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ABSTRACT
Federated learning (FL) is an effective technique to directly involve edge devices in machine learning training
while preserving client privacy. However, the substantial communication overhead of FL makes training chal-
lenging when edge devices have limited network bandwidth. Existing work to optimize FL bandwidth overlooks
downstream transmission and does not account for FL client sampling.

In this paper we propose GlueFL, a framework that incorporates new client sampling and model compression
algorithms to mitigate low download bandwidths of FL clients. GlueFL prioritizes recently used clients and
bounds the number of changed positions in compression masks in each round. Across three popular FL datasets
and three state-of-the-art strategies, GlueFL reduces downstream client bandwidth by 27% on average and reduces
training time by 29% on average.

1 INTRODUCTION

Federated learning (FL) moves machine learning (ML) train-
ing to the edge. In FL, edge clients communicate with a
central server to collaboratively train a global model, while
keeping client training data local. We focus on cross-device
FL, in which there are many clients that are end-user de-
vices. For example, companies like Google and Intel use
cross-device FL for computer vision and natural language
processing model training across customer devices (Hart-
mann et al., 2019; Yang et al., 2018; Hard et al., 2018).

One downside of FL is its network usage. This is espe-
cially problematic in cross-device FL, which relies on lower-
bandwidth mobile or IoT devices (Kairouz et al., 2021).
For example, Google Keyboard (Gboard), a virtual key-
board with over 1 billion installs, selects clients from mil-
lions of mobile devices to enhance its search query sugges-
tions (Yang et al., 2018). In this type of application, clients
usually have a diversity of device-to-server (upstream) and
server-to-device (downstream) bandwidth. Clients that have
either slow upstream or downstream bandwidth act as strag-
glers and slow down model training.

This heterogeneous bandwidth setting has attracted signifi-
cant research, with a focus on reducing the communication
cost of FL training (Chen et al., 2021; Sattler et al., 2019;
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Vargaftik et al., 2022; Reisizadeh et al., 2020; McMahan
et al., 2017). One important strategy is client sampling,
which limits the number of clients that perform training in
each round (McMahan et al., 2017; Luo et al., 2022). Client
sampling reduces both upstream and downstream bandwidth.
However, a client that is not sampled gradually becomes
stale: its local state diverges from the state of clients that
have been sampled. The next time this client is sampled,
the central server must therefore send a larger state update,
increasing the downstream transmission overhead.

Another approach to reducing FL bandwidth usage is to
apply a mask to the client gradients, such as a sparsification
mask (Sattler et al., 2019; Wangni et al., 2018) or a parame-
ter freezing mask (Chen et al., 2021; Brock et al., 2017). In
traditional masking schemes, clients apply a mask to their
local gradients and only transfer significant gradients to the
server. This saves upstream bandwidth. Since each client
generates the mask locally and independently, however, the
entire model is usually updated at the end of a round and
needs to be fully synchronized. In server masking schemes,
such as Sparse Ternary Compression (STC) (Sattler et al.,
2019) and Adaptive Parameter Freezing (APF) (Chen et al.,
2021), the server uses a mask to compute the final model
update. Since the server only partially updates the model,
only a part of the model needs to be sent back to clients; this
saves downstream bandwidth.

User sampling and masking approaches are typically con-
sidered as orthogonal, compatible approaches (Sattler et al.,
2019; Chen et al., 2021). Though existing masking strate-
gies are indeed empirically effective in full participation
FL, we show that when client sampling is used they fail to
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decrease downstream bandwidth (§2). For example, with a
0.01 sample ratio and a masking compression ratio of 10%,
a single client needs to download 75% of the global model
on average. The reason downstream bandwidth increases
is because of the staleness of local state at the clients. To
see why, let us first consider the full participation case. Intu-
itively, since the global model is only partially updated by
the server under masking, a client only needs to download
this partial update and apply it to its local version of the
model, saved from the previous round. With client sam-
pling however, a typical client skips multiple rounds by
not being sampled, and its local model state becomes stale.
When the client is later sampled, it needs to download the
new value of all parameters updated in the skipped rounds,
which amounts to a large fraction of the model. This effect
increases downstream bandwidth usage, voiding the benefits
of server masking, and slowing down training when edge
devices have limited download capacity (spe, 2022).

To resolve the incompatibility between masking and client
sampling, we propose GlueFL, a new FL training frame-
work specifically designed to retain the benefits of masking
when using client sampling. This compatibility is partic-
ularly important in cross-device FL deployments, which
require both client sampling (full participation is imprac-
tical) and bandwidth savings due to mobile or IoT clients.
To the best of our knowledge, GlueFL is the first masking
design to address the downstream bandwidth bottleneck in
cross-device FL with client sampling.

We design GlueFL with two new mechanisms to alleviate
client staleness and to optimize downstream bandwidth re-
quirements. First, we introduce sticky sampling (§3.1) to
prioritize the most recently used clients, thereby reducing
the number of stale clients in each update. Since recently se-
lected clients have an up-to-date view of model parameters,
they need to download smaller updates. We combine sticky
sampling with a weighted central aggregation scheme to en-
sure that model updates remain unbiased, a requirement for
convergence (§4). Sticky sampling is especially important
in practical implementations that sample a small fraction of
clients in each round (Yang et al., 2018).

Second, we propose a gradual mask shifting strategy (§3.2),
to ensure that consecutive central model updates share a
large number of changed parameters, while empirically pre-
serving model convergence. This way, a newly selected
client only has to synchronize a subset of the model, even
after several rounds of not being sampled.

To sum up, we make three contributions:

⋆ We present an FL design called GlueFL, which is based
on sticky sampling and mask shifting. These two new
mechanisms alleviate the impact of client staleness in
client sampling. Both techniques minimize downstream

Table 1. Summary of notation used in this paper.
N , N, i set, total number, index of clients
K,K set, number of sampled clients
T, t number, index of communication rounds
E, e number, index of local update steps
wt server model in round t

wt,e
i ,gt,e

i model, gradients of client i in round t and step e
S, S set, size of sticky group
C, C set, number of clients sampled from S
R, R set, number of clients sampled fromN \ S

νi,s, νi,r aggregation weight of client i in C,R
q, qshr total, shared mask ratio

bandwidth in cross-device FL. To the best of our knowl-
edge, this is the first work to combine masking with client
sampling to reduce downstream bandwidth.

⋆ We analyse FL convergence under GlueFL’s sticky sam-
pling, and show that our proposed weighted aggregation
preserves unbiasedness of updates and convergence.

⋆ We evaluate GlueFL empirically, and demonstrate down-
stream bandwidth and training time savings on three
public datasets. On average, our evaluation shows that
GlueFL spends 29% less training time with a 27% less
downstream bandwidth overhead as compared to Fe-
dAvg (McMahan et al., 2017), STC (Sattler et al., 2019)
and APF (Chen et al., 2021).

2 MOTIVATION AND BACKGROUND

We start by reviewing standard FL with client sampling.
Then we introduce a state of the art masking strategy called
STC (Sattler et al., 2019), and discuss its limitations. Finally,
we formalize the problem that we set out to solve in the rest
of the paper. Table 1 overviews our notation.

2.1 Federated Learning (FL)

Consider a system with N clients, coordinated by a central
server. Each client i has a local data distribution Di. Let us
denote the weight of client i as pi such that

∑N
i=1 pi = 1.

The weight pi is given by the server and represents the
importance of the i-th client’s local loss function. Under the
non-convex settings, our target is formulated as

min
w∈Rd

F (w)
△
=

N∑
i=1

piFi(w) (1)

where Fi(w) = 1
|Di|

∑
ξ∈Di

ℓ(w, ξ), and ℓ(w, ξ) is the
empirical loss on model w and sample ξ. In practice,
Fi(w) is generally estimated with a random realization
ξi drawn from Di, which is assumed to be unbiased, i.e.,
Eξi∼Diℓ(w, ξi) = Fi(w). Let F∗ is the minimum value of
the global objective, i.e., F (w) ≥ F∗ for any w ∈ Rd.
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Algorithm 1: Sparse Ternary Compression (STC)
Output :wT

1 for t← 1 to T do
2 /* Server:client sampling */
3 Generate set of sampled clients K ;
4 Broadcast wt to K ;
5 /* Client:local training */
6 for i ∈ K in parallel do
7 wt,0

i ← wt ;
8 for e← 0 to E − 1 do
9 wt,e+1

i ← wt,e
i − γgt,e

i ;
10 end
11 /* Client:sparsification */
12 ∆̃t

i ← topq(w
t,E
i −wt,0

i ) ;
13 end
14 /* Server:aggregation */
15 Receive ∆̃t

i from worker i ∈ K ;
16 /* Server:sparsification */
17 ∆̃t ← topq(

∑
i∈K pi

N
K
∆̃t

i) ;
18 wt+1 ← wt + ∆̃t;
19 end

FedAvg (McMahan et al., 2017) is a standard algorithm to
solve Equation (1). To improve communication efficiency,
clients are selected uniformly at random in each round. The
FedAvg algorithm with client sampling looks as follows:

1. At the beginning of round t, the server uniformly at ran-
dom samples a subset of clients (i.e.,K) and broadcasts
the latest global model wt to these sampled clients.

2. Each sampled client i ∈ K receives the model wt

(= wt,0
i ) and runs E local SGD iterations to compute

a local update ∆t
i = −γ∑E−1

e=0 gt,ei , where γ is the
client learning rate. In each iteration, the client com-
putes the gradient as gt,ei = ∇ℓ(wt,e

i , ξt,ei ) where ξt,ei

is drawn from Di.

3. The server receives updates ∆t
i from all sampled clients

and aggregates them to compute the new global model
(Li et al., 2020b)

wt+1 = wt +
N

K

∑
i∈K

pi∆
t
i (2)

In expectation, the steps above realize an update form
EK
[
wt+1

]
= wt +

∑N
i=1 pi∆

t
i in each round. To ensure

that the global loss approaches the optimal one, FedAvg
repeats the process for T rounds. FedAvg achieves a conver-

gence rate of O
(√

E
KT

)
(Karimireddy et al., 2020; Yang

et al., 2021) under partial worker participation.

