
AUTOSCRATCH: ML-OPTIMIZED CACHE MANAGEMENT FOR
INFERENCE-ORIENTED GPUS

Yaosheng Fu 1 Evgeny Bolotin 1 Aamer Jaleel 1 Gal Dalal 1 Shie Mannor 1 Jacob Subag 1 Noam Korem 1

Michael Behar 1 David Nellans 1

ABSTRACT
Taking advantage of the L2 residency control mechanism introduced with NVIDIA’s Ampere GPUs, we propose
a Machine Learning (ML) based framework called AutoScratch to automatically discover and optimize the L2
residency for inference-oriented GPUs, effectively removing any human involvement from the optimization
loop. AutoScratch bridges the gap between the performance of an explicitly controlled scratchpad memory and
the convenience of a hardware-controlled cache. We develop two versions of AutoScratch, AutoScratch-RL
harnessing reinforcement learning (RL) and AutoScratch-EA leveraging a state-of-the-art evolutionary algorithm
(EA). We integrate AutoScratch with NVIDIA’s TensorRT framework to fully automate the optimization pipeline
for arbitrary DL inference applications. We evaluate AutoScratch on NVIDIA’s L4 GPU silicon using MLPerf
inference workloads and show that AutoScratch reduces off-chip DRAM traffic by 29% and improves the overall
performance by 9% (up to 22%).

1 INTRODUCTION

Recent GPUs have been augmented with high-throughput,
low-precision matrix-multiply computing units such as
NVIDIA Tensor Cores and AMD Matrix Cores that are
specifically designed to improve DL training and infer-
ence (NVIDIA, 2020a; AMD, 2021). Through these tech-
nologies, GPUs have achieved significant DL performance
improvement over the last several generations of devices.
For example, NVIDIA’s V100 GPU improved FP16 through-
put by 6× compared to the previous generation, while
NVIDIA’s A100 GPU further increased it by 2.6× over
the V100 (NVIDIA, 2017; 2020a; Fu et al., 2021). Unfor-
tunately, GPUs’ DRAM bandwidth scaling has not main-
tained similar growth, with the DRAM bandwidth of the
V100 GPU scaling by only 25% compared to the previous
generation and the bandwidth of the A100 GPU improving
by 72% over the V100. If the divergence between compute
and memory scaling continues, DRAM bandwidth is on
track to become the biggest performance bottleneck for DL
workloads on future GPUs (Fu et al., 2021).

Additionally, GPUs’ DRAM power consumption is also
becoming a more significant portion of their overall power
and thermal envelopes. For example, the power consump-
tion of a high-end GPU’s High Bandwidth Memory (HBM)

1NVIDIA. Correspondence to: Yaosheng Fu
<yfu@nvidia.com>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

is as much as 40 watts for each 1TB/s of bandwidth and
expected to reach hundreds of watts on single GPU in fu-
ture generations (Chatterjee et al., 2017). The off-package
bandwidth-optimized GDDR memories that are currently
employed on GPUs for gaming and DL inference workloads
also consume a significant portion of the total GPU power,
which becomes prohibitive as their bandwidth scales beyond
hundreds of GB/s (Chatterjee et al., 2017). These trends
introduce significant challenges to continued performance
improvements in future GPU designs – particularly for the
passively cooled, low-power GPUs targeting DL inference,
such as NVIDIA’s T4 and L4 GPUs that have a maximum
thermal design point (TDP) of just 70-72 watts (NVIDIA,
2020b; 2023c). The DRAM bandwidth and power chal-
lenges will apply not just to GPUs, but other state-of-the-art
DL accelerators as well.

One commonly used technique to overcome these issues is
to increase the capacity of on-chip, on-wafer, or on-package
SRAM caches to reduce or eliminate DRAM bandwidth de-
pendencies (NVIDIA, 2020a; 2023a; Fu et al., 2021; AMD,
2021; Knowles, 2021; Lie, 2019). Figure 1 shows the last
level cache (LLC) capacities offered by recent generations
of GPUs and DL accelerators. We see that GPUs are deploy-
ing larger LLC capacities with each generation, increasing
over 12× in size from NVIDIA’s P100 to H100 and from
the T4 to L4. Other DL accelerators provide even more
extreme levels of on-chip SRAM storage, up to 10x larger
than a GPU’s LLC, and in some cases completely replacing
external DRAM memories.

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

1

10

100

1000

DL training and inference DL inference

L
L

C
 C

ap
ac

it
y
 (

M
B

)

Figure 1. The last level cache capacity trends in GPUs and DL
accelerators.

