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ABSTRACT
The goal of Extreme Multi-label Classification (XC) is to learn representations that enable mapping input texts to
the most relevant subset of labels selected from an extremely large label set, potentially in hundreds of millions.
Given the extreme scale, conventional wisdom believes it is infeasible to train an XC model in an end-to-end
manner. Thus, for training efficiency, several modular and sampling-based approaches to XC training have been
proposed in the literature. In this paper, we identify challenges in the end-to-end training of XC models and devise
novel optimizations that improve training speed over an order of magnitude, making end-to-end XC model training
practical. Furthermore, we show that our end-to-end trained model, Renée delivers state-of-the-art accuracy in a
wide variety of XC benchmark datasets. Code for Renée is available at https://github.com/microsoft/renee.

1 INTRODUCTION

Extreme Multi-label Classification (XC) deals with the prob-
lem of mapping input data points to one or more labels,
where the labels come from an extremely large set, poten-
tially in the hundreds of millions. This problem arises in
many practical settings; for example, a search engine needs
to identify relevant ads to display corresponding to a user
query, or an e-commerce website needs to display relevant
products when a user searches for an item.

Given the importance of this problem, it has been studied
extensively in the literature. Early approaches used sparse
linear models (Babbar & Schölkopf, 2017; Prabhu et al.,
2018) while recent approaches deliver superior performance
using deep learning models (Liu et al., 2017; You et al.,
2019; Chang et al., 2020; Zhang et al., 2021a; Dahiya et al.,
2022). However, it is widely acknowledged that end-to-end
training of deep learning models is simply infeasible at XC
scale (Chang et al., 2020; Zhang et al., 2021a; Dahiya et al.,
2022). By end-to-end training, we refer to training that uses
all available training data and updates all model parameters
based on a task-specific loss function.

For scalability, prior work decomposes the end-to-end prob-
lem into modular sub-problems with surrogate loss func-
tions (Chang et al., 2020; Dahiya et al., 2021a;b) but at the
cost of potential accuracy gains. Further, several negative
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mining techniques have been developed (Xiong et al., 2021;
Dahiya et al., 2022) to improve training performance. These
techniques select, for each data point, a subset of labels
called ”hard negatives”, i.e., negative labels that are likely
to be confused with positive labels. Then, each data point is
trained using only the selected small subset of positive and
hard negative labels. Using fewer labels improves training
speed but hurts accuracy if incorrect negatives are chosen.

Deep learning-based XC models comprise an encoder (e.g.,
a transformer like BERT (Kenton & Toutanova, 2019)) and
a classifier that maps the encoder embeddings to output
classes. Chang et al. (2020) show that end-to-end training
of a deep-learning-based XC model with 1 Million classes
runs out of GPU memory. If the encoder embedding size
is 1024 and there are 1 Million output classes, the classifier
alone will have 1 Billion parameters and require 16 GB of
memory (Rajbhandari et al., 2020). One could use a model-
parallel architecture to distribute the model over multiple
GPUs, but we do not see such a baseline utilized in the
literature, presumably, due to its exorbitant training costs.

In this paper, we take an in-depth look at the cost of end-to-
end training of XC models. We identify key memory and
compute costs of the classifier and several optimizations
for reducing these costs. First, we use a novel loss shortcut
technique to optimize memory usage: instead of the usual
approach of computing the loss during the forward pass
and using automatic differentiation for the backward pass,
which requires maintaining a large amount of intermediate
state, we short circuit the computation by skipping the loss
altogether, thereby, saving a large amount of memory and
compute. Second, we adopt a hybrid data and model-parallel
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architecture, where encoders are trained in a data-parallel
fashion, and the large classifier is trained in a model-parallel
manner. Finally, we employ several optimizations such as a
split backward pass for overlapping compute with commu-
nication, a bottleneck layer between encoder and classifier,
and kernel fusion to improve performance further. We call
our extReme ENd-to-End trainEd model, Renée.

We evaluate Renée on publicly available XC datasets (Bhatia
et al., 2016) that have up to 3 million classes and a propri-
etary dataset that has 120 million classes. Apriori, it is
unclear whether end-to-end training at XC scale can achieve
high accuracy or if it will even converge.

On datasets without label features (e.g., opaque product id
label), we show that Renée achieves significant gains over
prior state-of-the-art results. For example, on Amazon-670K,
Renée achieves Precision@1 of 54.23, 5% higher than
49.11 achieved by previous state-of-the-art XR-Transformer
model (Zhang et al., 2021a). On datasets that have label
features (i.e., label is also a text), we show that Renée can
achieve state-of-the-art results when we either augment the
input training data with additional label text-based data
points or start with an encoder initialized via pre-training
on the dataset.

Finally, we show that end-to-end training at an extreme
scale is also practical. For smaller datasets with up to a few
million classes, we find that Renée trains 3 − 14× faster
than a standard hybrid data-model parallel implementation
and has comparable or lower total training time than prior
approaches. We also show that an 8 billion parameter Renée
model with 120 million classes can be trained on a single
DGX-2 node with 16 V100 GPUs and is 15× faster than
the standard implementation.

In summary, we show that end-to-end training of extreme
classification models is not only practical but that it can pro-
vide meaningful accuracy gains over prior approaches that
viewed end-to-end training as simply infeasible. We believe
an end-to-end trained model like Renée can serve as a strong
baseline for further research in this important area. Code
for Renée is available at https://github.com/microsoft/renee.

2 RELATED WORK

Extreme Classification. Early works in XC primarily
focused on training accurate and scalable classifiers for
fixed features such as bag-of-words (Babbar & Schölkopf,
2017; Prabhu et al., 2018; Khandagale et al., 2020) or pre-
trained features such as FastText (Joulin et al., 2016) or
CDSSM (Jain et al., 2019; Huang et al., 2013).

Recent works offer much better accuracy by utilizing deep
learning, learning task-dependent features and classifiers.
This class of algorithms use a range of diverse feature extrac-

tion architectures, including bag-of-embeddings (Medini
et al., 2019; Dahiya et al., 2021b;a), CNN (Liu et al., 2017),
attention (You et al., 2019), and transformer-based architec-
tures (Jiang et al., 2021; Chang et al., 2020; Zhang et al.,
2021a; Dahiya et al., 2022). Transformer-based architec-
tures are the current state-of-the-art models in XC.

Modular training and Negative Mining. The conven-
tional wisdom in the XC community is that training with
all labels becomes infeasible when the number of labels is
large (Chang et al., 2020; Dahiya et al., 2021a;b). There-
fore, there has been much focus on selecting a small set of
irrelevant labels, or ”negatives”, per training point for scal-
ing XC algorithms. Broadly, negative-mining techniques
can be classified into three categories: random (Guo et al.,
2019; Chen et al., 2020b), feature-aware (Lee et al., 2018;
Hofstätter et al., 2021) and task-aware (Qu et al., 2020;
Dahiya et al., 2021a; 2022), each class with its trade-offs in
computational cost and quality of negatives.

Moreover, existing literature approaches the XC task in a
modular fashion, generally training the feature extraction
module on surrogate tasks in the earlier modules and then
freezing it in later modules to generate negatives efficiently
(Dahiya et al., 2021b; Yu et al., 2022). This, again, is done
to enable scaling to the case where labels are in millions;
however, it is well known that end-to-end pipelines often
beat their modular counterparts (Mirowski et al., 2016).

One-vs-all methods (OvA). OvA methods such as
ProXML (Babbar & Schölkopf, 2019) and DiSMEC (Bab-
bar & Schölkopf, 2017) treat each label as a binary clas-
sification problem and classification tasks independent of
each other. This class of models had mainly been ignored
due to expensive computational costs. As a result, targeted
optimizations have been made to improve OvA scalability
(Yen et al., 2017; Prabhu et al., 2018; Chen et al., 2020a;
Zhang et al., 2021a). However, the current state-of-the-art
XC methods (Dahiya et al., 2022) based on negative mining
are more accurate across many tasks.

Systems approaches. Several techniques (Chen et al., 2018;
Li et al., 2020; Zheng et al., 2020; 2022) have helped im-
prove the performance of deep learning training jobs. How-
ever, the skip loss optimization used in Renée is only possi-
ble by giving up the final loss calculation, a trade-off that
cannot automatically be identified by these techniques that
preserve fidelity. We evaluated various compilers to em-
pirically validate this. Alpa (Zheng et al., 2022) is able to
identify a parallelization plan on a simplified version of an
end-to-end XC model but is unable to perform the skip loss
optimization. Apache TVM Unity (Chen et al., 2018) uses
graph optimization which again cannot do the skip loss op-
timization without explicitly removing the loss computation
from the graph. Finally, TASO (Jia et al., 2019a) is targeted
only towards model inference.
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Figure 1. Renée model with 1 Billion classes

Several systems have focused on optimizing the perfor-
mance of large models by distributing them efficiently
across multiple GPUs (Shazeer et al., 2018; Huang et al.,
2019; Rajbhandari et al., 2020; Rasley et al., 2020). Tech-
niques for automating this distribution have also been pro-
posed (Jia et al., 2019b; Athlur et al., 2022).