2.2 Cross-Device FL Bandwidth Characteristics

The cross-device FL setting relies on a large number of
clients. In this case, some clients are likely to have an un-
reliable or slow network. For example, Figure 1 shows the
bandwidth distribution estimated by measurement lab (Mea-
surement Lab, (2022-06-01 – 2022-07-01). We observe
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Figure 1. (a) The distribution of network bandwidth in North Amer-
ica, June 2022 (Measurement Lab, (2022-06-01 – 2022-07-01),
and (b) the cumulative distribution function (CDF) of network
bandwidth in (a).
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Figure 2. (a) The downstream and upstream bandwidth usage of
STC per round, and (b) the model size a client must download
when being re-sampled after a certain number of rounds.

that around 20% of devices have a download bandwidth
of at most 10Mbps. These devices can take at least 20s to
download a typical model like ShuffleNet V2 (Zhang et al.,
2018), which is specially designed for mobile devices and
contains 5 million model parameters.

2.3 Limitations of Existing Masking Strategies

Prior work has proposed several masking strategies to re-
duce the amount of transferred data and alleviate low band-
width issues (Sattler et al., 2019; Wangni et al., 2018; Chen
et al., 2021; Brock et al., 2017). To demonstrate how mask-
ing fails to optimize downstream bandwidth in FL with
client sampling, we use STC (Sattler et al., 2019), a popular
server masking strategy, as a representative technique.

STC builds on Stich et al. (2018), a masking approach that
selects and uploads the largest q (e.g., 10%) absolute values
in a client’s local gradients. In STC, this top-k sparsification
technique is applied to both clients’ gradients and server
updates1. Algorithm 1 shows this masking-only version of
STC. For a single client sampled in both the current and last
round, STC only has to update the weights covered by the
server mask (line 17). However, note that a client that has
not been sampled recently may have to update the entire
model, as their local view of the model is stale. The reason

1For simplicity, we only consider the masking part of STC—
STC also includes quantization, an orthogonal technique that can
be combined with sparsification (Jiang & Agrawal, 2018; Basu
et al., 2019) and will not change our conclusion, as quantization
compresses both downstream and upstream communication.
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is that server masks change in each round, and the client has
to synchronize all updated model parameters since it last
participated.

To measure the impact of model staleness on downstream
bandwidth, we apply STC to FedAvg and conduct experi-
ments on FEMNIST, using N = 2, 800 clients and a client
sample size of K = 30. We try compression ratios of 10%
and 20%2. We examine both downstream and upstream
bandwidth usage in each round. The results in Figure 2
show that upstream bandwidth is reduced when using a
smaller compression ratio, as expected. However, a client
still needs to download 70% of the global model on aver-
age. Clients with 10Mbps download bandwidth (§2.2) will
take at least 14s to receive these changes. This imposes a
high downstream bandwidth requirements on participating
clients. In general, the more rounds that a client skips, the
more updated model state it needs to download (Figure 2b).
As a result, the training bottleneck shifts to downstream
communication. We expect these results to hold for other
masking strategies as they similarly update different parts
of the global model in each communication round. For ex-
ample, in APF (Chen et al., 2021), model parameters are
frozen in some rounds but will then be updated again after
the freezing period ends. The downstream bottleneck is
therefore a general limitation across masking strategies.

2.4 Problem Setup

Our goal in GlueFL is to minimize the total expected down-
stream bandwidth of training, while retaining a low up-
stream bandwidth, and ensuring that the expected global
training loss F (wT ) converges to a local minimum value,
where wT is the aggregated global model after T rounds.

3 GLUEFL FRAMEWORK DESIGN

GlueFL includes two components to decrease the down-
stream bandwidth during FL training: sticky sampling (Fig-
ure 3) and mask shifting (Figure 4). The newly designed
sampling scheme allows some clients to be re-sampled in a
short term and mask shifting restricts the mask from chang-
ing too fast. We elaborate on the design of each of these
components in §3.1 and §3.2, before describing how to
adapt other existing mechanisms in §3.3.

3.1 Sticky Sampling

Client sampling is the process of selecting K out of N
clients in each round, to participate in computing the model
update. With uniform sampling, each client participates
in each round with a probability of K/N . Thus, a client
is expected to participate in training every N/K rounds

2Smaller values led STC to require an unacceptable number of
rounds to converge with a noticeable drop in convergence accuracy.

K
Sampled
clients

S
Sticky clients

N-S
Non-sticky clients

C

K-C

KK-C

Step 1: Sample clients for training

Step 2: Rebalance non-sticky and sticky groups with sampled clients

Non-sticky clients Sticky clients
Sampled
clients

Figure 3. Sticky sampling design.

on average (See Proposition 1 in Appendix B). In cross-
device FL systems, the value of N is often large, and K is
small. For example, Gboard samples K = 100 clients in
each round while there are millions of devices (Yang et al.,
2018). This produces a low probability of participation
in each round, which means that on average clients skip
a large number of training rounds before being selected
again. As we saw in §2.3, these long skips are responsible
for local state staleness. Clients’ state must therefore be re-
synchronized when they are selected, reducing the benefits
of masking on downstream bandwidth.

GlueFL introduces sticky sampling to ensure that clients
with an up-to-date local state are more likely to be selected.
Figure 3 illustrates sticky sampling and Algorithm 2 details
it. The server maintains a smaller sticky group of clients S
with size S, while the remaining clients form a non-sticky
group, N \ S. We randomly select S clients to initialize S
in the beginning of training, and S then evolves over time.

Figure 3 (step 1) illustrates how in each FL training round,
the server constructs its sampled set of clients K from two
sources; K = C ∪ R. It samples C clients to construct C
by sampling from the current sticky group S. It samples
(K − C) clients to constructR by sampling from the non-
sticky group, without replacement. All sampled clients K
participate in one round of training (Algorithm 2 line 5).

At the end of the round (Figure 3 (step 2)), the server ran-
domly selects (K −C) clients from S \ C (the set of clients
in the sticky group that did not participate in the latest
round) and removes these clients from the sticky group
(Algorithm 2 line 20). The server replaces these clients with
(K−C) clients that were not sampled from the sticky group
and that participated in the last update (R in Algorithm 2).

Just as with uniform client sampling, sticky client sampling
requires N/K rounds to re-sample a client on average (see
Proposition 2 for details). However, a client selected with
sticky sampling will join the sticky group and then have
a higher probability of being selected in the next round
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than under uniform sampling, as long as C
S > K

N . Since a
client that exits the sticky group (by not being selected in
the current round) is less likely to be selected than under
uniform sampling (K−C

N−S < K
N when C

S > K
N ), we need to

ensure that a sticky client has a higher expectation of being
included during the next several rounds. This is because
after several missed rounds, the whole model needs to be
synchronized (see Figure 2b). Proposition 2 in Appendix
B shows the probability for a client in the sticky group to
be selected after r rounds. We use this formula to select S
and C to ensure that this probability is higher than that of
uniform sampling for a high enough value of r.

Case Study. Consider a training run on FEMNIST with
N = 2, 800 clients, K = 30, S = 120, and C = 24
(our default experimental setup in §5.1). In this case, us-
ing the Proposition 1 and Proposition 2 in Appendix, we
can compute the probability of client inclusion over the
next 6 rounds for a client starting in the sticky group:
20.0%, 15.0%, 11.2%, 8.5%, 6.4%, 4.8%. By contrast, uni-
form sampling re-samples clients with a probability of
around 1.1%.

With sticky sampling, clients that just participated in a round,
and thus have an up-to-date state, are more likely to par-
ticipate again in the short term. Notice that each client
receives the delta between the current server model wt and
the client’s current state wti

i (Algorithm 2 line 6), computed
from the client’s last update step ti, and the sequence of
recent updates maintained by the server. Recently sampled
clients will therefore download smaller model delta updates.
Intuitively, this process shifts left on the x-axis of Figure 2b,
requiring a smaller model update. This synergizes with
masking approaches that reduce the size of an update in
each round. We show in §5 that for cross-device FL, where
a large N and a small K are typical, masking approaches
with sticky sampling significantly reduce downstream band-
width usage.

However, sticky sampling also introduces new challenges
during aggregation. As discussed in §2, the global update
should provide appropriate representation for every client in
expectation (Wang et al., 2020; Mitra et al., 2021; Wu et al.,
2023). Formally, the update should be an unbiased estimate
of the FedAvg update computed on every client in round t.
That is: EK[∆

t] =
∑N

i=1 pi∆
t
i. Under the FedAvg aggrega-

tion function (Equation (2)), since sticky clients are selected
with higher probability, they would have a larger weight
then non-sticky clients. To correct for this bias, GlueFL
uses an inverse propensity weighted aggregation function.
It assigns a different weight to updates from clients of dif-
ferent groups, corresponding to their importance parameter
re-weighted by the inverse probability of selection. Updates
from sticky group clients use the weight νti,s =

S
C pi, while

non-sticky group clients use the weight νti,r = N−S
K−C pi. The

Algorithm 2: Sticky Sampling
Output :wT

1 for t← 1 to T do
2 /* Server:sample clients */
3 Randomly select |C| = C clients from S;
4 Randomly select |R| = K − C clients fromN \ S;
5 Set of sampled clients K ← C ∪R;
6 Send model diff. δti ≜ wt −wti

i to clients i ∈ K;
7 /* Client:local training */
8 for i ∈ K in parallel do
9 wt,0

i ← wti
i + δti = wt ;

10 for e← 0 to E − 1 do
11 wt,e+1

i ← wt,e
i − γgt,e

i ;
12 end
13 ∆t

i ← wt,E
i −wt,0

i ;
14 end
15 /* Server:aggregation */
16 Receive ∆t

i from worker i ∈ K;
17 ∆t ←

∑
i∈C νt

i,s∆
t
i +

∑
i∈R νt

i,r∆
t
i ;

18 wt+1 ← wt +∆t;
19 /* Server:rebalance non-sticky and

sticky groups */
20 Randomly remove K − C clients in S \ C ;
21 S ← S ∪R ;
22 end

model update rule then becomes:

wt+1 ← wt +
∑
i∈C

νti,s ·∆t
i +

∑
i∈R

νti,r ·∆t
i︸ ︷︷ ︸

∆t

(3)

This is shown in lines 17 and 18 of Algorithm 2.