GPU architects have chosen to utilize easy-to-use hardware-
managed SRAM-based LLCs, while most DL accelera-
tors deploy SRAM-based scratchpad memories that are
explicitly managed in software. Scratchpad memories re-
quire high programming effort, but enable precise man-
agement of precious on-chip storage resources compared
to hardware-managed caches. To bridge the gap between
easy to use hardware-managed caches and more consci-
entious control of cache resources (similar to scratchpad
memories), NVIDIA’s Ampere generation GPUs have re-
cently introduced L2 cache Residency Controls (NVIDIA,
2021a; Krashinsky et al., 2020) that allow programmers to
selectively specify data as being L2 cache persistent. This
mechanism effectively enables explicit data pinning in the
GPU’s L2 and protects it from being evicted by the default
hardware-managed cache replacement policy. This feature
is intended to help GPUs match the efficiency of scratchpad
memories for performance-critical data, while retaining the
flexibility and convenience of the hardware-managed caches
for less critical data.

Extensions enabling explicit control for hardware caches
are attractive in theory, but it is difficult for programmers
to reason about optimal L2 data residency selections. They
must determine which data should be labeled as L2-resident
in a DL application that can consist of hundreds to thou-
sands of GPU kernels with complex data interaction and
reuse patterns within the span of a single iteration. More-
over, these extensions can lead to adverse performance ef-
fects when data with low importance is misclassified as
L2-resident, which reduces the capacity of the remaining
hardware-managed portion of the cache. As a result, L2
residency controls have not been widely adopted yet by
applications running on NVIDIA GPUs.

To address this challenge, we propose a machine learning
(ML) based framework called AutoScratch that automati-
cally discovers and optimizes L2 cache residency control
configurations for DL applications, effectively removing

programmer intuition from the optimization loop. We show
that AutoScratch can be successfully trained to select a sub-
set of the application’s memory to be L2-resident (like a
scratchpad), that maximizes the performance of a GPU. We
develop and perform a detailed analysis of two possible im-
plementations of AutoScratch’s optimization component: (i)
AutoScratch-RL – harnessing the power of Reinforcement
Learning (RL) (Sutton & Barto, 2018), and (ii) AutoScratch-
EA – leveraging a variant of the recently proposed regular-
ized evolutionary algorithm (Real et al., 2019). We use the
AutoScratch framework to accelerate the execution of DL
inference applications, but our design is generic and could
be applied to DL training and other iterative GPU workloads
with similar dataflow regularity.

To fully automate the optimization process, we modified
NVIDIA’s TensorRT SDK (NVIDIA, 2021b) and exposed
the L2 residency control application programming inter-
face (API) so that the L2 residency configurations can be
easily applied to any TensorRT optimized inference appli-
cation. This integration enables AutoScratch training and
optimization without any code modifications in the inference
application itself. Post training, the learned L2 residency
configurations can be directly deployed through the same
APIs with near-zero overhead.

In this work, we make the following contributions:

• We design AutoScratch that relies on ML to automati-
cally generate optimized L2 residency configurations
for GPU applications by leveraging the L2 Residency
Controls APIs introduced in latest NVIDIA GPUs. We
design and evaluate two types of ML techniques within
AutoScratch, (i) reinforcement learning, and (ii) evolu-
tionary algorithms.

• We develop a practical AutoScratch implementation
for DL inference by integrating it with NVIDIA’s Ten-
sorRT SDK, so that any workload optimized by Ten-
sorRT can automatically leverage AutoScratch to dis-
cover and deploy learned L2 residency configuration.

• We evaluate AutoScratch using the MLPerf infer-
ence suite on the state-of-the-art inference-optimized
NVIDIA’s L4 GPU silicon and show that it achieves
a geomean 29% reduction in DRAM traffic and 9%
performance improvement (up to 22%). We also com-
pare AutoScratch to both random search and a human-
designed heuristic and demonstrate its advantages.

2 MOTIVATION AND BACKGROUND

DL inference applications are the backbone propelling the
highly profitable personalized business models of mod-
ern cloud service providers. They are executed at a mas-
sive scale within the datacenters of internet giants such as

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

Layer 1 Layer 2 Layer 3

Weights 1 Weights 2 Weights 3
Act.

1->2

Act.

2->3
L2

DRAM Weights 1 Weights 2 Weights 3
Act.

1->2

Act.

2->3

(a) Typically both activations and weights end up shuffling be-
tween L2 cache and DRAM in hardware-managed caches result-
ing in cache interference.

Layer 1 Layer 2 Layer 3

Weights 1 Weights 2 Weights 3
Act.

1->2

Act.

2->3
L2

DRAM Weights 1 Weights 2 Weights 3

(b) Ideal reuse of L2 cache capacity results in cache resident
activations, with only weights being fetched from DRAM, which
are not shared between layers.

Figure 2. The memory access pattern for common DL inference
workloads illustrating differing reuse patterns for weights and
activations.