While Renée could benefit from such systems when used
with a very large encoder, for the encoder sizes evaluated
in this paper, a simple hybrid data-model parallel archi-
tecture (Krizhevsky, 2014) is most efficient. Finally, the
compute-communication overlap optimization of Renée
could be incorporated in some of these systems.

Offloading-based approaches(e.g., (Ren et al., 2021)) have
helped alleviate the memory bottleneck issues associated
with large model training by leveraging compute and mem-
ory resources on the host CPU to execute the optimizer.
Such approaches may enable training on a larger scale but
lead to large overheads due to CPU-GPU memory migra-
tion. Along with the skip-loss optimization, which gives
performance gains orthogonal to that of offloading-based
approaches, Renée also uses a split-optimizer strategy to
reduce the parameter memory by up to 50%.

3 Renée BOTTLENECK ANALYSIS

Figure 1 illustrates end-to-end training of a Renée model for
a potential search-based retrieval application. The input is a
user search query, and the model maps it into one or more
labels out of an extremely large set of one billion labels
(e.g., advertiser keywords in case of sponsored search). To
accomplish this mapping, the model consists of an encoder
and a classifier. The training dataset consists of user queries
and a few positive labels for each query, with the rest of
the labels considered negative. The encoder computes an
embedding for the user query and the classifier uses the
embedding and the labels to compute the cross-entropy
loss for each of the billion labels. Encoder and classifier
gradients are then calculated by backpropagation, thereby
achieving end-to-end model training.

Typical encoders used in the recent literature are all BERT-
based models such as 6-layer distilBERT (Sanh et al., 2019),
12-layer BERT-base (Kenton & Toutanova, 2019), 24-layer
RoBERTa-large (Liu et al., 2019), etc. These models pro-

duce an embedding vector of size 768 or 1024 (large). If the
XC application has a billion labels, a fully-connected classi-
fier will have a trillion parameters, which is cost-prohibitive
to train. We now take a closer look at the compute and
memory costs involved in training such a model, which will
motivate our design choices in the next section.

3.1 Compute

The Renée model consists of an encoder and a classifier.
The typical encoder used today is a BERT-based model.
The compute requirements for training a BERT-large model
(330 Million parameters) with a sequence length of 512 is 1
TFlop/example, accounting for all the matrix multiplication
operations that comprise the bulk of the cost of training
such a model. Now consider the classifier. In the forward
pass, assuming a batch size of B, a matrix of B×1024 is
multiplied with a matrix of 1024×109, which results in
approximately 2B×1012 operations or 2 TFlops/example.
Accounting for another two similar-cost matrix multipli-
cations in the backward pass, the classifier-compute cost
becomes 6 TFlops/example. The classifier compute require-
ment is significant but not so outrageous even at the scale
of 1 Billion classes, especially when compared to training
large encoders. Thus, training an XC model in an end-to-end
manner is not infeasible from a compute point of view.

3.2 Memory

BERT-large encoders with 330 Million parameters can
be fine-tuned on a single GPU with as little as 16GB
memory. Let us now look at the memory requirements
of the classifier. The number of classifier parameters is
embed size×num classes. For an embedding size of
1024 and 1 billion classes, the classifier has 1 Trillion pa-
rameters. This implies that just the model parameters (in-
cluding gradients and optimizer state for ADAM, which
holds first and second moments in fp32 precision) will oc-
cupy 16 ∗ num parameters (Rasley et al., 2020) bytes =
16 TB of memory, or 1000x the memory requirements of
the encoder!

Now consider the memory requirements for intermediate
states, such as activation buffers. Figure 2 depicts a sim-
plified version of the various steps involved in computing



Renée: End-to-end training of Extreme Classification Models

Figure 2. Renée classifier. Y = 1 (0) for positive (negative) labels.

the cross-entropy loss from the logits that are output from
the matrix multiplication. For each input we must store
four vectors of size num classes in full 32-bit precision:
i) the logits, ii) the probability matrix, P , iii) the full tar-
get label matrix, Y , and iv) the gradients of logits with
respect to the final loss. Therefore, the classifier requires
16∗num classes bytes = 16 GB per input example for com-
puting the loss and the gradients of the loss in the backward
pass. For typical mini-batch sizes of 1K, the intermediate
state for the classifier will match the parameter memory
requirements of 16 TB!

Thus, the infeasibility of end-to-end training comes predom-
inantly from the memory requirements for the classifier, and
it is clear why (Chang et al., 2020) reported that end-to-end
training went out-of-memory at a batch size of one even for
XC models with 1 million classes.

4 DESIGN

This section discusses various design choices that optimize
the memory needed for the classifier and, as a side-effect,
also optimizes the classifier’s compute requirements. Note
that this paper will not focus on optimizing the encoder as
i) the encoder’s requirements are not as challenging as the
classifier’s and ii) encoder architecture is an active area of
research and a suite of encoders of varying compute and
memory requirements such as TinyBERT (Jiao et al., 2020),
DistilBERT (Sanh et al., 2019), etc. are available.

4.1 Optimizing Intermediate Memory

As we saw in Section 3, the intermediate memory required
in the loss computation can be massive, as much as 16GB
per example. We now look at various ways of reducing
this cost. In this paper, we will discuss the optimization
details using the specific example of binary cross entropy
loss (which we use in our evaluation), but the techniques
described are broadly applicable and would result in similar
savings for other loss functions, such as Softmax as well.

The outputs of the linear layer of the classifier are known as
logits. As shown in Figure 2, these logits are first converted
into probabilities for each class by applying the sigmoid
function on the logits. Using the probabilities, P , and the
actual class labels, Y , where Y=1 is a positive label and 0 is

Algorithm 1 Sparse BCE loss computation
1: //x is output logits of shape (batch size, num classes)
2: //pos 1,pos 2 are indices where target is positive
3: loss = x.clamp(min=0.0).sum()
4: loss -= x[pos 1,pos 2].sum()
5: loss += (1+(-torch.abs(x)).exp()).log().sum()

negative, the cross-entropy loss is given by

BCE = −Y log(P )− (1− Y )log(1− P ) (1)

However, computing the loss as described above can lead to
numerical stability issues. This is because as the network
drives P (or 1 − P ) close to 0, log(P) tends to −∞, and
gradients tend to ∞, leading to overflows and NaNs.

Thus, the cross-entropy loss is typically computed in an
equivalent but stable way by combining the sigmoid compu-
tation of probabilities and equation 1.

This loss function is called BCEWithLogitsLoss (PyTorch)
or sigmoid cross entropy with logits (TensorFlow). It
takes the output logits and the full target label matrix of
dimensions (batch size, num classes). However, this is
inefficient in XC applications since num classes is large
while most of the elements in the label matrix are zeros.
Thus, our first optimization is to convert the standard BCE
loss computation to use sparse target labels. If the output
logits are x, a numerically stable BCEWithLogitsLoss is
computed as:

BCE = −Y log(
1

1 + e−x
)− (1− Y )log(

e−x

1 + e−x
)

= Y log(1 + e−x) + (1− Y )(x+ log(1 + e−x))

= x− xY + log(1 + e−x)

= max(x, 0)− xY + log(1 + e−|x|) (2)

Sparse loss computation. Equation 2 is numerically stable
because the term 1 + e−|x| is bounded in range 1 to 2,
making the log stable. This equation can be converted to a
sparse computation as shown in Algorithm 1 with the three
lines computing the three terms of the equation. Instead of
passing the full label matrix, we pass in the index vectors
where the label matrix elements are positive and compute
xY in equation 2 by indexing into only those locations of x
where label elements are positive and taking their sum.

