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ABSTRACT
We study the problem of efficient generative inference for Transformer models, in one of its most challenging
settings: large deep models, with tight latency targets and long sequence lengths. Better understanding of the
engineering tradeoffs for inference for large Transformer-based models is important as use cases of these models
are growing rapidly throughout application areas. We develop a simple analytical model for inference efficiency
to select the best multi-dimensional partitioning techniques optimized for TPU v4 slices based on the application
requirements. We combine these with a suite of low-level optimizations to achieve a new Pareto frontier on
the latency and model FLOPS utilization (MFU) tradeoffs on 500B+ parameter models that outperforms the
FasterTransformer suite of benchmarks. We further show that with appropriate partitioning, the lower memory
requirements of multiquery attention (i.e. multiple query heads share single key/value head) enables scaling up to
32× larger context lengths. Finally, we achieve a low-batch-size latency of 29ms per token during generation
(using int8 weight quantization) and a 76% MFU during large-batch-size processing of input tokens, while
supporting a long 2048-token context length on the PaLM 540B parameter model.

1 INTRODUCTION

Scaling Transformer-based models to 100B+ (Brown et al.,
2020; Kaplan et al., 2020; Rae et al., 2021; Hoffmann et al.,
2022) and later 500B+ parameters (Chowdhery et al., 2022;
Smith et al., 2022) has led to state of the art results on natu-
ral language processing benchmarks. The practical utility
of these large language models (LLMs) in a variety of appli-
cations makes them compelling for widespread use. While
the sequence parallelism of the Transformer architecture en-
ables highly parallel training, efficient deployment of these
models is challenging in practice because generative infer-
ence proceeds one token at a time and the computation for
each token sequentially depends on the previously generated
tokens. Thus, models that support efficient training at scales
of thousands of chips require careful attention to parallel
layout and memory optimizations to unlock the scalability
needed for efficient, low-latency inference. This paper fo-
cuses on a simple set of engineering principles that enable
serving large-scale Transformer-based models efficiently in
a variety of challenging production settings.

We consider the requirements of downstream applications
for LLMs. Some applications, including interactive work-
loads like chatbots, involve tight latency constraints (Thop-
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pilan et al., 2022). Others, including offline inference for
scoring or distillation, emphasize high throughput and low
cost per token at any latency.

We discuss briefly what makes generative inference of
LLMs challenging. First, large models have a large memory
footprint both due to the trained model parameters as well
as the transient state needed during decoding. The model
parameters generally do not fit in the memory of a single
accelerator chip. The attention key and value tensors of
each layer, which we refer to as the KV cache, must also
be stored in memory for the duration of decoding. Second,
tight latency targets become especially challenging for gen-
erative inference given the much lower parallelizability of
Transformer generation relative to training. The large mem-
ory footprint gives rise to a large amount of memory traffic
to load the parameters and KV cache from high-bandwidth
memory (HBM) into the compute cores for each step, and
hence a large total memory bandwidth required to meet a
given latency target. Finally, inference cost from the atten-
tion mechanism scales quadratically with input sequence
length (Sukhbaatar et al., 2019; Choromanski et al., 2020;
Dao et al., 2022).

We found two keys to optimize LLMs for inference effi-
ciency. First, we found it useful to build a powerful and
abstract partitioning framework to enable reaching the limits
of model parallel scaling given the limited parallelizability
of Transformer inference. Within this framework, we ana-
lytically solve for the best partitioning strategy for a given
model size with specific application requirements. This
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Figure 1: Cost vs. latency for PaLM models. We use a context length of 2048. Points in each line represent the Pareto
frontier of efficiency versus latency. Chip count is C, batch size is B. Left: latency per token for generating 64 tokens,
assuming the context has already been processed. Right: time to process 2048 input tokens; excludes the time to generate
any output tokens. Tables 2 and 3 show details on a few specific scenarios from the Pareto frontier where the applications
have low-latency or high-throughput requirements.

enables the user to intuitively understand the tradeoffs and
select the best multi-axis tensor partitioning strategy, batch
size and chip configuration for their application, in contrast
to a black-box exhaustive search over partitioning strate-
gies (Zheng et al., 2022; Xu et al., 2021). To fully realize
the performance in practice, we use additional fine-grained
control over cross-chip collective operations and low-level
scheduling optimizations. Second, we apply memory op-
timizations and take full advantage of PaLM’s multiquery
attention to reduce unnecessary tensor overheads and max-
imize the batch size that fits on a given number of chips,
enabling higher throughput.

The primary goal of this paper is to provide a set of en-
gineering principles for how best to partition a model in
order to scale Transformer inference. In other words, how is
the performance of different partitioning strategies affected
by changes in model size, sequence length, and number of
hardware chips? How does the optimal partitioning strategy
change when trading off between latency and throughput?
What is the intuitive and mathematical reasoning behind
these effects? As we show in later sections, the right trade-
offs and strategies change as model size, sequence length,
and application requirements for latency and throughput
targets change, so having a framework that enables easy
expression of different strategies and choices is important.

In Section 2, we describe the specific metrics and tradeoffs
we use to compare different partitioning strategies. In Sec-
tion 3.1, we provide an overview of partitioning principles
for large language models. In the remainder of Section 3, we
describe a number of specific partitioning strategies, with an
empirical validation on the PaLM family of large language
models in Section 4.

For a state-of-the-art 540B parameter dense model running

on 64 TPU v4 chips, we achieve a low-batch-size latency of
29ms per token during generation (with int8 weight quanti-
zation) and a 76% MFU during large-batch-size processing
of input tokens while supporting a large context length of
2048 tokens. Figure 1(left) shows our performance for gen-
erating text using the PaLM models. For an interactive
application such as a chatbot running on PaLM 540B with
int8 weights, our implementation on 64 TPU v4 chips can
process 64 tokens of text from a user, consult a cached con-
versation history of 1920 tokens, and generate a 64-token
response in a total of 1.9 seconds. For an offline throughput-
oriented application, our implementation can process 1984
tokens of input and generate 64 tokens of output, for huge
numbers of examples, with an overall FLOPS efficiency of
73%. Table 2 shows more details on a few specific scenarios.

2 INFERENCE COST TRADEOFFS

Scaling up model sizes can unlock new capabilities and
applications but has fundamental tradeoffs in terms of in-
ference cost. We measure the inference cost in terms of the
following metrics: latency, throughput, and model FLOPS
utilization. The latency is the total time for an inference
and can be broken down into the time to process the input
tokens present at the start of the inference (which we call
“prefill”) and the time to autoregressively generate output
tokens (which we call “decode”). The decode latency can
also be measured “per step”, i.e. divided by the number of
tokens in each sequence. The throughput of prefill or decode
is the number of tokens processed or generated per second.
The model FLOPS utilization (MFU) is the ratio of the ob-
served throughput to the theoretical maximum throughput
if the benchmarked hardware setup were operating at peak
FLOPS with no memory or communication overhead.



Efficiently Scaling Transformer Inference

Larger models do not fit on a single accelerator chip and
need to be partitioned across many accelerator chips to fit
in memory. This also enables us to divide the memory and
compute costs described below over all the chips, but comes
at the cost of introducing chip-to-chip communication.

