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ABSTRACT
Deep neural networks are often highly over-parameterized, and weight pruning or sparsification can be an effective
method for reducing both their memory footprints and inference latencies. Among existing pruning strategies,
unstructured or fine-grained pruning typically achieves the highest compression ratios and lowest task errors;
unfortunately, such irregular and non-uniform sparsity leads to significant load imbalance and consequently
degraded performance on parallel architectures. Recent attempts to accelerate unstructured sparsity on GPUs
have focused on the 90-99% sparsity regime, where most modern DNNs have been shown to lose considerable
accuracy. In this paper, we introduce the uniform sparsity pattern that ensures a constant number of non-zero
values per row of the sparse matrix, and thus lends itself well to efficient, load-balanced execution on modern
parallel architectures. Uniform sparsity achieves useful speedups in both the moderate (50-90%) and high (90%+)
sparsity regimes and performs similarly to unstructured sparsity in terms of accuracy. We describe how uniform
sparsity is induced on DNN weights and present optimized kernels that accelerate uniform sparsity on GPUs. We
evaluate uniform sparsity on a range of real-world networks and synthetic data, and demonstrate mean performance
improvements of up to 62% over the NVIDIA cuSparse library at iso-accuracy settings.

1 INTRODUCTION

Modern deep neural networks (DNNs) are often over-provi-
sioned for the specific task that they are trained to per-
form, and model compression techniques such as weight
pruning have been shown to be effective at reducing their
compute and memory requirements (Hoefler et al., 2021).
Weight pruning, or pruning for short, involves the elimina-
tion of nonzero values from a trained model. Pruning is
typically performed using some kind of thresholding, such
as magnitude-based, and can be unstructured (prune any
nonzero value) or structured (prune only blocks of nonzero
values). The model is typically retrained or “fine-tuned”
after pruning for additional training epochs to recover lost
accuracy. Among the two kinds of pruning, unstructured
pruning typically achieves the highest compression ratios
while better retaining accuracy (Hoefler et al., 2021). Unfor-
tunately, the irregular and non-uniform pattern of nonzeros
in unstructured sparsity leads to significant data-dependent
load imbalance among matrix rows and makes it difficult to
accelerate the resulting sparse matrix operations (Merrill &
Garland, 2016); this problem is exacerbated on wider paral-
lel architectures such as modern GPUs that are particularly
prone to under-utilization. In the absence of any structure,
developers must rely on generic sparse matrix operations
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such as compressed sparse row (CSR) sparse matrix-dense
matrix product (SpMM), which are known to achieve much
lower throughput than their dense matrix counterparts on
accelerators such as GPUs (Bell & Garland, 2009). Recent
work has explored ways to accelerate such unstructured spar-
sity on GPUs (Gale et al., 2020; Chen et al., 2021); however,
most of these approaches achieve meaningful speedups over
vendor-optimized libraries such as NVIDIA cuSparse (Nau-
mov et al., 2010) only at very high (90%+) sparsities, which
is a regime where most neural networks lose considerable
accuracy (Hoefler et al., 2021; Mishra et al., 2021). Here,
sparsity is defined as the proportion of zero-valued elements
to total elements.

To help us understand how to improve upon unstructured
sparsity, we draw inspiration from the high-performance
computing (HPC) literature, which has explored a number
of sparse matrix formats and corresponding computation
kernels (Bell & Garland, 2009; Filippone et al., 2017). In
particular, the ELLPACK or ELL sparse matrix format (Bell
& Garland, 2009) stores an M × K sparse matrix with
at most K ′ nonzeros per row as two dense M -by-K ′ ar-
rays: ellval of nonzero values and ellidx of column in-
dices. All rows are zero-padded to length K ′. Combined
with the appropriate GPU kernels, ELL has been shown to
outperform CSR for a number of sparse matrix operations
such as sparse matrix-dense vector product (SpMV) (Bell
& Garland, 2009) and sparse matrix-dense matrix prod-
uct (SpMM) (Abu-Sufah & Ahmad, 2014). It is also well-
known that sparse operations on ELL matrices perform best
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when the maximum number of nonzeros per row does not
substantially differ from the average (Bell & Garland, 2009).
Based on this observation, we introduce a sparsity pattern
named uniform sparsity, where each row of a sparse matrix
always contains the same number of nonzeros. This helps us
eliminate the usual ELL trade-off, where most rows aren’t
K elements long, leading to wasted zero padding and/or
large overflows.