While the above optimization saves the memory needed
for the full label matrix, it still has many other intermediate
states needed for the gradient computation. Can we optimize
the memory usage further? The derivative of the sigmoid
and loss functions are shown in the bottom row in Figure 2.
If we fuse the derivatives of all of the terms in the bottom,
the input gradient to the linear layer is given by
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Figure 3. Optimized classifier with fused linear and cross entropy
loss backward layer and optional sparse loss computation.

grad = P (1− P ) ∗ (−Y/P + (1− Y )/(1− P )) ∗ 1
= −(1− P )Y + P (1− Y )

= P − Y

= 1/(1 + e−x)− Y (3)

Skipping loss computation. Instead of computing the loss
and employing automatic differentiation in the backward
pass as is typically done, we can skip loss computation en-
tirely and go directly from the output logits x of the linear
layer to the input gradient as shown in Figure 3, avoiding all
the intermediate computations of Figure 2! In fact, we can
fuse the input gradient computation shown in equation 3 into
the matrix multiplication kernel of the linear layer. Since the
output logits matrix with shape (batch size, num classes)
is large, reading and writing the matrix for computing equa-
tion 3 as a separate kernel will be memory bound and ex-
pensive. By fusing it along with the matrix computation in
a single kernel, we read in the matrix output from fast local
registers, compute the gradient and write out the gradients
into memory. Also note that we don’t need the full label
matrix Y in equation 3 – since most of the values are ze-
ros, we can perform a sparse computation by subtracting 1
from only those gradient indices where the labels are pos-
itive. Therefore, while skipping the loss computation, we
must only store the logits and the logit gradients. We avoid
another copy to store logit gradients by kernel fusion, con-
sequently needing only one vector of size num classes per
input. Thus, skipping loss computation eliminates the need
to store 3 out of 4 large matrices, leading to a 4× memory
reduction. Finally, equation 3 is numerically stable in 16-
bit precision (unlike the loss computation, which requires
32 bits) and requires only 2 bytes for each of the output
terms. Thus, by skipping loss computation, we require only
2∗num classes bytes of memory per example, an 8× mem-
ory reduction compared to the standard XC implementation
(Section 3)

While computing the final loss is not essential for gradient-
descent training, some users may still want to monitor loss to
make sure the training is proceeding well. For this, one can
use the sparse loss computation on sampled mini-batches
(e.g., 1 in 100) which results in accurate loss estimates. This
will negate the fused matrix multiply optimization for those
samples (since output logits are necessary for computing
loss), but it still avoids the full cost of the automatic differ-
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Figure 4. Use of a bottleneck layer to optimize classifier parameter
memory and compute requirements.

entiation approach for most of the mini-batches.

4.2 Optimizing Parameter Memory

The second significant component of XC model memory
usage is the memory required for the classifier parameters
and the associated optimizer state. This depends on the
number of classifier parameters, given by embed size ∗
num classes. Since the number of classes is a function of
the problem domain, the only way to reduce the number of
classifier parameters is to reduce the embedding size.

Bottleneck layer. Thus, a simple way to reduce parameter
memory is to introduce a bottleneck layer between the en-
coder and the classifier. The bottleneck layer is a linear layer
that maps the encoder output from a high-dimension space
to a low one. For example, as shown in Figure 4, a linear
layer with 64K parameters can map a 1024-sized embed-
ding to a 64-sized smaller embedding. This implies that the
number of classifier parameters is now 64∗num classes or
a 16x reduction in parameter memory, which can more than
makeup for the additional 64K parameters of the bottleneck
layer for most XC applications.

However, using the bottleneck layer can reduce the model
accuracy. In our experiments, we found that a 64-sized em-
bedding can deliver accuracy within 1% of a full-sized em-
bedding. Thus, the trade-off may be worthwhile, especially
when the number of classes is in the hundreds of millions.
Note that the 16× reduction in parameter also results in a
16× reduction in compute required for the classifier.

Split optimizer. A second reason for the high cost of pa-
rameter memory is the use of Adam optimizer (Kingma &
Ba, 2015), which requires the storage of first and second
moments in full 32-bit precision. While Adam is critical for
training transformer-based encoder models like BERT, we
found that the classifier can be trained equally well using the
SGD optimizer, which does not require second moments. In
fact, in some models, we found that SGD without momen-
tum can match the accuracy of SGD with momentum. Thus,
in Renée we use the Adam optimizer to train the encoder
and SGD (with or without momentum) to train the classifier.
This further reduces the memory required for the classifier
parameters by 25% (or 50% without momentum). Thus, the
16 TB required for a 1 Billion class XC model (Section 3) is
now reduced through the use of a bottleneck layer and SGD
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optimizer to about 768 GB (or 512 GB), i.e., up to a 32×
memory reduction.

4.3 Hybrid Data-Model Parallel Training

While the optimizations described so far can reduce the
memory needed for end-to-end training by an order of mag-
nitude or more, the memory requirements may still be be-
yond the capabilities of a single GPU (e.g., 32GB V100)
when the number of classes is in the hundreds of millions. In
these cases or for speeding up training, even when a single
GPU can fit the model, it makes sense to utilize multiple
GPUs to train a Renée model.

While various data-parallel and model-parallel architectures
have been explored in the literature (Rasley et al., 2020),
a hybrid architecture (Krizhevsky, 2014; Narayanan et al.,
2019) that uses a mix of data-parallel and model-parallel
elements is the best fit for a Renée model.

Figure 5 depicts the hybrid data-model parallel architecture
for training Renée on G GPUs. The encoders are trained
in a data-parallel manner, while the classifier is split in a
model-parallel manner among the GPUs. Thus, the encoders
produce encoding of the input data in parallel. An all-gather
is then used to distribute the embedding to all GPUs, which
then train the classifier for a subset L/G of the classes. In
the backward pass, the gradients are all-reduced (or reduce-
scattered) and sent to the respective encoders.

Overlapping all-reduce with computation. While the
above architecture allows efficient parallel training of Renée
models, the all-gather/all-reduce communication is syn-
chronous and can increase multi-GPU training overhead
depending on the network connectivity. We now describe a
novel optimization that Renée uses to overlap some of this
communication with compute, thereby reducing training
overhead. The key observation behind the optimization is
that the backward pass of the linear layer in the classifier
entails the computation of two large matrix multiplications,
one for computing the gradient that needs to be passed to the
encoder and another for computing the gradient for updat-
ing the classifier weights. Thus, in Renée we first compute
the gradient for the encoder and overlap the communication
of these gradients with the second matrix multiplication for

computing the gradient for the classifier weights.

Finally, one can also overlap the forward pass all-gather
with compute by using gradient accumulation and splitting
a mini-batch into multiple micro-batches. This can also re-
duce the memory requirements of the intermediate state for
both the encoder and classifier (by reducing the batch size).
However, GPU compute performance typically increases
with increased batch size (until it saturates). Thus, care
must be taken to have a large enough micro-batch size so
that sufficient parallelism is available for each matrix mul-
tiplication in the encoder. For typical encoder models, we
found that reducing the batch size can significantly impact
performance; hence, this optimization does not help.

Split gradient accumulation. Instead, Renée uses an alter-
native optimization that we term split gradient accumulation
that saves GPU memory without hurting performance: use
gradient accumulation only for training the classifier. This
optimization is especially useful when training on multiple
GPUs since the classifier gets G ∗ batch size embeddings
from all the encoders, a much larger batch size than neces-
sary from a GPU compute performance perspective. Thus,
with this optimization, each encoder produces the embed-
ding for their respective mini-batch of examples. How-
ever, then the combined embeddings of all encoders are
divided into micro-batches (a configurable parameter), and
the forward and backward passes with gradient accumula-
tion are performed for each micro-batch for the classifier.
Finally, the mini-batch backward pass is performed for the
encoders. Thus, the classifier memory requirement is re-
duced from 2 ∗ num classes ∗ G ∗ mini batch size to
2 ∗ num classes ∗micro batch size, enabling another or-
der of magnitude reduction in GPU memory usage.

4.4 Inference

While we have focused so far on training performance, infer-
ence performance is even more critical from an application
deployment perspective.

Approximate nearest neighbor search. Thus, for in-
ference, we eschew the fully-connected classifier and in-
stead rely on approximate nearest neighbors search algo-
rithms such as DiskANN (Jayaram Subramanya et al., 2019).
DiskANN performs searches in logarithmic time in the num-
ber of labels and can search over a billion vectors on a
single CPU in a few milliseconds.

We use Renée’s classifier weights (L2 normalized to the unit
norm) as vectors in the DiskANN database. When a user
query arrives, a lightweight encoder such as DistilBERT is
used to get an embedding vector. We then perform a nearest
neighbor search of this vector against the classifier weights
and return the top-k best matches. For the XC datasets
that we have evaluated, DiskANN is efficient and able to
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achieve 99+% of the exact search retrieval accuracy using
the fully-connected layer.

4.5 Complex Classifiers

This work considers the classifier to be a single fully-
connected layer like prior state-of-the-art models (Dahiya
et al., 2021a; 2022), since we find that even a single FC
layer in Renée gives state-of-the-art accuracy when trained
end-to-end. However, one may use more complex classi-
fiers like a multi-layer network and still observe Renéeś
speedups since the last layer will fan out to num classes
dimensions, and therefore, its compute and memory costs
will far outweigh the costs of the initial layers.

5 IMPLEMENTATION

Renée implementation uses the PyTorch framework (Paszke
et al., 2019) and spans about 1500 lines of Python. As de-
scribed in Section 4, a key optimization in Renée is skipping
the loss computation and explicitly computing the input gra-
dients for the classifier. This is implemented using a custom
fused kernel based on NVIDIA’s CUTLASS (NVIDIA, b)
library such that the output of the forward pass matrix mul-
tiplication is the input gradient for the backward pass and
consists of about a few hundred lines of C++.

CUTLASS consists of various CUDA C++ template abstrac-
tions for implementing high-performance matrix multipli-
cation (GEMM), enabling this fused kernel implementa-
tion. Specifically, we leverage CUTLASS’s epilogue model,
where an epilogue function can be added to the output val-
ues of any GEMM kernel, thereby avoiding unnecessary
reads/writes to GPU memory. Thus, we add a sigmoid
epilogue function to the volta tensorop gemm kernel
to create a fused sigmoid GEMM kernel. We then bind a
python function to this kernel using pybind so that Python
code in PyTorch can use this optimized kernel.