Memory costs. We store tensors such as weights and the
KV cache in on-device high-bandwidth memory (HBM).
While there are other tensors that pass through the HBM,
their memory footprint is much smaller, so we focus on just
these two largest groups of tensors. These tensors need to be
transferred from HBM to the compute cores of the chip once
per forward pass (prefill or decode step) of the model. This
takes a certain amount of time, which we call the “memory
time.” At small batch sizes and sequence lengths, the time to
load weights dominates. At larger batch sizes and sequence
lengths (e.g. 2048+ tokens with batch size 512+), the time
to load the KV cache dominates.

Compute costs. An N -parameter decoder-only model re-
quires 2N matmul FLOPs in the forward pass per token,
because each matmul performs one multiplication and one
addition per pair of input token and parameter values in
the forward pass (Kaplan et al., 2020). If all chips were
running at peak FLOPS, these matmuls would take a certain
amount of time, which we call the “compute time.” The
matmuls in the attention mechanism typically add a much
smaller number of FLOPs per token for large models and
can often be excluded. Even though the computational cost
of attention is relatively small, it can still account for a sig-
nificant fraction of memory capacity and bandwidth costs,
since (unlike the weights) the KV cache is unique for each
sequence in the batch.

2.1 Expected tradeoffs and challenges

Both the weight loading part of the memory time and the
non-attention compute time are proportional to the model
size and inversely proportional to the number of chips. How-
ever, for a given partitioning layout, the time needed for
chip-to-chip communication decreases less quickly (or not
at all) with the number of chips used, so it becomes an
increasingly important bottleneck as the chip count grows.
We consider some scenarios where these tradeoffs become
especially challenging.

If an application requires the lowest possible latency, we
need to apply more chips and partition the model in as many
ways as we profitably can. Lower latency can often be
achieved with smaller batch sizes, but smaller batch sizes
also result in worse MFU, resulting in a higher total cost
(in terms of chip-seconds or dollars) per token. This is
especially problematic for autoregressive decoding, since
since each forward pass has a sequential dependence on the
output of the previous forward pass and we cannot batch

the compute across the tokens in a sequence as we can for
training.

If an application requires generating text with long attention
contexts, it substantially increases the inference time. For
a 500B+ model with multihead attention, the attention KV
cache grows large: for batch size 512 and context length
2048, the KV cache totals 3TB, which is 3 times the size
of the model’s parameters. This KV cache must be trans-
ferred from off-chip memory (HBM) to on-chip memory
(cache) once for every token generated, during which the
computational core of the chip is essentially idle.

If an applications requires offline inference and latency is
not a concern, the primary goal is to maximize per-chip
throughput (i.e., minimize total cost per token). It is most
efficient to increase the batch size because larger batches
typically result in better MFU, and also because certain
partitioning strategies that are not efficient for small batch
sizes become efficient as the batch size grows larger.

2.2 Inference Setup

We briefly introduce the inference setup and notation. We
consider a Transformer model with nparams parameters laid
out for inference on nchips chips. The model has model (or
embed) dimension dmodel (or E), feedforward intermediate
dimension dff (or F ), and nheads (or H) heads.

Each example in a batch of B sequences has Linput tokens
of input text, and generates Lgen tokens of output text. Since
the input tokens are all present at the start of the inference,
we can run the model over all B × Linput many tokens in
parallel, in a single forwards pass over all the tokens. We
call this step prefill. The output tokens are generated autore-
gressively, with a sequential loop of Lgen steps. Each step
consists of a single forwards pass through the model, after
which we sample one new token for each of the B examples
in the batch. This loop is known as generation or decode.

Since prefill can run in parallel over Linput, but decode must
run sequentially over Lgen, the two phases have different
performance characteristics and we analyze them separately.

3 PARTITIONING FOR INFERENCE
EFFICIENCY

We must partition large models over many chips in order
to fit weight and activation tensors in memory and fit com-
pute and memory time within latency requirements. Model
partitioning introduces communication between chips, and
different partitioning strategies for a given model involve
different patterns and amounts of communication. In this
section, we detail several high-level strategies for partition-
ing a large Transformer language model for cost-effective
and latency-effective inference.
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3.1 Partitioning notation and communication
collectives

We describe the partitioning layouts in this section based
on a TPU v4 system with 3D torus topology X × Y × Z.
Following (Xu et al., 2021), we use subscripts to specify the
tensor dimension that is partitioned. For example, notation
BLExyz means that the last dimension E of a tensor of
logical shape BLE is split into X × Y × Z partitions,
where x, y and z refer to the physical TPU v4 axes, and
the per-chip tensor is of shape [B,L,E/(X × Y × Z)].
Here B, E and F refers to batch, model embed and MLP
feedforward dimension. We use L to refer to the sequence
length and explicitly specify prefill or generation phase.

If a tensor is replicated over an axis x, that axis is omitted
from the notation. We also use a suffix “partialsum-x” to
indicate that a given tensor has been contracted (summed)
locally on each chip (over some axis not represented in the
shape), but still needs to be summed across the chips in the
TPU x axis (creating a tensor replicated over x) before the
result is meaningful.

We use several communication collectives originating from
MPI (Clarke et al., 1994). The all-reduce(x) primitive sums
a partialsum tensor such as BLEyz(partialsum-x) across
sets of chips in the x axis of the torus and broadcasts the
sum back to all the involved chips, returning output of
shape BLEyz . For the reasons outlined in Rajbhandari et al.
(2020), we typically split all-reduce into two phases: a re-
duction phase and a broadcast phase. The reduction phase is
called reduce-scatter(x), and it sums BLEyz(partialsum-x)
tensors across sets of chips in the x axis but produces an
output that’s sharded rather than replicated over the chips
in that axis, in a layout such as BxLEyz or BLExyz . The
broadcast phase is called all-gather(x), and it broadcasts
and concatenates the tensor BLExyz to all chips in the x
axis, producing an output X times larger than its input,
replicated over the x axis: BTEyz . The all-to-all collective
shifts sharding from one tensor dimension to another, e.g.
BLHxQ → BxLHQ by using direct communication be-
tween every (source, destination) pair. Figure A.1 illustrates
these primitives.

3.2 Partitioning the feedforward layer

3.2.1 Feedforward layer, 1D weight-stationary layout

Overview. When a model doesn’t fit on one chip, the sim-
plest partitioning strategy is 1D weight-stationary, where
each E × F weight matrix is partitioned (sharded) among
nchips along the E or F axis. Each weight shard is multi-
plied by the appropriate activation shard on each chip, and
the results are aggregated between the chips with an all-
gather and/or reduce-scatter. Additionally, when computing
two consecutive matrix multiplications (as in a Transformer

MLP block), there is a “trick” (Shoeybi et al., 2019) to avoid
any cross-chip communication between the matmuls: if the
first matmul is partitioned by its output axis, the resulting
activation shard on each chip will be the exact one needed
to compute the second matmul partitioned by the input axis.

As we parallelize the computation across more chips, the
memory latency and compute latency decrease, often near-
linearly. However, the communication latency remains
roughly constant independent of the number of chips used,
since the entire activation matrix is aggregated across chips
for every pair of matrix multiplications. As the number of
chips grows larger, communication becomes a bottleneck.