To induce uniform sparsity on DNN weight matrices, we
describe a simple algorithm based on global magnitude
pruning and learning-rate rewinding (Renda et al., 2020).
We evaluate the accuracy of both unstructured and uniform
sparsity on a range of real-world DNNs drawn from do-
mains such as natural language processing (NLP) and image
classification, and demonstrate that uniform sparsity ex-
hibits similar accuracy behavior to unstructured sparsity
and thus can be used as a drop-in replacement for the
latter. We also introduce a set of efficient sparse matrix-
dense matrix product (SpMM) kernels for GPUs, adapted
from existing ELL SpMM kernels (Bell & Garland, 2009;
Abu-Sufah & Ahmad, 2014), that exploit the regular struc-
ture of uniformly-sparse matrices and outperform vendor-
optimized CSR SpMM kernels. On an NVIDIA A100 GPU,
our custom SpMM kernels achieve speedups of up to 1.62×
over NVIDIA cuSparse CSR SpMM on real-world weight
matrices pruned to iso-accuracy-level sparsities (50-90%)
and up to 13.73× on representative synthetic data.

This paper makes the following contributions:

• It introduces the uniform sparsity pattern and describes
a methodology for systematically inducing it on neural
network weights.

• It demonstrates that uniform sparsity exhibits similar
accuracy behavior to unstructured sparsity and thus can
be used as a drop-in replacement for it on a range of
real-world DNNs.

• It presents a set of high-performance GPU SpMM
kernels optimized for uniform sparsity and demon-
strates that they provide up to 1.62× speedup over
the vendor-optimized NVIDIA cuSparse CSR SpMM
on real-world weight matrices pruned to iso-accuracy
sparsity (50%-90%) and up to 13.73× on representa-
tive synthetic data.

2 UNIFORM SPARSITY

In this section, we first provide a brief overview of weight
pruning, followed by our algorithm for inducing uniform
sparsity on DNN weights.

2.1 Background: Weight Pruning

For a machine learning task such as language modeling,
assume we are given a trained reference model w =
argminw L(w), where L() denotes a loss function (e.g.,
cross-entropy on a given training set), and w ∈ RP . Model
compression refers to finding a smaller model Θ that can
be applied to the same task and ideally achieves the same
accuracy as w. Weight pruning, or pruning for short, is a
model compression technique that eliminates or “prunes”
nonzero values from w to obtain Θ. For a pruned model,
sparsity is defined as the proportion of zero-valued elements
to total elements. A common pruning technique is global
magnitude-based pruning (GMP) that eliminates all nonzero
values in a model that fall below a certain magnitude thresh-
old (Hoefler et al., 2021). Zeroing out weights often results
in considerable accuracy loss compared to the reference
model w, and there is typically a subsequent retraining
or fine-tuning step to help recover some of the lost accu-
racy (Renda et al., 2020; Hoefler et al., 2021).

Pruning can be either unstructured (prune any nonzero
value) or structured (prune only blocks of nonzero values),
with unstructured pruning typically achieving the highest
compression ratios while better retaining accuracy (Hoefler
et al., 2021). Operations on unstructured sparse matrices,
however, achieve very poor hardware utilization due to data-
dependent load imbalance among matrix rows (Merrill &
Garland, 2016). On the other hand, while structured pat-
terns such as filter (He et al., 2018; Luo et al., 2017) and
block (Gray et al., 2017) sparsity are more suited to effi-
cient parallel execution, they often suffer from significantly
worse accuracy degradation than unstructured sparsity (Hoe-
fler et al., 2021).

2.2 Inducing Uniform Sparsity

To achieve more efficient load-balanced execution of sparse
DNNs on modern parallel architectures while still providing
similar accuracy characteristics to unstructured sparsity, we
introduce uniform sparsity. Uniform sparse matrices contain
the same number of nonzero values in each row. Figure 1
illustrates our algorithm for pruning a dense weight matrix
to 50% uniform sparsity. We first sort the elements in each
row in decreasing order of magnitude and then compute the
aggregate value of each column using a function such as
max or sum. While a number of sophisticated aggregation
functions have been explored in the weight pruning litera-
ture (Molchanov et al., 2019; Crowley et al., 2018), we use
the `2-norm aggregation function in this paper due to its
simplicity and ease of implementation. Next, the columns
corresponding to the lowest-magnitude aggregated values
are removed based on a threshold. Given a target sparsity
for the model, we compute a single global magnitude thresh-
old value using all prunable weights in the network. From
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Figure 1: Uniform pruning illustration for 50% sparsity. The `2 norm is computed over nonzeros shown in the same color
(column-wise). Nonzeros with the lowest corresponding `2 norm values are pruned away.

our experiments, we noticed that using column-wise aggre-
gation with a global, network-wide magnitude threshold
resulted in better accuracy recovery than directly pruning
the lowest-magnitude values in each row (i.e., local layer-
wise pruning). In the Figure, we use a target sparsity of 50%
and thus prune away two of the four columns (green and
red). The last step of the process is to scatter the remaining
nonzero values back to their original locations. We imple-
ment the code for uniform-sparse pruning using Python and
the PyTorch framework (Paszke et al., 2019).