Once the classifier input gradients are available, we imple-
ment a custom backward pass for the classifier in PyTorch.
This consists of a matrix multiplication for computing the
input gradients to the encoder followed by an asynchronous
all-reduce operation1 to collect the respective gradients from
all the classifiers to all the encoders. In parallel with this
all-reduce operation, we schedule the second matrix mul-
tiplication of the classifier backward-pass to compute the
gradients for the classifier weights, thereby, overlapping
compute with communication.

Once the encoder input gradients are available, we switch
to PyTorch’s automatic differentiation to perform the re-
mainder of the backward pass and compute gradients for

1Reduce-scatter suffices but PyTorch/NCCL does not have
good support for reduce-scatter at this time.

the encoder. This is feasible since PyTorch supports calling
backward on any tensor with the appropriate input gradients
as parameters. Thus, instead of the standard loss.backward(),
we call embed.backward(input gradients), where embed is
the encoder embedding tensor.

Finally, we found that FP16 training with Renée using the
standard practice of scaling the output loss resulted in NANs.
Instead, when we apply loss scaling only to the input gra-
dients of the encoder and train the classifier without loss
scaling, i.e. split loss scaling, we were able to train Renée us-
ing FP16, thereby further improving performance by using
the tensor cores available in modern GPUs.

6 EVALUATION

We start by comparing the accuracy of Renée against prior
approaches and then evaluate performance.

6.1 Accuracy

Datasets. Multiple benchmark short-text and long-text
datasets with and without label features are considered
in this paper. These datasets cover a variety of ap-
plications, including product-to-product recommendation
(AmazonTitles-670K, Amazon-670K, AmazonTitles-3M,
Amazon-3M, LF-Amazon-131K, LF-AmazonTitles-131K,
and LF-AmazonTitles-1.3M), predicting related Wikipedia
pages (LF-WikiSeeAlso-320K) and predicting Wikipedia
categories (Wiki-500K, LF-Wikipedia-500K). Wiki-500K
dataset can be obtained from AttentionXML’s (You et al.,
2019) official GitHub repository. All others can be down-
loaded from the Extreme Classification Repository (Bhatia
et al., 2016). Results are also reported on a proprietary
dataset with up to 120 million labels for matching user
queries to advertiser bid phrases (Q2BP-120M), created by
mining search engine click logs, where a query was treated
as a data point and clicked advertiser bid phrases became its
labels. Dataset statistics are given in the supplementary.

Baselines. For datasets without label features, state-of-the-
art transformer-based methods such as AttentionXML (You
et al., 2019), XR-Transformer (Zhang et al., 2021a), X-
Transformer (Chang et al., 2020), and LightXML (Jiang
et al., 2021) are the primary baselines for Renée. For
datasets with label features, we compare with state-of-
the-art Siamese methods such as SiameseXML (Dahiya
et al., 2021a) and NGAME (Dahiya et al., 2022), as well as
transformer-based baselines. Results for other methods are
reported in the supplementary material.

Prior work includes a combination of results from single
models and ensembles. Ensembling is a well-known tech-
nique of using multiple models to boost accuracy (Dietterich,
2000) but is orthogonal to XC. Thus, all Renée results are re-
ported based on a single model. However, for completeness,
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we report prior results based on ensembles.

Hyperparameters. Renée’s hyper-parameters are: (i) batch
size, (ii) dropout, (iii) linear layer weight decay, (iv) encoder
learning rate and (v) classifier learning rate. As mentioned
in Section 4.2, the Adam and SGD optimizers were used
for the encoder and the classifier respectively. The baseline
algorithms’ hyper-parameters were set as their authors sug-
gested wherever applicable and by fine-grained validation
otherwise. Please refer to the supplementary for Renée’s
hyper-parameter settings.

Evaluation Metrics. Algorithms were evaluated using Pre-
cision@k (P@k, k ∈ {1, 3, 5}) since this is the most widely
used metric for evaluation in the XC literature (Prabhu et al.,
2018; You et al., 2019; Zhang et al., 2021a). Results on
other metrics, such as nDCG@k (N@k) and the Propensity-
scored variants (PSP@k and PSN@k) are in the supplemen-
tary material. Definitions of all these metrics are available
at (Bhatia et al., 2016).

6.1.1 Datasets without label features

Table 1 compares Renée against baselines on five widely-
used XC datasets without label features: AmazonTitles-
670K, Amazon-670K, AmazonTitles-3M, Amazon-3M and
Wiki-500K. We see that Renée achieves P@1 of up to 5%
higher than leading transformer-based models and obtains
state-of-the-art results on all five datasets, even when com-
pared to prior work that use ensembles of up to 9 models.

6.1.2 Datasets with label features

We now evaluate datasets where label features are avail-
able in the form of label text. Five widely-used XC
benchmark datasets are considered: LF-AmazonTitles-
131K, LF-Amazon-131K, LF-AmazonTitles-1.3M, LF-
WikiSeeAlsoTitles-320K and Wikipedia-500K.

Augmentation with Label Text: In order to inform Renée
training of label features, we augment the training data with
label texts as training documents with the corresponding
label id as a positive label.

Initialization with pre-trained encoder: For the short-text
datasets (LF-AmazonTitles-131K, LF-AmazonTitles-1.3M),
we initialize the weights of Renée encoder using NGAME’s
Module 1 encoder, which is trained on the dataset with a
contrastive loss. This may be viewed as an XC-specific
pre-training step. This initialization is followed by standard
Renée end-to-end training.

Results from Table 2 show that Renée achieves P@1 of up
to 2% higher than leading Siamese methods and achieves
state-of-the-art results in 4 out of 5 datasets. An ablation of
Renée results with and without label text augmentation and
pre-trained initialization is included in the supplementary.

6.1.3 Proprietary dataset with 120M labels

Table 3 shows results on a proprietary dataset, Q2BP-120M,
with 120 million labels and 370 million training points for
matching user queries to advertiser bid phrases. Renée is
over 16% better than leading XC methods like NGAME
and SiameseXML in P@3 and P@5 metrics on Q2BP-120M.
Instead of doing Renée inference over the full label space
in linear complexity, we can perform inference using an ap-
proximate nearest neighbor search algorithm like DiskANN
in logarithmic complexity. This results in an accuracy loss
of less than 0.5% while limiting end-to-end inference la-
tency for a user query to under 20 ms on a DGX-2 machine.

6.1.4 Impact of encoder size

We do an ablation to study the effect of encoder size on
Renée accuracy, i.e., P@k metric. Renée results in Table 2
are based on Distil-RoBERTa, a 6-layer encoder. We train
Renée with varying encoder sizes on the LF-WikiSeeAlso-
320K dataset for this ablation. Encoders used include a 3
and 6 layered MiniLM (Wang et al., 2020), 6-layer Distil-
RoBERTa (Sanh et al., 2019) and 12-layer base and 24-layer
large variants of RoBERTa (Liu et al., 2019). In Table 4, we
see a trend that as we increase the encoder size, we see an im-
provement in the overall P@1 and P@5, as expected. With
a large RoBERTa encoder, Renée P@1 improves to 49.8,
over 4% higher than previous state-of-the-art, NGAME.
However, we see that the increase in accuracy is not linear
with encoder parameter size, and it starts saturating. This
shows that we do not need a powerful encoder for obtaining
the accuracy gains from Renée. A small encoder followed
by the classifiers can provide a good trade-off between per-
formance and accuracy.

6.1.5 Impact of hybrid optimizer

We do an ablation to study the effect of using the Adam
optimizer instead of SGD for classifier training on Renée
accuracy, i.e., P@k metric. We consider 2 datasets, LF-
AmazonTitles-131K and LF-WikiSeeAlso-320K for this
ablation. In Table 5, we notice that using SGD for training
the classifier is better than using Adam by 1 point. There-
fore, it seems that using the split optimizer setting to train
Renée helps with both accuracy and savings in memory and
compute.

6.2 Performance: Training Time

Tables 6 & 7 show Renée’s total training time and prior
methods for various datasets. For datasets without label
features, Renée and XR-Transformer have the lowest to-
tal training time in Wiki-500K and Amazon-3M datasets,
respectively, while AttentionXML and LightXML are an
order of magnitude slower. While SiameseXML has the
lowest training time for datasets with label features, its accu-
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Table 1. Results on Non-Label features datasets comparing Renée to baselines. To obtain results on AmazonTitles-670K/3M for LightXML
and XR-Transformer, official code of (Zhang et al., 2021b; Jiang et al., 2021) was used, other dataset results are from (Zhang et al., 2021b).
Other prior results have been taken from (Bhatia et al., 2016). “-” means the result is not available. We include ensemble numbers reported
in the literature for reference; the number denotes no. of models used for ensembles, e.g., XR-Transformer-3 uses 3 model ensemble.
Renée outperforms every method, including ensemble, using just a single model and achieves state-of-the-art results in all datasets.

