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ABSTRACT
In this paper, we identify that modern GPUs - the key platform for developing neural networks - are being severely
underutilized, with ∼ 50% utilization, that further drops as GPUs get faster. We show that state-of-the-art training
techniques that employ operator fusion and larger mini-batch size to improve GPU utilization are limited by
memory and do not scale with the size and number of models. Additionally, we show that using state-of-the art
data swapping techniques (between GPU and host memory) to address GPU memory limitations lead to massive
computation stalls as network sizes grow.

We introduce µ-two, a novel compiler that maximizes GPU utilization. At the core of µ-two is an approach that
leverages selective data swapping from GPU to host memory only when absolutely necessary, and maximally
overlaps data movement with independent computation operations such that GPUs never have to wait for data. By
collecting accurate run-time statistics and data dependencies, µ-two automatically fuses operators across different
models, and precisely schedules data movement and computation operations to enable concurrent training of
multiple models with minimum stall time. We show how to generate µ-two schedules for diverse neural network
and GPU architectures and integrate µ-two into the PyTorch framework. Our experiments show that µ-two can
achieve up to a 3× speed-up across a range of network architectures and hardware, spanning vision, natural
language processing, and recommendation applications.

1 INTRODUCTION

Deep learning: Ubiquitous but expensive. Widespread
deep learning workflows have enabled groundbreaking re-
sults for many applications, including but not limited to
image recognition (Szegedy et al., 2017), recommendation
systems (Naumov et al., 2019), natural language translation
(Devlin et al., 2019), and video games (Berner et al., 2019).
However, training neural networks is expensive and has ad-
verse environmental impact (Zhu et al., 2018; Strubell et al.,
2019). For instance, training BERT – a natural language
model (with 200 million parameters) – takes 79 hours on
64 high-end GPUs resulting in an expense of approximately
12,000 USD and a carbon footprint of 1438 lbs (Devlin et al.,
2019). To put this in perspective, BERT’s training phase
(including architecture search) emits as much carbon as six
typical US cars would over their lifetimes.
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Deep learning workflows train multiple models. Various
stages of deep learning workflows involve training more
than one models which effectively multiplies the cost of
training. For example, during the model design stage, neu-
ral architecture search and hyper-parameter tuning require
training of several models to come up with a near-optimal
hyperparameter set (e.g., learning rate, momentum, and
regularization) and architecture (e.g., number and types of
layers) (Bergstra et al., 2011; Bergstra & Bengio, 2012;
Elsken et al., 2019). Similarly, during the training phase,
ensemble learning trains multiple models to improve the
accuracy (Wasay et al., 2020; Ganaie et al., 2021). Such
repetitive training tasks are prevalent, making up 70.2%
of hardware resource consumption in a single-GPU setting
(46.2%) and multi-GPU setting (24%) combined (Wang
et al., 2021).

Low compute utilization. Modern deep learning hardware
(e.g. GPUs, TPUs and accelerators) has high compute power
and data parallelism. However, existing neural network
operators cannot fully utilize modern hardware (Coleman
et al., 2017; Zhu et al., 2018; Narayanan et al., 2018; Liu
et al., 2020; Wang et al., 2021). This low utilization is due
to the prevalence of small memory-bound kernels and the
inherent complexity of writing code that fully utilizes this
compute-rich hardware (Wang et al., 2021).
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State-of-the-art research proposes two strategies to tackle
the problem of low compute utilization:

1) Increasing the minibatch size within a single neural
network helps increase data parallelism and maximizes the
number of floating point operations per second, thereby
improving utilization on powerful accelerators (Rhu et al.,
2016; Jain et al., 2018; Peng et al., 2020; Wahib et al., 2020).

2) Concurrently training multiple models on a single ac-
celerator improves compute utilization by taking advantage
of structural similarity across the various models. This con-
current training is achieved by fusing identical operators
across the different models into a single operator (known as
horizontal fusion) (Narayanan et al., 2018; Liu et al., 2020;
Wang et al., 2021).

Large memory footprint limits scaling. While these
strategies can improve compute utilization, the size and
number of models that we can concurrently train on a single
GPU are drastically limited by the large (and increasing)
memory requirements of the training process as well as the
limited memory capacity of modern GPUs.

Feature maps lead to memory over-subscription. For
widely used models, the source of these large memory foot-
prints are the feature maps (Rhu et al., 2016; Jain et al.,
2018; Peng et al., 2020). For instance, feature maps occupy
83% of the memory when training VGG-16, whereas it is
97% for Inception (Jain et al., 2018).

A key observation is that feature maps have high inactive
time in memory, which we define as the time between when
they are produced in the forward pass and utilized in the
backward pass. This is the key issue that leads to inefficient
use of the limited GPU memory. We refer to this problem
as memory over-subscription.

Swap and/or recompute tensors. Two techniques have
been proposed to address memory over-subscription.
(1) Tensor recomputation: a subset of feature maps are
discarded after their use in the forward pass and recomputed
when needed during the backward pass (Chen et al., 2016;
Jain et al., 2020).
(2) Tensor swapping: a subset of feature maps are offloaded
to the larger host memory (i.e. CPU DRAM) during the
forward pass and are fetched back into the GPU memory
during the backward pass (Rhu et al., 2016; Peng et al.,
2020; Wahib et al., 2020; Ren et al., 2021).

Tensor swapping and recomputation do not scale. As
the size and number of models grow, directly applying the
cutting-edge tensor swapping and recomputation techniques
to concurrent multi-model training, leads to significant slow-
downs. This is due to non-trivial overheads from tensor
fetching delays during the backward pass and performance
overheads from superfluous tensor recomputation. We show
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Figure 1. Multi-model training performance (latency), is a function
of the trade-off space defined by compute utilization, peak memory
consumption and degree of independence between operations.

in our experiments that this slowdown can be as high as
50%.

Problem. This paper tackles the problem of scaling concur-
rent multi-model training as models grow and peak memory
requirement surpasses the available GPU memory capacity.

Challenge. To efficiently scale concurrent training, we
need to answer several questions: How many operations
should we fuse across models to saturate compute? How
many, and which intermediate tensors should be swapped
or recomputed (if any)? When to discard/offload them and
when to recompute/prefetch them back? How to maximally
overlap the data movement with useful compute to minimize
stalls? Many of these questions are NP-Hard problems.

Solution-µ-two. We present µ-two, a novel compiler that
maximizes GPU utilization to efficiently scale concurrent
training of multiple models. We show that µ-two achieves
up to 3× faster end-to-end training latency than state-of-
the-art approaches for models with memory requirements
up to 6× the GPU memory size. The core insight in µ-
two’s design is that the training performance (latency), of
any given set of models, is a function of the trade-off space
determined by compute utilization, peak memory consump-
tion, and the degree of independence between operations, as
illustrated in Figure 1. To achieve scalable model training,
we need to efficiently navigate this trade-off, for a given set
of models and hardware, instead of having a fixed strategy.
µ-two’s compilation strategy automatically adapts to the
properties of input models and the performance characteris-
tics of the target GPU, enabling it to land in the sweet spot
of the trade-off curve. To accomplish this, for each training
session, µ-two performs static data dependency analysis
and lightweight, yet accurate, run-time profiling. It then
uses this information to (1) determine the number of oper-
ators to fuse (to saturate compute), (2) select the tensors
to be swapped and/or recomputed (to reduce peak memory
consumption), and (3) generate a tailored training schedule
that maximally overlaps data movement with independent
compute operations (to eliminate stalling).

Our Contributions are as follows:

1. We show that existing multi-model training and memory
optimization strategies do not scale with the size and number
of models, resulting in a 50% slowdown (§2 & §5).
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2. We derive the design of µ-two, a compiler based on the
central idea that the training performance (latency) of a
given set of models is a function of the trade-off space deter-
mined by compute utilization, peak memory consumption,
and the degree of independence between operations (§3).

3. Given a set of input models and a target GPU, we explain
how µ-two collects and uses static and run-time informa-
tion to generate a tailored training schedule that maximally
overlaps swaps with independent compute operations (§4).

4. We discuss how to integrate µ-two in the open source
framework PyTorch (Paszke et al., 2019). We show how
each component of µ-two can be built with latest compiler
tools and, can be smoothly plugged into the existing PyTorch
execution stack (§B).

5. We conduct a thorough experimental analysis on a di-
verse set of hardware and several state-of-the-art model ar-
chitectures spanning vision, natural language processing and
recommendation systems. Our results show that compared
to the state-of-the-art approaches (HFTA), µ-two enables
concurrent training of 3-5× more models with a memory
footprint of up to 6× the GPU memory size and delivers a
3× speedup (§5).