Learning Rate Rewinding: Once uniform sparsity is ap-
plied to DNN weights, we perform retraining or fine-tuning
of the model using learning rate rewinding (LR rewind-
ing) (Renda et al., 2020). LR rewinding is a simple accuracy
recovery algorithm that works as follows: assume that we
start with a reference (dense) model w pruned to obtain a
uniform sparse model Θ. If w was originally trained for T
epochs, and the learning rate during training was varied from
lr0 in epoch 0 to lrT−1 in epoch T − 1, then LR rewinding
involves retraining the pruned model Θ for K additional
epochs, where 0 < K < T and the learning rate is set (or
“rewound”) to that of epoch T −K. In this paper, we set
K = T , which implies full retraining of Θ using the original
learning rate schedule that goes from lr0 to lrT−1. While
a number of more complex accuracy recovery algorithms
exist in the literature (Carreira-Perpinán, 2017; Zhang et al.,
2018), LR rewinding, despite being relatively simpler, has
been shown to provide state-of-the-art accuracies on a num-
ber of large DNNs (Renda et al., 2020). It is possible to
further improve the accuracy recovery performance of LR
rewinding using complementary strategies such as iterative
magnitude pruning (Renda et al., 2020). In this paper, we
only perform a single rewinding step with fixed masks and
leave the exploration of iterative approaches to future work.

3 GPU-ACCELERATED SPMM
Modern machine learning frameworks such as Py-
Torch (Paszke et al., 2019) and TensorFlow (Abadi et al.,

2016) use matrix multiplication (GEMM) to implement a
number of important deep learning operators, such as fully-
connected layers, convolutions, and self-attention modules.
For instance, the GEMM operation corresponding to the
forward propagation (inference) computation of a fully-
connected layer in PyTorch is:

Y = X ·WT (1)

where X represents the batched input with dimensions
N ×K (N is the batch size), W is the weight matrix with
dimensions M×K, and Y is the batched output matrix with
dimensions N ×M . The data layout for the three matrices
X , Y and W depends on the specific framework being used;
for instance, both PyTorch and TensorFlow store matrices
in row-major layout (Paszke et al., 2019; Abadi et al., 2016).
The GEMM operation in Eq. 1 is typically offloaded to
vendor-optimized BLAS libraries such as NVIDIA cuBLAS
or cuSparse (Naumov et al., 2010) on GPUs. Since a num-
ber of BLAS libraries expect a column-major layout, Eq. 1
is often rewritten as follows:

Y T = W ·XT (2)

by interpreting the values of all three matrices above in
column-major order, we can avoid explicit transposition of
the X and Y matrices (note that W would still be trans-
posed).

When the weight matrix W is sparse, it is typically repre-
sented using a sparse matrix format such as compressed
sparse row (CSR) and Eq. 1 is implemented using a sparse
matrix-dense matrix product (SpMM) instead of a GEMM.
While a number of optimized CSR SpMM implementations
exist for GPUs (Merrill & Garland, 2016; Naumov et al.,
2010; Gale et al., 2020), they all suffer from data-dependent
performance degradation due to irregular row lengths in W ,
which is especially severe on wider parallel architectures
and at lower precisions such as float16. The HPC literature
has explored a number of sparse matrix formats and associ-
ated computation kernels to address the limitations of CSR.
In particular, the ELLPACK or ELL sparse matrix format
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stores the M×K sparse matrix W with at most K ′ nonzeros
per row as two dense M -by-K ′ matrices: ellval of nonzero
values and ellidx of column indices (Bell & Garland, 2009).
All rows are zero-padded to length K ′. When the maximum
number of nonzeros per row does not substantially differ
from the average, sparse kernels that utilize the ELL format
have been shown to significantly outperform CSR-based
kernels (Bell & Garland, 2009; Abu-Sufah & Ahmad, 2014).
To handle largely uniform matrices with a small number
of very long rows, special formats such as HYB have also
been proposed, where most of the nonzeros in the matrix
are stored using the ELL format with minimal zero-padding,
and long-running rows are stored in CSR (Bell & Garland,
2009). With uniform sparsity, we are able to reuse the ELL
format while eliminating the need for both zero-padding
and special handling of overflowing rows, yielding a per-
fectly regular structure amenable to load-balanced parallel
execution.

ELL Kernel Design: we design and implement opti-
mized GPU kernels in CUDA for the SpMM operation
shown in Eq. 2 (column-major). Here, we assume that W is
uniform sparse and stored in the ELL format as described
above, with the corresponding ellval and ellidx matrices
stored in column-major order. Recall that ellval and ellidx

have dimensions M ×K ′, and storing both of these matri-
ces in column-major order helps us access elements along
the un-pruned M dimension in coalesced fashion on GPUs.
Since we use the ELL format, existing GPU kernels for ELL
sparse matrix-dense vector product (SpMV) and SpMM
helped provide a starting point for our work (Bell & Gar-
land, 2009; Abu-Sufah & Ahmad, 2014). In particular, Abu
et al. describe an ELL SpMM kernel that assigns a sin-
gle thread for processing an entire row of W (Abu-Sufah
& Ahmad, 2014); such a parallelization strategy, however,
severely under-utilizes modern GPUs such as the NVIDIA
A100, which can process significantly more resident threads
in parallel than there are rows in W .