Methods
AmazonTitles-670K Amazon-670K AmazonTitles-3M Amazon-3M Wiki-500K

P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5
AttentionXML 37.92 33.73 30.57 47.14 42.7 38.99 46 42.81 40.59 50.86 48.04 45.83 76.95 58.42 46.14

LightXML 41.7 37.3 34.2 47.3 42.2 38.5 –Not-Scalable– –Not-Scalable– 76.19 57.22 44.12
XR-Transformer 41.07 36.66 33.55 49.11 43.8 40 48.72 45.74 43.35 52.6 49.4 46.9 78.1 57.6 45

Renée (ours) 45.2 40.24 36.61 54.23 48.22 43.83 51.81 48.84 46.54 54.84 52.08 49.77 79.47 60.37 46.84
Ensemble Models (Shown for Completeness)

X-Transformer-9 - - - 48.07 42.96 39.12 - - - 51.2 47.81 45.07 77.09 57.51 45.28
LightXML-3 43.1 38.7 35.5 49.1 44.17 40.25 –Not-Scalable– –Not-Scalable– 77.78 58.85 45.57

XR-Transformer-3 41.94 37.44 34.19 50.11 44.56 40.64 50.5 47.41 45 54.2 50.81 48.26 79.4 59.02 46.25

Table 2. Results on Label features datasets comparing Renée to baselines. Results for NGAME and other methods have been taken
from (Bhatia et al., 2016). NGAME denotes classifier (M2 Module) performance in (Dahiya et al., 2022). We also report the results of
the NGAME ensemble model as NGAME-2 (Fusion of NGAME M1 and M2). Renée outperforms most prior methods, including
ensembles, using just a single model and achieves state-of-the-art results in 14 out of 15 columns.

Methods
LF-AmazonTitles-131K LF-Wikipedia-500K LF-AmazonTitles-1.3M LF-WikiSeeAlso-320K LF-Amazon-131K
P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

XR-Transformer 38.1 25.57 18.32 81.62 61.38 47.85 50.14 44.07 39.98 42.57 28.24 21.3 45.61 30.85 22.32

LightXML 35.6 24.15 17.45 81.59 61.78 47.64 –Not-Scalable– 34.5 22.31 16.83 41.49 28.32 20.75

SiameseXML 41.42 27.92 21.21 67.26 44.82 33.73 49.02 42.72 38.52 42.16 28.14 21.39 44.81 30.19 21.94

NGAME 44.69 29.89 21.21 84.78 65.72 50.92 54.99 48.09 43.11 45.72 29.61 22.06 46.63 30.94 22.03

Renée (ours) 46.05 30.81 22.04 84.95 66.25 51.68 56.04 49.91 45.32 47.77 31.90 23.82 48.05 32.33 23.26

Ensemble Models (Shown for Completeness)
NGAME-2 46.01 30.28 21.47 84.01 64.69 49.97 56.75 49.19 44.09 47.65 31.56 23.68 46.53 30.89 22.02

Table 3. Results on the Q2BP-120M proprietary dataset having
120M labels comparing Renée with recent XC methods. Dataset
matches user queries to advertiser bid phrases.

Methods P@1 P@3 P@5

SiameseXML 83.46 36.90 23.64
NGAME 87.82 38.39 24.35

Renée (DiskANN) 83.30 55.01 41.06
Renée (Exact Search) 83.78 55.30 41.27

racy is 5-17% worse than Renée. Compared to the previous
state-of-the-art approach, NGAME, we see that Renée is
4.2− 5.6× faster.

6.3 Performance: Optimizations

In this section, we compare the performance of Renée with
standard end-to-end training using a hybrid data-model par-
allel implementation in PyTorch to evaluate the various op-
timizations in Renée. We use the latest version of PyTorch
(2.0) with CUDA version 11.7 for this evaluation. We make
use of the compile feature for the encoder layer. For the
standard implementation, we use the standard approach of
defining the model and the loss function, which in our case

Table 4. Renée trained on LF-WikiSeeAlso-320K using different
encoders and their respective P@1 and P@5 performance.

Encoder Parameters P@1 P@5

MiniLM-L3 15M 41.5 20.9
MiniLM-L6 20M 45.0 22.6

Distil-RoBERTa 67M 47.8 23.8
RoBERTa-base 125M 48.3 24.2
RoBERTa-large 330M 49.8 24.9

is binary cross entropy with logits, performing the forward
pass and using Pytorch’s automatic differentiation for the
backward pass. For the hybrid data-parallel architecture, we
use an all-gather to send the embeddings from the encoders
to the model-parallel classifiers, and in the backward pass,
we use an all-reduce to distribute the gradients from the
classifier to the encoders. We use Renée’s split-optimizer
optimization for all experiments, including baseline, for a
fair comparison. Specifically, we use Apex’s (NVIDIA, a)
Fused SGD optimizer for the classifier and Fused Adam
optimizer for the encoder. We use 32GB V100 GPUs for
single-node experiments and a DGX-2 with 16 V100s con-
nected with NVLINK for multi-GPU experiments.
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Table 5. Renée P@1 and P@5 performance when the classifier is
trained with different optimizers.

Optimizer P@1 P@5
LF-AmazonTitles-131K

SGD 46.05 22.04
Adam 45.31 21.44
LF-WikiSeeAlso-320K
SGD 47.77 23.82

Adam 46.29 22.63

Table 6. Similar to (Zhang et al., 2021b), we compare total training
time (TT) in hours to get to state-of-the-art precision for different
XC methods on 2 Non-Label features datasets using 8 Nvidia V100
GPUs. Baseline results are from (Zhang et al., 2021b). LightXML
is not scalable for Amazon-3M.

Amazon-3M Wiki-500K

Method TT Method TT

AttentionXML 54.8 AttentionXML 37.6
X-Transformer-9 542 X-Transformer-9 557

LightXML-3 - LightXML-3 271
XR-Transformer-3 29.3 XR-Transformer-3 38

Renée 43.4 Renée 8.6

Since Renée’s optimizations are targeted at optimizing the
compute and memory costs of the classifier, the performance
gains of Renée would depend on the relative costs of the
classifier versus the encoder. Thus, we evaluate a range
of encoders from small to large to illustrate the range of
performance gains achievable. Encoders considered are
MiniLM (Wang et al., 2020) with 3 and 6 layers (15M
and 20M parameters, respectively), DistilRoBERTa (Sanh
et al., 2019) with 6 layers (67M parameters) and RoBERTa-
large (Liu et al., 2019) with 24 layers (330M parameters).

6.3.1 Single GPU performance

Table 8 depicts the end-to-end training time for one epoch
on various datasets for the baseline implementation that
uses standard PyTorch optimizations and Renée perfor-
mance with different approaches to computing loss as de-
tailed in Section 4. Consider the MiniLM-L6 encoder on
AmazonTitles-3M dataset. The baseline approach can only
fit a batch size of 128 before it runs out of memory and
achieves an epoch training time of 36:27 (minutes:seconds).
We can increase the batch size used by the baseline with
gradient accumulation, but even increasing the batch size
to 1024 and using Pytorch 2.0’s compile feature, the epoch
time reduces to only 33:43. This is because the standard
gradient accumulation does not increase the parallelism of
the encoder and merely saves on the number of parameters
updates. Using the Sparse loss computation and other op-
timizations, Renée can support a maximum batch size of

Table 7. Comparing total training time (TT) in hours on a single
Nvidia V100 GPU for various XC methods. We use 2 Label
features datasets for this comparison. Results for methods other
than Renée are taken from (Bhatia et al., 2016).

LF-WikiSeeAlso-320K LF-Amazon-131K

Method TT Method TT

XR-Transformer 119.47 XR-Transformer 38.4
AttentionXML 90.37 AttentionXML 50.17

LightXML 249 LightXML 56.03
SiameseXML 2.33 SiameseXML 1.18

NGAME 75.39 NGAME 39.99
Renée 17.8 Renée 7.15

Table 8. Performance on 1 V100 GPU with 32GB memory

Approach Batch Epoch Time
Size (mm:ss)

AmazonTitles-3M, MiniLM-L6, Seqlen 32
Baseline 128 36:27
Baseline (grad accum) 1024 34:10
Baseline (grad accum+compile) 1024 33:43
Sparse loss 512 11:10
Sparse loss(sample 1%) 512 6:43
Skip loss 1024 5:25
Skip loss (compile) 1024 4:56
Skip loss (compile+custom-cuda) 1024 4:54

Amazon-670K, Distil-RoBERTa, Seqlen 256
Baseline (grad accum+compile) 256 48:23
Skip loss 256 13:20

AmazonTitles-3M, MiniLM-L3, Seqlen 16
Baseline (grad accum+compile) 8192 17:00
Skip loss 8192 1:10

512 without gradient accumulation. The increased batch
size and optimizations reduce the epoch time to 11:10. By
using sampled sparse loss computation (sample of 1 in 100),
the epoch time is further reduced to 6:43. Finally, by skip-
ping loss computation altogether, Renée can accommodate a
maximum batch size of 1024. Along with Pytorch compile
and using the custom cuda kernel, the epoch time reduces
to 4:54 or almost 7× reduction compared to baseline.