Details. We consider as a baseline the layout where the
weights and activations of the feedforward layer are par-
titioned over nchips along the dff dimension, as in Mega-
tron (Shoeybi et al., 2019). Figure 2(a) shows the partition-
ing layout for this case. On the TPU v4’s 3D torus topology
the partition layout for weights is EFxyz and FxyzE, i.e.
they are partitioned into X × Y × Z = nchips partitions
with X , Y , and Z partitions across physical TPU axes. The
weights are kept stationary in each chip, and the activations
are transferred between chips to match the weight layout,
requiring one all-gather and one reduce-scatter.

In this 1D weight-stationary partitioning strategy, each chip
gets inputs and outputs of shape BLE in the reduce-scatter
and all-gather respectively. We derive the the communica-
tion cost of these operations in Appendix A.1. The resulting
communication time is

Tcomm =
2BLE

network bandwidth
.

3.2.2 Feedforward layer, 2D weight-stationary layout

Overview. For a larger number of chips, a more econom-
ical strategy involves partitioning each E × F weight ma-
trix along both the E and F axes, such that each shard is
roughly square. For example, if E = 1024, F = 4096,
and nchips = 64, then we would shard 4-ways among E
and 16-ways among F , so that each of the 64 chips stores
a 256-by-256 chunk of the weight matrix, and activations
are transferred between chips. This is called 2D weight-
stationary. The total compute cost is the same as 1D weight-
stationary, but communication is much more efficient: when
multiplying an activation matrix through a set of consec-
utive weight matrices, we can alternate which of the two
axes we perform the activation aggregation on between each
multiplication. With the correct partitioning, each chip will
always have the necessary activation shard to multiply with
its weight shard, without ever having a fully replicated copy
of the activation tensor. Since each axis is partitioned on
O(
√
nchips), the communication time scales as O( 1√

nchips
)

rather than remaining constant. This means that even if
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Figure 2: Partitioning layouts for feedforward layer.

the 2D layout is communication-limited at a certain chip
count and batch size, we can continue to reduce latency by
adding more chips, because communication time continues
to reduce.

However, while the 1D weight-stationary “trick” requires
us to only aggregate over the dmodel dimension, 2D weight-
stationary requires alternating aggregation over the dmodel
and dff dimensions. Therefore, 2D weight-stationary be-
comes more communication-efficient when√nchips >

dff
dmodel

.
Since typically dff = 4dmodel, this occurs when nchips > 16.

Details. Figure 2(b) shows the partitioning layout.
Whereas the 1D weight-stationary layout runs its all-gather
and reduce-scatter with unsharded shape BLE per chip,
this 2D weight-stationary layout partitions dmodel so that the
communication volume for dff partitioning is reduced from
BLE to BLE

X . This comes at the cost of introducing a sec-
ond pair of reduce-scatter and all-gather operations, whose
cost must be balanced with the existing communication.

The partitioning layout for weights is ExFyz , i.e. they are
partitioned along the dmodel dimension into X partitions
and along the dff dimension into Y × Z partitions, where
X × Y × Z = nchips. The partitioning layout for the input
activations is the same as the previous section. Note that we
again keep the partitioned weights stationary on their chips,
but because of their 2D layout, the activation communication
includes two all-gathers and reduce-scatters.

We derive the optimal values of X , Y and Z to minimize
total communication time in Appendix A.2.1. Assuming
dff = 4× dmodel, we achieve the minimum communication
time with X = 0.5×√nchips and Y Z = 2×√nchips. The

resulting total communication time is:

Tcomm =
8BLE

√
nchips × network bandwidth

.

3.2.3 Feedforward layer, weight-gathered layout

Overview. In the previously described weight-stationary
strategies, each chip stores one shard of each weight matrix
in memory, and that chip is responsible for multiplying its
“stationary” weight shard with each corresponding activation
shard. The output of each per-chip matrix multiplication
must then be aggregated between chips to be used as input
to the subsequent operations.

However, as the batch size (and sequence length) grows
larger, the size of the output activations may become sig-
nificantly larger than the size of the weights. When this
happens, it can become more economical to keep the ac-
tivations stationary on each chip, and instead transfer the
weights between chips. For very large batch sizes, it is
best to keep the activations fully stationary between sequen-
tial matrix multiplications, requiring that we fully transfer
the weights between all chips. We call this approach XYZ-
weight-gathered. For moderate batch sizes, it is beneficial
to use a “hybrid” approach where both weights and activa-
tions are partially transferred along different axes. We refer
to these approaches as X-weight-gathered and XY-weight-
gathered.

Details. Figure 2(c) shows the XY-weight-gathered lay-
out. A key aspect of the specific layout we choose is that
weights start in the same ExFyz layout as in 2D weight-
stationary, so that we can use the same weight layout for
weight-gathered (duing prefill) and weight-stationary (dur-
ing decoding). Just before the einsums, the weight tensors
are all-gathered over the X and Y axes, with communica-
tion volume EF

Z . This is additional communication relative
to weight-stationary layout, but in return we reduce the com-
munication on activations: one reduce-scatter/all-gather pair
for activations is skipped, and the communication volume
on the other pair drops from BLE

X to BLE
XY .

By changing the relative sizes of the X , Y , and Z axes,
we could trade off weight communication against activa-
tion communication to minimize total communication vol-
ume. But we choose to share the weights between weight-
stationary and weight-gathered layouts, which means we
are required to match the choices of X , Y and Z made
for the weight-stationary layout. Instead, we pick between
a few variants of the weight-gathered layout. The variant
shown in Figure 2(c) uses all-gather(xy) for weights and
BxyLEz partitioning for activations. Our other variants use
all-gather(x) or all-gather(xyz) for weights, and correspond-
ingly use BxLEyz or BxyzLE partitioning for activations.
Figure A.2 shows the three weight-gathered layouts.
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Figure 3 shows how the communication-optimal configura-
tion switches between these layouts as batch size grows –
while the 2D weight-stationary strategy minimizes commu-
nication at low tokens per batch, different weight-gathered
layouts are optimal at larger number of tokens per batch.
This highlights the importance of choosing different infer-
ence configurations depending on application goals.

We now show the asymptotic scaling of weight-gathered
layouts. Let N be the number of chips that weights are
all-gathered over: N = X in X-weight-gathered, N =
XY in XY -weight-gathered, N = XY Z in XY Z-weight-
gathered. Total communication is minimized by the choice

N =
√

BLnchips

F which we derive in Appendix A.2.2. The
total communication time is

Tcomm = 4E

√
BLF

√
nchips × network bandwidth

Note that BL corresponds to the total batch size in tokens.
The communication time for the weight-stationary layout is
linear in BL, while the communication time for the weight-
gathered layout is linear in

√
BL. Therefore, the weight-

gathered layout becomes cheaper when the batch size and
prefill sequence length are sufficiently large.

3.3 Partitioning the attention layer

Multihead attention can be parallelized in essentially the
same ways as a feedforward layer, with nheads replacing dff.
But inference with multihead attention incurs significant
memory capacity and bandwidth costs to store and load
the KV cache, and these costs can dominate the rest of the
inference at large batches or long context lengths.
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Figure 4: Multiquery attention has lower memory cost to
load the KV cache when sharded over batch.