Google, Meta, Amazon, and Netflix (Underwood, 2020;
Park et al., 2018; Jouppi et al., 2021; Anderson et al., 2021).
Inference workloads serve billions of users and are available
24 hours a day. Some inference models are more impor-
tant than others, i.e. recommendation models comprise
up to 79% of total DL inference cycles in Meta data cen-
ters (Gupta et al., 2020). Moreover, Google has reported
that the total cost of DL inference ownership is dominated
not by the cost of the underlying hardware, but the power
dissipated while executing DL inference workloads in their
servers, over the hardware’s lifetime (Jouppi et al., 2021).
Due to the importance of providing best in class DRAM
bandwidth utilization on power-constrained DL inference
applications, this paper focuses on demonstrating how Au-
toScratch can be used to optimize DL inference workloads.
Prior work such as vDNN(Rhu et al., 2016) discovered that
data movement can be intelligently managed for DL work-
loads thanks to the regularity of their dataflow patterns.
This work builds upon that observation by using machine
learning to automate the data management process so that
programmers do not have to manage data locality explicitly
or build per-application solutions repeatedly.

The memory access pattern of a typical DL inference ap-
plication is shown in Figure 2. There are two main types
of accesses: weights and activations. Weights are the in-
puts fetched by each layer and different layers typically each

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

O
u

tp
u

t
A

ct
iv

at
io

n
 S

iz
e

(M
B

)

Layer Index

Figure 3. The per-layer activation sizes for int8 datatype in
resnet50 inference, with a batch size of 48. The largest per-layer
activation size is less than 37MB.

have their own set of weights. Consequently, there is limited
opportunity to reuse weights across network layers within
one iteration. The memory footprint of each layer’s weights
is fixed and independent of the batch size.

Activations are the intermediate data generated by one net-
work layer and passed into the next layer. There is an explicit
producer-consumer relationship between adjacent network
layers with respect to their activation data. Unlike weights,
activations are generated on the fly during each inference
iteration and become dead data after being consumed. The
sizes of the activations passed between network layers are
proportional to the inference batch size. Caching activa-
tion data is beneficial in reducing the overall DRAM traffic
due to the temporal locality introduced by activation reuse
among the neighboring layers. In an ideal case, the on-chip
cache capacity would be sufficient to fit all activation data,
resulting in zero activation-related memory traffic, as shown
in Figure 2(b).

To illustrate the cache capacity needed to store inference
activations on-chip, Figure 3 shows the distribution of the
per-layer activation sizes for resnet50. In this example,
all activations are of int8 precision using a batch size of 48.
Figure 3 shows that although the aggregate activation size of
457MB is much larger than the available GPU L2 capacity
(48MB in NVIDIA’s L4 GPUs), the maximum per-layer size
is smaller than 37MB and less than 10MB for a majority of
layers.

In resnet50, some activations are also reused beyond just
the neighbor layer, when skip connections are incurred,
which is not shown in Figure 2. Therefore, for any network
layer in resnet50 at most three types of activations need
to be stored in the memory system: the input, the output,
and the skip connection. As a result, at any given time
within an inference iteration, a maximum of 111MB of
cache is required to store all the live activations on-chip,

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

however just 30MB is sufficient to cache the live activations
for most layers as the majority of them are within 10MB
each. Carefully orchestrated caching has the potential to
maximize activation on-chip data reuse and prevent spilling
into DRAM whenever possible, but simply prioritizing all
activations equally is not sufficient.

Because activation data is only temporarily alive, a com-
monly used technique for logical management of memory
is to allocate a single shared activation memory buffer capa-
ble of storing all live activations in the network (NVIDIA,
2021b). This buffer is then recycled for activations across
layers, such that new activations directly overwrite old acti-
vations that have been consumed during inference. Because
two consecutive activations often serve as input and out-
put of a layer and need to be alive “at the same time”, the
activation buffer size is typically 2x the large activation
size. Because the activation buffer is a linear array (reused
through time), the L2 residency control problem for DL
inference can be formulated as selecting a subset of the
memory addresses from the shared activation buffer to be
L2-resident, as shown in Figure 4. The L2 cache residency
controls can theoretically change throughout the execution,
but we decided to keep them static within one inference
iteration to minimize the modification overheads. Generally
speaking, an application’s entire virtual memory heap space
could be considered similar to a linear reuse array in other
iterative GPU workloads, however in this work we focus on
the more limited inference shared activation buffer to prove
AutoScratch’s viability.

To manage this buffer at a fine granularity, we propose to
divide the shared buffer into n memory slices of equal size
that can be as small as the size of a single L2 cacheline
or at a larger granularity to reduce the selection problem
complexity. Each slice is then either promoted to become
L2-resident or marked as non L2-resident and managed by
hardware replacement policy, which is the default configura-
tion of the cache. Assuming a shared buffer size of 100MB
with 1MB memory slices and the maximum L2-resident
cache capacity of 30MB, an exhaustive search for an opti-
mal L2 residency configuration would have to sift through
C(100, 30) ≈ 1025 combinations, making a brute-force
search intractable. We leverage reinforcement learning and
evolutionary algorithms to help us automatically learn an
optimized L2 residency configuration.