2 BACKGROUND AND MOTIVATION

Neural network training. Training happens across several
epochs. During every epoch, the neural network processes
the data in subsets called mini-batches. For every round
of mini-batch training, the computation is divided into two
phases: (i) forward pass and (ii) backward pass. Figure 2a
shows a computational graph corresponding to a network
with 5 parameterized layers.

i) Forward pass. During the forward pass, the mini-batch
is passed sequentially through every layer of the network to
produce a set of neural network outputs. As shown in Figure
2a, to produce the output tensor Z2, we just need the input
tensor Z1, the weight tensor W2, and enough memory to
store the output tensor Z2.

ii) Backward pass. In the second phase, i.e., the back-
ward pass, we compute the weight gradients. Backward
pass is, in principle, application of the derivative chain rule.
Like the forward pass, the backward pass is also processed
sequentially but in reverse. As shown in Figure 2b, For
computing the weight gradient∇W2 we require∇Z2 and
Z1. The tensors, that are produced during the forward pass
and are required for calculating the weight gradients in the
backward pass, are called as feature maps or intermediate
tensors, while the corresponding tensors produced during
the backward pass for computing the weight gradients are
called as gradient maps.

Inefficient memory usage. The major training frameworks,
including Tensorflow (Abadi et al., 2016), PyTorch (Paszke
et al., 2019), and MXNet (Chen et al., 2015), suffer from
inefficient memory utilization because they store all the
intermediate tensors, gradient maps, weights, and weight
gradients throughout the processing of a minibatch.

Out-of-memory strategies. For many widely used models,
the intermediate tensors produced during forward pass and
consumed during backward pass are the major consumers of
memory(Rhu et al., 2016; Jain et al., 2018; Peng et al., 2020).
Out-of-memory approaches address this problem of fixed
and inefficient memory allocation by freeing up memory
occupied by intermediate tensors that are not immediately
needed. These approaches are motivated by the fact that
there is a huge temporal gap between the last use of a tensor
during the forward pass and its first use in the backward
pass. Figure 3a shows this idle time for every feature map
when training BERT (a state-of-the-art language model).

Strategy 1: Tensor swapping. The tensor swapping strate-
gies selectively offload tensors during the forward pass from
the smaller GPU memory to the larger host memory. Dur-
ing the backward pass, the offloaded tensors are prefetched
before their use to minimize the overall execution time. In
scenarios with stringent memory constraints, we may need
to offload several tenors to the host memory. In such cases,
the backward pass may incur several stall cycles waiting
for the required tensors to be fetched. Figure 2d shows
what happens when computing ∇W2: the required tensor
Z1 needs to be swapped in from host memory.

Strategy 2: Tensor recomputation. Tensor Recomputa-
tion strategies trade-off compute for memory. These ap-
proaches discard a selected number of tensors after their
last use in the forward pass. During the backward pass,
when these tensors are required for gradient computation,
they are recomputed. Tensor recomputation involves the
repetition of several forward pass operations to recompute
the desired tensors which adds compute overhead in favor
of memory savings. Figure 2c shows what happens when
computing ∇W2: the required tensor Z1 needs to be re-
computed. Unlike swapping, tensor recomputation does
not add any stalling cycles in the execution path. Although
tensor recomputation keeps the GPU busy at all times, the
computation is superfluous.

Horizontal fusion. When concurrently training multiple
neural networks on a single GPU to better utilize hard-
ware, recent research proposes deeply fusing the neural
networks together. In this approach, known as horizontal
fusion (Wang et al., 2021), operators corresponding to every
layer in the set of concurrently trained neural networks are
fused together. These fused neural networks can then be
trained simultaneously using a single GPU. For instance, in-
dividual convolutional operators across models are mapped
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Figure 2. (a) Computation graph of a simple neural network with five layers showing the various intermediate tensors produced and
required during the forward and the backward pass. (b), (c), and (d) show the computation of ∇W2 when no out-of-memory, tensor
recomputation, and tensor swapping strategies are employed respectively.

(a) When training BERT (with batch size 32),
feature maps stay idle in memory for a long
period of time.

(b) Peak memory increases during the for-
ward pass and decreases during the back-
ward pass (BERT with batch size 32).

(c) We exceed the memory limit of the
Nvidia A100 GPU when horizontally fus-
ing four models (batch size: 8 and 16).

Figure 3. Memory Footprint Characteristics

to grouped convolutions, while matrix multiplications are
mapped to batch matrix multiplications. While horizon-
tal fusion can improve compute utilization, naively fusing
neural networks easily lead to a scenario, where the fused
network does not fit in memory. As evidence of this, we
show the memory requirement of training state-of-the-art
models in Figure 3c. We observe that fusing just four mod-
els leads to a scenario where we exceed the memory limit
of the Nvidia A100 GPU across all these models.

3 µ-TWO : INSIGHTS AND OVERVIEW

We discuss the core insights that drive µ-two’s design and
provide an overview of our compiler through an example.
The next section discusses the core algorithm in detail.

3.1 µ-two Insights and design space

Insight I1: Swapping makes only the backward pass IO-
sensitive. Any tensor swapping algorithm changes the IO
sensitivity of the backward pass. During the forward pass,
the tensors to be offloaded can be sent to the host memory
asynchronously without blocking the computation process.
However, fetching the swapped tensor back to the GPU dur-
ing the backward pass lies in the critical path. If the required
tensor is not fetched before the corresponding gradient cal-
culation, then training stalls.

Insight I2: The forward and backward passes of two
concurrently trained models are independent. When

training a single model, the forward and backward passes
depend on one another since the feature maps produced dur-
ing a forward pass are utilized in the next backward pass for
computing weight gradients (and the subsequent forward
pass uses these gradient updates and so on). However, when
concurrently training multiple models, there is no such data
dependency across different models.

Insight I3: Peak memory consumption monotonically
increases during the forward pass and decreases during
the backward pass. During the forward pass, feature maps
are created. During the backward pass, these accumulated
feature maps are used to calculate the gradients and are
released as soon as they are used. Figure 3b shows this
phenomenon when training BERT.

Design implications. (I1) motivates that swapping should
be scheduled conservatively, and in order to minimize stall
overheads, one needs to achieve as much overlap with com-
pute as possible. (I2) suggests that when concurrently train-
ing models, we can use compute operations from some
models to overlap swapping operations from other models.
Since modern interconnects (PCIe and NVLinks) allow full
duplex data transfers, the forward pass and backward pass
data transfers across models are resource-independent. (I3)
suggests that, we should only multiplex backward pass op-
erations with forward pass operations (from other models)
due to their contrasting memory consumption patterns. (I1)
also supports this observation since the IO sensitivities of
the forward pass and backward pass are complementary.
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Design trade-off space. Recent work has shown that hori-
zontal operator fusion across multiple models is necessary to
achieve maximum compute utilization. Combined with the
design implications stated above, this lands us in a design
trade-off space where different approaches exist with respect
to compute utilization, independence between operations,
and memory consumption. There are two extremes.

a) Complete fusion. On one hand, if we fuse all operations
horizontally, we get a single and monolithic forward and
backward pass, with individual operations from each of the
participating models being inseparable. This means that:
(i) we can achieve maximum compute utilization, but (ii)
with minimal opportunities to multiplex operations, and (iii)
with high peak memory consumption, resulting in more
swap/recompute operations.

b) No fusion. On the other end of this spectrum, not ap-
plying any horizontal fusion gives us a separate forward
and backward pass for each model. This means that we
get (i) severe under-utilization of compute, but (ii) we get
maximum independence across multiple operations from
different models for overlapping with swaps, and (iii) the
peak memory consumption of non-fused operations is low,
resulting in minimal swap/recompute operations.

Design choice for µ-TWO: Sub-array fusion. At the core
of µ-two’s approach is the identification of the optimal point
within the trade-off space by utilizing the degree of fusion
as a parameter to strike a balance between competing objec-
tives. This is achieved by partitioning the target model array
into multiple sub-arrays and horizontally fusing operations
across the models within each sub-array. This sub-array
fusion balances desirable properties of the two extremes:
µ-two can (i) sufficiently utilize compute, (ii) multiplex
operations from the forward pass of one sub-array with
backward pass operations of another sub-array (vice versa),
providing opportunities to overlap any necessary swaps and
(iii) also reduce peak memory consumption.

3.2 µ-two system overview and example

We present the system architecture of µ-TWO (Figure 4)
through a running example.

Input. The input to the µ-two system is the set of models to
train, i.e., their exact specification: architecture, loss func-
tion, mini-batch size, etc. Every model can have different
hyperparameters, such as momentum, learning rate, and ini-
tialization but the architecture should be the same across all
models. We illustrate µ-two’s behavior through a running
example, where an array of eight models [M1...M8] is given
as input.

1. Model sub-array constructor The first step is to enu-
merate all possible sub-array partitions of the input array of
models. For our example of eight models, this results in the

following four partitions:
(a) 2 sub-arrays of 4 models
(b) 2 sub-arrays of 3 models, 2 sub-arrays of 1 model
(c) 4 sub-arrays of 2 models each
(d) 8 sub-arrays of 1 model each
The input number of models can be odd or even. The number
of sub-arrays created will always be even, since sub-arrays
are processed in pairs. For example, we show processing of
partition (a) in Figure 4: given the model array [M1...M8], it
creates two sub-arrays, A1 consisting of models [M1...M4]
and A2 consisting of [M5...M8].