An alternative approach, called multiquery atten-
tion (Shazeer, 2019; Chowdhery et al., 2022), still emits
nheads for the query tensor, but only a single head for the
key and value tensors. This key and value head is shared
across the nheads query heads. This reduces the size of
the KV cache tensors by a factor of nheads and hence the
memory time spent loading them. But it also removes an
axis otherwise used for parallelism, so the KV cache and
related computations need to be partitioned differently.

Partitioning strategy. The key design consideration is to
minimize the memory time of repeatedly loading the KV
cache that dominates the inference cost. The partitioning
layout of projection matrices that have a nheads dimension
(WQ and WO in multiquery attention, and those two plus
WK and WV in multihead attention) should match the lay-
out used in the feedforward layer.

Figure 4(a) shows a typical partitioning layout for multihead
attention, matching the 2D weight stationary feedforward
layout. Here the Q, K, and V activations are partitioned
over the nheads dimension into nchips partitions when nheads
is a multiple of nchips. For nchips greater than nheads, the
attention heads are partially replicated. The most similar
partitioning layout for multiquery attention (shown in Fig-
ure 4(b)) treats the KV cache the same as in multihead
attention. Even though the key and value tensors are shared
across all heads, they must be replicated on each chip and
the memory cost savings of multiquery attention are lost.

We instead propose a partitioning strategy for the multiquery
attention where the Q, K, and V matrices are partitioned
over the batch B dimension into nchips partitions. Figure 4(c)
shows that this reduces the memory cost of loading the KV
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Figure 5: Comparison of partitioning layouts for attention
layer: multihead attention sharded over heads versus multi-
query attention sharded over batch.

cache per chip by a factor of nchips, thereby reducing the
memory time by the same factor. The proposed partitioning
strategy incurs additional communication cost of resharding
the input activation tensors using an all-to-all collective as
shown in Figure 5(b) in comparison to the multiquery atten-
tion sharding strategy shown in Figure 5(a) where the Q, K,
and V matrices are partitioned over the heads dimension.

During autoregressive generation, there is only one token
per example of Q, K, and V tensors, whereas the KV cache
has many (perhaps 2048) tokens. Since the KV cache is
orders of magnitude larger than the Q, K, and V tensors, it
is very profitable to spend the all-to-all communication time
on the small tensors to save the memory time on the large
tensors.

During prefill, it is typically not profitable to shard attention
over batch. The Q tensor has many (perhaps 2048) tokens,
all of which are queried against the same K and V tensors.
The memory load of the K and V tensors is amortized over
all tokens in the Q tensor, and so this memory load is typ-
ically not a bottleneck during prefill. Therefore for prefill
we use the sharded-over-heads layout.

With the proposed partitioning layout, multiquery atten-
tion enables using larger batch sizes and sequence lengths,
thereby increasing throughput in addition to the latency
reduction from reduced memory time. As shown in Sec-
tion 4.2, the savings are an order of magnitude compared to
multihead attention.

3.4 Parallel attention/feedforward layers

We discuss the inference latency gains from the “parallel”
formulation of each Transformer block (Wang and Komat-
suzaki, 2021) as used in PaLM (Chowdhery et al., 2022)

instead of the standard “serialized” formulation, where the
feedforward layer and attention layer are computed in par-
allel from the layernormed input and summed to get the
output.

The benefits from the parallel formulation are as follows.
First, there is only one layernorm per layer instead of two,
which reduces latency at small batch sizes. Second, the
input matrices of the feedforward layer can be fused with
the query projection matrix WQ of the attention layer, the
key/value projection matrices WK and WV can be fused
in the attention layer, and the output matrix of the feedfor-
ward layer can be fused with the output projection matrix
WO of the attention layer. This fusion results in higher
FLOPS utilization because larger matrix-multiplications
run more efficiently on accelerators. More importantly, it
also eliminates one of the two all-reduce operations in each
Transformer layer needed for dff/nheads parallelism, cutting
communication time over this axis in half.

3.5 Low-level optimizations

We use the Looped CollectiveEinsum technique from (Wang
et al., 2023) to run communication concurrently with com-
putation. This allows us to partially or fully hide the com-
munication time of most of the reduce-scatter and all-gather
operations in Figures 2 and 5. For all reduce-scatter oper-
ations in Figures 2 and 5, we had a choice of whether to
reduce-scatter into a batch or sequence dimension (B or L)
or into the hidden dimension (E or F ). We chose the latter,
because it exposes more effective opportunities for Looped
CollectiveEinsum, whereas Korthikanti et al. (2022) chose
the former, to avoid communication in layernorm.

The CollectiveEinsum loops are the overwhelming major-
ity of the inference latency, so we invested considerable
effort to maximize their performance. First, we used the
underlying “async CollectivePermute” APIs of Wang et al.
(2023) to develop a suite of variants of the CollectiveEinsum
concept, to optimize for different scenarios: latency versus
throughput, different numbers of torus axes, fusing with dif-
ferent input/output collectives. Second, we explicitly match
up communication collectives with the matrix multiplies
that they should be fused with, to maximize the potential for
overlap. Through such optimizations, we achieved about
1.4 times better performance than the simpler compiler-
partitioned-and-scheduled implementation that we started
with. Some of the weight-gathered layouts would exhaust
memory without these optimizations.

We also included the following low-level optimizations:
better in-memory layout of tensors to minimize copying
during matrix multiplies, faster top-k/top-p implementations
for decode sampling, faster log-base-2 implementations of
Softmax and Swish, and support for incremental processing
of sequences during prefill (FasterTransformer).
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Figure 6: Latency per token doing text generation of PaLM
540B for 2D and 1D weight stationary layouts on 64 chips.

3.6 Quantization

We use the AQT library (Lew et al., 2022) to reduce the
memory cost of 16-bit weights by converting them to int8
without noticeable quality loss. This enables memory time
savings from weight loading, which is especially helpful in
the low batch size regime, and it reduces communication
volume in weight-gathered layouts. We have not imple-
mented activation quantization (Abdolrashidi et al., 2021),
but we are hopeful that it could reduce compute time in
large-batch configurations and reduce communication vol-
ume of activations in weight-stationary layouts.

4 CASE STUDY FOR PALM MODELS

Methodology We now conduct an empirical study of our
techniques on the PaLM family of models (Chowdhery et al.,
2022), which we select since the model architecture incor-
porates the techniques of multiquery attention and parallel
attention and feedforward layers.

Our inference framework is based on JAX (Bradbury et al.,
2018) and XLA (XLA, 2019), and our original high-level im-
plementation was based on T5X (Roberts et al., 2022). We
use up to 256 TPU v4 chips (Google, 2022) for our bench-
marks. Each TPU v4 chip can run bfloat16 matrix arithmetic
at 275 TFLOPS, has 32 GiB of High Bandwidth Memory
(HBM) at 1200 GB/s of bandwidth, and has 270 GB/s of
interconnect bandwidth in a 3D torus topology (TPUv4).

For the PaLM 540B model we padded the number of at-
tention heads up from 48 to 64 in order to partition more
effectively on 64+ chips. This adds 18B parameters to the
model, which comes at a 3% MFU cost, which was more
than recovered by being able to partition more effectively.