3 AUTOSCRATCH FRAMEWORK

We developed AutoScratch to automatically discover and
optimize GPU’s L2 residency configurations. We describe
its architecture along with two different optimizers based
on RL and EA respectively.

L2-resident

L2-resident

L2-resident

L2-resident

Shared

Activation

Buffer

Figure 4. L2 residency selections within the shared activation
buffer.

3.1 The AutoScratch Software Architecture

Figure 5 demonstrates the high-level architecture of Au-
toScratch. First, an unoptimized inference application is
fed into NVIDIA’s TensorRT library for compilation, op-
timization, and instrumentation to become AutoScratch-
compatible by inserting L2 residency control APIs for the
activation buffer. Then AutoScratch performs a machine
learning based optimization on an AutoScratch-compatible
and a TensorRT-optimized DL inference application. The
AutoScratch ML-based optimization phase in Figure 5 en-
capsulates an ML process (described in Sections 3.2 and
3.3) resulting in an optimized L2 residency configuration.
By integrating AutoScratch as part of the TensorRT opti-
mization process, we eliminate the need for manual code
modifications on the target DL application which greatly
eases the use of AutoScratch.

In our implementation, the application’s activation buffer ad-
dress range is divided uniformly into n slices and each slice
is represented by a bit in the n-dimensional L2 configuration
vector, or mathematically {0, 1}n. This vector is mapped to
the address range allocated for the shared activation memory
buffer as described in Section 2. The size of a memory slice
could be as small as the size of an L2 cache line but we
found that with a maximum L2-resident capacity of 36MB
(a constraint of an NVIDIA’s L4 GPU), a coarser grain of
1MB is sufficient for capturing most of the AutoScratch
benefits without dramatically bloating the size of the search
space. We use the following encoding: “1” indicates that the
memory slice is L2-resident and cannot be evicted from the
cache by hardware and “0” means that the corresponding
memory slice is not L2-resident, and thus subject to the
default hardware cache replacement mechanism.

The optimization loop starts from an initial state in which
L2 residency is disabled, which is the default configura-
tion on L4 GPUs. The optimization is performed through
iterative execution of an inference application directly on
GPU silicon with different L2 residency configurations and
observing the application’s performance. We focus on a
single inference iteration as opposed to executing the entire
end-to-end inference application as this is sufficient to learn

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

1

Unoptimized

inference app

AutoScratch

compatible

inference app

AutoScratch’s

ML-based

optimization

L2-resident

L2-resident

Learned L2
residency configuration

TensorRT
compilation

Deployment

0

1

0

1

Shared activation buffer

Figure 5. The high-level architecture and optimization flow of Au-
toScratch.

the application behavior and the optimized L2 residency
configurations, without making the optimization process
unnecessarily long.

Upon completion of the optimization, regardless of the opti-
mization technique (RL or EA) that was used, the best L2
residency configuration is then applied to the application for
deployment in production. The overall end-to-end optimiza-
tion process contains thousands to millions of iterations that
can take from several seconds to several hours depending on
application execution time, the optimization method, and the
size of the optimization space. However, once the final L2
residency configuration is learned, integrating it into the DL
inference application incurs only a trivial one-time initial
setup (annotating memory allocations with the L2 residency
configuration). This process is analogous to a profile-guided
optimization (PGO) loop between the DL inference applica-
tion and the underlying hardware (Pettis & Hansen, 1990).
Note that AutoScratch can also be deployed offline – before
the DL application is released to production as described
here, or online – effectively tuning the application on the fly
from iteration to iteration in parallel to the execution of the
DL application in a production environment.

We implement and evaluate AutoScratch with two types of
ML optimization algorithms: (i) AutoScratch-RL which is
reinforcement learning (RL) based and (ii) AutoScratch-EA
that is based on the recently proposed regularized evolution-
ary algorithm for image classifier architecture (Real et al.,
2019). Both techniques are described in greater detail below.

3.2 AutoScratch with an RL Optimizer

In AutoScratch-RL, we harness the power of reinforcement
learning (RL) as one possible implementation of the Auto-
Scratch’s ML-based optimization stage shown in Figure 5.
Reinforcement learning (Puterman, 2014) is a field of ma-
chine learning in which an agent learns to maximize a utility
function, often named the reward, by continually interacting

1

0

1

0

1

Action: One-hot vector (at)State: Vector (st)

0

0

1

0

0Shared activation
buffer

L2-resident

L2-resident

Promotion
actions

No actionAgent

DL inference app

running on GPU

Reward(rt)=
Perf. improvement

Environment

Figure 6. The AutoScratch-RL optimization framework for tuning
GPU’s L2 residency configuration.

with a simulated or real environment. One iteration of the
RL loop is called an RL step and multiple RL steps forming
a full interaction process with the environment comprise an
RL episode.