2. Horizontal fuser For each possible partition of the input
model array, the operators across models within each sub-
array are horizontally fused. For example, Figure 4 shows
how, for partition (a), the models within A1 and A2 are
horizontally fused to create two horizontally fused training
arrays FA1 and FA2.

3. Graph tracer. For each fused sub-array, the Graph tracer
derives the forward and backward computational graph con-
sisting of nodes as operations and edges describing the data
flow dependencies. As shown in Figure 4, for fused sub-
array FA1, the Graph tracer produces the forward pass
graph FW1 and backward pass graph BW1, and similarly
for FA2, it traces FW2 and BW2.

4. Profiler. Then for each partition, the Profiler runs 3
iterations (after 1 warm-up) to collect performance profiling
statistics so we can compare those partitions. There is an
extensive set of data collected - a detailed description is
provided in Section 4.1. Profiling data includes:

(i) Static analysis statistics such as the uses of feature
maps in the forward and backward pass.
(ii) Run-time statistics such as the run-time of each
operation, and swap-time of each feature map.
(iii) Memory usage statistics such as the active and peak
memory consumption during execution of each node, and
size of feature maps.

5. Scheduler. The collected profiling information is used to
make scheduling and memory optimization decisions by the
Scheduler. The scheduler considers all possible partitions
(e.g., (a) through (d) in our example) and simulates the
expected training time for each partition when making the
best possible memory and computation utilization decisions
for each one. If a partition does not satisfy the memory limit,
it is discarded. At the end, the scheduler picks the partition
with the shortest expected training time.

The Scheduler considers two sub-arrays at a time (closest
iteration time). For example, for partition (a) in our running
example (2 sub-arrays of 4 models), the Scheduler first
operates on the backward graph BW1 of fused model sub-
array FA1 and the forward graph FW2 of fused model sub-
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Figure 4. µ-two System architecture: the the end-to-end operations flow for 2 sub-arrays of 4 models.

array FA2, since their operations are pair-wise independent.
It then operates on [BW2, FW1]. The Scheduler utilizes the
following components to analyze sub-arrays.

(i) Swap/recompute calculator. It makes a greedy decision
regarding whether a feature map needs to be swapped or
recomputed and calculates the cost for each case.
(ii) Multiplexer. It multiplexes operations from the forward
graph to maximize the overlap of compute with swapping
operations in the backward graph.
(iii) Memory simulator. It validates the decisions made by
the Swap/recompute calculator and Multiplexer by ensuring
that they do not violate GPU memory constraints.
We describe these components in detail in Section 4.2.

6. Graph rewriter. The Graph rewriter processes the graph
pairs corresponding to the partition selected by the Sched-
uler. In our running example, it is partition (a). As illustrated
in Figure 4 the Graph rewriter takes in graphs [BW1, FW2]
to produce a merged graph G1 that reflects the decisions
made by the Scheduler. The merged graph includes hints
at various nodes to enforce decisions like: when a tensor
should be swapped in/out, when a tensor should be discarded
etc. It also extracts sub-graphs for regenerating the tensors
selected for recomputation and inserts them at appropriate
locations. It then repeats the same process for [BW2, FW1]
to produce G2.

7. Schedule interpreter. The Schedule interpreter enforces
the decisions made by the Scheduler and utilizes the hints
provided by the graph re-writer to drive the execution of the
merged graphs, e.g., G1 and G2 in our running example.

4 THE µ-TWO ALGORITHM

In this section, we describe the algorithms behind the core
components of Profiler and Scheduler. Appendix A provides
detailed algorithms for all µ-two components.

4.1 Profiling algorithm

The Profiler executes the computational graph to collect
metrics and populates them as node attributes, as listed in
Tables A and B in the Appendix. Figure 5a depicts the
two-phase flowchart for profiling.

(i) Static data flow analysis gathers metrics that can be
inferred from the computational graph without running it.
These metrics capture information about the order in which
tensors are accessed. For instance, last fw uses denotes
the set of all tensors that had their last forward use at this
node, while first bw uses denotes the set of tensors that
had their first backward use at this node.

(ii) Run-time analysis is conducted over three iterations,
with one warm-up iteration. For all run-time data collected,
the median statistic is used. The profiling process involves
three stages. In stage (1), before executing an operation
during the backward pass, all intermediate tensors required
for the operation and offloaded to host memory are swapped-
in back to GPU memory. In stage (2), the operation is
executed, and its end-to-end run time and memory usage are
collected. In stage (3), after executing an operation in the
forward pass, all intermediate tensors are swapped-out to
host memory after their last use. Stages (1) and (3) enable
profiling of computational graphs of models that exceed
the GPU memory limit with the minimum assumption that
inputs, outputs, and operation workspaces must fit on GPU
memory in isolation.

For the intermediate tensors we collect additional run-time
information required for choosing the memory optimization
strategy, such as swap time, in stages (1) and (3). Subse-
quent to profiling we populate the attribute inactive time,
which denotes the time elapsed between the last forward
and first backward access of the intermediate tensor.

4.2 Scheduling algorithm

The Scheduler takes as input a backward graph BWj and
a forward graph FWi corresponding to fused model sub-
arrays FAj and FAi and their profiling information with
the objective of minimizing GPU idle time and superfluous
compute under the given GPU memory constraints.

4.2.1 Scheduling policy

The scheduling algorithm determines whether to recom-
pute or swap intermediate tensors for the forward and back-
ward pass graph [FWi,BWj]. It uses two metrics: (1)
the time elapsed between last use in forward pass and first
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Figure 5. Flow diagrams representing the profiler, scheduling policy and swap simulation for overhead calculation algorithms.

use in backward pass (inactive time) and, (2) the ratio
of memory occupied by a tensor over the time required to
recompute it (recompute ratio). These metrics capture
an approximation of the overhead due to swapping or re-
computing tensors. Tensors are selected for swapping or
recomputation in decreasing order of their inactive times
and recompute ratios using a greedy approach. See Fig-
ure 5b for the detailed steps.

The policy iterates over a set of candidate tensors and se-
lects the best swap and recompute candidates (s cand and
r cand, respectively) using the metrics defined above. Each
memory optimization strategy has an associated overhead.
For swapping, if the candidate tensor is not fetched before
it is required in the backward pass, the processing stalls and
the overhead is equal to the stall time. The Scheduler first
attempts to schedule the candidate with zero overhead by
overlapping it with compute, and only encounters a stall if it
is unavoidable. For recomputation, the overhead is the mini-
mum time required to recompute the tensor. We calculate
the swap overhead (s overhead) for s cand and recompute
overhead (r overhead) for r cand. The Multiplexer sched-
ules the candidate with a lower overhead. It is then removed
from the candidate set, and the side-effects of its selection
are accounted for, by updating the candidates already chosen
for swap or recompute, as well as the remaining candidates.
The memory simulator then simulates the new schedule to
calculate the peak memory consumption. If it is less than
the specified limit, the process exits; otherwise, the steps
are repeated.

4.2.2 Swap simulation for overhead calculation

To calculate the swap overhead we simulate the swap using
the current state of the schedule and attempt multiplexing

nodes from forward and backward graph to maximally over-
lap the swap. A step-by-step flowchart for calculating the
swap overhead is shown in Figure 5c, while the timeline
snapshots of the simulation algorithm are shown in Figure 6
and explained using an example.

The swap overhead calculation involves two terms:
(1) the set of consecutive operations where peak
memory consumption exceeds the GPU memory limit
(peak memory interval) and, (2) the node in the back-
ward graph (prefetch prompt) that begins swapping-in
the intermediate tensor before its first bw access. Swap-
ping is not possible in the peak memory interval as there
is no memory available for the tensor being swapped in. Any
delay in this process causes a stall, which is measured as the
swapping overhead. The algorithm takes in the swap cand,
its swap time, and a flag indicating whether the peak mem-
ory interval has been reached (reached peak).

Based on when we enter the peak memory interval, the
calculation of the swap overhead can be classified into three
cases:

1. No overlap. When the peak interval is already reached
before scheduling the swap, we cannot overlap this swap
with compute and the swap overhead is calculated based on
whether this swap: (a) does not conflict with existing swap
or (b) conflicts with an existing swap. In case 1(a), the swap
overhead is the total swap time of the candidate. In case
1(b), the swap overhead is the remaining time of the the
conflicting swap (remaining time), plus the swap time
of this candidate.

2. Complete overlap. When peak interval is not reached
after scheduling swap, the swap can be completely over-
lapped by using: (a) forward pass operations only or (b) mix
of forward and/or backward pass operations. For both the
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Figure 6. Timeline snapshots of swap simulations for calculating the swap overhead of intermediate tensors.

cases 2(a) and (b), we are able to completely overlap the
swap with useful compute resulting in zero overhead.