Figure 2 illustrates the thread decomposition used by our
SpMM kernel, which we denote as USpMM. As shown in the
Figure, each thread block of the kernel is of size WarpSize ×
NumWarps, where WarpSize is 32 and NumWarps is the number
of warps per block. Each thread block iteratively processes
a tile of size WarpSize × NumWarps of W before moving onto
the next tile along the K ′ dimension. Each thread loads a
single element from the ellval and ellidx matrices, along
with VSize elements from a row of X before multiplying
them together. NumWarps, or the number of warps per block,
is computed by multiplying VSize with a factor NWarp, which
in turn controls the width of each thread block. Both VSize

and NWarp are tunable parameters whose values significantly
impact the work performed by each thread and consequently
the total kernel runtime. We describe the effects of varying

K' (ellwidth) 

Block 032

Block 1

NumWarps

M

K' (ellwidth) 

Block 032

Block 1

NumWarps

Iteration 0 Iteration 1

Figure 2: Thread decomposition of the USpMM kernel.
Each block of threads iteratively processes a tile of size
32×NumWarps items in W .

these tunable parameters in more detail in Section 4.3. The
kernel is launched with a grid size of (M / WarpSize) × (N /
VSize). We provide the full code of our FP16 USpMM kernel
in Listing 1; the full-precision FP32 version is similar. As
shown in lines 24-37, the threads in each warp cooperatively
load a partial column of ellval and ellidx (lines 26 and 27),
and multiply each element of W with VSize elements in the
X matrix, as shown on lines 28-35. Recall that column-
major storage of W results in coalesced loads of its column
elements. Intermediate partial results are stored in the shared
memory array sh_c, as shown on lines 38-40. Finally, the
partial results across threads in a block are accumulated
(lines 44-46) and written out to the result matrix Y on line
48.

Vectorization: we further optimize the performance of
our USpMM kernel by using vectorized loads and stores. Vec-
torized memory accesses reduce the total number of instruc-
tions and latency, and improve bandwidth utilization. In
our vectorized kernel, which we denote as USpMM-Vec, we
use CUDA’s vectorized data types to load multiple values in
the ellval and ellidx matrices at once. Since we perform
vectorized loads along the M dimension, the kernel grid
size is reduced by a factor of VecSize, or the vector width,
to (M / (WarpSize * VecSize)) × (N / VSize). Additionally,
the partial results accumulated in the shared memory ar-
ray sh_c of size VSize are now split into VecSize parts, one
for each vector element loaded from W . In this paper, we
set VecSize to 2, and leave the exploration of larger vector
widths to future work. As we demonstrate in Section 4.3,
the USpMM-Vec kernel outperforms USpMM in a number of per-
formance regimes, such as for higher values of N (batch
size).
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1 template<int VSize, int NumWarps>

2 __global__ void uniform_spmm_fp16(

3 const int m, const int n, const int k,

4 const int ellwidth, const half* ellval,

5 const int* ellidx, const half* X, half* Y) {

6
7 constexpr int WarpSize = 32;

8 const int tid = threadIdx.x+blockIdx.x*blockDim.x;

9 const int warpid = threadIdx.x / WarpSize;

10 const int lane = threadIdx.x % WarpSize;

11
12 int mpad = ((m + WarpSize-1)/WarpSize)*WarpSize;

13 // Index into m, split into WarpSize-sized blocks

14 int crow = (blockIdx.x*WarpSize)%mpad+tid%WarpSize;

15 int ccol_base = (tid / (mpad * NumWarps)) * VSize;

16
17 __shared__ float sh_c[VSize * NumWarps * WarpSize];

18 #define sh_c_(X, Y) sh_c[(X)+(Y)*NumWarps*WarpSize]

19
20 float ctmp[VSize];

21 #pragma unroll

22 for(int i=0; i<VSize; ++i) ctmp[i] = 0.f;

23
24 if(crow < m) {

25 for(int x=warpid; x<ellwidth; x+=NumWarps) {

26 float aval = ellval[x*m + crow];

27 int brow = ellidx[x*m + crow];

28 #pragma unroll

29 for(int i=0; i<VSize; ++i) {

30 int bcol = ccol_base + i;

31 if(bcol < n) {

32 float bval = X[bcol*k + brow];

33 ctmp[i] += aval * bval;

34 }

35 }

36 }

37 }

38 #pragma unroll

39 for(int i=0; i<VSize; ++i)

40 sh_c_(threadIdx.x, i) = ctmp[i];

41 __syncthreads();

42 if(warpid < VSize) {

43 float cval = 0.f;

44 #pragma unroll

45 for(int i=0; i<NumWarps; ++i)

46 cval += sh_c_(lane + i*WarpSize, warpid);

47 int ccol = ccol_base + warpid;

48 if(crow<m && ccol<n) Y[ccol*m + crow] = cval;

49 }

50 }

Listing 1: USpMM CUDA kernel code

4 EVALUATION

We conduct extensive experiments and fully analyze the
accuracy and runtime behavior of uniform sparsity on both
synthetic data and two real-world deep neural networks.