Next, consider the case of a bigger encoder, such as Distil-
Roberta, on the Amazon-670K dataset. We also use a larger
sequence length of 256 in this experiment, which further
increases the compute requirements of the encoder. In this
case, baseline takes about 48:23 for one epoch while Renée
without loss can reduce it to 13:20 or a 3.6× reduction
compared to baseline.

Finally, we consider a smaller encoder, MiniLM, with 3 lay-
ers and use a smaller sequence length of 16. We further use
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Table 9. Performance on 1 A6000 GPU

A6000 V100
Epoch Time (mm:ss)

Speedup Speedup
Baseline Skip loss
AmazonTitles-3M, MiniLM-L6, Seqlen 32
40:00 5:22 7.44 6.88

Amazon-670K, Distil-RoBERTa, Seqlen 256
39:25 14:48 2.66 3.60

AmazonTitles-3M, MiniLM-L3, Seqlen 16
24:00 1:43 13.87 14.57

Table 10. Performance on DGX-2 (16 V100 GPUs). Encoder is
RoBERTa-Large.

Approach Batch Epoch Time
Size (mm:ss)

Amazon-3M, Seqlen 256
Baseline 32 74:23
Skip loss 48 17:11

AmazonTitles-3M, Seqlen 32
Baseline 512 10:34
Skip loss 512 1:58

a bottleneck layer of 64 to accommodate larger batch sizes.
In this case, the baseline’s epoch time is 17:00 while Renée
without loss can reduce it to 1:10 or over 14× reduction
compared to baseline.

We also compare Renée speedups on A6000, a newer version
of GPU released in 2020. As seen in Table 9, the speedups
obtained on an A6000 are comparable to the speedups ob-
served on a V100.

6.3.2 Multi GPU performance

We now consider a large encoder, RoBERTa-large, with
330M parameters. Further, it produces a 1024-dimension
embedding, which implies that the classifier parameters
would be 3 Billion for a dataset with 3M labels. Without a
bottleneck layer, such a model does not fit in a 32GB V100.
Thus, we evaluate large encoders on a multi-GPU setting,
namely, a 16 V100 DGX2 machine.

Table 10 depicts the end-to-end training time for one epoch
on two datasets for the baseline hybrid data-model parallel
PyTorch implementation and Renée with all its optimiza-
tions, including loss skipping. For all approaches, the max-
imum batch size per GPU is shown (and for the baseline,
gradient accumulation is used to match the batch size of
Renée). On the Amazon-3M dataset, baseline takes 74:23
for one epoch while Renée completes an epoch in 17:11 for
4.3× reduction. For the AmazonTitles-3M dataset, we use

Table 11. 120 Million label Dataset Performance on DGX-2

Approach Batch Epoch Time
Size (hours)

Baseline 4 214
Baseline (grad accum) 512 204
Skip loss without fusion 512 15
Skip loss with fusion 512 13.5

a smaller sequence length of 32 since the data points are
titles, which are shorter in length. This reduces the encoder
computation time compared to Amazon-3M, which used
a sequence length of 256. Thus, Renée provides a greater
benefit achieving a per epoch time of 1:58 compared to the
baseline of 10:34, resulting in a 5.3× reduction.

Finally, Table 11 depicts the end-to-end training time for
one epoch on the proprietary 120 Million label dataset. The
encoder is a small three-layer transformer similar to Mini-
LM. We employ a bottleneck layer that reduces the classifier
dimension to 64. With 120 Million classes, the Renée model
has about 8 Billion parameters. We train this model using
the baseline approach and Renée on a DGX-2 node. For
the baseline, we can only fit a maximum per-GPU batch
size of 4, resulting in 214 hours of training time per epoch
(this reduces to 204 with a batch size of 512 using 128-way
end-to-end gradient accumulation). For Renée we can fit a
per-GPU batch size of 512 (with 8-way split gradient accu-
mulation), and the training time reduces to 15 hours/epoch.
Finally, using kernel fusion while skipping loss computation
produces a further 10% reduction for this large model. Thus,
Renée can reduce training time by over 15×.

In summary, we see that Renée’s optimizations deliver sig-
nificant performance savings, ranging from 3− 15× reduc-
tion in training time depending on the compute cost of the
encoder and the number of labels in the classifier. The high-
est gains are achieved when the encoder is small and/or the
number of labels is large.

7 CONCLUSION

In this paper, contrary to conventional wisdom, we show
that end-to-end training at extreme scale is practical. Fur-
ther, we show that our end-to-end trained model, Renée,
is able to achieve state-of-the-art results on a number of
publicly available data sets. As part of future work, we
are investigating further improvements to the performance
and accuracy of end-to-end trained models using novel data
augmentation and loss functions.
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A DATASET STATISTICS

Multiple benchmark short-text and long-text datasets
with and without label features are considered in
this paper. These datasets cover a variety of ap-
plications including product-to-product recommendation
(AmazonTitles-670K, Amazon-670K, AmazonTitles-3M,
Amazon-3M, LF-Amazon-131K, LF-AmazonTitles-131K,
and LF-AmazonTitles-1.3M), predicting related Wikipedia
pages (LF-WikiSeeAlso-320K) and predicting Wikipedia
categories (Wiki-500K, LF-Wikipedia-500K). Wiki-500K
dataset can be obtained from AttentionXML’s (You et al.,
2019) official GitHub repository. All others can be down-
loaded from the Extreme Classification Repository (Bhatia
et al., 2016). Results are also reported on a proprietary
dataset with up to 120 million labels for matching user
queries to advertiser bid phrases (Q2BP-120M). These were
created by mining search engine click logs, where a query
was treated as a data point and clicked advertiser bid phrases
became its labels. Dataset statistics are given in Table 13.

B FULL RESULTS

Tables 16 and 17 present detailed results on all baseline
methods for non-LF and LF datasets respectively.

C ABLATIONS

NGAME M1 init. and label text augmentation: We
study the effect of I. NGAME (Dahiya et al., 2022) M1
initialization of the Renée encoder, and, II. Augmenting
the training data with label text. Table 12 demonstrates
that initialization with M1 always helps versus not doing
as long as label text augmentation is not used. This is
possibly due to XC specific pre-training of the M1 encoder
interacting with label text augmentation. However, when
using label text augmentation, we do not always require M1
initialization to achieve state-of-the-art results (in case of
LF-Amazon-131K, LF-Wikipedia-500K). Specifically, we
find that M1 init. is required for best results only for the
Titles datasets where the encoder has to rely on a short input
text.

D HYPER-PARAMETERS

The list below enumerates the various hyperparameters with
a brief description and the values chosen.

1. Encoder: For each dataset, we choose pre-trained
Roberta or Bert-based encoder variants from the
sentence-transformers library (Reimers & Gurevych,
2019). A larger encoder leads to a better accuracy at
the cost of increased training time. As the Encoder
ablation indicates, the accuracy gains saturate while

the training costs do not.

2. Batch Size: The number of datapoints chosen in a sin-
gle mini-batch. The value for batch-size is heuristically
chosen to reduce the convergence time and maximise
accuracy.

3. LR Encoder: The learning rate used to update the
learnable parameters of the encoder module. Gener-
ally, we try to keep it as high as possible for faster
convergence while ensuring that the loss is not diverg-
ing.

4. LR Classifier: The learning rate used to update the
learnable parameters of the linear layer. Various learn-
ing rates are tried in the range of 2e-3 and 2e-1, and
the one that leads to the maximum accuracy is chosen.

5. Weight Decay Classifier: The value of weight decay
used to regularize the parameters of the linear layer.
Various values are tried in the range of 1e-2 and 1e-3,
and the one that leads to the maximum accuracy is
chosen.

6. Weight Decay Encoder: The value of weight decay
used to regularize the parameters of the transformer-
based encoder. Similar to the Classifier Weight Decay,
various values are tried in the range of 1e-2 and 1e-3,
and the one that leads to the maximum accuracy is
chosen.

7. Dropout: The probability of randomly dropping the en-
coder outputs in order to regularise the network. High
values of dropouts are required since the architectures
being used are quite large compared to the amount of
the data available.

8. Warmup: Warmup steps is the number of training it-
erations over which both the encoder and the classifier
learning rates are linearly increased from 0 to the maxi-
mum value. Once the maximum value is achieved, it is
then linearly reduced to 0 over the remaining training
steps. This is done in order to reduce the impact of de-
viating the pre-trained model from learning on sudden
new data set exposure. Generally, the warmup phase
consists of around 5% of total training iterations.

9. Epochs: The number of training passes done over the
all the datapoints present in the dataset. A large enough
value is chosen to ensure convergence.