3. Partial overlap. When peak interval is reached while
scheduling swap, the swap is partially overlapped by using a
mix of forward and/or backward pass operations. In case 3,
any remaining time that we are not able to overlap with
compute is the swapping overhead.

Example. Figure 6a shows the backward computa-
tional graph BW1 for fused sub-array 1, while Figure
6b, shows the forward computational graph FW2 for
fused sub-array 2. Figure 6c shows the topologically
sorted compute operation timeline of BW1 followed by
FW2. Based on the inactive times, the intermediate ten-
sors to be scheduled for swapping for BW1 are ordered
as Z1

1 , Z
1
2 , Z

1
3 , Z

1
4 with their first backward accesses be-

ing ∇W 1
2 ,∇W 1

3 ,∇W 1
4 ,∇W 1

5 respectively. First we try
scheduling swap-in of Z1

1 whose first bw access is at
∇W 1

2 . We then try to overlap it with forward operations
Z2
1 , Z

2
2 and are able to do so with zero overhead, resulting

in Case 2(a) as shown in Figure 6d. Next, we try scheduling
the swap-in of Z1

2 . We are only able to use one forward oper-
ation Z2

1 due to memory constraints. Hence, we also make
use of the backward operation ∇Z1

3 to overlap it. Since
we moved Z2

1 ahead in our timeline, we need to adjust the
the previous overlap of Z1

1 using the subsequent forward
operations Z2

2 , Z
2
3 . We are successful in doing so with zero

overhead resulting in Case 2(b) as shown in Figure 6e. Next
we try scheduling the swap-in of Z1

3 . We cannot use any
more forward operations due to memory constraints. Hence,
we try to make use of backward operations. We see that we
could use only one backward operation∇Z1

4 , since we reach
the peak memory interval (indicated by red marker). We are
only able to partially overlap this swap-in resulting in swap
overhead equal to its remaining time (stall time) resulting
in Case 3, as shown in Figure 6f. At this point we can also
switch to recompute Z1

3 if its recompute overhead is lower
than the stall time. Finally, we try to schedule the swap-in
of Z1

4 . Since its first bw access (∇W 1
5 ) happens during

Table 1. We evaluate µ-two on state-of-the-art models covering a
large space of use cases, arch. features, and model/batch sizes.

Application Model
Name Functionality Architectural

Features Params Batch
Sizes

Vision

Vision
Transformer Image

Classification,
Image

Segmentation,
Action

Recognition

Positional
image

embeddings,
transformers

60M 8
16

Mobilenet
v3 large

Depthwise
separable

convolutions
5.4M 64

128

Resnet101
Convolutions,

Skip
Connections

44.5M 48
64

Natural
Language
Processing

Bert Predict Next
Sentence

Transformer
Encoders 100M 16

24

GPT2 Predict Next
Token

Transformer
Decoders 124M 8

16

Recomm-
der

Systems

NVIDIA
DLRM

Item
Recomm-
endation

Encoders,
Decoders,

sparse
embeddings

40M 512
1024

peak-interval, we cannot overlap it with compute operations.
Hence, we encounter a stall equal to its swap time. This
results in Case 1(a) as shown in Figure 6g. Similar to the
previous case, we can decide to recompute Z1

4 instead, if its
recompute overhead is lower.

5 EXPERIMENTAL ANALYSIS

We show how µ-two improves training time up to 3× across
several state-of-the-art and diverse models.

Neural networks. We evaluate µ-two on six state-of-the-
art neural network models from computer vision, natural
language processing, and recommendation systems (Table
1). These models cover a diverse array of use cases, archi-
tectures, and model/batch sizes.

Experimental setup. We report results on setups with two
different classes of Nvidia GPUs: A100 with 40 GBs of
memory and V100 with 32 GBs of memory (more details in
Table C in the Appendix). All experiments are run on the
machine with the latest A100 GPU unless stated otherwise.
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(a) Bert (batch size: 24) (b) ViT (batch size: 8)
Figure 7. µ-two saves between 5 to 40 hours in end-to-end training
time when concurrently training several BERT and ViT models.

Baselines. We compare against two baselines:

1. HFTA-NoMemOpt. HFTA is the state of the art and has
shown 3-11x speed-ups over all other concurrent training
techniques (Wang et al., 2021). It offers no memory opti-
mization and requires the allocation of peak memory during
every training iteration. To provide a fair comparison, when
the model array we want to train doesn’t fit in memory, we
break them down into subsets that do and sequentially train
each subset.

2. HFTA-Capuchin. We construct this baseline by ap-
plying a state-of-the-art memory optimization algorithm
Capuchin (Peng et al., 2020) to HFTA. Capuchin is a hybrid
strategy for memory optimization, developed in the context
of single model training, that uses both tensor swapping and
tensor recomputation strategies to train models having peak
memory consumption more than the GPU memory capacity.

The purpose of this baseline is to evaluate the performance
of µ-two relative to naively applying state-of-the-art mem-
ory optimization strategy to concurrently training models.

Metrics. We report: (i) the improvement in end-to-end
training time (i.e., decrease in GPU hours) and (ii) improve-
ment in one round of mini-batch training (i.e., normalized
speedup). We do not report accuracy or show convergence
curves since the the training algorithm remains unchanged.

5.1 µ-two saves upto 40 out of 60 GPU hours in
end-to-end training time

First, we show the impact of µ-two on end-to-end train-
ing time of two large scale state-of-the-art models – Vision
Transformer and Bert. We vary the number of concurrently
trained models and train each set of models for 10k itera-
tions1. As shown in Figure 7, µ-two saves between 5 to 40
hours in training time when compared with state-of-the-art
HFTA baseline. This result indicates that concurrently train-
ing models on a single GPU can significantly reduce the
time (and the dollar cost) of training deep learning models

1Bert and Vision Transformer both require more than 10k it-
erations to converge, we cap-off our training at 10k, since it is
sufficient to show the absolute benefit.

thereby enabling model design and training in low-resource
environments.

5.2 µ-two achieves 3x speedup in iteration latency

Next, we show how µ-two speeds up training iteration la-
tency. In addition to the HFTA baseline, we compare against
HFTA-Capuchin a variant of the µ-two system that fuses all
models together to create a single execution graph (instead
of the sub-array fusion employed by µ-two). Comparing
against HFTA-Capuchin help us evaluate the additional ben-
efit provided by the sub-array fusion technique introduced in
µ-two. To measure the end to end latency, we perform 100
warm-up iterations to stabilize training and then measure 10
iterations using the PyTorch profiler and record the median.

We report the normalized speed up (over the HFTA baseline)
in end-to-end iteration latency achieved by all three systems
across all six models in Figure 8. µ-two consistently outper-
forms both HFTA-NoMemOpt and HFTA-Capuchin. This
speedup scales as we increase the number of models. Over-
all, µ-two results in upto 3× speedup compared to state-of-
the-art HFTA. When comparing µ-two and HFTA-Capuchin,
we observe that µ-two consistently outperforms HFTA-
Capuchin indicating that the sub-array fusion technique
employed by µ-two is able to keep the memory optimiza-
tion overhead to a minimum. In case of HFTA-Capuchin,
we observe that as we increase the number of models the
memory optimization overhead (stemming from complete
fusion of models) takes precedence and performance takes
a hit. This performance dip is particulary pronounced for
compute-intensive vision models (i.e., Mobilenet, Resnet
and NV DLRM). Overall, µ-two speeds up per iteration
training latency establishing a new baseline for concurrent
training of multiple models on a single GPU.

Diverse hardware. We repeat our experiments on a differ-
ent set of hardware with V100 GPU (from Table C). We
scale the batch size appropriately to account for the smaller
GPU memory size of this setup. Figure 8g and Figure 8h
show results for Bert and DLRM respectively. The trend
continues to hold – µ-two provides highest speed-up.

5.3 Performance breakdown

To understand in detail how and why µ-two achieves signif-
icant speed-up, we break down its performance using the
following metrics. We do the case study for two models,
Bert 8a and Vision Transformer 8c, since they present an
interesting behavior; they both show good speed-up on the
lower range of models with HFTA-Capuchin but then show
a performance dip later on. µ-two , on the other hand, shows
consistent speed-up in both cases.

(a) Iteration latency breakdown. We report how much
time µ-two spends in useful compute and recompute oper-
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(a) Bert (Batch size: 24) (b) GPT2 (Batch size: 16) (c) ViT (Batch size: 8) (d) Mobilenet (Batch size: 64)

(e) Resnet101 (Batch size: 48) (f) DLRM (Batch size: 1024) (g) Bert (Batch size: 16) (h) DLRM (Batch size: 512)
Figure 8. µ-two results in up to 3× improvement in latency for one round of mini-batch training (forward and backward pass) when
compared to state-of-the-art approaches across a diverse array of models. This improvement scales with the number of models.

ations compared to HFTA-NoMemOpt. And we see that
by applying horizontal fusion to larger set of models, µ-
two is able to extract more compute utilization than HFTA-
NoMemOpt. Although, µ-two does some recompute due
to fusing larger arrays of models, it does not outweigh its
benefit.