4.1 Methodology

We evaluate the accuracy of unstructured and uniform spar-
sity across a range of sparsities for two real-world machine
learning tasks:

(1) Machine translation using Transformer-Big: we
use the Transformer-Big model proposed by Vaswani et
al. (Vaswani et al., 2017) for English-to-German machine
translation on the WMT’14 en2de dataset. The model con-
tains 213 million parameters and achieves a BLEU score
of 28.4. We start with the pre-trained models available in
FairSeq (Ott et al., 2019).

(2) Image classification using ResNet50: we use the
ResNet50 network (He et al., 2016) trained on the chal-
lenging ImageNet task (Deng et al., 2009); specifically, the
ILSVRC 2012 version. The model contains 65 million pa-
rameters and achieves a top-1 accuracy of 77.71%. We use
the ResNet50v1.5 implementation provided by NVIDIA’s
Deep Learning Examples (DLE) repository (NVIDIA,
2022).

Accuracy Experiments: to prune each model, we use `2-
norm as the column aggregation function, and compute a
single global (network-wide) magnitude threshold for prun-
ing given a target sparsity value (see Section 2 for more
details). A weight tensor corresponding to a 2D convolution
layer with dimensions (Cout, Cin, H,W )1 is flattened to a
2D matrix with dimensions (Cout, Cin ∗ H ∗ W ) before
pruning. We retrain each model using learning rate rewind-
ing (Renda et al., 2020) for accuracy recovery. Also, as
noted in Section 2, we only retrain each model once (i.e.,
we don’t perform iterative rewinding). We run all our re-
training experiments 3 times with different random seeds
and report the mean task error and corresponding standard
deviations. Retraining is performed on an NVIDIA DGX-1
node with 8× NVIDIA V100 GPUs, each containing 32GB
of memory.

Runtime Experiments: we collect runtime numbers on
an NVIDIA A100 GPU with 6912 cores and 40GB of
memory. The NVIDIA CUDA toolkit version is 11.3 with
cuBLAS version 11.5 and cuSparse version 11.6. We evalu-
ate the SpMM computation given in Eq. 2 (column-major) in
16-bit floating-point precision using our USpMM and USpMM-Vec

kernels, and compare their performance to cuSparse COO
and CSR SpMM baselines. The values for tunable parame-
ters NWarp and VSize are set to (2, 8) and (1, 8) for the USpMM

and USpMM-Vec kernels, respectively; these parameters are
described in more detail in Section 3 and their effect on per-
formance is evaluated in Section 4.3. In addition to pruned
DNN weights, we also evaluate the runtime performance

1Cout and Cin denote the number of output and input channels,
respectively, while H and W denote the filter dimensions.
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Figure 3: Task error vs. sparsity for each model. Uniform
sparsity exhibits similar accuracy behavior to unstructured
sparsity for all models.

of our kernels on representative synthetic data; we describe
this in more detail in Section 4.3.

4.2 Task Errors

Figure 3 compares the task errors of uniform sparsity to
unstructured sparsity for the Transformer-Big and ResNet50
models. The task error quantifies the relative accuracy
difference between a pruned model and the baseline (dense)
model in percentage points, and helps us more uniformly
compare network architectures from different modalities
such as computer vision and NLP (which may use different
absolute accuracy metrics). A task error of 0 or less signifies
that the model has lost no accuracy due to pruning. We
compute the task error for each pruned model after retraining
for sparsities ranging from 10% to 90%. The retraining
step is extremely time- and resource-intensive, and requires
anywhere from 1 to 8 hours of compute time per (model,
sparsity) pair on our DGX-1 node with 8× NVIDIA V100
GPUs; consequently, we are only able to evaluate the models
at a 10% sparsity granularity. For both models, we notice
from the Figure that uniform sparsity performs on par with
or better than unstructured sparsity for a wide range of
sparsity values. Assuming a maximum task error tolerance
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Figure 4: Task errors for blocked-uniform sparsity patterns
on Transformer-Big. U-BlockN represents blocked uniform
sparsity with block size of N . Accuracy degradation gets
significantly worse at higher block sizes.

of 1% 2, the pruned uniform-sparse Transformer-Big and
ResNet50 models achieve a maximum sparsity of 65% and
81%, respectively, before they begin to lose accuracy. This
is on par with the 60% and 90% maximum sparsities we
observe for unstructured sparsity.