4.1 Partitioning feedforward layer

We evaluate the relative performance of our feedforward
layer partitioning strategies. First we evaluate performance
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Figure 7: Model FLOPS utilization running prefill on PaLM
540B on 64 chips, with sequence length 2048. We report
batch size measured in tokens: number of sequences multi-
plied by sequence length. As batch size (in tokens) grows,
note that it is better to switch from the 2D weight stationary
to the weight gathered approach to improve MFU.

of decoding. We use batch size 512 to balance latency
and MFU. Figure 6 shows the performance of 1D and 2D
weight-stationary layouts as we increase the chip count.
Both layouts start to become communication-limited, but
the 2D layout performs better because of its asymptotically
better scaling with chip count.

Next we consider the prefill phase. We consider batch sizes
from 2048 tokens (1 example, 2048 tokens) to 1 million
tokens (512 examples, 2048 tokens per example). Figure 7
shows that the optimal partitioning layout switches from
the 2D weight-stationary layouts to the weight-gathered
layouts as the batch size increases. The weight-gathered
layouts are inefficient at low batch sizes, but eventually they
become the most efficient at high batch sizes, achieving
76% MFU when the communication overhead is almost
negligible. Such large batch sizes would fail from mem-
ory exhaustion without multiquery attention, as shown in
Section 4.2. This highlights the importance of flexibility
in configuring the inference system with different choices
depending on the application setting and goals.

These results give us our basic strategy for selecting par-
titioning layout: during the prefill phase, we select from
weight-stationary and weight-gathered layouts based on the
current number of tokens in the batch. During the generate
phase, we select the 2D weight-stationary layout because
the batch size in tokens is always small.

4.2 Partitioning Attention layer

We now evaluate the partitioning layout for multiquery at-
tention proposed in Section 3.3. We consider PaLM with
multiquery attention in both the baseline layout that parti-
tions by attention heads and the optimized layout that parti-
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Figure 8: Latency per generated token vs. sequence length,
for an 8-layer version of PaLM 540B on 64 chips with batch
size 256. The dotted line represents that on the full 118-
layer model and context lengths longer than 512, the KV
cache will not fit in memory when using multihead attention
or the baseline multiquery partitioning.

Model variant dhead Max context length
batch=128 batch=512

Multihead 128 1320 330
Baseline multiquery 256 660 165

Optimized multiquery 256 43,000 10,700

Table 1: Maximum context length supported for different at-
tention variants of PaLM 540B on 64 chips. We reserve 30%
of the total memory for KV cache. Optimized multiquery
attention enables up to 32x larger context lengths.

tions by batch. We also create a modified variant of PaLM
540B which uses multihead attention instead of multiquery.
To keep parameter count in the attention layer constant, we
shrink dhead from 256 in the multiquery variant to 128 in the
multihead variant.

At large batch sizes and context lengths, the KV cache can
become very large, putting us at the risk of running out
of memory. Table 1 shows that the optimized multiquery
layout can fit up to 32–64 times longer context lengths than
the multihead and baseline multiquery variant.

During prefill, multiquery and multihead attention incur sim-
ilar inference latencies because we compute many attention
queries in parallel and the attention computation becomes
compute-limited on the attention matrix multiplies. During
generation, Figure 8 shows that the optimized multiquery
layout improves speed. The speed improvement is small
when the context length is short because almost all of the
time is spent on the feedforward layer. As the context length
grows longer, the time to load the KV cache in the attention
layer becomes a much larger portion of overall inference
time. Multiquery attention scales up to sequence lengths of
8192–32,768 tokens (batch sizes 512 and 128 respectively)
with attention taking only 8–31% of total runtime.

4.3 Parallel attention/feedforward layers

We consider a variant of PaLM 540B with the parallel formu-
lation of Transformer block replaced by serial attention/feed-
forward layers. During generation, we use 2D weight-
stationary layout, 64 chips, and batch size 512. The se-
rial formulation incurs 14% higher inference latency per
step than the parallel version because of the increased com-
munication time for activations. In the prefill phase, this
difference shrinks because the weight-gathered layouts incur
less activation communication.

4.4 End-to-end results on PaLM

We find the Pareto frontier between efficiency and latency
as we scale the model size for the PaLM family of models:
8B, 62B and 540B, with weights in either bfloat16 or int8.
We use a context length 2048 and sweep over the batch size
and chip count.

To meaningfully compare throughput across multiple model
sizes with different chip count and batch sizes, we report
the cost of an inference in terms of chip-seconds per token
calculated as

cost (chip-seconds per token) =
nchips × time

BL
.

This is directly proportional to operational cost and inversely
proportional to MFU.

Figure 1(left) shows the relationship between model size,
latency, and cost in the generate phase, at the Pareto frontier
of optimal batch size, chip count, and partitioning strategy.
The lowest cost is achieved at batch sizes larger than about
512, where the cost is proportional to the number of parame-
ters. As we decrease the batch size, we improve the latency
but incur higher cost per token. The minimum latency for
generation is 3 times lower than the batch-512 latency.

We observe that int8 weight quantization achieves the min-
imum latency in Figure 1 (left): for example, we achieve
28.5ms/token with int8 weights at batch size 64 on PaLM
540B, while we achieve 36.9ms/token with bfloat16 weights.
At low latency targets the cost is improved just over a factor
of 2, because low-batch-size cost is dominated by weight
loading time. At large batch size, cost is more neutral be-
tween int8 and bfloat16, because large-batch cost is domi-
nated by the compute time and the matmuls still use bfloat16
arithmetic. We believe that quantization of activations to
int8 could enable a further cost improvement.

Figure 1 (right) shows the relationship between model size,
latency, and cost in the prefill phase. The tradeoff between
batch size and latency is less severe in the prefill phase than
the generate phase and even batch size 1 runs with fairly low
cost. Further, the cost of batch-512 prefill is 2 times lower
than batch-512 generate because of the increased MFU of



Efficiently Scaling Transformer Inference

Low-latency High-throughput
Prefill Decode Prefill Decode

Chips 64 64 64 64
Batch 1 64 512 512
FFN WS 2D WS 2D WG XYZ WS 2D
Attention
sharding

Head Batch Batch Batch

Weights
format

int8 int8 bfloat16 bfloat16

MFU 43% 14% 76% 33%
Latency 0.29s 1.82s 85.2s 6.0s

Table 2: Example configurations for PaLM 540B, in the same
setting as Figure 1. Prefill latency is for processing 2048 tokens;
decode latency is for generating 64 tokens. Feedforward network
(FFN) layouts are Weight Stationary 2D (WS 2D, Section 3.2.2)
and Weight Gathered XYZ (WG XYZ, Section 3.2.3). Attention
layouts are from Section 3.3.

Low-latency High-throughput
Prefill Decode Prefill Decode

Chips 16 16 32 8
Batch 1 32 512 512
FFN WS 2D WS 2D WG XYZ WS 2D
Attention
sharding

Head Batch Batch Batch

Weights
format

int8 int8 bfloat16 bfloat16

MFU 36% 8% 73% 37%
Latency 0.16s 0.73s 20.2s 5.1s

Table 3: Example configurations for PaLM 62B, in the same
setting as Figure 1. Prefill latency is for processing 2048 tokens;
decode latency is for generating 64 tokens. Feedforward network
(FFN) layouts are Weight Stationary 2D (WS 2D, Section 3.2.2)
and Weight Gathered XYZ (WG XYZ, Section 3.2.3). Attention
layouts are from Section 3.3.

the weight-gathered layouts we use during prefill. More
details on the relationship between model size and MFU are
presented in Figure D.1 and Section D in the Appendix.