10. Sequence Length: The number of positional embed-
dings trained for the encoder module. All datapoint
texts longer than the sequence length are truncated.
Care is taken to ensure minimal data loss occurs due
to truncation.
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The various hyperparameter values chosen for each dataset
are listed in Tables 14 and 15 for non-LF and LF datasets
respectively. All other hyperparameters are constant across
datasets and can be found in the Renée codebase.

E ARTIFACT APPENDIX

E.1 Abstract

The artifact consists of a codebase to train Renée models
for various extreme classification (XC) datasets. The code-
base reproduces state-of-the-art numbers reported in the
main publication. We include pre-processing scripts and
training scripts for each dataset. Renée is built on top of
Hugging Face’s Transformers library and PyTorch. We hope
that Renée will be useful for researchers working on XC
classification tasks.

E.2 Artifact check-list (meta-information)
• Algorithm: We make end-to-end training feasible for Ex-

treme Classification tasks via our end-to-end model, Renée.

• Model: We use HuggingFace models, which are automati-
cally downloaded in the training scripts.

• Data set: We consider publicly available datasets which con-
sider various XC problems. They are a few GBs in size. They
can be downloaded from Extreme Classification Repository.

• Run-time environment: Conda-based virtual environment
using Python 3.8.

• Hardware: We use DGX-2 node with 16 V100 GPUs for our
experiments but any commodity GPU cluster can be used.

• Execution: Execution time depends on the dataset, model
configuration and the hardware used.

• Metrics: Precision@k

• Output: TSV files with metrics on datasets.

• Experiments: Use provided scripts in the artifact to build the
environment and run experiments. There can be a variation
of upto 0.2% from reported results.

• How much disk space required (approximately)?: The
artifact itself requires a few KBs of space. Some initialization
checkpoints are provided, of size 500MB. Experimentation
requires upto 50GB of space.

• How much time is needed to prepare workflow (approxi-
mately)?: 10 minutes

• How much time is needed to complete experiments (ap-
proximately)?: 1 week on specified hardware

• Publicly available?: Yes

• Archived (provide DOI)?: Provided here

E.3 Description

E.3.1 How delivered

The software can be obtained from Github:
https://github.com/microsoft/renee.

E.3.2 Hardware dependencies

To train Renee, we require a Linux system with at least
one GPU. For larger datasets, up to 16 GPUs with 32GB
memory each may be required to fit in the model.

E.3.3 Software dependencies

A Python 3.8 and conda-based virtual environment installed
with Pytorch and Hugging Face’s Transformers library is
required to train Renee.

E.3.4 Data sets

The datasets can be downloaded from Extreme Classifica-
tion Repository.

E.4 Installation

Instructions to set up a conda virutal environment with the
required packages is provided in the GitHub repository.

E.5 Experiment workflow

To run experiments, users must

1. Set up the virtual environment with the required pack-
ages using the install scripts. Refer to the Requirements
Section.

2. Prepare the dataset by creating tokenisations for the
transfomer-based encoder. The scripts required for
tokenisation and optional label-text augmentation are
provided in Data Preparation.

3. Run the training command corresponding to the dataset
given in the scripts folder. Refer to Training.

E.6 Evaluation and expected result

The training scripts also contain code to evaluate the model
at intermediate stages for the relevant metrics and output
the results to the log. The expected result will match the
numbers reported in Tables 1 & 2 of the manuscript. There
may be a small difference of upto 0.2% in a some metrics
due to the use of stochastic libraries.

E.7 Experiment customization

Renee can be trained for any Extreme Classification dataset.
The hyperparamters can be tuned based on the hints given
in the training script.

https://github.com/microsoft/renee
http://manikvarma.org/downloads/XC/XMLRepository.html
https://zenodo.org/badge/latestdoi/605004299
https://github.com/microsoft/renee
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://github.com/microsoft/renee#requirements
https://github.com/microsoft/renee#requirements
https://github.com/microsoft/renee#data-preparation
https://github.com/microsoft/renee#training
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Table 12. Ablation study on the effect of NGAME M1 initialization and augmenting training data with label text on Renée accuracy. “M1
init.” stands for M1 initialisation, “LT Aug.” means label text augmentation.

Dataset M1 init. LT Aug. Metrics

P@1 P@5

LF-AmazonTitles-131K

- - 38.89 18.72
Yes - 45.70 21.58
- Yes 41.77 20.02

Yes Yes 46.05 22.04

LF-Amazon-131K

- - 45.89 22.65
Yes - 47.35 23.00
- Yes 47.82 23.13

Yes Yes 48.05 23.26

LF-Wikipedia-500K

- - 83.08 49.82
Yes - 83.27 50.06
- Yes 84.95 51.68

Yes Yes 84.5 51.31

Table 13. Dataset statistics. All the public datasets can be downloaded from (Bhatia et al., 2016), except for Wiki-500K, which can be
obtained from the official implementation of (You et al., 2019). Datapoints typically have O(logL) positive labels that are relevant to
them. Other statistics of the Q2BP-120M proprietary dataset have been redacted using the ϕ symbol.

Dataset Number of Labels L Number of Train Points N Number of Test Points N ′ Avg. train points per label Avg. labels per train point

Dataset with Label Features
LF-AmazonTitles-131K 131,073 294,805 134,835 5.15 2.29

LF-Amazon-131K 131,073 294,805 134,835 5.15 2.29
LF-WikiSeeAlso-320K 312,330 693,082 177,515 4.67 2.11
LF-Wikipedia-500K 501,070 1,813,391 783,743 24.75 4.77

LF-AmazonTitles-1.3M 1,305,265 2,248,619 970,237 38.24 22.2

Dataset without Label Features
AmazonTitles-670K 670,091 485,176 150,875 5.11 5.39

Amazon-670K 670,091 490,449 153,025 3.99 5.45
AmazonTitles-3M 2,812,281 1,712,536 739,665 31.55 36.18

Amazon-3M 2,812,281 1,717,899 742,507 31.64 36.17
Wiki-500K 501,070 1,779,881 769,421 16.86 4.75

Proprietary Dataset
Q2BP-120M 120,293,341 370,080,440 92,532,582 ϕ ϕ

E.8 Notes

The Github README of the project contains further infor-
mation for training Renee for various XC datasets.
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Table 14. Hyperparameters of Renée on non-label features (non-LF) datasets to facilitate reproducibility. Other parameters not mentioned
below use the default values from the released code. LR stands for learning rate.

Dataset Encoder Batch Size LR Encoder LR Classifier Weight Decay Classifier Dropout Warmup Epochs Sequence Length

AmazonTitles-670K RoBERTa-Large 256 0.00005 0.01 0.001 0.8 10000 60 32
Amazon-670K RoBERTa-Large 256 0.00004 0.01 0.001 0.8 10000 70 512

AmazonTitles-3M RoBERTa-Large 256 0.00005 0.01 0.001 0.75 10000 60 32
Amazon-3M RoBERTa-Large 256 0.00004 0.01 0.001 0.75 10000 60 256
Wiki-500K RoBERTa-Base 2048 0.0001 0.002 0.0001 0.75 5000 100 256

Table 15. Hyperparameters of Renée on datasets having label features (LF datasets) to facilitate reproducibility. Other parameters not
mentioned below use the default values from the released code. LR stands for learning rate. We augment the training set with label text
across all LF datasets to expose Renée directly to label features during training (refer to subsection 6.1.2 of the main paper). Please refer
to suppl. for more ablations on this.

Dataset Encoder Batch Size LR Encoder LR Classifier Weight Decay Classifier Dropout Warmup Epochs Sequence Length

LF-AmazonTitles-131K Distil-BERT 512 0.00001 0.05 0.0001 0.85 5000 100 32
LF-Wikipedia-500K Distil-RoBERTa 2048 0.0001 0.002 0.001 0.7 5000 100 256

LF-AmazonTitles-1.3M Distil-BERT 1024 0.000001 0.01 0.0001 0.7 15000 100 32
LF-WikiSeeAlso-320K Distil-RoBERTa 2048 0.0002 0.2 0.0001 0.75 5000 100 128

LF-Amazon-131K Distil-BERT 512 0.00001 0.05 0.0001 0.85 5000 100 128

https://github.com/microsoft/renee
https://github.com/microsoft/renee
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Table 16. Results on other metrics, including P@k for Non-Label features(non-LF) datasets. “-” means the result on that dataset and
method pair are unavailable. Results for other methods are as reported in (Bhatia et al., 2016). We report ensemble performance for
XR-Transformer, LightXML i.e. XR-Transformer-3, LightXML-3 in the table respectively. To get results on propensity-based metrics, we
use the official code provided by (Zhang et al., 2021b; Jiang et al., 2021) to train models from scratch. * indicates the method trained by
us to get performance on these propensity-based metrics.