(b) Recomputation ratio. (lower is better) We measure
the ratio of the time spent in recompute with respect to the
total compute time and then compare µ-two with HFTA-
Capuchin’s recompute ratio. Clearly, µ-two spends less
than half of the relative time in recomputation than HFTA-
Capuchin. Since recompute is redundant, µ-two performs
better by minimizing it.

(c) Swap overlap ratio. (higher is better) We measure the
ratio of the time µ-two and HFTA-Capuchin are able to
overlap their swaps behind total compute time. µ-two is
able to overlap its swaps with useful compute, 2-3x more
than HFTA-Capuchin. This shows that µ-two’s multiplexer
does better job at using operations from multiple model
sub-batches to overlap swaps. This reduces the need for
recomputing as well.

(d) Peak memory consumption ratio. (lower is better)
We measure the amount of peak memory that exceeds the
GPU memory limit, before optimizing it. Our goal is to
show the ramifications of horizontally fusing all the op-
erators together vs fusing them in sub-batches for HFTA-
Capuchin and µ-two respectively. µ-two’s sub-batching
approach reduces the peak memory consumption, that fur-
ther allows in reducing the number of swap and recompute
operations.

5.4 µ-two profiling and scheduling overhead

Since the profiling is done only for 4 iterations (3 mea-
sured + 1 warm-up) per choice of model array partition, it
is lightweight and takes on the order of seconds to com-
plete. Typically models take around thousands of iterations
to converge so this overhead is negligible.

Choosing which tensors to swap or recompute has shown to
be an NP-Hard problem (Jain et al., 2020; Peng et al., 2020;
Wahib et al., 2020). Hence, we greedily decide to swap or
recompute a tensor in every iteration. Overall our algorithm
is quadratic in terms of the number of intermediate tensors.
The scheduler makes all its choices by simulations based on
profiling data. Therefore, it has has zero run-time overhead
and typically completes scheduling within a minute.

6 RELATED WORK

Multi-model training. Model and data sharing techniques
help to improve hardware utilization. For example, Hive-
Mind avoids redundant data transfer costs, performs kernel
fusions, and concatenates inputs for models with shared
weights to increase the computational intensity of the ker-
nels (Narayanan et al., 2018). ModelPacking rewrites multi-
ple neural networks as a single concatenated network (Liu
et al., 2020). Similarly, Horizontally Fused Training Array
(HFTA) maps kernels across models into a single highly
optimized kernel (Wang et al., 2021).

However, all such approaches require the models to fit
onto the accelerator’s memory. On the other hand, µ-two
supports out-of-memory execution, enabling larger batch
sizes, larger model sizes and larger number of models being
trained on the same accelerator. A comparison of multi-
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(a) Bert Latency Breakdown (b) Bert Recomputation Ratio (c) Bert Swap Overlap Ratio (d) Bert Peak Mem. Cons. Ratio

(e) ViT Latency Breakdown (f) ViT Recomputation Ratio (g) ViT Swap Overlap Ratio (h) ViT Peak Mem. Cons. Ratio

Figure 9. Performance breakdown of the BERT and ViT model shows that: (i) µ-two results in lower compute latency, (ii) µ-two provides
a lower recompute ratio (i.e., fewer tensors need to be recomputed), (iii) µ-two is able to better overlap swap with useful compute, and (iv)
overall results in less peak memory consumption.

model training techniques is shown in Table D.

Out-of-memory approaches. We classify out-of-memory
approaches into three categories. 1.Tensor rematerialization:
Gradient-checkpointing employs recomputation of feature
maps discarded at specific checkpoints during the forward
pass thereby enabling training neural nets at sub-linear mem-
ory cost at the expense of an extra forward pass computation
(Chen et al., 2016; Jain et al., 2020). 2.Tensor swapping:
vDNN offloads tensors to the larger host memory during
the forward pass and fetches them before they are required
in the backward pass. 3. Hybrid strategies: Recent work
combines these two techniques. Capuchin dynamically de-
cides which tensors to discard or offload based on their idle
time in GPU memory and their recompute vs. transfer time
ratio (Peng et al., 2020). KARMA proposes to interleave
recompute with tensor prefetching to utilize idle GPU cy-
cles when an offloaded tensor is being fetched back into
memory (Wahib et al., 2020). Zero-Infinity and vPipe apply
the memory swapping techniques not only to the activations
but also to the model parameters to allow scaling of large
networks across multiple GPUs in context of model-parallel
training. (Rajbhandari et al., 2021; Zhao et al., 2022).

Although hybrid strategies can overlap some stalls incurred
during swapping by recompute, the recomputation of these
layers is still redundant computation. µ-two avoids this
problem. It overlaps the stalls incurred during fetching of
offloaded layers in the backward pass of some models, with
the forward pass operations of others, thereby performing

useful compute during the stalling period and employing
recompute only if there is no sufficient useful compute to
overlap the memory transfers. Hence, it eliminates the
stalling of pure tensor offloading approaches and provides a
superior compute-memory trade-off for hybrid approaches
resulting in improved throughput. A comparison of out-
of-memory approaches with µ-two is shown in Table E.
Appendix D contains additional discussion on related topics.

7 CONCLUSION

In this paper, we tackle the problem of slow neural net-
work training due to compute underutilization and inefficient
memory usage. These problems become ever more critical
as networks become more complex (larger) and as applica-
tions need to consider numerous networks simultaneously
(e.g., in Auto-ML). We introduce a compiler µ-two, that is
designed to efficiently navigate the performance trade-off of
compute utilization, memory consumption, and number of
independent operations. Augmented with lightweight pro-
filing and static analysis, µ-two saturates compute through
fusion, efficiently utilizes memory via swap/recompute, and
maximally overlaps data movement with independent com-
pute operations. µ-two generates tailored training schedules
for any given set of models and target GPUs. Compared to
the state-of-the-art approaches, µ-two enables concurrent
training of 3-5× more models with a memory footprint of
up to 6× the GPU memory size and delivers a 3× speedup.
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A µ-TWO ALGORITHMS

A.1 Profiling Attributes and Algorithm

Table A. Profiling and Scheduling attributes for nodes
Atrribute Definition

Profiling Attributes

rank the position of the node in the topological
sort of the graph

gtype type of graph this node belongs to
[forward/backward]

run time the run-time of the node in milliseconds
peak mem the peak memory usage in bytes

active mem the active memory usage in bytes
(minimum required memory)

Scheduling Attributes

to offload list of nodes to be offloaded to host memory
after this node is executed

to delete list of nodes to be deleted after this node
is executed

to prefetch list of nodes to be prefetched from the host
memory before this node is executed

to recompute list of nodes to be recomputed before this
node is executed

Table B. Profiling, Swapping and Recomputation attributes for
intermediate nodes (feature map tensors)

Atrribute Definition
Profiling Attributes

inactive time the time duration elapsed between last
forward access and first backward access

swap time time required to swap the tensor to/fro host
memory and device memory

memory size the size of the tensor in bytes

last fw access reference to the node that serves the last
access of this tensor in the forward pass

first bw access reference to the node that serves the first
access to this tensor in the backward pass

last bw access reference to the node that serves the last
access of this tensor in the backward pass

Attributed for swapping

prefetch prompt the node that serves as the prefetch prompt
if this tensor is swapped

active fw interval the first and last nodes in the forward pass
during which the tensor resides in memory

active bw interval the first and last nodes in the backward pass
during which the tensor resides in memory

Attributes for recomputation

recomp srcs intermediate tensors that serve as sources
if the tensor needs to be recomputed

recomp graph the extracted sub-graph that needs to be
executed to regenerate this tensor

recomp cnt the number of times this tensor needs to be
recomputed during its lifetime

recomp time the time required to recompute this tensor
from its current sources

total recomp time the total time spent in recomputation of this
tensor in its lifetime

recomp memory the peak memory required during a single
recomputation of this tensor

recompute ratio memory size/total recomp time

The steps for run-time profiling are shown in Algorithm A.
For each node in the graph we collect memory consumption
of the operation (line 11) and the end-to-end time required
for it to complete by executing the operations in the graph
one by one (lines 8-10). Subsequent to the execution of an
operation in the forward pass, we swap-out all the interme-
diate tensors, after their last use, to the CPU memory (lines
12-15). Prior to the execution of an operation during back-
ward pass, we swap-in all intermediate tensors, required for
this operation, offloaded to the CPU memory back to the
GPU memory (lines 4-7). This allows us to profile com-
putational graphs of models that exceed the GPU memory
limit with the bare minimum assumption that the inputs,
outputs and workspace of every operation must fit on the
GPU memory in isolation.

