×
the baseline. GPU streaming multiprocessors can achieve
higher utilization because they spend less time waiting for
exposed A2A communication due to smaller IKJTs.

Single-node Training. While RecD greatly increased dis-
tributed training throughput, we also evaluated RecD’s ben-
efit for single-node training. To do so, we downsized RM1

to fit within a single ZionEX training node and launched a
training job with and without RecD. We observed a 2.18×
throughput increase in the single-node training setup by us-
ing RecD. RecD still benefits single-node training because
it targets GPU memory, network, and compute resources
(Section 5). While single-node training reduces the amount
of exposed communication due to high-bandwidth NVLink
interconnects, RecD still improves compute and memory
efficiency, leading to improved training throughput. Since
storage and readers are disaggregated, RecD’s benefits are
the same for single-node training as shown in Figure 7.

Impacts to Accuracy. RecD itself largely does not affect
model accuracy. Specifically, IKJTs encode the exact same
logical data as KJTs and thus trainers can train on the exact
same batches. The only RecD optimization that affects
model accuracy is clustering tables by session ID. In fact,
clustering leads to significant improvements in accuracy.
This is because without clustering, duplicate examples from
a session are distributed across batches. The model observes
the same sparse feature values for a user across multiple
iterations, leading to multiple sparse updates. This causes
models to overfit for these features, negatively impacting
generalization, especially for less popular (tail) values. By
grouping similar samples within the same batch, the model
sees each user’s data only once, reducing the chance of
overfitting less popular sparse feature values.

6.3 Why does RecD improve reader throughput?

Figure 7 also showed how RecD also improved the through-
put of each reader, allowing us to provision fewer readers
to feed trainers. To understand why, Figure 10 shows a
breakdown of reader CPU compute time spent on filling,
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Figure 10. CPU time breakdown for a reader to preprocess a sam-
ple across RMs, normalized to each model’s baseline CPU time.

converting and processing each sample, normalized to the
baseline. For each RM , reader time is largely spent on fills:
fetching data from Tectonic and decrypting, decompressing
(zstd), and decoding bytes to form rows. As shown in Ta-
ble 3, by clustering tables, RecD allows each reader to read
significantly fewer bytes per sample. Readers need to spend
on both reading and extracting data, reducing the CPU time
spent on fills by 50%, 33%, and 46% for RM1, RM2, and
RM3, respectively. Furthermore, RecD can also reduce the
CPU time required for processing, since preprocess oper-
ations take deduplicated IKJTs as input. RM1 and RM2

required 13% and 11% less time for processing, while RM3

was effectively the same (3% increase).

RecD requires additional compute at readers to detect dupli-
cate values (via hashing) during feature conversion. Fortu-
nately, Figure 10 shows that this overhead is largely negli-
gible. While the feature conversion time increased by 21%,
37%, and 11% for RM1, RM2, and RM3, respectively, fea-
ture conversion requires a small amount of overall compute.
Thus, the overall overhead of conversion is negligible (1%)
and is easily offset by fill and process benefits.

6.4 Summary

Table 4 summarizes a breakdown of the impacts of each op-
timization presented in Table 1 for the end-to-end training
pipeline performance of RM1, as reported in our evaluation
results. RecD presents a suite of optimizations where not
only does each optimization yield direct benefits at its re-
spective pipeline system (e.g., storage, readers, or trainers),
but it also enables further downstream optimizations. O1
(sharding) and O2 (clustering) directly improve storage ef-
ficiency and reader throughput, but they also increase the
opportunity for O3 (IKJTs) to deduplicate features. While
O3 introduces slight reader overheads, these are nullified by
O4, and both O3 and O4 enable trainer-side optimizations.
These trainer-side optimizations (O5-O7) ultimately lead to
a 2.48× training throughput, as reported in Section 6.2. Col-
lectively, RecD optimizations benefit the end-to-end DLRM

Table 4. Summary of impacts of each optimization from Table 1
on end-to-end training pipeline performance for RM1.

Opt. Effect on Performance

O1 Storage: Improves compression by 1.50x.
O2 Storage: (with O1) Improves compression by 3.71x.

Reader: Reduces CPU fill time by 50% (improves
reader throughput by 1.78x).

O3 Enables O4-O6. Reader: Increases CPU convert time
by 21% (reduces reader throughput by 0.01x).

O4 Enables O5-O6. Reader: Reduces CPU process time
by 13% (improves reader throughput by 0.01x).

O5 Trainer: (with O6 and B4096) Improves training
throughput by 1.34x.

O6 Trainer: (with O5 and B4096) Improves training
throughput by 1.34x.

O7 Trainer: (with O5 , O6, and B6144) Improves training
throughput by 2.48x.

training pipeline, including storage, readers, and trainers.

7 DISCUSSION

Deciding Which Features to Deduplicate. ML engineers
typically apply heuristics to decide which features to dedu-
plicate. IKJTs introduce no trainer overheads aside from
an additional index select used to convert IKJTs to
KJTs. Thus, the benefit of deduplicating a feature f must
at least offset this overhead. While the specific “worth it”
DedupeFactor(f) threshold varies from model-to-model
(due to model architecture differences illustrated in Sec-
tion 6.2), ML engineers will typically start by deduplicating
features with DedupeFactor(f) > 1.5, and apply stan-
dard hyper parameter tuning techniques based on observed
trainer throughput to finalize the deduplicated feature set.

Boosting Dedupe Factors. DedupeFactor(f) increases
as a function of S, the average number of samples per
session. While Section 3 showed that S = 16.5 for the
characterized industry-scale dataset, we are exploring meth-
ods to increase S to yield benefits across the end-to-end
training pipeline. For example, the current data generation
pipeline downsamples (i.e., discards) training samples to
keep datasets at a manageable size. However, downsam-
pling is applied on a per-sample basis. By downsampling
at a per-session basis, we can further increase S, increasing
DedupeFactor without affecting model accuracy.