With this reweighting scheme in place, we can show that
sticky sampling udpates are unbiased:
Theorem 1 (Unbiased Aggregation). Let K = C ∪ R be
the set of sampled clients in sticky sampling. The update ∆t

computed in Equation (3) is unbiased. That is:

EK[∆
t] =

N∑
i=1

pi∆
t
i (4)

Proof. We can rewrite the update as a sum over all the
data, where the probability of inclusion cancels out with the
aggregation weight:

EK[∆
t] = EK

[∑
i∈C

S

C
pi∆

t
i +

∑
i∈R

N − S

K − C
pi∆

t
i

]

= EK

∑
i∈S

1{i∈C}
S

C
pi∆

t
i +

∑
i∈N\S

1{i∈R}
N − S

K − C
pi∆

t
i


=
∑
i∈S

C

S

S

C
pi∆

t
i +

∑
i∈N\S

K − C

N − S

N − S

K − C
pi∆

t
i

=

N∑
i=1

pi∆
t
i
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Figure 4. Mask shifting design with q = 10% and qshr = 9%.

where 1{predictate} is the indicator function with value 1 when
the predicate is true, and 0 otherwise.

Appendix D shows that estimating unbiased updates is key
to analyzing the convergence of GlueFL, following proof
techniques from Chen et al. (2020); Fraboni et al. (2021).

3.2 Mask Shifting

Sticky sampling allows clients in a sticky group to be sam-
pled more frequently. However, sticky sampling alone is
insufficient. As we have seen in Figure 2, a client re-sampled
after 10 rounds still needs to download around 50%-80% of
the global model on average. This is because the masked
updates of two successive rounds (e.g., ∆̃t and ∆̃t+1) have
little overlap.

We solve this issue by designing a gradual mask shifting
strategy, that prevents the mask from changing too quickly
while ensuring that the total compression ratio is maintained.
Figure 4 illustrates our mask shifting design. We construct
a shared mask with compression ratio qshr (with qshr < q),
which is represented using a bitmap shared with selected
clients in M t ∈ Bd in round t. Clients send their update
for parameters in M t, as well as a q − qshr proportion of
locally important parameters. The server will use M t as
well as locally important parameters to calculate the model
update, and to shift M t to obtain M t+1, while keeping a
large overlap between consecutive masks.

Algorithm 3 details the mechanism, with sticky sampling
from Algorithm 2 used to select clients in lines 5 and 28. The
server first synchronizes the global model wt with sampled
clients and distributes M t to them (line 7). In line 16,
the client i calculates the shared local gradient ∆̃t

i,shr as
M t ⊙ ∆̃t

i, where ⊙ sets those positions that are not covered
by the masks to zero. Next, the algorithm computes unique
local gradients ∆̃t

i,uni by selecting a (q − qshr) proportion
of the largest values in other (previously masked) positions,
to provide more local information to the server (line 17).
Finally, client i sends ∆̃t

i,shr and ∆̃t
i,uni to the server.

During aggregation, the central server uses sticky sampling

Algorithm 3: GlueFL
Output :wT

1 for t← 1 to T do
2 /* Server:sticky sampling */
3 Randomly select |C| = C clients from S;
4 Randomly select |R| = K − C clients fromN \ S;
5 Set of sampled clients K ← C ∪R ;
6 Send model diff. δti ≜ wt −wti

i to clients i ∈ K;
7 Send shared mask M t to i ∈ K;
8 /* Client:local training */
9 for i ∈ K in parallel do

10 wt,0
i ← wt ;

11 for e← 0 to E − 1 do
12 wt,e+1

i ← wt,e
i − γgt,e

i ;
13 end
14 /* Client:masking */

15 ∆t
i ← wt,E

i −wt,0
i ;

16 ∆̃t
i,shr ←M t ⊙∆t

i ;
17 ∆̃t

i,uni ← top(q−qshr)(¬M
t ⊙∆t

i) ;
18 end
19 /* Server:aggregation */

20 Receive ∆̃t
i,shr, ∆̃

t
i,uni from worker i ∈ K ;

21 Compute ∆̃t
shr via Equation (5) ;

22 Compute ∆̃t
uni via Equation (6) ;

23 ∆̃t ← ∆̃t
shr + ∆̃t

uni;
24 wt+1 ← wt + ∆̃t;
25 /* Server:update shared mask */

26 M t+1 ← topqshr (∆̃
t
shr + ∆̃t

uni) ;
27 /* Server:update sticky group S */
28 Randomly remove K − C clients in S \ C ;
29 S ← S ∪R ;
30 end

importance weights νti,s, ν
t
i,r given in §3.1. The server

first computes the shared update ∆̃t
shr based on all client

(weighted) updates, and the update based on unique local
information by selecting the (q− qshr) proportion of largest
overall (weighted) gradients (line 23). Formally, each quan-
tity is computed as:

∆̃t
shr ←

∑
i∈C

νti,s∆̃
t
i,shr +

∑
i∈R

νti,r∆̃
t
i,shr (5)

∆̃t
uni ← top(q−qshr)

(∑
i∈C

νti,s∆̃
t
i,uni +

∑
i∈R

νti,r∆̃
t
i,uni

)
(6)

These updates are combined and update the global model
(line 24). Finally, the shared mask is updated by selecting a
share qshr of parameters with the largest update values in
the combined update (line 26). Since the new mask M t+1

will be used to compute ∆̃t+1, the overlap of two successive
model updates ∆̃t and ∆̃t+1 is at least qshr. Intuitively, a
sequence of updates now impacts a smaller fraction of the
overall model: we shift the required download size after x
missed rounds lower along Figure 2b.
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3.3 Adapting Other Techniques to Work with GlueFL

We further improve the performance of GlueFL by adapting
common FL techniques to sticky sampling and mask shift-
ing (Chen et al., 2021; Han et al., 2020; Tang et al., 2019;
Qian et al., 2021; Wu et al., 2018; Seide et al., 2014).

Shared Mask Regeneration Previous work (Chen et al.,
2021; Han et al., 2020) showed that model parameters con-
verge at different rates. Meanwhile, a parameter that has
converged may become unstable in later rounds. For exam-
ple, according to Chen et al. (2021), it is possible that some
10% of parameters are unstable in both round t and t + 1,
while another 5% parameters are only unstable in round
t+ 1. In this case, a small (q − qshr) (e.g., 2%) value will
slow down convergence, as the shared mask fails to cover
the gradients of the unstable 5% of parameters and a large
(q − qshr) (e.g., 10%) value incurs more bandwidth cost.

To address this, we use a small (q − qshr) value while re-
generating the entire shared mask M t every I rounds. To re-
generate, we set qshr = 0 and update M t as topqshr

(∆̃t
uni)

(Algorithm 3, line 26). Although this process introduces
more downstream overhead in the next few rounds, it speeds
up training and reduces overall bandwidth.

Error-Compensation Compression methods, such as
quantization and sparsification, slow down model conver-
gence due to the loss of information in client updates (Tang
et al., 2019; Qian et al., 2021; Wu et al., 2018). Error-
compensation is a technique to alleviate this problem, first
proposed to accelerate convergence in 1-bit SGD (Seide
et al., 2014). The key idea is for clients to (1) remember
their local compression error (the difference between their
true update and what is actually sent to the server), and (2)
add it into the next round’s computed local gradient before
compression. In GlueFL, we apply error compensation as:

∆t
i ← ∆t

i +
ν
φ(t)
i

νti
· hφ(t)

i (7)

where νti is the aggregation weight applied at step t for
client i (i.e., νti,s if they are in the sticky group, νti,r other-
wise; their exact values are defined in §3.1), φ(t) indicates
the step-index when client i was last selected, and h

φ(t)
i

the compensation vector for client i in round φ(t). After
that, the client computes ∆̃t

i,shr and ∆̃t
i,uni (Algorithm 3,

lines 16-17). Then, the compensation vector is calculated as
ht
i = ∆t

i − (∆̃t
i,shr + ∆̃t

i,uni).

The reason for scaling with h
φ(t)
i in Equation (7) is to ensure

that client i’s compensation is consistent with the aggrega-
tion in sticky sampling. As the compensation only applies
to a client’s local gradient before masking, this optimization
does not introduce extra bandwidth and improves conver-
gence performance.

4 CONVERGENCE ANALYSIS

From a theoretical perspective, we show that GlueFL with-
out masking can achieve convergence at a rate of O(1/

√
T )

for smooth non-convex functions under two assumptions
(§4.1). §4.2 states our result and their interpretation, with
details in §D.

4.1 Assumptions

We make a standard assumption that clients sample a mini-
batch in each local update such that the computed gradient is
equal to the true gradient in expectation (Karimireddy et al.,
2020; Li et al., 2020b; Wang et al., 2020; Yang et al., 2021;
Wu et al., 2022). That is, Eξi∼Di

∇fi(w, ξi) = ∇Fi(w) for
all workers i ∈ {1, . . . , N} and the model w ∈ Rd, where
ξi and Di represent the mini-batch and the local training set,
respectively. We make two more assumptions:

Assumption 1 (Bounded Local Variance). There exists a
constant σ > 0, such that the variance of each local gradi-
ent estimator is bounded by,

Eξi∼Di
∥∇fi(w, ξi)−∇Fi(w)∥ ≤ σ2, ∀i ∈ [N ].

We also assume that the local objective functions (i.e.,
F1, . . . , FN ) and their derivatives are Lipschitz continuous.

Assumption 2 (Continuity and Smoothness). The local
objective functions are Lc-continuous and Ls-smooth.

4.2 Convergence Result

Here we analyze the convergence rate of sticky sampling
(Algorithm 2) on non-convex local objective functions. See
§D for the complete proof.