Algorithm A Run-time Profiler

1: Input: graph
2: #Perfrom static data-flow analysis
3: for node in graph.nodes do
4: for t in node.first backward uses do
5: swap in(t)
6: #Measure swap-in time here
7: end for
8: #Start run-time measurement
9: Execute node

10: #End run-time measurement
11: #Measure memory consumption here
12: for t in node.last forward uses do
13: swap out(t)
14: #Measure swap-out time here
15: end for
16: end for

A.2 Scheduling Policy Algorithm

The scheduling policy is outlined in Algorithm B, that we
now explain in detail. We first initialize last prompt (line
2), that is the node in the backward graph at which the last
swap-in was scheduled. It is initialized to be the last node
in the backward graph. We choose the swap candidate
to be the intermediate tensor with largest incative time
(line 6) and calculate the swap overhead for this candidate
(line 7). The calculation for swap overhead is explained
in Section 4.2.2. We then choose our recomputation can-
didate that has the maximum recompute ratio and then
calculate the recompute overhead for this candidate (lines
8-9), explained in detail in Section A.4. We then make the
decision to either swap s cand or recompute r cand (lines
10-18). If a candidate is chosen to be swapped, then we
set the to prefetch attribute of its prefetch prompt, and
the to offload attribute of its last fw acesss node to be
this candidate (lines 11-12). If the candidate is chosen to be
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Algorithm B Scheduling Policy

1: Input: candidate set, mem limit
2: init(last prompt)
3: swaps = {}
4: recomps = {}
5: while candidate set 6= ∅ do
6: s cand = max idle candidate(candidate set)
7: s overhead, prompt node =

SwapOverhead(s cand, last prompt)
8: r cand = max recomp candidate(candidate set)
9: r overhead = RecomputeOverhead(r cand)

10: if s overhead < r overhead then
11: last prompt = Swap(s cand, prompt node)
12: swaps.add(s cand)
13: cand = s cand
14: else
15: Recompute(r cand)
16: recomps.add(r cand)
17: cand = s cand
18: end if
19: candidates.remove(cand)
20: recomp cnt = update recomps(cand, recomps)
21: update candidates(cand, recomp cnt, candidates)
22: update swap prompts(swaps, candidates)
23: mem consumption = get mem consumption()
24: if (mem consumption−mem limit) ≤ 0 then
25: break
26: end if
27: end while

recomputed then, we simply add it to the recomputation set,
we process all of the recomputations together while graph
rewriting. We account for the side-effects of this candidate
on other candidates already chosen for swap or recompute
(lines 20-23) and explain them in detail in Sections A.4 and
A.5. Finally we obtain the peak memory consumption from
the memory simulator and if it is lower than the memory
limit we exit (lines 23-26).

A.3 Swap Overhead Calculation

The detailed steps for swap overhead calculation are out-
lined in Algorithm C. The input to the algorithm is the
candidate to be swapped (swap cand), the last node in
the backward graph that was used as a prefetch prompt
(last prompt) and a flag that indicates that we have al-
ready reached the peak memory interval in swapping
(reached peak). The peak memory interval is the set of
consecutive operations in which the peak memory consump-
tion exceeds GPU memory limit, we cannot perform any
swaps in this interval since there is no memory left to al-
locate for the tensor being swapped in. Based on when
the prefetch prompt enters the peak memory interval the

Algorithm C Swap Overhead Calculation

1: Input: swap cand, last prompt, reached peak
2: bw access = swap cand.first bw access
3: swap time = swap cand.swap time
4: r time = get recomp time(bw access)
5: swap time− = r time
6: if reached peak then
7: # Case 1(a): Swap happens during peak interval
8: if bw access.rank < last prompt.rank then
9: swap overhead = swap time

10: return swap overhead, bw access
11: else
12: # Case 1(b): Swap happens during other swap
13: rem time = get remaining time(bw access)
14: swap overhead = swap time+ rem time
15: return swap overhead, bw access
16: end if
17: end if
18: # Cases 2, 3: Add forward graph nodes to overlap swap
19: fw node = first fw node
20: while swap time > 0 do
21: add forward node(bw access, fw node)
22: adjust graph(bw access, fw node)
23: mem safe = check mem safety()
24: if mem safe then
25: swap time− = fw node.run time
26: fw node = fw node.next
27: continue
28: else
29: break
30: end if
31: end while
32: #Cases 2, 3:Use backward graph nodes to overlap swap
33: if bw access.rank < last prompt.rank then
34: prefetch prompt = bw access.prev
35: else
36: prefetch prompt = last prompt
37: end if
38: while swap time > 0 and

not reached peak(prefetch prompt) do
39: r time = get recomp time(prefetch prompt)
40: swap time− = (prefetch prompt.run time

+r time)
41: prefetch prompt = prefetch prompt.prev
42: end while
43: swap overhead = swap time
44: return swap overhead, prefetch prompt

calculation of the swap overhead can be classified into the
following cases:
1. When the peak interval is already reached before schedul-

ing the swap, we cannot overlap this swap with compute
and the swap overhead is calculated based on whether
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this swap:
(a) does not conflict with existing swap
(b) conflicts with an existing swap

2. When peak interval is not reached after scheduling swap,
the swap can be completely overlapped by using:
(a) forward pass operations only
(b) mix of forward and backward pass operations or

backward pass operations only
3. When peak interval is reached while scheduling swap,

the swap is partially overlapped by using a mix of for-
ward and backward pass operations or backward pass
operations only

We first obtain the node on the backward pass before which
the swap should complete (bw access) and the time re-
quired to swap the candidate (lines 2-3). For Case 1(a), the
swap overhead is the actual swap time (lines 7-10). For
case 1(b), the swap overhead is the actual swap time plus
the remaining swap time of an existing in-flight swap that is
already scheduled (lines 11-16). If the peak memory mem-
ory interval is not reached, we first try to add nodes from
the forward graph one by one before bw acess to overlap
the swap. After adding a node from the forward graph we
check if this actually reduces the peak memory consump-
tion (using Memory Simulator, Section A.6), since adding a
forward graph node comes at the cost of increased memory
consumption. If that is the case, only then we proceed and
reduce the swap time by the forward node’s computation
time. Case 2(a) happens if the swap time reaches zero
(lines 19-31). In case the swap time has not reached zero
and we cannot use any more forward graph nodes to overlap,
we try to see if we can use the backward graph nodes prior to
bw acess to overlap this swap. We reduce the swap time
by a backward node’s computation time as we iterate in a
reverse fashion through the backward pass graph. Case 2(b)
happens if the remaining swap time reaches zero, else we
are left with some swap time that cannot be overlapped
and we incur a swap overhead resulting in case 3 (lines
33-43). The swap overhead calculation also takes into ac-
count any recomputation time that can be used to overlap
the swaps (lines 4-5, 39-40), we explain how we do this in
Section A.5.

A.4 Recompute Overhead Calculation

We largely adapt the recomputation algorithm from (Peng
et al., 2020) which is based on the Spark’s RDD lineage
(Zaharia et al., 2012). A candidate might be recomputed
either once when it is required or while recomputing some
other candidate that requires it during its own recomputa-
tion. Hence, the recomputation overhead for a candidate is
calculated as the time required to recompute the candidate
(recomp time) multiplied by the number of times it will
be recomputed (recomp cnt) in its lifetime. It is tracked
as total recomp time (Algorithm D) and used to compute

the recompute ratio for choosing candidates to recompute
as explained Section 4.2.1.

Algorithm D Recomputation Overhead

input recomp cand
output r overhead

1: return recomp cand.total recomp time

For each recomputation candidate we maintain a set of
recomp srcs, which denote the ancestor nodes of the candi-
dates using which we can recompute the candidate. When a
candidate is chosen for recomputation, it may affect the can-
didates (1) that are already chosen for recomputation and/or
(2) candidates that maybe be chosen for recomputation in
future.

In Algorithm E (Case 1), we first iterate through the existing
set of recomputations, if the chosen candidate (cand) is
one of the recomputation sources (rp.srcs) of an existing
recomputation (rp), then we remove it from rp.srcs and
add the recomputation sources of the candidate (cand.srcs)
to rp.srcs (lines 4-6). We also count the number of times
this candidate will be recomputed in its lifetime (line 7).

In Algorithm F (Case 2), t is the candidate chosen for re-
computation. We iterate through the list of future candidates
(cand) and check if either (a) t exists in recomputation
sources (cand.srcs) of the cand or (b) cand exists in re-
computation sources (t.srcs) of t. In Case 2(a), we remove
t from cand.srcs and add t.srcs to cand.srcs (lines 6-7).
We then add the recomputation time of t to cand’s recompu-
tation time (line 8). We then calculate the number of times
the candidate may be recomputed for the already chosen
recomputations and accumulate that in its potential total
recomputation time (lines 10-14). For Case 2 (b), the poten-
tial total recomputation time is calculated as the number of
times t is recomputed (recomp cnt) multiplied by the re-
computation time of cand (lines 17-19). Finally we update
the recomputation ratio of all the remaining candidates.