It is rare for an agent to be able to train in a real-world
environment on which it will be eventually deployed (Dulac-
Arnold et al., 2019). Nevertheless, we manage to train and
deploy AutoScratch-RL on a real GPU in this work. The
ability to train the RL algorithm used by AutoScratch di-
rectly on the test environment (GPU silicon) is significant
and is termed on-policy. When using on-policy algorithms,
we are not confined to the restrictions imposed by the al-
ternative off-policy scenarios that can significantly hinder
training performance (Jiang & Li, 2016). To find the optimal
L2 residency configuration in the AutoScratch framework,
we leverage the Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) algorithm, which is an on-policy algorithm.
Our choice of PPO is not only because it is on-policy, but
also because of its built-in isolation between two stages: (i)
episode collection and (ii) agent update. This separation
prevents interferences between the execution of the DL in-
ference network in the RL environment and the RL agent
training on the GPU. It results in a more accurate reward sig-
nal being propagated from an unobstructed GPU inference
workload to the RL agent update.

We develop and train an AutoScratch-RL agent to find the
best L2 residency configuration for activations that maxi-
mizes a workload’s performance as shown in Figure 6. At
any given time, the RL agent resides in a state of the system
(st); at each step, it selects an action(at) and transitions
to a new state; while at the same time receiving a reward
signal(rt) as the result of the action. The main components
in the AutoScratch-RL training loop are described below:

Environment: The RL environment is defined by the com-
bination of a DL inference workload and the specific GPU
platform it is executing on. The environment receives an
action and provides the corresponding reward as explained

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

later in this section.

State: We define the RL state as the current L2 residency
configuration that is represented by a bit vector of size n, or
mathematically st ∈ {0, 1}n. Each bit of the vector repre-
sents the L2 residency status of the corresponding memory
slice in the shared activation buffer shown previously in
Figure 4.

Action: We define the RL action as either promote, in which
we promote a single memory slice to become L2-resident,
or alternatively no action, to keep the current L2-resident
state unchanged. The action is represented by a one-hot
bit vector of size n+1, or at ∈ {0, 1}n+1. The first n bits
represent a promotion in one of the n memory slices and
the last bit is used to indicate no action. By design, any
action can lead to (at most) a minor change of the current
state. This design leads to smooth transitions between states,
which improve the RL training convergence. Because each
action modifies at most one memory slice, many actions are
required to convert the state from the initial zero vector to
the final state which form an RL episode.

Agent: In practice, there are two networks in the RL agent
of the PPO algorithm: the actor and the critic. For simplicity,
we only show the actor network in Figure 6. They are
both implemented as multi-layer perceptron (MLP) neural
networks (Goodfellow et al., 2016) with two hidden layers
of 64 neurons each and the state vector of size n as shared
input. The output of the actor network is the action vector
of size n+1, while the output of the critic network is a single
scalar value that is used to evaluate the quality of the action.

Reward: We denote the DL application execution time of a
single DL inference iteration as reported by the RL environ-
ment as T (st). The RL reward while transitioning from st
to st+1 is rt = T (st)− T (st+1). Simply put, the reward is
defined as the performance improvement resulting from the
current RL action. Positive rewards indicate performance
speedup, while negative rewards indicate performance slow-
down. In general other metrics could also be used as the
reward function, such as DRAM traffic reduction. Later
in Section 5.1 we discuss the implication of using DRAM
traffic reduction rather than performance as the reward.

During the training process, an episode always starts with
the initial state s0 = (0, . . . , 0). When an episode reaches
the state where the best next action is no action, it remains in
the same state and action unless system noise accidentally
causes a new action. As a result, when we observe that
the last consecutive k states are the same, we terminate the
episode; i.e., the episode terminates at step tf if stf−k =
stf−k+1 = . . . = stf . An episode typically contains tens of
iterations in our experiments.

The final state is the L2 residency configuration learned by
AutoScratch in this episode. The accumulated reward of

1

Initialization:

Generate M random L2 residency

configuration vectors

Evaluation and Selection:

Select best performing vector from a

random subset (S) of the population

Termination:

Terminate after K steps, choose best

overall configuration

Mutation:

Create and insert a new child,

remove oldest

Shared activation
buffer

0

1

0

1

L2-resident

L2-resident

1

0

0

1

M

Main loop: repeat K steps

n

Figure 7. AutoScratch-EA with regularized evolutionary optimiza-
tion for tuning GPU’s L2 residency configuration.

an episode is the execution time improvement of the final
configuration, compared to the baseline with no L2-resident
caching. Leveraging the PPO algorithm, the full training
process of AutoScratch contains many training episodes.