Theorem 2. Suppose Assumptions 1 and 2 hold, and set the
aggregation weights as νti,s =

S
C pi and νti,r = N−S

K−C pi. Let
the learning rate be

γ =

√
1

E(σ2 + E)
· K

TA
(8)

Algorithm 2 is such that:

min
t∈{1,...,T}

∥∥∇F (wt)
∥∥2
2
= O

(√(
1 +

σ2

E

)
· A

KT

)
+O

(
K

TA

)
(9)

where A = K
N

(
S2

C + (N−S)2

K−C

)(∑N
i=1 p

2
i

)
. We treat Ls,

Lc, and F (w1)− F ∗ as constants.

This result gives a convergence rate to a fixed point for
sticky sampling (Algorithm 2). It does not directly apply to
GlueFL with mask shifting and error correction (Algorithm
3). Existing results for error correction (Stich et al., 2018;
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Alistarh et al., 2018) might be extendable to mask shifting
and sticky sampling, under the stronger assumptions made
in these papers.

Comparison with FedAvg. If all clients have equal weights,
(i.e., pi = 1

N for all workers i ∈ {1, . . . , N}), and the sticky
group does not exist (i.e., S = 0), the algorithm reduces to
FedAvg, and A = 1. As we can see, when we set the num-
ber of local updates E ≥ σ2 and T is sufficiently large, the

convergence result is led by O
(√

1
KT

)
. This is compara-

ble to the state-of-the-art works on convergence of FedAvg
as described in §2.1. Sticky-sampling introduces a variance
cost (the S2

C + (N−S)2

K−C term in A) to remain unbiased un-
der non-uniform client sampling, but does deteriorate the
asymptotic rate of convergence. Next, we show empirically
that this is a favorable trade-off given the bandwidth savings
enabled by sticky sampling (§5).

5 EXPERIMENTAL EVALUATION

We evaluate GlueFL across several datasets and network
distributions. Our goal is to answer three questions:

Q1: What model accuracy does GlueFL achieve?
Q2: How does GlueFL impact bandwidth usage?
Q3: How quickly does the model converge with GlueFL?

5.1 Experimental Setup

We deployed GlueFL on a set of VMs in one data-center
with a total of 14 NVIDIA Tesla V100 GPUs. To reproduce
real-world heterogeneous client performance, we use Fed-
Scale’s client behavior trace and the NDT dataset (Measure-
ment Lab, (2022-06-01 – 2022-07-01) to simulate the avail-
ability pattern and bandwidth capacity of clients, respec-
tively. To mitigate stragglers and offline clients, FedScale in-
troduces an over-commitment variable (Bonawitz et al.,
2019) which we set to 1.3 in all experiments. That is, we
sample 1.3 ×K clients in each round and use the first K
uploaded updates.

Datasets and Models We use three datasets: FEM-
NIST (Caldas et al., 2018), OpenImage (Kuznetsova et al.,
2020), Google Speech (Warden, 2018). The first two
datasets are frequently used for image classification and
consist of 640K and 1.3M colored images, respectively.
Google Speech is a dataset with 105K speech samples. We
partition the data using FedScale’s real-world non-iid client-
data mapping (Lai et al., 2022) and remove those clients
that have fewer than 22 samples as the default setting in Fed-
Scale. In total, we use 2, 800, 10, 625, and 2, 066 clients in
our experiments, respectively. The models we use are Shuf-
fleNet (Zhang et al., 2018) and MobileNet (Sandler et al.,
2018) for both FEMNIST and OpenImage, and ResNet-

34 (He et al., 2016) for Google Speech. We set the number
of sampled clients K = 30, 100, and 30 for FEMNIST,
OpenImage, and Google Speech, respectively.

Baselines We compare GlueFL with FedAvg (McMahan
et al., 2017), the most widely used FL algorithm with no
model compression methods. We also compare GlueFL
with STC (Sattler et al., 2019) and APF (Chen et al., 2021),
which are the state-of-the-art sparsification and parameter
freezing strategies, respectively.

Metrics We measure the total data volume and total train-
ing time to address Q2 and Q3, respectively. We also an-
alyze the downstream bandwidth and download time. For
download time, we pick the slowest client in each round
and sum up their download time. To address Q1, similar to
Oort (Lai et al., 2021), we average the test accuracy over 5
rounds and report the results when the averaged accuracy
first reaches the target accuracy.

Training Parameters Clients perform 10 local updates
per round. We use PyTorch’s SGD optimizer with a momen-
tum factor of 0.9 for all tasks. For FEMNIST, OpenImage,
and Google Speech, the initial learning rate is set to 0.01,
0.05, and 0.01, respectively, with a decay factor of 0.98
every 10 rounds. To obtain the best performance, we set
the total mask ratio q = 20% for ShuffleNet, and q = 30%
for MobileNet and ResNet-34 in STC. For APF, we set the
threshold for effective perturbation, which reflects the com-
pression ratio, to 0.1 for all tasks. The remaining STC and
APF parameters are set to their optimal values (Sattler et al.,
2019; Chen et al., 2021). For GlueFL, the default sticky
group parameters are S = 4K and C = 4K/5. For Shuf-
fleNet, the default mask shifting parameters are q = 20%
and qshr = 16%. For MobileNet and ResNet-34, we set
q = 30% and qshr = 24%. We use I = 10 to regenerate
the shared mask every 10 rounds. We choose these values
as they produce the best performance across most tasks.

5.2 Performance Results

Communication costs Table 2 lists the data volume and
training time for FedAvg (baseline), STC, APF, and GlueFL
(our framework). It shows that STC and APF outperform
FedAvg as they require less bandwidth to reach the target
accuracy, reducing volume by 8% on average. However,
STC and APF consume substantial downstream bandwidth.
For example, when training MobileNet on FEMNIST, STC
only takes 40 GB to upload gradients but uses 150 GB for
downstream synchronization. GlueFL reduces downstream
bandwidth (Table 2): for OpenImage, GlueFL provides a
saving of 15% compared with FedAvg, while for Google
Speech GlueFL saves 42%. We further compare the perfor-
mance of GlueFL with STC and APF. In each case, while
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Table 2. Downstream transmission Volume (DV, in ×102 GB) and Download Time (DT, in hours) for training different models/datasets.
We also present Total transmission Volume (TV) and Total training Time (TT) in parenthesis. We measure Top-1 accuracy for FEMNIST
and Google Speech, and Top-5 accuracy for OpenImage (Lai et al., 2022). We set the target accuracy to be the highest achievable accuracy
by all approaches. Our target accuracies are comparable with previous work (Lai et al., 2021; 2022). The best results are in bold.

Dataset # Clients Target
Acc. Model

FedAvg STC APF GlueFL (ours)
DV (TV) DT (TT) DV (TV) DT (TT) DV (TV) DT (TT) DV (TV) DT (TT)

FEMNIST 2,800 73.3%
ShuffleNet 2.6 (4.6) 2.7 (7.6) 2.6 (3.4) 2.7 (5.7) 2.3 (3.2) 2.3 (5.7) 2.2 (3.1) 2.2 (5.3)
MobileNet 1.2 (2.1) 1.5 (4.6) 1.5 (1.9) 1.7 (3.9) 1.5 (2.0) 1.6 (4.5) 0.9 (1.4) 0.8 (3.3)

OpenImage 10,625 66.8%
ShuffleNet 25.2 (45.0) 11.2 (28.8) 33.9 (50.0) 14.8 (29.9) 27.1 (43.1) 12.3 (29.8) 21.3 (31.4) 8.0 (19.2)
MobileNet 17.4 (31.1) 7.1 (22.4) 16.7 (24.5) 7.1 (19.1) 20.3 (30.9) 8.8 (21.0) 14.9 (22.1) 5.8 (14.4)

Google Speech 2,066 61.2% ResNet-34 12.8 (23.0) 20.1 (60.9) 13.5 (18.5) 16.0 (42.3) 15.8 (21.9) 19.1 (54.1) 7.2 (12.5) 12.1 (27.8)
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Figure 6. Effect of sticky group size S.

consuming nearly the same amount of upstream bandwidth
(note upstream bandwidth volume = TV-DV in Table 2),
GlueFL uses the least downstream bandwidth across all
three datasets. For example, when training MobileNet on
OpenImage, APF, STC, and GlueFL all consume around
900 GB to upload gradients. However GlueFL lowers down-
load bandwidth by 11% and 26% as compared with STC
and APF, respectively. This is because STC and APF do not
bound the changes of masks in a communication round and
the update size rapidly increases.

Wall-clock Time Table 2 indicates that downstream band-
width is the bottleneck. For example, when training Mo-
bileNet on FEMNIST, FedAvg uses 32% of its total train-
ing time for model synchronization while STC uses 43%.
GlueFL reduces total training time by reducing downstream
bandwidth and saving download time, which speeds up
the training by 15% and 26% as compared with STC and
APF. Notably, GlueFL opens new design avenues for per-
formance optimization in the face of resource heterogeneity.
For instance, Appendix F shows how we can design over-
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Figure 7. Effect of sticky sampling parameter C.
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Figure 8. Effect of shared mask ratio qshr .

commitment strategies for straggler mitigation to improve
wall-clock time completion without impacting bandwidth
consumption. This is achieved by: (1) only promoting non-
stragglers to the sticky group for repeated sampling, and
(2) focusing more client over-commitment towards clients
outside the sticky group.

5.3 Sensitivity Analysis

We evaluate the influence of GlueFL parameters on training
performance on FEMNIST with ShuffleNet and Google
Speech with ResNet-34. Similar to §5.2, we use K = 30.
When evaluating one parameter, we use defaults for the
others (see §5.1). For each setting, we run GlueFL for 1,000
rounds and report the average test accuracy over 20 rounds
with respect to the cumulative downstream bandwidth.