Improving Accuracy: more sophisticated weight impor-
tance estimation criteria such as ones based on Taylor
or Fisher importance (Molchanov et al., 2019; Crowley
et al., 2018) and/or accuracy recovery strategies such as
L-C (Carreira-Perpinán, 2017) and ADMM (Zhang et al.,
2018) can help us achieve better accuracies; in this paper, we
use learning rate rewinding (Renda et al., 2020) along with a
simple `2-norm aggregation function and global magnitude
pruning due to its simplicity and ease of implementation.

Blocked Uniform Sparsity: To understand how uniform
sparsity composes with other structured patterns such as
block sparsity (Gray et al., 2017), we also implemented a
blocked uniform sparsity pattern; here, the pruned matrix
has a constant number of nonzero blocks per row of blocks.
The implementation for this pattern is similar to uniform
sparsity, with an additional block-wise aggregation step (us-
ing a function such as `2-norm) prior to intra-row sorting
and column-wise aggregation. Such a pattern would theoret-
ically enable us to represent W using a blocked-ELL format,
and take advantage of optimized blocked-ELL SpMM ker-
nels from libraries such as NVIDIA cuSparse (Naumov
et al., 2010) to achieve speedups over dense GEMM at
large-enough block sizes. Figure 4 shows a task error com-
parison between regular (block size of 1) uniform sparsity
and its blocked counterpart for block sizes of 2 and 4 for
the Transformer-Big model. We notice that the blocked
versions achieve maximum iso-accuracy sparsities of only

2slight variations in accuracy may arise across runs due to
differing starting conditions at training (e.g., the random seed).
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Figure 5: Speedup of our USpMM kernels w.r.t. cuSparse CSR,
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USpMM and USpMM-Vec outperform cuSparse CSR SpMM at all
matrix and batch sizes.

46% and 38% for block sizes of 2 and 4, respectively; this
is in contrast to the 65% and 60% iso-accuracy sparsities
achieved by regular uniform sparsity and unstructured spar-
sity, respectively. Due to this significantly higher accuracy
loss, we did not explore this avenue any further.

4.3 Runtime Performance

We measure the runtime performance of our USpMM and
USpMM-Vec kernels on both synthetic data and pruned weights
of real-world networks, and compare it to that of COO and
CSR SpMM kernels provided with the NVIDIA cuSparse
library (Naumov et al., 2010).

Performance on Synthetic Data: we generate a syn-
thetic dataset based on weight matrices drawn from real-
world networks such as ResNet50 (He et al., 2016), Trans-
former (Vaswani et al., 2017) and BERT (Devlin et al., 2018)
to study the performance landscape of our kernels in more
depth. The dataset covers a variety of problem sizes (M and
K), batch sizes (N ) and sparsities.

The first set of data we generate pertains to problem sizes
or weight matrix dimensions; here, we fix the sparsity to a
conservative value of 60%, and prune a set of dense matri-
ces ranging in dimension from 128× 128 to 1024× 1024.
We evaluate performance on two batch sizes: 128 and 1024.
These matrix and batch sizes are commonly encountered
in both convolutional neural networks and attention-based
natural language processing (NLP) models (He et al., 2016;
Vaswani et al., 2017; Devlin et al., 2018). Figure 5 shows
the results of this experiment. Here, the x-axis represents
the problem size, and the y-axis shows the speedups that
our USpMM and USpMM-Vec kernels obtain over cuSparse CSR
SpMM. From the Figure, we notice that both our kernels
outperform cuSparse CSR (depicted as the “baseline” bar

in the Figure) for all matrix and batch sizes, and achieve
speedups of up to 13.73×. Among the two SpMM variants,
we notice that USpMM and USpMM-Vec tend to perform better
at smaller and larger batch sizes, respectively. Further, the
largest speedups are obtained for smaller matrix dimensions
- we believe that this is primarily due to the values we choose
for the NWarp and VSize parameters, which may be further
tuned for specific matrix and batch sizes for better perfor-
mance. We discuss tuning opportunities in more detail later
in this section.

Next, we analyze how performance varies w.r.t. changing
sparsities. For this, we generate a set of 40 uniform sparse
matrices with (M,N,K) dimensions set to (128, 128, 128)
(referred to as the small problem size) or (1024, 1024, 1024)
(large problem size) and sparsities ranging from 5% to 95%
in increments of 5%. Figure 6 shows the results of this
experiment. As shown in the Figure, at a moderate spar-
sity of 60%, our kernels obtain a speedup of 2.74× (USpMM)
and 1.50× (USpMM-Vec) over cuSparse CSR SpMM for the
small and large problem sizes, respectively. These speedups
increase to 2.32× (USpMM-Vec) and 3.29× (USpMM-Vec), re-
spectively, for a sparsity of 95%. By providing meaningful
speedups in both moderate and high-sparsity regimes, our
SpMM kernels are useful on a wide range of pruned DNNs
that have varying accuracy characteristics.