In order to make sure we end up with the best L2 residency
configuration overall, we keep track of the best performing
configuration across the entire training process and use it
as the final configuration to be deployed with the inference
application. Both the target DL inference application and
the RL agent run on the same GPU during training, but they
cause little cross-interference in practice as their execution
does not overlap on the GPU.

3.3 AutoScratch with an Evolutionary Optimizer

While AutoScratch-RL proved to be very successful in dis-
covering near-optimal L2 residency configurations, it is
quite computationally demanding as we later show in Sec-
tion 5.2. Recently another family of ML, called Evolution-
ary Algorithms (EA), has shown that it can rival the per-
formance of RL while being less computationally intense,
providing a viable alternative to RL in many situations (Real
et al., 2019). EA is simpler to implement as there is no need
to train a separate neural network as the agent, is easier to
scale in a distributed setting, and has fewer hyperparameters
that need to be tuned.

Based on a regularized evolutionary algorithm originally
developed for neural architecture search (Real et al., 2019),
we develop AutoScratch-EA as summarized in Figure 7.
We integrate AutoScratch-EA as an alternative for Auto-
Scratch’s ML-based optimization component in Figure 5.
AutoScratch-EA keeps a population of M L2 residency con-
figuration vectors, each of n bits, throughout the learning
process. The population is initialized with M random con-
figuration vectors where each configuration is evaluated for

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

its fitness (execution time) on the target GPU, then gradually
evolved in a series of K steps. At each step, a random subset
of S configuration vectors from the current population is
selected and evaluated. Then the vector with the best fitness
(shortest execution time) within this subset is selected as a
parent.

A new child configuration vector is created by applying a
mutation operation on the parent configuration vector. A
mutation operation in AutoScratch-EA is defined as a single
bit flip in a random position. This allows minimal change
between the parent and the child configuration vectors in
order to provide a smooth transition during the evolution
process. The child configuration vector is then evaluated
and added to the current population.

The original inference application is executed once during
the evaluation process to return the execution time as the
metric of fitness of the child’s configuration. To keep the
size of the population constant, an old configuration vector
must be discarded. Traditionally, the worst configuration
vector from the subset S is usually eliminated(Goldberg
& Deb, 1991). In contrary to a traditional evolutionary
algorithm, regularized evolutionary algorithm introduces
a concept of age that leads to the continuous discarding
of the oldest configuration in the population. As pointed
out in the original publication (Real et al., 2019), an aging
evolution helps better manage training noise throughout the
experiments. We find it to be very helpful in this work as
the execution time for each configuration vector on a target
GPU can be noisy.

The algorithm terminates after finishing K steps and the
configuration vector with the shortest execution time is se-
lected as the final best solution. Notice that overall, M +K
configuration vectors are evaluated during the learning pro-
cess because M vectors are evaluated during initialization
and one vector is evaluated at each step.

4 METHODOLOGY

Our evaluations focus on the MLPerf inference suite (Reddi
et al., 2020), one of the most widely-used DL inference
benchmark suites across industry and academia. The de-
tailed benchmark configurations are summarized in Table 1.
We have set the individual benchmark batch sizes so that
the shared activation buffer sizes are comparable to, but
larger than the total GPU L2 capacity (48MB), with two
notable exceptions. In 3d-unet, the shared activation buffer
size is larger than 1GB even at the minimum batch size of
1, making it impossible to scale it down any further. The
rnnt application is comprised of several independent and
pipelined sub-networks and we chose to optimize its major
component, the encoder sub-network only. We observed that
rnnt is based on a persistent RNN implementation (Diamos

Table 1. MLPerf inference benchmark settings in AutoScratch.

BENCHMARK PRECISION BATCH ACTIVATION BUFFER
SIZE SIZE (MB)

RESNET50 INT8 32 63
SSD-RESNET34 INT8 6 104
SSD-MOBILENET INT8 64 140
3D-UNET INT8 1 278
BERT INT8 32 81
DLRM INT8 51200 106
RNNT FP16 2048 4175

et al., 2016) which leads to significantly lower DRAM band-
width requirements compared to other benchmarks with
similarly activation buffer sizes. As a result, we chose to
use a larger batch size for rnnt to maximize its DRAM uti-
lization and performance. In bert, we use a fixed sequence
length of 128 during both training and evaluation. When
variable sequence lengths are applied during inference, we
can train AutoScratch with an average sequence length.

We evaluate AutoScratch using state-of-the-art NVIDIA’s
L4 GPU silicon (NVIDIA, 2023c). We select the L4 as the
most representative evaluation platform for AutoScratch be-
cause it is the latest GPU targeting DL inference and features
a relatively large L2 capacity of 48MB, of which 36MB can
be configured in software using the residency control API.
The L4 has a maximum TDP of 72W and 300GB/s of GPU
memory bandwidth. Throughout our experiments, we found
that L4 GPU often operates relatively close to its TDP, and
its inference performance can vary between identical in-
ference iterations due to its advanced power management
events. Such variation in the per-iteration execution time can
hurt the convergence of AutoScratch training. We worked
around this issue by averaging the measured execution time
collected from multiple consecutive iterations per workload.