Effect of aggregation weights νti,s and νti,r Figure 5
demonstrates the impact of two settings of aggregation
weights on training performance: equal (i.e., νti,s = νti,r =
1/K) and unbiased (see §3.1). Overall, unbiased aggrega-
tion weights lead to similar or better convergence speed
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Figure 9. Average share of time spent per round downloading (grey), uploading (red) and computing (blue).

for the same amount of cumulative downstream bandwidth
usage. In the case of Google Speech, unbiased aggrega-
tion was able to achieve convergence while saving 41% of
downstream bandwidth.

Sticky sampling parameters S and C Figure 6 shows
the impact of sticky group size S on training performance.
Typically, a larger sticky group size means more diverse
training data for the sticky clients and indirectly better ac-
curacy at the cost of more communication. It follows that
choosing an appropriately large S is important for optimiz-
ing performance. For instance, the S = 120 setting for
Google Speech reached the target accuracy with almost 20%
less downstream communication compared with S = 60.
However, the same S is unable to help GlueFL achieve a
speedup for FEMNIST.

Next, we evaluate the impact of the sticky sampling param-
eter C (Figure 7). C clients in the sticky group are sampled
and (K − C) clients are replaced by clients from the non-
sticky group. Across C = 6, 18, and 24 in Figure 7, we
do not observe a large improvement in accuracy for smaller
C. By contrast, C = 6 adds 76% download bandwidth in
each round as GlueFL is unable to capitalize on the savings
from sticky sampling due to more new clients. This indi-
cates that a large C does not harm accuracy and saves more
bandwidth.

Mask shifting parameter qshr Figure 8 shows the effect
of the shared mask ratio qshr on performance. On average,
a higher value (qshr = 16%) does not cause accuracy to
drop substantially and is preferable as GlueFL uses the least
downstream bandwidth to reach the convergence accuracy
of FedAvg. This is because GlueFL optimizes mask shifting
with shared mask regeneration and error compensation.

Other techniques § 3.3 describes two other FL techniques
we adapt to sticky sampling and mask shifting: shared mask
regeneration and error-compensation. We perform an abla-
tion study in Appendix E to show that both are important to
fully realize GlueFL’s potential.

5.4 Network Environment

To further test our framework on high-throughput environ-
ments, we repeated the experiment in Table 2 on commer-
cial 5G (Narayanan et al., 2021) and Google Cloud (Mok
et al., 2021) with the default settings for GlueFL (see §5.1).
Figure 9 shows the total share of download, upload, and
computation time for the three environments.

According to Figure 9(a), transmission time remains a bot-
tleneck in the end-user edge devices environment as shown
in Table 2. We attribute this to low-bandwidth clients. The
ratio of download to upload time increases as we introduce
compression. Since clients usually download faster than
upload (Measurement Lab, (2022-06-01 – 2022-07-01; spe,
2022): new clients in FedAvg spend 70% more time upload-
ing than downloading the same-sized update. However, for
STC and APF, download time takes on average 8% longer
than upload, confirming the discussion in §2.3. To address
this limitation, GlueFL saves downstream bandwidth and
reduces download time by at least 42% as compared with
other approaches. This is because clients in the sticky group
are required to download less updates and are therefore less
likely to become stragglers.

In 5G and intra-datacenter networks, computation dominates
the per-round training time. Yet, straggler clients still exist
and they ultimately determine the end-to-end training time.

6 RELATED WORK

The synchronization bottleneck is an established problem
in FL. Existing solutions fall into roughly two categories:
(1) use client sampling to constrain the number of clients in
each round; and, (2) compress model data with strategies
like sparsification and parameter freezing.

Client sampling FedAvg proposed a uniform sampling
of clients to participate in each round. Uniform sampling
has been shown to be biased, and multinomial distribution
(MD) sampling was proposed to address this issue (Li et al.,
2020a). Clustered sampling (Fraboni et al., 2021) reduced
the variance of client update aggregation by improving client
representation. Oort (Lai et al., 2021) introduced a practical
client selection algorithm, which considers both data utility
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and clients speed.

Sparsification The idea of sparsification is to send only
the most informative gradients. Gaia (Hsieh et al., 2017)
transfers gradients whose absolute or relative values are
larger than a given threshold. Stich et al. (Stich et al., 2018)
proposed Top-K that, given a compression ratio, selects a
fraction of gradients based on their absolute values to meet
the ratio. STC (Sattler et al., 2019) extended Top-K to FL
training and also uses server-side compression.

Parameter freezing Parameter freezing reduces band-
width by freezing the gradients that converged. Brock et
al. (Brock et al., 2017) proposed FreezeOut, which gradually
froze the first few layers of a deep neural network that were
observed to converge first. However, it has a coarse layer-
based granularity and it degrades accuracy. APF (Chen
et al., 2021) improves on FreezeOut by freezing at a fine
granularity and achieves a communication speed-up while
preserving model convergence.

Our goal with GlueFL is to coherently combine client sam-
pling with model compression. To our knowledge, we are
the first to propose a combination that is unbiased, achieves
high accuracy, and lowers downstream bandwidth usage.

7 CONCLUSIONS

We proposed GlueFL, a framework to optimize downstream
bandwidth in cross-device FL. GlueFL uses sticky sampling
for client selection and mask shifting for model compression
to mitigate the low download bandwidth of FL clients. We
also provide a theoretical convergence guarantee for GlueFL.
In comparison with FedAvg, GlueFL achieves similar accu-
racy while decreasing total training time by 36% and uses
22% less downstream bandwidth. GlueFL also outperforms
STC (Sattler et al., 2019) and APF (Chen et al., 2021).
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McMahan, H. B., Smith, V., and Talwalkar, A. LEAF:
A Benchmark for Federated Settings. arXiv preprint
arXiv:1812.01097, 2018.

Chen, C., Xu, H., Wang, W., Li, B., Li, B., Chen, L., and
Zhang, G. Communication-Efficient Federated Learn-
ing With Adaptive Parameter Freezing. In International
Conference on Distributed Computing Systems (ICDCS),
2021.

Chen, W., Horvath, S., and Richtarik, P. Optimal
Client Sampling for Federated Learning. arXiv preprint
arXiv:2010.13723, 2020.

Fraboni, Y., Vidal, R., Kameni, L., and Lorenzi, M. Clus-
tered Sampling: Low-Variance and Improved Represen-
tativity for Clients Selection in Federated Learning. In
International Conference on Machine Learning (ICML),
2021.

Han, P., Wang, S., and Leung, K. K. Adaptive Gradient
Sparsification for Efficient Federated Learning: An On-
line Learning Approach. In International Conference on
Distributed Computing Systems (ICDCS), 2020.

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays,
F., Augenstein, S., Eichner, H., Kiddon, C., and Ramage,
D. Federated Learning for Mobile Keyboard Prediction.
arXiv preprint arXiv:1811.03604, 2018.

Hartmann, F., Suh, S., Komarzewski, A., Smith, T. D.,
and Segall, I. Federated Learning for Ranking Browser
History Suggestions. arXiv preprint arXiv:1911.11807,
2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning for Image Recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

https://www.speedtest.net/global-index
https://www.speedtest.net/global-index


GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning

Hsieh, K., Harlap, A., Vijaykumar, N., Konomis, D., Ganger,
G. R., Gibbons, P. B., and Mutlu, O. Gaia: Geo-
Distributed Machine Learning Approaching LAN Speeds.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2017.

Jiang, P. and Agrawal, G. A Linear Speedup Analysis of
Distributed Deep Learning With Sparse and Quantized
Communication. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and Open Problems
in Federated Learning. Foundations and Trends® in Ma-
chine Learning, 14(1–2):1–210, 2021.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich,
S., and Suresh, A. T. SCAFFOLD: Stochastic Controlled
Averaging for Federated Learning. In International Con-
ference on Machine Learning (ICML), 2020.

Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin,
I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M.,
Kolesnikov, A., Duerig, T., and Ferrari, V. The Open
Images Dataset V4: Unified Image Classification, Object
Detection, and Visual Relationship Detection at Scale.
IJCV, 2020.

Lai, F., Zhu, X., Madhyastha, H. V., and Chowdhury, M.
Oort: Efficient Federated Learning via Guided Participant
Selection. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2021.

Lai, F., Dai, Y., Singapuram, S. S., Liu, J., Zhu, X., Mad-
hyastha, H. V., and Chowdhury, M. FedScale: Bench-
marking Model and System Performance of Federated
Learning at Scale. In International Conference on Ma-
chine Learning (ICML), 2022.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated Optimization in Heterogeneous
Networks. In Proceedings of Machine Learning and
Systems (MLSys), 2020a.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On
the Convergence of FedAvg on Non-iid Data. 2020b.

Luo, B., Xiao, W., Wang, S., Huang, J., and Tassiulas, L.
Tackling System and Statistical Heterogeneity for Feder-
ated Learning with Adaptive Client Sampling. In IEEE
Conference on Computer Communications (INFOCOM),
2022.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-Efficient Learning of
Deep Networks From Decentralized Data. In Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS), 2017.

Measurement Lab. The M-Lab NDT data set. https:
//measurementlab.net/tests/ndt, (2022-06-
01 – 2022-07-01).

Mitra, A., Jaafar, R., Pappas, G. J., and Hassani, H. Linear
convergence in federated learning: Tackling client het-
erogeneity and sparse gradients. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

Mok, R. K., Zou, H., Yang, R., Koch, T., Katz-Bassett, E.,
and Claffy, K. C. Measuring the Network Performance
of Google Cloud Platform. In Internet Measurement
Conference (IMC), 2021.

Narayanan, A., Zhang, X., Zhu, R., Hassan, A., Jin, S., Zhu,
X., Zhang, X., Rybkin, D., Yang, Z., Mao, Z. M., et al. A
Variegated Look at 5G in the Wild: Performance, Power,
and Qoe Implications. In ACM Special Interest Group on
Data Communication (SIGCOMM), 2021.
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A ARTIFACT APPENDIX

A.1 Abstract

This artifact description contains information about the
workflow necessary to perform experiments using GlueFL
and competing methods (FedAvg, STC, APF) on our mod-
ified version of the FedScale platform. We first provide
the GlueFL source code, which uses Python and PyTorch.
FedScale provisions most of the training data and device
profiles. However, we include more recent client bandwidth
data for different network environments. Finally, we provide
training configurations corresponding to all of our experi-
ments. Users may run GlueFL using these configurations
with CPU or NVIDIA GPU.