Finally, we study how performance changes with varying
batch sizes (N ). For this experiment, we use a fixed problem
size of 1024 × 1024 at a conservative 60% uniform spar-
sity. This is a common weight matrix dimension found in
attention-based networks such as Transformer-Big. Accord-
ingly, we vary the value of N from 128 to 16384 correspond-
ing to an effective batch size range of 1 to 128 (assuming
a length of 128 tokens per sequence). Figure 7 shows the
results for this experiment. While our SpMM kernels per-
form on par with CSR SpMM at the lowest batch size of 1,
they quickly start outperforming the latter at higher batch
sizes. At the largest batch size of 128, we obtain a speedup
of 1.62× over cuSparse CSR SpMM using the USpMM-Vec

kernel.

Network-wide Runtime Performance: Table 1 shows
the mean inference throughput achieved by our USpMM and
USpMM-Vec kernels on uniform sparse weight matrices from
the two DNNs we consider. Inference throughputs are com-
puted at iso-accuracy sparsities, which we define as the max-
imum sparsity value beyond which task error goes higher
than 1% (we provide a 1% error tolerance to account for
varying starting conditions in training such as the choice of
seed value). The first, second and third columns of the Table
list the name of the network, the corresponding dataset, and
the number of parameters in the network, respectively. The
fourth column lists the batch size (N ) we use to evaluate
each model - the batch size of 1024 shown for Transformer-
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Figure 6: Performance comparison of cuSparse COO and CSR SpMM with uniform SpMM kernels w.r.t varying matrix
sparsity. We use (M,N,K) values of (128, 128, 128) (left) and (1024, 1024, 1024) (right).

Model Dataset Params N Sparsity Error (%) Speedup
Unif. Unstr. USpMM USpMM-Vec

Transformer-Big WMT’14 en2de 213M 1024 65% −0.74 0.11 1.49× 1.62×
ResNet50v1.5 ILSVRC 2012 25.5M 128 81% 0.97 −0.01 1.31× 1.01×

Table 1: Speedups over cuSparse CSR SpMM for two real-world networks pruned to the sparsity values shown above.
Our SpMM kernels achieve speedups of up to 1.62× while never being slower. Unif. and Unstr. stand for uniform
and unstructured, respectively. N refers to batch size. Speedups are averaged (geomean) over all prunable weight
matrices in each network.
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Figure 7: Performance of SpMM kernels w.r.t. batch size.
Here, M = K = 1024, and N = B×seqlen, where B
is the batch size shown on the x-axis, and seqlen is 128.
Sparsity of the matrix is fixed at 60%.

Big correspond to an effective batch size of 8, assuming a
typical sequence length of 128 tokens. Iso-accuracy sparsi-
ties for each model are listed in column 5, and we notice that
they lie in the moderate sparsity regime (50-90%) - it is thus
important for any specialized SpMM kernels that execute
these sparse DNNs to provide meaningful speedups over
baseline in this range, as opposed to higher sparsities where
these models often lose considerable accuracy. The last
two columns of the table list the speedups achieved by our
USpMM and USpMM-Vec kernels over cuSparse CSR SpMM. To
compute these values, we take a geometric mean of the indi-
vidual speedups attained for each pruned weight matrix in
the network. Our kernels achieve speedups of up to 1.62×

over cuSparse CSR SpMM across all models. We notice that
the non-vectorized USpMM kernel achieves higher speedups
than the vectorized version for the ResNet50 model, which
contains smaller weight matrices and uses smaller batch
sizes, while the vectorized versions dominate in the larger
NLP models. Neither of our kernels perform worse than
cuSparse CSR SpMM in any setting, even when the wrong
kernel is selected for the job (eg., USpMM-Vec for ResNet50).

Performance Tuning Opportunities: our SpMM imple-
mentations present a number of performance tuning oppor-
tunities. As we note earlier in this section, the USpMM and
USpMM-Vec kernels both exhibit differing performance char-
acteristics; while one appears to be more suited for smaller
problem sizes and relatively lower sparsities (USpMM), the
other (USpMM-Vec) performs better on larger problem sizes
and higher sparsities. In this paper, we do not develop a
heuristic to automatically select among the two; we note
that this is an interesting input-sensitive autotuning prob-
lem, since the best kernel to use depends on input dataset
characteristics such as problem and batch sizes, and sparsity
values. We plan to explore the use of existing input-adaptive
code variant selection systems (Muralidharan et al., 2014;
Tillet & Cox, 2017) to automate this selection in the future.