Methods P@1 P@3 P@5 N@1 N@3 N@5 PSP@1 PSP@3 PSP@5 PSN@1 PSN@3 PSN@5

AmazonTitles-670K

Bonsai 38.46 33.91 30.53 38.46 36.05 34.48 23.62 26.19 28.41 23.62 25.16 26.21
Parabel 38 33.54 30.1 38 35.62 33.98 23.1 25.57 27.61 23.1 24.55 25.48
Astec 40.63 36.22 33.00 40.63 38.45 37.09 28.07 30.17 32.07 28.07 29.20 29.98

AttentionXML 37.92 33.73 30.57 37.92 35.78 34.35 24.24 26.43 28.39 24.24 25.48 26.33
LightXML-3 43.1 38.7 35.5 - - - - - - - - -

XR-Transformer-3* 41.94 37.44 34.19 41.89 39.67 38.32 25.34 28.86 32.14 25.34 27.58 29.3
Renée 45.2 40.24 36.61 45.2 42.77 41.27 28.98 32.66 35.83 28.98 31.38 33.07

Amazon-670K

Bonsai 45.58 40.39 36.6 45.58 42.79 41.05 27.08 30.79 34.11 - - -
Parabel 44.89 39.8 36 44.89 42.14 40.36 25.43 29.43 32.85 25.43 28.38 30.71
Astec 47.77 42.79 39.10 47.77 45.28 43.74 32.13 35.14 37.82 32.13 33.80 35.01

AttentionXML 47.58 42.61 38.92 47.58 45.07 43.5 30.29 33.85 37.13 - - -
LightXML-3 49.1 43.83 39.85 - - - - - - - - -

XR-Transformer-3* 50.13 44.6 40.69 50.13 47.28 45.6 29.9 34.35 38.63 29.9 32.75 35.03
Renée 54.23 48.22 43.83 54.23 51.23 49.41 34.16 39.14 43.39 34.16 37.48 39.83

AmazonTitles-3M

Bonsai 46.89 44.38 42.3 46.89 45.46 44.35 13.78 16.66 18.75 13.78 15.75 17.1
Parabel 46.42 43.81 41.71 46.42 44.86 43.7 12.94 15.58 17.55 12.94 14.7 15.94
Astec 48.74 45.70 43.31 48.74 46.96 45.67 16.10 18.89 20.94 16.10 18.00 19.33

AttentionXML 46 42.81 40.59 46 43.94 42.61 12.81 15.03 16.71 12.8 14.23 15.25
LightXML-3 - - - - - - - - - - - -

XR-Transformer-3* 50.5 47.41 45 50.5 48.79 47.57 15.81 19.03 21.34 15.81 18.14 19.75
Renée 51.81 48.84 46.54 51.81 50.08 48.86 14.49 17.43 19.66 14.49 16.5 17.95

Amazon-3M

Bonsai 48.45 45.65 43.49 48.45 46.78 45.59 13.79 16.71 18.87 - - -
Parabel 47.48 44.65 42.53 47.48 45.73 44.53 12.82 15.61 17.73 12.82 14.89 16.38

AttentionXML 50.86 48.04 45.83 50.86 49.16 47.94 15.52 18.45 20.6 - - -
LightXML-3 - - - - - - - - - - - -

XR-Transformer-3* 53.67 50.29 47.74 53.67 51.74 50.42 16.54 19.94 22.39 16.54 18.99 20.71
Renée 54.84 52.08 49.77 54.84 53.31 52.13 15.74 19.06 21.54 15.74 18.02 19.64

Wiki-500K

Bonsai 68.7 49.57 38.64 - - - - - - - - -
Parabel 69.26 49.8 38.83 - - - - - - - - -

AttentionXML 76.95 58.42 46.14 - - - 30.69 38.92 44 - - -
LightXML-3 77.78 58.85 45.57 - - - - - - - - -

XR-Transformer-3 79.4 59.02 46.25 - - - 35.76 42.22 46.36 - - -
Renée 79.47 60.37 46.84 79.47 72.73 70.49 33.56 42.73 47.12 33.56 41.89 46



Renée: End-to-end training of Extreme Classification Models

Table 17. Results on other metrics, including P@k for Label features(LF) datasets. “-” means the result on that dataset and method pair
are unavailable. NGAME-2 means the fusion (ensemble between encoder and classifier) performance as reported in (Dahiya et al., 2022).
Results for other methods are as reported in (Bhatia et al., 2016).

Methods P@1 P@3 P@5 N@1 N@3 N@5 PSP@1 PSP@3 PSP@5 PSN@1 PSN@3 PSN@5

LF-AmazonTitles-131K

XR-Transformer 38.1 25.57 18.32 38.1 38.89 40.71 28.86 34.85 39.59 28.86 32.92 35.21
LightXML 35.6 24.15 17.45 35.6 36.33 38.17 25.67 31.66 36.44 25.67 29.43 31.68

DECAF 38.4 25.84 18.65 38.4 39.43 41.46 30.85 36.44 41.42 30.85 34.69 37.13
ECLARE 40.74 27.54 19.88 40.74 42.01 44.16 33.51 39.55 44.7 33.51 37.7 40.21

SiameseXML 41.42 27.92 21.21 41.42 42.65 44.95 35.8 40.96 46.19 35.8 39.36 41.95
NGAME-2 46.01 30.28 21.47 46.01 46.69 48.67 38.81 44.4 49.43 38.81 42.79 45.31

Renée 46.05 30.81 22.04 46.05 47.46 49.68 39.08 45.12 50.48 39.08 43.56 46.24

LF-Wikipedia-500K

XR-Transformer 81.62 61.38 47.85 81.62 74.46 72.43 33.58 42.97 47.81 33.58 42.21 46.61
LightXML 81.59 61.78 47.64 81.59 74.73 72.23 31.99 42 46.53 31.99 40.99 45.18
ECLARE 68.04 46.44 35.74 68.04 58.15 56.37 31.02 35.39 38.29 31.02 35.66 34.5

SiameseXML 67.26 44.82 33.73 67.26 56.64 54.29 33.95 35.46 37.07 33.95 36.58 38.93
NGAME-2 84.01 64.69 49.97 84.01 78.25 75.97 41.25 52.57 57.04 41.25 51.58 56.11

Renée 84.95 66.25 51.68 84.95 79.79 77.83 39.89 51.77 56.7 39.89 50.73 55.57

LF-AmazonTitles-1.3M

XR-Transformer 50.14 44.07 39.98 50.14 47.71 46.59 20.06 24.85 27.79 20.06 23.44 25.41
LightXML - - - - - - - - - - - -

DECAF 50.67 44.49 40.35 50.67 48.05 46.85 22.07 26.54 29.3 22.07 25.06 26.85
ECLARE 50.14 44.09 40 50.14 47.75 46.68 23.43 27.9 30.56 23.43 26.67 28.61

SiameseXML 49.02 42.72 38.52 49.02 46.38 45.15 27.12 30.43 32.52 27.12 29.41 30.9
NGAME-2 56.75 49.19 44.09 56.75 53.84 52.41 29.18 33.01 35.36 29.18 32.07 33.91

Renée 56.04 49.91 45.32 56.04 54.21 53.15 28.54 33.38 36.14 28.54 32.15 34.18

LF-WikiSeeAlso-320K

XR-Transformer 42.57 28.24 21.3 42.57 41.99 43.44 25.18 30.13 33.79 25.18 29.84 32.59
LightXML 34.5 22.31 16.83 34.5 33.21 34.24 17.85 21.26 24.16 17.85 20.81 22.8

DECAF 41.36 28.04 21.38 41.36 41.55 43.32 25.72 30.93 34.89 25.72 30.69 33.69
ECLARE 40.58 26.86 20.14 40.48 40.05 41.23 26.04 30.09 33.01 26.04 30.06 32.32

SiameseXML 42.16 28.14 21.39 42.16 41.79 43.36 29.02 32.68 36.03 29.02 32.64 35.17
NGAME-2 47.65 31.56 23.68 47.65 47.5 48.99 33.83 37.79 41.03 33.83 38.36 41.01

Renée 47.86 31.91 24.05 47.86 47.93 49.63 32.02 37.07 40.9 32.02 37.52 40.6

LF-Amazon-131K

XR-Transformer 45.61 30.85 22.32 45.61 47.1 49.65 34.93 42.83 49.24 34.93 40.67 43.91
LightXML 41.49 28.32 20.75 41.49 42.7 45.23 30.27 37.71 44.1 30.27 35.2 38.28

DECAF 42.94 28.79 21 42.94 44.25 46.84 34.52 41.14 47.33 34.52 39.35 42.48
ECLARE 43.56 29.65 21.57 43.56 45.24 47.82 34.98 42.38 48.53 34.98 40.3 43.37

SiameseXML 44.81 30.19 21.94 44.81 46.15 48.76 37.56 43.69 49.75 37.56 41.91 44.97
NGAME-2 46.53 30.89 22.02 46.53 47.44 49.58 38.53 44.95 50.45 38.53 43.07 45.81

Renée 48.05 32.33 23.26 48.05 49.56 52.04 40.11 47.39 53.67 40.11 45.37 48.52