A.2 Artifact check-list (meta-information)
• Algorithm: sticky sampling, mask shifting

• Program: Python (3.7+), PyTorch (See appendix A.3.3)

• Model: shufflenet v2 x2 0, mobilenet v2, resnet34

• Data set: FEMNIST (3400 clients, 640K samples), Google
Speech (2618 clients, 105K samples), Open Image (13,771
clients, 1.3M samples)

• Run-time environment: Ubuntu 20.04 or equivalent

• Hardware: x64 CPU, NVIDIA V100 GPU (Recommended)

• Metrics: top-1/5 test accuracy (%), downstream/total train-
ing time (s), downstream/total transmission volume (Kb)

• Output: test logs containing metrics

• Experiments: near-optimal baseline setting, sensitivity anal-
ysis, ablation analysis, network environments

• How much disk space required (approximately)?: 35 MB
(source code + device profiles), 327 MB (FEMNIST), 2.3
GB (Google Speech), 66 GB (Open Image), at least 50 GB
(local client compensation data storage)

• How much time is needed to prepare workflow (approxi-
mately)?: a few minutes after initial set up

• How much time is needed to complete experiments (ap-
proximately)?: a few hours to a few days depending on the
configuration

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache 2.0 License

• Archived (provide DOI)?: https://doi.org/10.
5281/zenodo.7886751

A.3 Description

A.3.1 How delivered

You can retrieve the source code and data sets from our GitHub
repository.
$ git clone https://github.com/TCtower/
GlueFL.git

A.3.2 Hardware dependencies

GlueFL relies on CUDA-compatible NVIDIA GPUs to acceler-
ate training. Running experiments with only CPUs will likely
result in lengthy experiments and slightly different performance.
Furthermore, GlueFL has only been tested on modern Intel x64
CPUs

A.3.3 Software dependencies

GlueFL runs on top of the FedScale platform, which itself has
dependencies on Python, PyTorch, and a number of other pack-
ages. To simplify package management, we use Anaconda and list
the necessary dependencies in ./environment.yml. Please
follow A.4 to set up Anaconda and install necessary dependencies.

(Recommended) To run GlueFL with NVIDIA GPUs, you should
have NVIDIA drivers installed. An easy way to install them is to
again follow A.4.

A.3.4 Data sets

The client device data is specifically located in ./benchmark/
dataset/data/device_info. To retrieve training data sets,
you should follow the instructions in A.4.

A.4 Installation

After downloading the source code, please change your current
directory to the root of the GlueFL repository. Then, you can
run the following commands. You can also find more detailed
installation instruction at README.md.
$ bash install.sh # Add ‘--cuda‘ if you
want GPU

$ pip install -e .

After setting up FedScale, we need to download the datasets. For
GlueFL, we experiment with the femnist, speech, and open images
datasets. You can download them with the following commands.
$ fedscale dataset download femnist

$ fedscale dataset download speech

$ fedscale dataset download open images

The datasets will be downloaded to the ./benchmark/
dataset/data/<datasetname> directory by default. De-
tailed instructions related to downloading datasets are contained in
./benchmark/dataset/README.md.

A.5 Experiment workflow

Experiments are conducted by running the FedScale platform
with YAML configuration files located in the ./benchmark/
configs directory. We conveniently group the configurations
used in paper into the following four directories:

• ./benchmark/configs/baseline contains the ex-
periment configurations for near-optimal settings of GlueFL,
FedAvg, STC, and APF. The results from these experiment
runs are used to fill § 5.2

• ./benchmark/configs/sensitivity contains the

https://doi.org/10.5281/zenodo.7886751
https://doi.org/10.5281/zenodo.7886751
https://github.com/TCtower/GlueFL
https://github.com/TCtower/GlueFL
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experiment configurations used for the sensitivity analysis
(§ 5.3) by differing GlueFL’s hyper-parameters on the FEM-
NIST and Google Speech data sets.

• ./benchmark/configs/environment contains the
experiment configurations used for the network environment
study (§ 5.4) by swapping different client device profiles.

• ./benchmark/configs/ablation contains the ex-
periment configurations used for the ablation study (??) by
differing other settings on the FEMNIST and Google Speech
datasets.

After choosing the desired configuration file, you can run the
experiments by submitting the experiment configuration to
FedScale. The following command is an example for running the
baseline GlueFL algorithm on the FEMNIST dataset with the
ShuffleNet model:
$ fedscale driver start ./benchmark/
configs/baseline/gluefl_femnist_shf.yml

If you downloaded your training data to a location other than the
default location, you will need to modify the respective configura-
tion file’s data dir and data map file parameters to be the
location where you downloaded your training data.

A.6 Evaluation and expected result

Once you started an experiment workflow, logs will be generated
in your root directory with the job name setting as the prefix.
Furthermore, logs for the aggregator and executor can be found in
the directory specified by the log path setting.

While in the root directory, you can view the current training
progress using the following commands.
$ cat job name logging | grep ’Training
loss’

$ cat job name logging | grep ’FL Testing’

You can also view the current bandwidth usage and training time
with the following command.
$ cat job name logging | grep -A 9 ’Wall
clock:’

The output should match the results reported in our paper using
our reporting methodology.

A.7 Experiment customization

You can change the settings in the configuration files. For a brief
explanation of the purpose of each of the settings, check the ./
fedscale/core/config_parser.py file.

All the configurations assume that the FL training process con-
ducted entirely on a single machine with potentially multiple GPUs
(see worker ips setting). Due to the need to emulate the storage
of local client compensation data on the disk, we do not currently
support running the experiments on multiple machines. Perfor-
mance may be negatively impacted if you use multiple machines
because different machines may not have the latest client compen-
sation data.

Furthermore, the configuration all have GPU enabled by default.

If you would like to only use CPU for training, please change the
use cuda setting to False.

A.8 Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/
submission-20190109.html

• http://cTuning.org/ae/
reviewing-20190109.html

• https://www.acm.org/publications/
policies/artifact-review-badging

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
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B ANALYSIS OF SAMPLING SCHEMES

In this section, we provide a comparison between uniform sampling and sticky sampling to demonstrate the advantage of sticky sampling.
We first analyze the probability that a client is re-sampled after r rounds and then give the expected number of rounds for a client to be
re-sampled.

B.1 Analysis on Uniform Sampling

Proposition 1. Suppose a client is sampled at the current round. With uniform sampling, there is a probability of K
N
(1− K

N
)r−1 that the

client is sampled after r rounds. On average, a client is sampled every N/K rounds.

Proof. The client is sampled with a probability of K
N

. The client has not been selected for the first (r − 1) rounds. Thus, this happens
with a probability of K

N
(1− K

N
)r−1. Furthermore, the value of averaged sampled rounds is

∑∞
r=1

K
N
(1− K

N
)r−1 · r = N/K.

B.2 Analysis on Sticky Sampling

Proposition 2. Suppose a client is sampled at the current round. Using sticky sampling, the client in the sticky group is sampled with a
probability of 1

(N−S)K−(K−C)S
(K(NC−SK)

S
(1− K

S
)r−1 + (K − C)2(1− K−C

N−S
)r−1) after r rounds. As expected, the client trains a

model every N/K rounds.

Proof. In the sticky group, a client is sampled or moved to the non-sticky group with the probability of C
S

and K−C
S

, respectively. And, a
client is sampled from the non-sticky group with probability K−C

N−S
.

There are two strategies to sample a client that has participated in model training. First, it is sampled from the sticky group, where the
probability is C

S
(S−K

S
)r−1 after r rounds. Second, it is sampled from the non-sticky group, indicating the client is moved out of the

sticky group in the middle. Therefore, the probability is
∑r−1

i=1 (1−
K−C
N−S

)i−1 · K−C
N−S

· (S−K
S

)r−i−1 · (K−C
S

) = (K−C)2

(N−S)K−(K−C)S
((1−

K−C
N−S

)r−1− (S−K
S

)r−1). By summing up these two probabilities, we can obtain the desired result. Furthermore, similar to Proposition 1,
we can calculate the value of averaged sampled rounds.

B.3 Discussion

According to the proof of Proposition 2, the probability of a client in the sticky group being sampled after r rounds is greater
or equal to C

S
(S−K

S
)r−1, which is the probability that it is still sampled from the sticky group. Then, for r ∈ {1, . . . , 1 +⌊(

log CN
SK

)
/
(
log S(N−K)

N(S−K)

)⌋
}, C

S
(S−K

S
)r−1 is greater or equal to K

N
(1 − K

N
)r−1, the probability that a client is sampled after r

rounds in uniform sampling (Proposition 1).

C SOME USEFUL LEMMAS

In this section, we provide two useful lemmas, which will apply to our subsequent analysis in §D. Lemma 1 is used to present the progress
in one single step in FL (§D.1) and Lemma 2 is used to bound the gap between two successive global models (Lemma 4).