We implement AutoScratch-RL using the stable-
baselines3 (Raffin et al., 2019) codebase, leveraging
the out-of-the-box PPO implementation with its default
hyper-parameters. We perform 500,000 RL training steps
in total for each workload during the training process.
The AutoScratch training time is a function of both the
total number of training steps and the execution latency
of a single inference iteration performed during each RL
training step. The entire training process typically takes a
few hours for each workload, with the longest training time
being around 13 hours for bert.

For AutoScratch-EA, we choose the population size M to be
100 and the sample subset size S to be 25, as recommended
by the original paper (Real et al., 2019). We set the maxi-
mum number of steps (K) as 20,000, which we found to be
sufficient across all benchmarks in our experiments. We add
an early-stop mechanism which will terminate the training
process if the best solution is not improved within 5,000

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o

rm
al

iz
ed

 D
R

A
M

 T
ra

ff
ic

Baseline RD AS-RL RD AS-EA RD
Baseline WR AS-RL WR AS-EA WR

(a) Offchip DRAM Traffic

0.8

0.9

1.0

1.1

1.2

1.3

S
p
ee

d
u
p

AS-RL AS-EA

(b) Performance Speedup

Figure 8. The DRAM traffic and performance speedups measured
on NVIDIA’s L4 GPU silicon with AutoScratch-RL(AS-RL) and
AutoScratch-EA(AS-EA) relative to the baseline with a hardware-
controlled cache policy. The y-axis in (b) starts at 0.8 for better
visibility.

steps. The total number of steps required for AutoScratch-
EA is much smaller than AutoScratch-RL and as a result,
the overall learning time of AutoScratch-EA is much shorter,
as shown later in Section 5.2.

5 RESULTS

We evaluate AutoScratch by measuring its DRAM traffic
reduction and speedup compared to the baseline, along with
its training overhead and sensitivity to batch size. We also
compare AutoScratch to two additional alternative optimiza-
tion methods: Random Search (RS) and Human-Designed
Heuristic (HDH) that has been integrated into the latest
TensorRT library and is turned off by default (NVIDIA,
2021b). Finally we discuss the advantages and limitations
of our approach, and also compare AutoScratch-RL with
AutoScratch-EA.

5.1 DRAM Traffic Reduction and Performance

We evaluate AutoScratch on NVIDIA’s L4 GPU silicon
by measuring both DRAM traffic and overall application
execution time, with and without AutoScratch optimiza-
tion. Figure 8(a) shows the normalized off-chip DRAM
traffic when using the L2 residency configurations learned
by AutoScratch with both RL and EA optimizers (AS-RL
and AS-EA). The DRAM traffic is subdivided into reads
and writes (RD and WR). The results are normalized to the
baseline in which L2 residency controls are disabled and
the DRAM traffic numbers are collected from GPU per-
formance counters over the execution of a single inference
iteration.

Interestingly, the L2 resident configurations learned by two
different AutoScratch-RL and AutoScratch-EA optimizers
both resulted in similar and significant DRAM traffic reduc-
tions, with a respective geomean reduction of 29% and 27%
across all benchmarks. AutoScratch-RL achieves a slightly
lower average DRAM traffic overall.

In general, workloads with activation buffer sizes closer to
the GPU’s L2 capacity realize larger DRAM traffic reduc-
tions than those with larger activation buffer sizes because
a larger fraction of the application’s data benefits from im-
proved on-chip caching. We also observe that DRAM write
traffic reductions are generally more significant than the
reductions in read traffic because AutoScratch’s L2 resi-
dency configurations effectively prevent these activations
from being written back to DRAM.

Figure 8(b) reports the realized performance benefits of the
AutoScratch-RL and AutoScratch-EA optimizations com-
pared to the baseline hardware-only cache management.
The inference performance is measured by averaging the ex-
ecution time of the workload across 100 inference iterations
to reduce the execution noise. We also perform a 10-second
warm-up run before measuring actual performance to ex-
clude any initialization overheads from our measurements.
Similar to the DRAM traffic reduction results, AutoScratch-
RL and AutoScratch-EA both both achieve similar geomean
performance speedups of 9.3% and 8.8%, while also reach-
ing up to 21% and 22% performance improvements in bert,
respectively. AutoScratch-RL achieves slightly better per-
formance overall, but not in every workload. We believe
it is due to AutoScratch-RL being more resilient to power-
management induced variation on L4 as we did not observe
such behavior in our early experiments using an NVIDIA’s
A100 GPU with a substantially higher TDP.