Tables 2 and 3 show some key configurations from the
Pareto frontiers of Figure 1, on PaLM 540B and PaLM 62B.
In the low-latency scenarios we combine batch-1 prefill
with batch 32-to-64 decode: batch size 1 achieves best
latency in the prefill phase, but for the generate phase we
can increase the batch size up to 64 with negligible latency
impact, and doing so is dramatically better for generate
MFU. This mixture of batch sizes is possible in practice
either by generating multiple samples from the same input
text, or by pipelining a batch-1 prefill server into a batch-64
decoding server.

In the high-throughput scenarios of Tables 2 and 3, we
use larger batch sizes and we switch partitioned layouts
between prefill and decode. We use bfloat16 weights for
high-throughput scenario, because the weight-loading time
is unimportant at large batch sizes, and because our software
is missing some optimizations for large-batch int8 mode.
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Figure 9: Model FLOPS utilization (MFU) versus total
latency for running a 60-input-token, 20-output-token infer-
ence, at a range of batch sizes.

Comparing 62B (Table 3) vs. 540B models (Table 2), we
find that we use more chips for the 540B model, but sim-
ilar batch sizes and the same partitioned layouts. High-
throughput MFUs are similar between the model sizes. The
low-batch-size latencies grow sublinearly with model size at
the Pareto frontier: even though larger models load propor-
tionally more weights from memory, we can partition them
across more chips before becoming communication-limited.
We estimate an approximately square-root relationship be-
tween model size and latency based on Figure 1 (left).

5 FASTERTRANSFORMER BENCHMARKS

We now compare with the FasterTransformer bench-
marks (FasterTransformer) across a wide range of batch
sizes and configurations of prefill and generate. There are
multiple differences between our benchmark setup and the
FasterTransformer benchmark. In particular, we use dif-
ferent types of chips and chip counts – FasterTransformer
uses 16–32 NVIDIA A100s with 80GiB HBM, while we
use 64 Google TPU v4 chips with 32GiB HBM. Therefore,
we report throughput numbers in terms of MFU, which
normalizes for both chip count and chip FLOPS.

Figure 9 shows the performance of our implementation rela-
tive to three FasterTransformer configurations. We bench-
mark the Megatron 530B model (Smith et al., 2022) and the
similarly-sized PaLM 540B model, which has architectural
optimizations including multiquery attention and parallel
attention/feedforward layers (full list of differences in Ta-
ble F.1). Our implementation of PaLM 540B achieves the
best absolute latency, and our implementation also offers
the best MFU for the Megatron model for all but one la-
tency target. Our PaLM implementation outperforms our
Megatron implementation by up to 10% MFU in this bench-
mark primarily because of the parallel attention/ffn layers.
Compared to Section 4.2, the advantage of parallel layers
is partially offset by Megatron’s larger dmodel and dff sizes.
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The advantage of multiquery attention is not noticeable in
this benchmark because the attention context length is too
short.

FasterTransformer reports results with 8-, 16-, and 32-way
tensor parallelism. Their 32-way tensor parallelism achieves
a maximum of 33% MFU across all reported benchmarks,
compared to 46% MFU in their 16-way tensor parallel con-
figuration. This likely indicates a communication bottleneck
of scaling tensor parallelism beyond this point. In contrast,
our implementation is able to scale up to 64-way tensor par-
allelism while still achieving 44% MFU, suggesting superior
scalability of our 2D weight-stationary partitioning strategy
on TPU v4’s larger high-speed interconnect domains.

We provide results on all the configurations used in the
FasterTransformer baseline in Appendix F. We also note
that our benchmarks throughout the paper attempt to in-
clude more challenging inference scenarios, such as context
lengths in the range 1024–4096, and report the inference la-
tency for the generate phase and the prefill phase separately
(since they have different characteristics).

6 RELATED WORK

Parallelism approaches. Prior works propose several ap-
proaches for efficient partitioning to train large models effi-
ciently, for e.g., NeMo Megatron (Korthikanti et al., 2022),
GSPMD (Xu et al., 2021) and Alpa (Zheng et al., 2022).
FasterTransformer establishes a benchmark suite for multi-
GPU multi-node inference for a range of different model
sizes, including Megatron–Turing NLG 530B. The key in-
ference speedups come from combining tensor parallelism
and pipeline parallelism in conjuction with memory opti-
mizations. DeepSpeed Inference (Aminabadi et al., 2022)
further enables ZeRO offload to use CPU and NVMe mem-
ory in addition to the GPU memory. For larger batch sizes,
EffectiveTransformer packs consecutive sequences together
to minimize padding. Zheng et al. (2022) generalizes the
search through parallelism strategies via integer-linear pro-
gramming. In comparison, this paper derives the partition-
ing strategies based on intuitive empirically-backed analyti-
cal tradeoffs to meet the application requirements that scale
well with model size, context length and chip count.

ML inference efficiency. Several approaches (Gupta and
Agrawal, 2020) to improve the inference efficiency of Trans-
former models focus on model architecture improvements,
for example efficient attention layers (Roy et al., 2020;
Choromanski et al., 2020; Kitaev et al., 2020; Sukhbaatar
et al., 2019; Child et al., 2019), distillation (Sanh et al.,
2019; Sun et al., 2020), and model compression techniques,
such as pruning (Li et al., 2020b; Brix et al., 2020; Zhou
et al., 2021; Li et al., 2020a; Wang et al., 2020), or quan-
tization (Dettmers et al., 2022; Abdolrashidi et al., 2021;

Zafrir et al., 2019; Zhang et al., 2018). This paper reuses
the prior work on model quantization to add to the infer-
ence speedups, and the techniques we describe could also
be coupled with other model compression methods.

7 CONCLUSIONS

Large Transformer-based models are unlocking new capa-
bilities and applications in several domains, but we need
significant advances to democratize their access as we scale
up the model size. This paper investigates the scaling prop-
erties of Transformer inference workloads and proposes
practical partitioning approaches to meet challenging ap-
plication requirements such as tight latency targets (on the
order of seconds for 500B+ parameter models). We show
that the best latencies are achieved by going far beyond the
traditional paradigm of single-server inference, and scaling
inference up to 64+ chips. Longer context lengths incur
higher memory costs, but multiquery attention with appro-
priate partitioning reduces this cost and makes long-context
inference practical. The proposed partitioning strategies
generalize to many topologies, including single- and multi-
node NVLink networks in GPU systems, see Appendix E.