Lemma 1 ((Bottou et al., 2018)). Suppose a functionH is Lc-continuous and Ls-smooth. For any w, v ∈ Rd, the following inequality
holds forH:

∥∇H(w)∥2 ≤ Lc; H(w) ≤ H(v) + ⟨∇H(v), w − v⟩+ Ls

2
∥w − v∥22

Lemma 2 (Lemma 4 in (Karimireddy et al., 2020)). Let ε = {ε1, . . . , εa} be a random variables in Rd, which are not assumed to be
independent. If E [εi] = ei, and the variance is bounded by E

[
∥εi − ei∥22

]
≤ σ2, we have:

E

[∥∥∥∥∥
a∑

i=1

εi

∥∥∥∥∥
2

2

]
≤

∥∥∥∥∥
a∑

i=1

ei

∥∥∥∥∥
2

2

+ a2σ2

If we further suppose that E [εi|εi−1, . . . , ε1] = ei, in which case the {εi − ei} form a martingale difference sequence, and the bound of
the variance E

[
∥εi − ei∥22

]
≤ σ2 holds, we have the following, tighter bound:

E

[∥∥∥∥∥
a∑

i=1

εi

∥∥∥∥∥
2

2

]
≤ 2

∥∥∥∥∥
a∑

i=1

ei

∥∥∥∥∥
2

2

+ 2aσ2
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D PROOF OF THEOREM 2
In this section, we theoretically analyze the convergence rate of sticky-sampling in GlueFL on non-convex functions, under Assumptions 1
and 2. The conclusion has been mentioned in Theorem 2. The proof follows the same template as those of (Bottou et al., 2018;
Karimireddy et al., 2020; Wang et al., 2020; Yang et al., 2021), and proceeds as follows: (1) we use Lemma 1 to bound the expected
progress in each step (§D.1) by a sum of two terms. (2) We bound the first term through a bound on local updates (Appendix D.3) and our
unbiased aggregation. (3) We bound the second term by adapting a bound on the norm between two consecutive models to account for our
aggregation weights (§D.4). (4) We use the bound on the expected progress in each step in a telescopic sum to bound the overall progress
over training (§D.2).

We first present steps (1) and (4) in Appendices D.1 and D.2, which represent the high level articulation of the proof, before presenting the
lower level results for steps (2) and (3) in Appendices D.3 and D.4.

D.1 Progress in one single step

We first bound the expected progress after one step of the model update. By definition, wt+1 = wt − γ
∑

i∈Kt ν
t
i

∑E−1
e=0 ·g

t,e
i , where νt

i

can be either νt
i,s or νt

i,r depending on the client’s membership. Since all local objective functions are Ls-smooth, the global objective F
is Ls-smooth as well. Thus, according to Lemma 1, we have:

Et+1|t

[
F
(
wt+1) ]− F (wt) ≤ Et+1|t

〈
∇F (wt),wt+1 −wt〉︸ ︷︷ ︸

Q1

+
Ls

2
Et+1|t

∥∥wt+1 −wt
∥∥2
2︸ ︷︷ ︸

Q2

(10)

where Et+1|t means the expected value at round (t + 1), condition on all information at round t, including the model wt and the
participants Kt−1. The expectation is over the randomness of client selection (Kt) and batch selection at the client’s (ξi ∼ Di from § 2.1).

We first provide the upper bound analysis for termQ1. Intuitively, our unbiased aggregation combines with a technical client local drift
bound adapted from previous work (Appendix D.3) to decompose this term. Remember that as Theorem 1 indicates, our weighted update
is an unbiased estimate of the true update over all clients. That is:

Et+1|t

[
wt+1 −wt

]
= Et+1|t

[
∆t
]
=

N∑
i=1

piEξi∼Di

[
∆t

i

]
, (11)

where we decomposed Et+1|t in the randomness over client sampling, and local updates. The expectation in the right-hand side is over the
local training steps of each client. Based on the form of local updates, we have that Eξi∼Di

[
wt,E

i −wt
]
= −γ

∑E−1
e=0 Eξi∼Di

[
gt,e
i

]
.

Considering the unbiased estimation assumption mentioned in Section 2.1, we have that ∀e, i : Eξi∼Di

[
gt,e
i

]
= −∇Fi(w

t,e
i )].

Therefore, the termQ1 above can be bounded as follows:

Q1 = Et+1|t
〈
∇F (wt),wt+1 −wt〉 (12)

=

〈
∇F (wt),−γ

N∑
i=1

pi ·

(
E−1∑
e=0

Eξi∼Di

[
gt,ei

])〉
(13)

= −γE ·

〈
N∑
i=1

pi∇Fi(w
t),

N∑
i=1

E−1∑
e=0

pi
E
Eξi∼Di

[
∇fi

(
wt,e

i

) ]〉
(14)

= −γE

2
·
∥∥∇F (wt)

∥∥2
2
− γE

2

∥∥∥∥∥
N∑
i=1

E−1∑
e=0

pi
E
∇Fi

(
wt,e

i

)∥∥∥∥∥
2

2

+
γE

2

∥∥∥∥∥
N∑
i=1

E−1∑
e=0

pi
E
Eξi∼Di

[
∇fi(wt)−∇fi

(
wt,e

i

) ]∥∥∥∥∥
2

2

(15)

≤ −γE

2
·
∥∥∇F (wt)

∥∥2
2
− γ

2E

∥∥∥∥∥
N∑
i=1

E−1∑
e=0

pi∇Fi

(
wt,e

i

)∥∥∥∥∥
2

2

+
γE

2
·

N∑
i=1

E−1∑
e=0

pi
E
Eξi∼Di

[ ∥∥∇fi(wt)−∇fi
(
wt,e

i

)∥∥2
2

]
(16)

≤ −γE

2
·
∥∥∇F (wt)

∥∥2
2
− γ

2E

∥∥∥∥∥
N∑
i=1

E−1∑
e=0

pi∇Fi

(
wt,e

i

)∥∥∥∥∥
2

2

+
γL2

s

2
·

N∑
i=1

E−1∑
e=0

piEξi∼Di

[ ∥∥wt −wt,e
i

∥∥2
2

]
(17)

where the last equality follows from the fact that ⟨a, b⟩ = 1
2
a2 + 1

2
b2 − 1

2
(a − b)2 and the assumption we make in § 4.1 that

Eξi∼Di

[
∇fi(w, ξi)

]
= ∇Fi(w); the first inequality follows from Jensen’s Inequality because

∑N
i=1

∑E−1
e=0

pi
E

= 1; and the next
inequality from the Ls-smoothness assumption.

Plugging Lemma 3 into the above bound forQ1, and using Lemma 4 to boundQ2, we have that:

Et+1|t
(
F
(
wt+1))− F

(
wt) (18)
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≤− γE

2
∥∇F (wt)∥22 +

3γ3E2L2
s

2
(ELc + σ2) +

Lsγ
2

2
· E

∑
i∈Ct

S2

C2
p2i +

∑
i∈Rt

(
N − S

K − C

)2

p2i

Eσ2 (19)

+
Lsγ

2

2
E2L2

c

∑
i∈St

S

C
p2i +

∑
i∈N\St

N − S

K − C
p2i

− ( γ

2E
− Lsγ

2

2

)∥∥∥∥∥
N∑
i=1

E−1∑
e=0

pi∇Fi

(
wt,e

i

)∥∥∥∥∥
2

2

(20)

D.2 Final Convergence Result

Let γ ≤ 1
ELs

. By averaging the above inequality over t from 1 to T , we have:

1

T

T∑
t=1

Et+1|t(F (wt+1)− F (wt)) (21)

≤ −γE

2T
∥∇F (wt)∥22 +

3γ3E2L2
s

2
(ELc + σ2) +

Lsγ
2Eσ2

2T

T∑
t=1

E

∑
i∈Ct

S2

C2
p2i +

∑
i∈Rt

(
N − S

K − C

)2

p2i

 (22)

+
Lsγ

2E2L2
c

2T

T∑
t=1

∑
i∈St

S

C
p2i +

∑
i∈N\St

N − S

K − C
p2i

 (23)

= −γE

2T
∥∇F (wt)∥22 +

3γ3E2L2
s

2
(ELc + σ2) +

Lsγ
2E(σ2 + EL2

c)

2T

T∑
t=1

(
N∑
i=1

S2

CN
p2i +

N∑
i=1

(N − S)2

N(K − C)
p2i

)
(24)

where the last equation follows that (i) a client in the sticky group and the non-sticky group with the probability of S
N

and N−S
N

,
respectively; (ii) a client is sampled from the sticky group and the non-sticky group with the probability of C

S
and K−C

N−S
, respectively.

Therefore, the convergence rate is

1

T

T∑
t=1

∥∇F (wt)∥22 ≤
2(F (w1)− F∗)

γET
+ 3γ2EL2

s(ELc + σ2) +
Lsγ(σ

2 + EL2
c)

N

(
S2

C
+

(N − S)2

K − C

) N∑
i=1

p2i (25)

By setting the learning rate as devised in Theorem 2, we can obtain the desired result.

D.3 Bounded Gap between two successive local updates.

Lemma 3. Suppose, for all i ∈ {1, . . . , N}, the local objective function Fi is Lc-continuous and Ls-smooth. Then, for all e ∈
{0, . . . , E − 1}, we have

E∥wt,e
i −wt∥22 ≤ 3E

(
Eγ2L2

c + γ2σ2) (26)

Proof. As we know, the recurrence formula for wt,e
i = wt,e−1

i − γgt,e−1
i . Through this relationship, we can bound for E

∥∥wt,e
i −wt

∥∥2
2
,

E∥wt,e
i −wt∥22 = E∥wt,e−1

i − γgt,e−1
i −wt∥22 (27)

(a)
= E∥wt,e−1

i −wt − γ∇Fi(w
t,e−1
i )∥22 + γ2 · E

∥∥gt,e−1
i −∇Fi(w

t,e−1
i )

∥∥2
2

(28)
(b)

≤
(
1 +

1

E − 1

)
· E∥wt,e−1

i −wt∥22 + Eγ2 · E∥∇Fi(w
t,e−1
i )∥22 + γ2 · E

∥∥gt,e−1
i −∇Fi(w

t,e−1
i )

∥∥2
2

(29)

(c)

≤
(
1 +

1

E − 1

)
· E∥wt,e−1

i −wt∥22 + Eγ2L2
c + γ2σ2 (30)

≤
e−1∑
φ=0

(
1 +

1

E − 1

)φ

· (Eγ2L2
c + γ2σ2) (31)

≤ 3E
(
Eγ2L2

c + γ2σ2) (32)

In the above proof, equation (a) separates the mean and the variance, the first inequality (b) uses (a+ b)2 ≤ (1 + α)a2 + (1+ 1
α
)b2, and

the inequality (c) follows Assumptions 1 and 2.
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D.4 Bounded gap between two successive global models