Algorithm E Updating existing recomputations.

input recomps, cand
output recomp cnt

1: recomp cnt = 1
2: for rp in recomps do
3: if cand in rp.recomp sources then
4: rp.recomp srcs.remove(cand)
5: rp.recomp srcs.add(cand.recomp srcs)
6: rp.recomp time+ = cand.recomp time
7: recomp cnt+ = 1
8: end if
9: end for

10: return recomp cnt
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Algorithm F Updating remaining candidates.

input t, recomp count, candidates
1: for cand in candidates do
2: if t in cand.recomp srcs then
3: if cand.first bw access in

t.active bw interval then
4: continue
5: else
6: cand.recomp srcs.remove(t)
7: cand.recomp srcs.add(t.recomp srcs)
8: cand.recomp time+ = t.recomp time
9: cand.total recomp time =

cand.recomp time
10: for rp in recomps do
11: if cand in rp.recomp srcs then
12: cand.total recomp time+ =

cand.recomp time
13: end if
14: end for
15: end if
16: end if
17: if cand in t.recomp srcs then
18: cand.total recomp time =

recomp cnt ∗ cand.recomp time
19: end if
20: cand.updateRecomputeRatio()
21: end for

A.5 Effects of swap and recompute on one another

Let’s define two intervals to understand the effects of swap-
ping on recompute. For an intermediate tensor we de-
fine active bw interval as the set of operations that oc-
cur between its first use (first bw access) and last use
(last bw access) in the backward pass. For a swapped ten-
sor we define the prefetch interval as the set of operations
that occur between it’s prefetch start (prefetch prompt)
and first bw access.

We first discuss the effect of swapping on recomputation. If
a tensor is chosen to be swapped, then it may affect any re-
maining candidates that might be chosen for recomputation
in future. If the swapped tensor is one of the recomputation
sources of these candidates and their first bw access does
not lie in the swapped tensor’s active bw interval, then
it cannot be used as a recomputation source and the candi-
date’s recomputation sources need to be updated. This is
accounted for in Algorithm F (lines 3-16).

Now we explain the effect of recomputation on swapping.
If a candidate is chosen for recomputation then it needs its
sources to be available in memory. Firstly, if one of the re-
maining candidates is a source for this recomputation and is
chosen for swapping in future then it must be made available

before this recomputation takes place. Secondly, the recom-
putation time of this candidate can be used for overlapping
already scheduled swaps if it lies in their prefetch interval
or any future swaps while scheduling. Both these effects are
accounted for by Algorithm B (line 22) and Algorithm C
(lines 4-5, 39-40).

A.6 Memory Simulator

Algorithm G Memory Consumption Simulator

1: Input: graph, static mem
2: fw inter mem = 0
3: bw inter mem = graph.inter mem
4: fw active mem = 0
5: bw active mem = 0
6: peak mem = 0
7: for node in graph.nodes do
8: if node.gtype = backward then
9: bw active mem = node.active mem

10: for pnode in node.to prefetch do
11: bw inter mem+ = pnode.memory size
12: end for
13: for rnode in node.to recompute do
14: bw inter mem+ = rnode.memory size
15: end for
16: for tnode in node.first backward uses do
17: bw inter mem− = tnode.memory size
18: end for
19: end if
20: if node.gtype = forward then
21: fw active mem = node.active mem
22: end if
23: current mem = fw active mem+

bw active mem+ bw inter mem+
fw inter mem− static mem

24: peak mem = max(peak mem, current mem)
25: if node.gtype = forward then
26: for dnode in node.to delete do
27: fw inter mem− = dnode.memory size
28: end for
29: for onode in node.to offload do
30: fw inter mem− = onode.memory size
31: end for
32: for tnode in node.last forward uses do
33: fw inter mem+ = tnode.memory size
34: end for
35: end if
36: end for
37: return peak mem

The memory simulation algorithm takes in the current state
of schedule for a backward graph BWj and a forward graph
FWi corresponding to the fused sub-arrays FAj and FAi
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respectively. It maintains five variables to simulate the mem-
ory consumption at any current step:

(a) static mem: the memory occupied by weights and
weight gradients.
(b) fw inter mem: the memory occupied by the inter-
mediate tensors, between their last fw access and end of
forward pass, in FWi.
(c) fw active mem: the active memory consumption dur-
ing the forward pass excluding fw inter mem.
(d) bw inter mem: the memory occupied by the interme-
diate tensors, between the beginning of backward pass to
their prefetch prompts or first bw access, in BWj .
(e) bw active mem: the active memory consumption dur-
ing the backward pass excluding the bw inter mem.

When an intermediate tensor is prefetched or recomputed
its memory is added to the bw inter mem (lines 10-15).
When we encounter the first bw acess of an intermedi-
ate tensor, we subtract its memory from bw inter mem
since it is accounted for in bw active mem (lines 16-
18). We then measure the current memory consumption
as current mem = (b) + (c) + (d) + (e)− (a) (line 23).
We subtract static mem since it is already accounted for
twice in (b) and (c). Then we update the peak memory con-
sumption (peak mem) (line 24). We subtract the memory
of an intermediate tensors from fw inter mem that are
deleted or swapped out after their last fw acess and add
the ones that are retained (lines 26-34). Finally, we return
peak mem.

B IMPLEMENTATION DETAILS

B.1 µ-two Implementation

B.1.1 Horizontal fuser

The horizontal operator fusion is implemented in µ-two us-
ing PyTorch’s vmap library (He & Zou, 2021). It takes an
array of models to be fused together, with the requirement
that they must have identical architecture, and outputs a
single fused model with horizontally fused operators. The
models can have different loss functions, weight initializa-
tion, batch size, learning rate etc.

B.1.2 Graph tracer

After obtaining a fused sub-array of models we proceed
to graph tracing. We use PyTorch FX to represent com-
putational graphs (Reed et al., 2022). FX provides tools
for graph representation, modification, transformation and
execution. FX graphs are obtained by using a PyTorch
library AOT Autograd (aot, 2021). AOT Autograd
records the forward and backward operations performed
by the fused model using a sample mini-batch. To enable

tracing graphs of models having a memory footprint larger
than the GPU memory capacity, we make use of PyTorch
Fake Tensor Mode (fak, 2022). Fake Tensors are ini-
tialized on a meta device, they contain no actual data and
only have meta data information like data type, size, mem-
ory layout, stride etc. We use AOT Autograd under the
Fake Tensor Mode to obtain the FX Graphs.

B.1.3 Optimizers

In deep learning training, optimizers are used to update
the model weights with weight gradients, following the
backward pass. Currently, neither the vmap library al-
lows horizontally fusing the optimizer calls nor does AOT
Autograd allow tracing of optimizer calls. To circum-
navigate this problem we provide a custom implementation
of the SGD Optimizer using the point-wise multiply
and add functions (Ruder, 2017). We then batch these
function calls using vmap and attach them to the weight
gradients in the backward pass graph. We do not implement
other advanced optimizers like Adam in our work, as im-
plementation of any optimizer is sufficient to establish a
proof-of-concept of our scheduling mechanism (Kingma &
Ba, 2017).

B.1.4 Profiler

We extend PyTorch FX Interpreter to implement the µ-two
profiler (Reed et al., 2022). The FX Interpreter allows node
by node execution of the FX Graphs. We override the
run node method of the FX Interpreter and wrap the run
call using the PyTorch Profiler context manager (Lukiyanov
et al., 2021). The PyTorch Profiler is a GPU profiling en-
gine, built using Nvidia CUPTI APIs, and is able to capture
GPU kernel events with high fidelity (nvi, 2021). We extract
the latency of the CUDA kernel calls made by each node to
calculate its run-timeto eliminate the host-side overhead of
CUDA kernel launches. For calculating the memory con-
sumption we use the CUDA Memstats tool subsequent to
each run node call (cud, 2022a). Finally, to measure the
swap-out and swap-in times of the intermediate tensors we
use CUDA Events to measure the Device-to-Host (D2H)
and Host-to-Device (H2D) memcpy calls (cud, 2022b). To
optimize the memory allocation we use pinned memory
buffers on the host side. To get stable profiling measure-
ments we warm-up the CUDA caching allocator using a
warm-up run before actual profiling.

B.1.5 Schedule interpreter

The Schedule interpreter creates three CUDA Streams to
represent compute operation queue, CPU-GPU and GPU-
CPU swapping operation queues (cud, 2022b). The CUDA
Streams provide a guarantee that all operations enqueued
in a stream will be processed sequentially. However, it pro-
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vides no guarantees for operations across streams. To add or-
dering for operations across streams we uses CUDA events
to create synchronization markers. The CUDA Events API
provides us with record and wait calls for each event.
A CUDA event can be recorded in one stream and can be
waited upon in another stream. This allows us to create oper-
ation ordering across different streams and controlled asyn-
chronous processing of compute and swapping operations.
Like the profiler, the µ-two Schedule interpreter also extends
the FX Interpreter. It identifies and enqueues nodes in ap-
propriate streams. Upon encountering a prefetch prompt
it enqueues the prefetch operations in the CPU-GPU stream,
upon encountering last fw access of swapped tensors it
enqueues them in the GPU-CPU stream and all the compute
and recompute operations are enqueued in the execution
stream. Finally to overcome the host-side kernel launch and
memory allocation overhead we record the operations of
the Schedule interpreter into CUDA Graphs and then just
replay them (Nguyen et al., 2021).