Alternative Solutions and Generality. We considered al-
ternative designs to exploit the session-centric characteristic
of DLRM datasets. One promising avenue was to explicitly
deduplicate samples within the table schema itself. Specif-
ically, each user session requests inferences (one for each
impression) in batches, and each batch uses the same fea-
tures guaranteeing exact matches. Instead of generating a
table row for each impression, we considered generating
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one row (with one list for each feature) for each batch of im-
pressions and encoding individual impressions as separate
labels within a list. This would directly deduplicate feature
values by generating fewer rows within the dataset.

We decided against this approach for several reasons. First,
there would still be many duplicates as feature values are
largely static even across inference batches. Secondly, we
use a common dataset schema across DLRMs to ensure
interoperability and developer velocity across models and
datasets — introducing a new schema would require sig-
nificant engineering and adoption effort across multiple
services. RecD is transparent to the training infrastructure
because it does not require schema changes, and it enables
even more deduplication across request batches.

Furthermore, RecD optimizations are easily generalized to
different environments, supporting myriad table schemas
and model architectures. Enabling RecD reader and trainer
optimizations only requires a feature converter module to
convert arbitrary table schemas into the IKJT encoding, and
an index select call to convert IKJTs back to KJTs
when necessary. Because IKJTs directly build on standard-
ized jagged tensors (ragged tensors in TensorFlow (Tensor-
Flow, 2022)), preprocessing functions and model architec-
tures can operate on IKJTs as KJTs with minimal changes.

Supporting Partial IKJTs. Supporting exact matches
captures the vast majority of duplication in industry-scale
datasets — 81.6% of an estimated 93.9% maximum (Sec-
tion 3). Even so, IKJTs are also easily extended to support
partial deduplication, capturing an additional 7.8% of val-
ues, by leveraging the fact that partial matches are shifts.
Partial IKJTs remove the offsets slice, and instead encode
each row’s [offset, length] in the inverse lookup slice.
In the example in Figure 5, feature b can by partially dedu-
plicated via a partial IKJT consisting of values = [3, 4, 5, 6]
and inverse lookup = [[0, 3], [1, 3], [0, 3]].

8 RELATED WORK

Duplication in DLRM Datasets. Gai et al. notes how
DLRM datasets at Alibaba exhibits feature duplication (Gai
et al., 2017). To exploit this, the authors mention a “com-
mon feature trick” that routes samples from similar users
to the same worker in a parameter server training setup.
The authors speed up training throughput by caching and
reusing the parameter update for “common” features across
each worker’s samples. Follow-up work by Ge et al. cites
using the “common feature trick” during training (Ge et al.,
2018). Unfortunately, the authors provide scant details on
how “common” features are generated, stored, or encoded.
They also do not elucidate how model architectures can
exploit duplicate features, nor how the “common feature
trick” can extend beyond parameter servers to synchronous

training used in scale-out GPU training clusters (Mudigere
et al., 2022). We provide an in-depth characterization of fea-
ture value duplication in industrial DLRM datasets. RecD
deduplicates features across the end-to-end training pipeline
by coalescing duplicate features in storage, compactly en-
coding them into IKJTs, and intelligently training on IKJTs.

Deduplication in ML. Data deduplication has been studied
in ML training outside of DLRMs. Lee et al. studied how
deduplication in a text corpus improved model accuracy for
language tasks (Lee et al., 2022). Allamanis studied how
duplication in code datasets degraded model performance
for ML models for source code (Allamanis, 2019). To the
best of our knowledge, our work is the first to study the
systems implications of duplication in ML training datasets.

Database Systems. Data deduplication is a well-studied
area in databases. IKJTs use a similar encoding mechanism
to dictionary encoding commonly used in file formats such
as Parquet (Apache, 2022). To coalesce duplicates within an
IKJT, we rely on CLUSTER BY clauses supported by myriad
database execution engines, such as Spark (Zaharia et al.,
2012). RecD applies these concepts to enable and encode
deduplicated tensors for ML training jobs.

Systems Optimizations for DLRM Training. Zhao et
al. presented various optimizations to improve DSI effi-
ciency for DLRM training at Meta (Zhao et al., 2022).
RecShard (Sethi et al., 2022) and Adnan et al. (Adnan
et al., 2021) leveraged skewed feature popularities to shard
EMBs across GPUs, improving training throughput. Simi-
larly, Fleche (Xie et al., 2022) is an embedding cache that
caches EMBs on GPU HBM while relying on CPU DRAM
for holding entire EMBs, targeting only single-GPU train-
ing. To avoid cache write conflicts, Fleche recognizes that
many sparse feature IDs are duplicated within a batch and
performs only a single cache lookup for each unique ID,
similar to RecD’s ability to deduplicate EMB lookups. TT-
Rec (Yin et al., 2021) demonstrated compression techniques
for EMBs. RecD provides orthogonal optimizations to im-
prove storage, reading, and training performance by dedu-
plicating features across the DLRM training pipeline.

9 CONCLUSION

This paper presented RecD, a suite of optimizations for
industry-scale, end-to-end DLRM training pipelines. We
provide an in-depth characterization of how DLRM datasets
exhibit inherent feature duplication. RecD coalesces du-
plicate features within a training batch, efficiently encodes
them using IKJTs, and optimizes DLRM model architec-
tures to train on deduplicated tensors. As a result, RecD
improves training and preprocessing throughput and storage
efficiency by up to 2.48×, 1.79×, and 3.71×, respectively.
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