Inspired by the proof of Theorem 2 in (Yang et al., 2021), we derive the following lemma to bound Q2 accounting for GlueFL reweighted
aggregation in Algorithm 2:

Lemma 4. Suppose Assumption 1 and 2 hold. With Algorithm 2 by setting the weights νt
i,s = S

C
pi and νt

i,r = N−S
K−C

pi mentioned in
Section 3.1, let αi = pi

∑E−1
e=0 ∇Fi(w

t,e
i ), the bound for two successive models should be

Et+1|t
∥∥wt+1 −wt

∥∥2
2
≤γ2Eσ2Et+1|t

∑
i∈Ct

(
S

C
pi

)2

+
∑
i∈Rt

(
N − S

K − C
pi

)2


+ γ2Et+1|t

 S

C

∑
i∈St

p2iE
2L2

c +
N − S

K − C

∑
i∈N\St

p2iE
2L2

c +

∥∥∥∥∥
N∑
i=1

αi

∥∥∥∥∥
2

2

 (33)

Proof. As we know, the relationship between two successive models is

Et+1|t
∥∥wt+1 −wt

∥∥2
2

(34)

= γ2 · Et+1|t

∥∥∥∥∥∥
∑
i∈Ct

νt
i,s

E−1∑
e=0

gt,ei +
∑
i∈Rt

νt
i,r

E−1∑
e=0

gt,ei

∥∥∥∥∥∥
2

2

(35)

≤ γ2Et+1|t

∑
i∈Ct

(νt
i,s)

2 +
∑
i∈Rt

(νt
i,r)

2

 · Eσ2 + γ2Et+1|t

∥∥∥∥∥∥
∑
i∈Ct

νt
i,s

E−1∑
e=0

∇Fi(w
t,e
i ) +

∑
i∈Rt

νt
i,r

E−1∑
e=0

∇Fi(w
t,e
i )

∥∥∥∥∥∥
2

2

(36)

where the inequality is based on Lemma 2. Next, we ignore the coefficient and find the bound for the second term of Equation (36) by
plain expanding the term as proposed in (Yang et al., 2021): Let αi = pi

∑E−1
e=0 ∇Fi(w

t,e
i ), and since νt

i,s = S
C
pi and νt

i,r = N−S
K−C

pi,
we have

Et+1|t

∥∥∥∥∥∥
∑
i∈Ct

νt
i,s

E−1∑
e=0

∇Fi(w
t,e
i ) +

∑
i∈Rt

νt
i,r

E−1∑
e=0

∇Fi(w
t,e
i )

∥∥∥∥∥∥
2

2

= Et+1|t

∥∥∥∥∥∥
∑
i∈Ct

S

C
αi +

∑
i∈Rt

N − S

K − C
αi

∥∥∥∥∥∥
2

2

(37)

= Et+1|t


∑
i∈Ct

∥∥∥∥ SC αi

∥∥∥∥2
2︸ ︷︷ ︸

C terms

+
∑
i∈Rt

∥∥∥∥N − S

K − C
αi

∥∥∥∥2
2︸ ︷︷ ︸

(K − C) terms

+
∑

i ̸=j,i,j∈Ct

(
S

C

)2

⟨αi, αj⟩︸ ︷︷ ︸
C(C − 1) terms

+
∑

i̸=j,i,j∈Rt

(
N − S

K − C

)2

⟨αi, αj⟩︸ ︷︷ ︸
(K − C)(K − C − 1) terms

+2
∑

i∈Ct,j∈Rt

(
S

C

)(
N − S

K − C

)
⟨αi, αj⟩︸ ︷︷ ︸

C(K − C) terms

 (38)

Before analyzing the bound of Equation (38), we provide the constant results for the following expectations:

E ∥αi∥22 =
1

S

∑
s∈St

∥αs∥22 , for i ∈ St (39)

E ∥αi∥22 =
1

N − S

∑
r∈N\St

∥αr∥22 , for i ∈ N \ St (40)

E ⟨αi, αj⟩ =
1

S2

∑
s1,s2∈St

⟨αs1 , αs2⟩ , for i, j ∈ St (41)

E ⟨αi, αj⟩ =
1

(N − S)2

∑
r1,r2∈N\St

⟨αr1 , αr2⟩ , for i, j ∈ N \ St (42)

E ⟨αi, αj⟩ =
1

S(N − S)

∑
s∈St,r∈N\St

⟨αs, αr⟩ , for i ∈ St, j ∈ N \ St (43)
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Therefore, the bound of Equation (38) is analyzed as follows:

Et+1|t

∥∥∥∥∥∥
∑
i∈Ct

S

C
αi +

∑
i∈Rt

N − S

K − C
αi

∥∥∥∥∥∥
2

2

(44)
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where the first equation is due to the independent client sampling with replacement in both groups, and the last inequality follows
Assumption 2. Therefore, with the result from Equation (48), we can obtain the desired result based on Equation (36).

E ABLATION STUDY

We described two optimization techniques in §3.3: shared mask regeneration and error-compensation. The first technique regenerates the
shared mask M t every I rounds and the second technique adds a re-scaled compensation vector hφ(t)

i to local updates ∆t
i . In this section,

we conduct ablation studies to evaluate the effect of these techniques.

We run GlueFL on FEMNIST with ShuffleNet and Google Speech with ResNet-34. In each round, the server samples 30 clients out of
2,800 clients (for FEMNIST) and 30 clients out of 2,066 clients (for Google Speech). For each experiment, we run 1,000 rounds and
measure the downstream bandwidth and test accuracy. While GlueFL consists of both sticky sampling and mask shifting, we only change
the corresponding part in mask shifting and keep other training settings the same as §5.1.
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Figure 10. Effect of shared mask regeneration ((a) and (b)); and, error-compensation ((c) and (d)).

E.1 Shared Mask Regeneration

As described in §3.3, we set qshr = 0 and regenerate the shared mask as M t ← topqshr (∆̃
t
uni) every I rounds. A larger I value indicates

that M t will be regenerated less frequently. We do not regenerate M t when I =∞.

In Figures 10a and 10b, we plot results for three I values: 10, 20,∞. Both figures show that setting I = 10 achieves the best overall
performance, saving around 22% downstream bandwidth at the target accuracy for Google Speech. The impact of I on FEMNIST training
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in Figure 10a is less pronounced but the I = 10 setting still has the best accuracy. Thus, in practice, we need to set an appropriate I value
(e.g., 10) to avoid a drop in accuracy.

E.2 Error-Compensation

In §3.3 we noted that error compensation can be used to accelerate convergence when applying compression methods in FL training.
GlueFL re-scales the compensation vector hφ(t)

i , following Equation (7), to make it compatible with sticky sampling. In this section,
we report on experiments for three error compensation settings: no compensation (None), compensation without re-scaling (EC),
compensation with re-scaling (REC). The convergence results are shown in Figures 10c and 10d. Both figures show that removing
re-scaling from error compensation immediately breaks GlueFL and harms the convergence performance. This demonstrates that it is
necessary to apply re-scaling with error compensation.

F AVAILABILITY AND STRAGGLERS

In §5.1 we discussed a default value of 1.3 for over-commitment. This means that GlueFL will sample 0.3×K additional clients to
mitigate stragglers and clients that might become unavailable (e.g., go offline). In this section, we explore different values and strategies
in over-commitment for GlueFL.

In GlueFL’s default setting, the over-commitment applies to both sticky group S and non-sticky groupN \ S. The server will sample
0.3×K × (C/K) and 0.3×K × (1− (C/K)) additional clients from S andN \ S , respectively. However, as GlueFL only includes
the fastest K − C clients in all sampled non-sticky clients to S in each round, clients in S are less likely to become stragglers. It follows
that we can improve the over-commitment strategy by sampling fewer additional clients in S while sampling more additional clients from
N \ S.

Table 3. Downstream transmission Volume (DV, in ×102 GB), Download Time (DT, in hours), Total transmission Volume (TV) and
Total training Time (TT) for training ShuffleNet on FEMNIST with different over-commitment (OC) settings.

(a) Results of different over-commitment strategies with a con-
stant over-commit value (1.3)

OC Strategy (S : N \ S) DV TV DT TT
10% 1 : 8 2.1 3.1 0.6 2.7
30% 3 : 6 2.2 3.0 0.9 3.1
50% 5 : 4 2.1 2.9 1.3 3.8

C/K (Default) 7 : 2 2.2 3.1 2.2 5.3

(b) Results for different over-commitment
values with a constant strategy (row 1 in Ta-
ble 3a)

OC Value DV TV DT TT
1.0 1.5 2.3 32.0 67.8
1.1 2.2 3.1 3.5 10.7
1.2 2.2 3.0 1.0 3.9
1.3 2.1 3.1 0.6 2.7
1.4 2.9 3.7 0.5 2.6
1.5 3.1 4.0 0.5 2.4

F.1 Over-Commitment Strategies

Table 3a presents the results from using four over-commitment strategies for training ShuffleNet on FEMNIST. Similar to previous tasks:
we select 30 clients out of 2,800 clients in each round and we choose another 9 (i.e., 0.3× 30) clients for over-commitment. We report
transmission volume and training time when the model reaches the target test accuracy of 73.3%. In the table, the OC strategy row of 10%
means that 1 (i.e., 0.3× 30× 10%), and 8 (i.e., 0.3× 30× (1− 10%)) additional clients are sampled from S andN \ S, respectively.
The results show that by choosing fewer additional clients from the sticky group, GlueFL consumes less training time without increasing
the downstream bandwidth volume.

F.2 Over-Commitment Values

We use the best setting of 10% (from Table 3a) to evaluate different OC values. Table 3b shows the results for OC values of 1.0 to 1.5.
With increasing OC values, we find that training time decreases faster than downstream volume increases. As an example, when OC value
is changed from 1.0 to 1.3, training time is decreased by 96% and downstream volume increases by 40%. However, increasing the OC
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value from 1.3 to 1.5 only reduces 11% training time while consuming 47% more downstream volume. In practice, one should set the OC
value carefully to balance the trade-off between bandwidth and training time.