Algorithm H presents the detailed execution methodol-
ogy. The input to the Schedule interpreter is the merged
graph produced by the graph re-writer with scheduling
hints. It executes the graph node-by-node and does the
following: It first checks if the node to be executed is the
prefetch prompt for a tensor to be swapped-in, if yes, it
adds a prefetch begin event in the execution stream. It
then waits for the event in the CPU-GPU stream and adds
the swap-in operation for the tensor in the CPU-GPU stream.
It then adds a prefetch end event (lines 3-8). Subsequently,
it adds all the recomputation nodes in the execution stream,
if any (lines 9-11). Prior to the execution of the node, it
waits for any prefetch end events for its inputs and then
enqueues the operation in execution stream lines(13-16). It
then deletes any tensors that are to be recomputed (lines
18-20). Finally, if there are any tensors to be swapped-out,
and have their last fw uses at this node, then their swap-
out operations are enqueued in the GPU-CPU stream (lines
21-25) by using appropriate events and waits.

B.2 Baseline Implementation

B.2.1 HFTA

We uses PyTorch’s vmap library to implement HFTA-
NoMemOpt (He & Zou, 2021). If the want to train 8 models
and let’s say only 4 models can be concurrently trained and
fused by HFTA at a time due to peak memory consumption
exceeding the GPU memory capacity, we run it twice to
reflect the total running time. We note that, to the best of
our knowledge no prior work applies memory optimization
techniques to concurrently training models on a single GPU
and hence it reflects the state-of-the-art baseline for eval-
uating relative performance. Although HFTA provides an
open source implementation, it requires manual changes

Algorithm H Execution Engine

1: for node in graph.nodes do
2: if node.gtype = backward then
3: for pnode in node.to prefetch do
4: Execution Stream:

pnode.prefetch begin.record()
5: CPU-GPU Stream:

wait(pnode.prefetch begin)
6: prefetch(pnode.cpu ref)
7: pnode.prefetch end.record()
8: end for
9: for rnode in node.to recompute do

10: Execution Stream:
execute(rnode.recomp graph)

11: end for
12: end if
13: for inp in node.input nodes do
14: wait(inp.prefetch end)
15: end for
16: Execution Stream:

execute(node)
17: if node.gtype = forward then
18: for dnode in node.to delete do
19: Execution Stream:

delete(dnode)
20: end for
21: for onode in node.to offload do
22: Execution Stream:

onode.offload begin.record()
23: GPU-CPU Stream:

wait(onode.offload begin)
24: offload(onode)
25: end for
26: end if
27: end for

to the model source code, and manually converting all the
operators in the base model to their horizontally fused ver-
sion. First, the HFTA operators are not exhaustive and do
not cover all implementations. The examples provided in
HFTA represent only a sub-set of our workload models. The
vmap library presents a fully automated way of horizontally
fusing operators across models and hence we use that to
reflect HFTA performance. We observe that vmap some-
times introduces additional transpose and cloning operations
which may cause it to be slower than the original HFTA im-
plementation. However, firstly we use the same library for
implementing horizontal fusion for µ-two (Appendix B.1.1).
Secondly, our scheduling algorithm is independent of the fu-
sion strategy. Assuming that original HFTA implementation
is faster, that will cause the compute latency to be lower and
will provide fewer opportunities to overlap swaps. At the
same time lower compute latency implies lower recompu-
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tation cost, hence our scheduling policy will automatically
choose more tensors to recompute to balance this. Thirdly,
another significant difference between HFTA and vmap
is that HFTA allows horizontal fusion of optimizers while
vmap does not. We explain how we circumnavigate this
limitation in Appendix B.1.3. Finally, HFTA open-source
implementation is not fully composable with other PyTorch
components.

B.2.2 HFTA-Capuchin

Capuchin does not provide an open-source implementation,
and hence, we thoroughly implement Capuchin and then
extend their algorithm to work with HFTA and call it HFTA-
Capuchin.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 Experimental Setup Details

We conduct our experiments on the latest powerful NVIDIA
GPUs. The first machine is the top-end AWS pd24-xlarge
instance, having A-100 GPU with 40 GB of high bandwidth
memory. It is connected to the host machine via full duplex
PCI-e gen4 interconnect offering upto 32GB/s bidirectional
transfer speed. The host memory size is 1152 GBs, shared
across 8 GPUs. We only make use of 1/8th host memory
respecting the proportion per GPU. Our second machine
is the Dell Claudron Server, featuring Tesla V-100 GPU
with 32 GB high bandwidth memory. It uses the same
interconnect to the host machine as above. The host memory
size is 384 GBs divided across 4 GPUs and we make use of
1/4th the host memory. Note that A100 has more compute
capability and a larger GPU memory capacity than V100.

Table C. We experiment with two diverse hardware setups.

Instance
Nvidia
GPU

Version

GPU
Mem
(GB)

Tensor
Cores

CPU-GPU
Link CPUs CPU

Mem

AWS
p4d24-
large

A-100 40 Yes
PCI-e

Gen 4 x16
(32GB/s)

16 1152

Dell
Claudron
DSS 8440

Tesla
V-100 32 Yes

PCI-e
Gen 4 x16
(32GB/s)

16 384

D ADDITIONAL RELATED WORK

Other Scheduling Approaches: Nimble scheduler opti-
mizes for executing the computation graph of a single model
in parallel by partitioning the independent paths in the graph
across different GPU streams (Kwon et al., 2020), while
Hivemind runtime does the same for a multi-model execu-
tion graph (Narayanan et al., 2018). The goal of Nimble and
Hivemind differ from µ-two since they use concurrent kernel
execution to improve compute utilization for small kernels
whereas µ-two uses multiple streams for overlapping data

Table D. µ-two outperforms all multi-model training techniques.

HFTA µ-two

Feature Out-of-memory
support No Yes

Parameters
essential for
hardware
utilization

large minibatch size No Yes
Large model size No Yes

Large number
of models Yes Yes

Hardware
utilization

High Memory
utilization No Yes

High Compute
utilization Yes Yes

Table E. µ-two achieves low overhead amongst all out-of-memory
approaches.

Technique Out of Memory
Strategy

Compute
Overhead Stalling

vDNN Swapping None High
Checkmate Recomputation High None
Capuchin Hybrid High Low
µ-two Hybrid Low None

transfers with compute for Out-of-memory approaches for
large kernels (which already have high compute utilization
due to fusion). Further, Nimble optimizes the Kernel launch
overhead by pre-allocation of memory, µ-two does the same
using the CUDAGraph API in Pytorch (Nguyen et al., 2021).
All other schedulers assume that the model/s fit on device
memory hence only schedule the compute and not the data
transfers.

Other Hardware Sharing Approaches: MPS allows
CUDA kernels from different processes to potentially run
concurrently on the same GPU via a hardware feature called
Hyper-Q (mps, 2020). MIG, which is currently only avail-
able on the most recent A100 GPUs, partitions a single GPU
into multiple (up to 7) isolated GPU instances (GIs) where
each job now run on a single GI (mig, 2020). HFTA has
already shown better performance than MIG and MPS since
they both do not horizontally fuse operators across neural
networks. Further they have a high memory footprint, no
memory optimization, restriction on the number of inde-
pendent processes, and no multiplexing across processes.
Since neural network operations are highly deterministic,
repetitive, and exhibit very specific memory usage patterns,
it is important that schedulers make use of this information
to drive the GPU utilization to high levels for achieving high
efficiency, lowering training cost, and enabling the training
of models larger than GPU.

E FUTURE WORK

The question we address in this paper is when several mod-
els with identical architecture being trained, how can we
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perform horizontal fusion for addressing compute underuti-
lization and use memory optimization techniques to address
memory limitation? This question maps to numerous crit-
ical problems such as hyper-parameter tuning, ensemble
learning, and neural architecture search which are typical
cases where the model architecture stays the same but soft
hyperparameters like learning rate, learning rate decay mo-
mentum, loss functions, and weight initializations need to
vary. However, training multiple models with heterogeneous
architectures is also an exciting problem to pursue. Firstly,
if all models in a batch have different architectures, then
horizontal fusion is not possible. Secondly, technically only
each sub-array should have identical architecture, and it can
vary across sub-arrays. But if we have multiple instances of
different architectures, the problem of finding the sub-array
splits itself explodes combinatorially and is an interesting
direction for future work.