Although we achieve our goal of pushing the boundaries of
scale for inference workloads, we observe that FLOP count
and communication volume can fundamentally limit infer-
ence performance of dense Transformer models. Sparsity
techniques, such as task-based mixture of expert architec-
tures (Fedus et al., 2022; Kudugunta et al., 2021; Lepikhin
et al., 2020; Shazeer et al., 2017), and adaptive computation
techniques that allocate different amounts of compute per
input and generation timestep (Jaszczur et al., 2021; Schus-
ter et al., 2022), promise to reduce FLOPs per token of
Transformer models. We are hopeful that such techniques
that reduce FLOPs per token, as well as techniques that
compress chip-to-chip communication, will enable further
gains in both cost and latency.
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A PARTITIONING STRATEGIES:
DERIVING COMMUNICATION COSTS

A.1 Cost of all-gather/reduce-scatter

Figure A.1 shows typical collective operations we use in par-
titioning strategies and their communication patterns across
three devices. For an all-gather over K partitions, where
each chip produces an output of size D, the communication
pattern requires chunks of size D

K to be transferred over
(K − 1) interconnect links in the process of getting copied
to (K − 1) chips. The resulting communication time for the
all-gather is

Tcomm(all-gather) =
D

(network bandwidth)
K − 1

K
.

This is a general cost model that holds true for most real-
world network topologies (Chan et al., 2007), not just the
TPU’s torus topology.

The communication time for a reduce-scatter
Tcomm(reduce-scatter) is the same, except that D is the
size of the (larger) input buffer rather than the (smaller)
output buffer. Thus, the total communication time for an
all-reduce is Tcomm(all-reduce) = 2× Tcomm(all-gather).

In most formulas, we will disregard the (K − 1)/K term,
approximating it as 1 under the assumption K � 1, in order
to simplify the algebra. This yields a simple approximation:
reduce-scatter time is proportional to the size of the per-chip
input, and all-gather time is proportional to the size of the
per-chip output.

A.2 Details for communication time calculations

A.2.1 Feedforward layer, 2D weight-stationary layout

Figure 2(b) shows the partitioning layout. The partitioning
layout for weights is ExFyz , i.e. they are partitioned along
the dmodel dimension into X partitions and along the dff
dimension into Y ×Z partitions, where X×Y ×Z = nchips.
We now show how to size the X , Y and Z axes of the
torus to minimize total communication time in 2D weight-
stationary layout. The communication time is:

Tcomm =
2BL

network bandwidth

(
E

X
+

F

Y Z

)

We have a free choice of X , Y and Z subject to available
TPU v4 slice shapes and X × Y × Z = nchips. Assuming
dff = 4× dmodel, we achieve the minimum communication
time with X = 0.5×√nchips and Y Z = 2×√nchips. The
resulting total communication time is:

Tcomm =
8BLE

√
nchips × network bandwidth

.

A.2.2 Feedforward layer, weight-gathered layout

BxyLEz ExFyz

Win

einsum
BxyLE

BxyLFz

gelu

FyzEx

Wout

BxyLE (partialsum-z)
einsum

Weight-
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EFz
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+

(b)(a) (c)
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Figure A.2: Weight-gathered layouts for Feedforward layer.

Figure A.2 shows the different weight-gathered layouts,
while Figure 2(c) shows one instance of XY weight-gathered
layout. A key aspect of the specific layout we choose is that
weights start in the same ExFyz layout as in 2D weight-
stationary, so that we can instantly switch between weight-
gathered layout and weight-stationary layout. Just before
the einsums, the weight tensors are all-gathered over the X
and Y axes, with communication volume EF/Z.

By changing the relative sizes of the X , Y , and Z axes, we
can trade off weight communication against activation com-
munication, and thereby minimize the total communication
volume. We now show the asymptotic scaling of weight-
gathered layouts. Let N be the number of chips that weights
are all-gathered over: N = X in X-weight-gathered,
N = XY in XY -weight-gathered, and N = XY Z in
XY Z-weight-gathered.

Weight communication is:

Tcomm(weights) =
2EF ×N

nchips × network bandwidth
.

Activation communication is:

Tcomm(acts) =
2BLE

N × network bandwidth
.

Total communication is minimized by the choice N =√
BLnchips/F , which yields total communication time

Tcomm = 4E

√
BLF

√
nchips × network bandwidth

Figure 3 shows how the communication-optimal configu-
ration switches between these layouts as batch size grows.
While the 2D weight-stationary strategy minimizes commu-
nication at low tokens per batch, different weight-gathered
layouts are optimal at larger number of tokens per batch.



Efficiently Scaling Transformer Inference

Figure A.1: Communication patterns of collective operations: all-gather, reduce-scatter, and all-to-all across three devices.

B MINIMUM PREFILL LATENCY

We report here the minimum latency required for prefill.
Figure B.1 shows the Pareto frontier of cost vs. latency as
we sweep sequence length from 32 to 1024 at batch size 1.
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Figure B.1: Prefill cost vs. latency for PaLM models over a
range of sequence lengths S. C indicates chip count.

C MFU VS ROOFLINE METRICS

We compare our MFU metric to the commonly used
roofline metric (Williams et al., 2009). The roofline
metric models the “ideal” runtime per operation as
max(compute time,memory fetch time). This requires as-
sumptions about what memory traffic is required. It is rea-
sonable to assume that weights are transferred from HBM
memory to on-chip memory once per step, but the appropri-
ate assumptions for activations are unclear, because of the
possibility of operator fusion. Further, the memory traffic
requirements may vary in all-reduce operations, depending
on the implementation.

The MFU metric can be viewed as a simplification of the
roofline metric that drops the “memory fetch time” term
from the “ideal” runtime per operation. This sidesteps the
ambiguous assumtions of the roofline metric, enabling ro-

bust comparisons across a wide range of different hardware
configurations and software implementations, for example
to compare our implementation to FasterTransformer.

D MFU VS LATENCY TRADEOFF

We report here the relationship between model size, latency,
and MFU. Figure D.1 shows the Pareto frontier of MFU vs.
latency as we sweep the batch size and the number of chips
same as Figure 1. The MFU for decode is typically much
lower than for prefill. In the prefill phase, the “jumps” in
MFU show the transition point from weight stationary 2D
layout to XYZ weight gathered layout.

In most cases, the larger models achieve higher MFUs than
the smaller models, because larger matrix multiplies are
more efficient. However, at long-latency decodes, PaLM
62B achieves higher MFU than PaLM 540B, because the
former uses 8-way model parallelism and the latter uses 64-
way model parallelism. We may be able to further optimize
PaLM 540B by reducing the model parallelism in the high-
throughput (latency-tolerant) regime.

E GENERALIZING FROM TPU TO GPU
HARDWARE

Our partitioning strategies are readily generalized from the
3D torus topology of TPUs to the fully connected topology
of GPUs. For example, to apply a hybrid weight-gathered
layout, view the GPUs as logically being structured into a
2D matrix, and all-gather weights along rows and all-reduce
activations along columns as specified by Figure 2(c).

The 2D weight-stationary layout (Section 3.2.2) is unique
among our partitioning strategies in requiring at least 16
accelerators connected by high-speed interconnect before
it is profitable. Prior to the H100 generation of GPUs, this
technique only applied to TPU systems. The introduction
of 256-accelerator NVLink networks in H100 allows this
technique to apply to GPUs also.
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Figure D.1: MFU vs. latency for PaLM models. We use a context length of 2048. Points in each line represent the Pareto
frontier of efficiency versus latency. Chip count is C, batch size is B. Left: latency per token for generating 64 tokens,
assuming the context has already been processed. Right: time to process 2048 input tokens; excludes the time to generate
any output tokens. The corresponding cost vs latency numbers are shown in Figure 1.