Similarly, the selection of tunable parameters NWarp and
VSize in our SpMM implementation has a significant im-
pact on performance (see Section 3 for more details). To
demonstrate this, we plot the performance of USpMM for a
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Figure 8: Performance of the vectorized uniform kernel for
various values of [NWarp,VSize]. Here, M=N=K=1024.

problem size of M = N = K = 1024 across varying
sparsities and four different configurations of (NWarp,VSize).
Figure 8 shows the results of this experiment. For the spe-
cific problem and batch sizes above, we notice considerable
variation in performance as the values of both these tun-
able parameters are changed. At the highest (95%) sparsity,
the performance difference between the lowest and highest
performing configurations is 14.48 TFlop/s. In this paper,
we fix the values of NWarp and VSize to (1, 8) and (2, 8) for
USpMM and USpMM-Vec, respectively, based on our experiments.
However, we note that there is plenty of scope for tuning
these values further using input-adaptive tuning strategies.

Other opportunities for improving performance include us-
ing a larger vectorization width (we use a width of 2 for
USpMM-Vec) and using 16-bit column indices for ellidx. We
leave the exploration of these strategies to future work.

5 RELATED WORK

Pruning away blocks of nonzero values from a model (i.e.,
structured pruning) has been shown to be more amenable to
performance optimization than unstructured or fine-grained
pruning (Hoefler et al., 2021). Examples of structured prun-
ing include filter (Luo et al., 2017; He et al., 2018), neu-
ron (Hu et al., 2016), and vector/block pruning (Gray et al.,
2017; Chen et al., 2021). While performant, structured spar-
sity comes at a cost: significantly degraded model accuracy,
especially at higher sparsities (Hoefler et al., 2021). To
achieve a better balance between fine- and coarse-grained
pruning, recent work has explored less aggressive con-
straints on the sparsity pattern. For instance, NVIDIA
Ampere-generation GPUs include sparse tensor cores that
accelerate the 2:4 sparsity pattern; here, at most two out of
four contiguous elements in W may be non-zero, resulting
in a constant 50% sparsity (Mishra et al., 2021). Similarly,
Yao et al. (Yao et al., 2019) present balanced sparsity, which
provides a more generalized version of Ampere sparsity
(here, each row of W is split into multiple equal-sized blocks

and each block has the same number of nonzeros), and Liu
et al. (Liu et al., 2022) introduce the density bound block
(DBB) sparsity pattern and a corresponding systolic-array-
based CNN accelerator. While less constrained sparsity
patterns often achieve better performance, they are not per-
fect; for instance, 2:4 and DBB sparsity require specialized
hardware support (with 2:4 resulting in a constant sparsity of
50%), while balanced sparsity was originally evaluated on
relatively smaller networks such as a 2-layer LSTM model
and its accuracy behavior on larger networks is unknown.

A separate body of work has also examined the problem of
accelerating unstructured-sparse DNNs on parallel architec-
tures (Gale et al., 2020; Wang, 2020). Gale et al. (Gale et al.,
2020) introduce the Sputnik library of SpMM and sampled
dense–dense matrix multiplication (SDDMM) GPU kernels
optimized for the CSR format, while Wang et al. (Wang,
2020) present an inspector-executor-based code generator
targeting unstructured sparsity. Such approaches have been
shown to outperform older versions of the NVIDIA cuS-
parse library, especially at higher (90%+) sparsity regimes.

The HPC literature has explored a number of sparse matrix
formats and corresponding linear algebra kernels tailored for
specific applications and sparsity patterns (Bell & Garland,
2009; Abu-Sufah & Ahmad, 2014; Filippone et al., 2017).
However, as Gale et al. demonstrate, the matrix dimensions,
sparsity degrees, and sparsity patterns encountered in HPC
applications differ significantly from those found in machine
learning (Gale et al., 2020), making their direct use imprac-
tical and/or inefficient for the latter. Nevertheless, they can
still act as excellent building blocks - in our case, we reuse
the well-known ELL matrix format (Bell & Garland, 2009)
to represent weight matrices and adapt and extend existing
GPU ELL SpMV and SpMM implementations to build our
own optimized kernels.

6 CONCLUSIONS

This paper has introduced uniform sparsity, a pattern which
ensures a constant number of nonzero values per row of the
sparse matrix, and thus lends itself well to efficient, load-
balanced execution on modern parallel architectures. We
have provided a simple algorithm for inducing uniform spar-
sity on real-world DNNs, and demonstrated that uniform
sparsity exhibits similar accuracy behavior to unstructured
sparsity, thus making it suitable as a drop-in replacement
for the latter. We have also described our optimized GPU
SpMM kernels tailored for uniform sparsity and demon-
strated that they achieve speedups of up to 1.62× over
NVIDIA cuSparse CSR SpMM on real-world DNN weight
matrices pruned to iso-accuracy-level sparsities (50-90%)
and up to 13.73× on representative synthetic data. With the
initial framework in place, we now plan to explore more so-
phisticated accuracy recovery strategies for uniform-sparse
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models, and additional performance optimization opportu-
nities for our SpMM kernels.
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