F FULL COMPARISON TO
FASTERTRANSFORMER

In this section, we report the latency and MFU of our imple-
mentations of both the PaLM 540B model and the Megatron-
Turing NLG 530B model run on 64 TPU v4 chips, in com-
parison to FasterTransformer baselines. We first note the
model architecture differences in Table F.1.

Then, we report the the full set of comparisons for the three
configurations in the FasterTransformer benchmarks: 20
input tokens and 8 output tokens in Table F.2, 60 input
tokens and 20 output tokens in Table F.3, and 128 input
tokens and 8 output tokens in Table F.4.

For each table we report the Pareto frontier of latency and
MFU with bold font (frontier across all 500B-class results)
and underline (frontier across MT-NLG specifically). This
frontier is not a per-row comparison, but instead is defined
globally across the table. It is defined as follows: a bench-
mark result (latency,MFU) is on the Pareto frontier if,
for all other benchmark results (latency2,MFU2), either
latency ≤ latency2 or MFU ≥ MFU2 (or both) is true.
Visually, this corresponds to being “up and to the left” in
Figure 9.

We do not report batch sizes below 4 because our partition-
ing strategy partitions multiquery attention over batch and
achieves no speedup for a batch size smaller than 4 (the
minimum size of a TPU v4 torus axis).

G MANAGING ATTENTION LOGITS SIZE

Multiquery attention saves memory in the KV cache. How-
ever, the attention logits can still be large: during the
prefill stage of inference they are of size BL2H (where
H = nheads), and multiquery attention does not reduce

their size. For example, with B = 128, L = 43, 000 and
H = 64, when sharded over 64 chips they would consume
900GB/chip, exhausting memory.

The simplest solution is to split the prefill computation up
into microbatches, exactly in the same way the decoding
computation is split up into multiple steps. For example,
we could split the above computation into microbatches of
size B = 1 that prefill 12,000 tokens of one example at a
time. This shrinks the attention logits to 2GB per chip. We
pay a modest cost in efficiency in the feed-forward network
because there are insufficient tokens in the microbatch to
use weight-gathered layout.

The best solution is to use FlashAttention (Dao et al., 2022)
to avoid ever fully materializing the attention logits in mem-
ory. We find that FlashAttention with block size 512 is
efficient on TPUs.

PaLM 540B Megatron 530B
nparams 540B 530B
nlayers 118 105
dmodel 18432 20480
dff 73728 81920
nheads 48 128
dhead 256 160
Attention Multiquery Multihead
Parallel ffn/attn Yes No

Table F.1: Hyperparameters for PaLM and Megatron-Turing
NLG inference.



Efficiently Scaling Transformer Inference

FasterTransformer MT-NLG 530B total Ours (530B/540B on 64 TPU v4 with 2D partitioning)
TP16 TP32 PP3/TP8 PaLM prefill PaLM generate PaLM total MT-NLG total

batch time MFU time MFU time MFU time MFU time MFU time MFU time MFU
1 565 1% 431 1% 842 0% - - - - - - - -
2 598 2% 455 1% 860 1% - - - - - - - -
4 616 4% 493 2% 867 2% 34 14% 255 1% 289 2% 289 2%
8 660 7% 523 5% 929 3% 40 25% 226 2% 265 5% 304 4%

16 730 13% 575 8% 1049 6% 58 34% 234 3% 292 9% 339 8%
32 865 22% 672 14% 1283 10% 99 40% 235 7% 334 16% 420 13%
64 1191 32% 942 20% 1722 15% 186 42% 265 12% 451 24% 532 20%

128 1862 41% 1431 27% 2124 24% 356 44% 312 20% 668 33% 740 29%
256 3341 46% 2483 31% 3140 32% 668 47% 415 30% 1083 41% 1151 38%
512 - - - - - - 1366 46% 671 37% 2037 43% 2151 40%

1024 - - - - - - 2785 45% 1257 40% 4041 44% 4082 42%

Table F.2: Results for the 20-input-token, 8-output-token benchmark. All times in milliseconds. The bold and underline
annotations are not per row, but instead show the Pareto frontier of time vs. MFU. See Section F for full explanation.

FasterTransformer MT-NLG 530B total Ours (530B/540B on 64 TPU v4 with 2D partitioning)
TP16 TP32 PP3/TP8 PaLM prefill PaLM generate PaLM total MT-NLG total

batch time MFU time MFU time MFU time MFU time MFU time MFU time MFU
1 1379 1% 1037 1% 2085 1% - - - - - - - -
2 1515 2% 1110 2% 2122 1% - - - - - - - -
4 1512 4% 1198 3% 2184 2% 50 29% 640 1% 690 3% 678 3%
8 1631 8% 1295 5% 2367 4% 80 37% 574 2% 653 6% 728 5%

16 1868 15% 1454 9% 2753 7% 153 39% 602 3% 755 10% 838 9%
32 2361 23% 1804 15% 3543 10% 270 44% 626 6% 896 18% 1058 15%
64 3383 32% 2646 21% 4117 18% 501 47% 717 11% 1218 26% 1275 24%

128 5406 40% 4099 27% 5319 27% 985 48% 829 19% 1814 35% 1902 32%
256 OOM - 7203 30% 8318 35% 2041 46% 1114 28% 3155 40% 3189 39%
512 - - - - - - 4167 45% 1743 36% 5910 43% 6210 40%

1024 - - - - - - 8349 45% 3260 39% 11608 43% 12390 40%

Table F.3: Results for the 60-input-token, 20-output-token benchmark. All times in milliseconds. The bold and underline
annotations are not per row, but instead show the Pareto frontier of time vs. MFU. See Section F for full explanation.

FasterTransformer MT-NLG 530B total Ours (530B/540B on 64 TPU v4 with 2D partitioning)
TP16 TP32 PP3/TP8 PaLM prefill PaLM generate PaLM total MT-NLG total

batch time MFU time MFU time MFU time MFU time MFU time MFU time MFU
1 585 5% 451 3% 866 2% - - - - - -
2 667 9% 508 6% 932 4% - - - - - -
4 765 15% 606 10% 1097 7% 81 39% 258 1% 343 10% 338 10%
8 990 23% 766 15% 1434 11% 149 42% 234 2% 403 17% 384 16%

16 1377 34% 1074 22% 2104 15% 287 44% 253 3% 586 23% 540 23%
32 2251 41% 1741 27% 2623 23% 536 47% 263 6% 796 34% 799 33%
64 4002 46% 3114 30% 3578 34% 1056 48% 317 10% 1329 40% 1372 39%

128 OOM - 5784 32% 5512 45% 2202 46% 381 17% 2343 46% 2583 45%
256 OOM - 11232 33% 9614 51% 4479 45% 431 29% 4710 45% 4911 45%
512 - - - - - - 8913 45% 734 34% 9673 44% 9647 43%

1024 - - - - - - 17766 45% 1370 37% 19723 43% 19136 43%

Table F.4: Results for the 128-input-token, 8-output-token benchmark. All times in milliseconds. The bold and underline
annotations are not per row, but instead show the Pareto frontier of time vs. MFU. See Section F for full explanation.