We observe that workloads with higher DRAM traffic reduc-
tions typically achieve larger performance improvements,
but not always. For example, ssd-mobilenet achieves the
larger speedup than resnet50 using both optimizers, but its
relative DRAM traffic reduction is lower. This is because

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

Table 2. The total training times (in minutes) of AutoScratch
for MLPerf inference workloads on an NVIDIA’s L4 GPU, and
the relative time reduction achieved by AutoScratch-EA versus
AutoScracth-RL.

WORKLOAD AS-RL AS-EA TIME REDUCTION
RESNET50 241 6.8 35×
SSD-RESNET34 421 5.8 72×
SSD-MOBILENET 260 8.0 33×
3D-UNET 390 4.4 88×
BERT 765 10.2 75×
DLRM 238 5.4 44×
RNNT 227 2.5 90×
GEOMEAN 330 5.7 58×

ssd-mobilenet uses depthwise separable convolution oper-
ators that are more sensitive to memory bandwidth than
regular convolution operators used in resnet50 due to its un-
balanced kernel shapes. In general, AutoScratch results in
higher speedups for MLP-based workloads (bert and dlrm)
compared to convolution-based workloads (resnet50, ssd-
resnet34, ssd-mobilenet and 3d-unet). This is because convo-
lution operators need to be converted in order to take advan-
tage of General Matrix Multiplication (GEMM) operators
in modern GPUs, resulting in lower arithmetic intensities
than MLP operators that can use GEMM directly (NVIDIA,
2023b). As a result, MLP-based workloads are typically
more sensitive to memory bandwidth than convolution-
based workloads.

To demonstrate the stability of AutoScratch’s training perfor-
mance, we train each workload multiple times with random
initial seeds. Both AutoScratch-RL and AutoScratch-EA
result in very consistent performance, with a coefficient of
variance within 0.02 across runs.

5.2 The Overhead of ML-Based Optimization

While both versions of the AutoScratch optimizers achieve
impressive optimization results, ML-based optimization
does incur some overhead. The cost in this case is the
additional training overhead that is added to the DL applica-
tion compilation and optimization workflow. We compare
the training time of AutoScratch-RL and AutoScratch-EA
in Table 2. RL-based optimization takes substantially more
time than the EA-based approach for all workloads. The
training process with AutoScratch-EA takes several min-
utes across most workloads and is overall 58× faster than
training the AutoScratch-RL module. The training time of
AutoScratch-EA is short enough to make it a practical candi-
date for integration into a DL compilation framework such
as NVIDIA’s TensorRT as an optional profile-guided opti-
mization where the TensorRT compilation time for those
workloads range from 1 to 7 minutes. While this work
describes how we apply AutoScratch as an offline optimiza-

0

2,000

4,000

6,000

8,000

10,000

12,000

BS/4 BS/2 BS BSx2 BSx4 BSx8

E
n

d
-t

o
-e

n
d

 T
h

ro
u

g
h

p
u

t
(I

P
S

)

Baseline AS-RL AS-EA

(a) resnet50

0

100

200

300

400

500

600

700

800

900

BS/4 BS/2 BS BSx2 BSx4 BSx8

E
n

d
-t

o
-e

n
d

 T
h

ro
u

g
h

p
u

t
(I

P
S

)

Baseline AS-RL AS-EA

(b) bert

Figure 9. The absolute end-to-end performance measured in in-
ferences per second (IPS) on NVIDIA’s L4 GPU silicon, for the
baseline without L2 residency controls and AutoScratch-RL and
AutoScratch-EA for resnet50 and bert at varying batch sizes.

tion process, when applied in an online regime, the learning
overhead of AutoScratch-EA can be amortized across many
executions as it learns on-the-fly during deployment.

5.3 Sensitivity to Batch Size

To understand the impact of the batch size selection on the
relative efficiency improvement of AutoScratch, we show
sweeps of the batch size in resnet50 and bert as representa-
tive benchmarks for convolution-based and MLP-based DL
workloads, respectively. Figure 9 summarizes the absolute
end-to-end performance achieved with AutoScratch-EA and
AutoScratch-RL on resnet50 and bert while varying batch
sizes from one quarter, to eight times the default batch sizes
(shown in Table 1). We observe again that both versions of
AutoScratch result in very similar performance speedups
when compared to the baseline without AutoScratch and
both work well across a wide range of batch sizes in each ap-
plication. The best absolute performance is achieved in the
middle of the batch size range for both workloads, where
AutoScratch is most effective. This is because when the
batch size is too small, the majority of activations fit in

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

resnet50 ssd-resnet34 ssd-mobilenet 3d-unet bert dlrm rnnt geomean

S
p

ee
d

u
p

RS HDH Budget=0 HDH Budget=0.25 HDH Budget=0.5 HDH Budget=0.75 HDH Budget=1.0 AS-RL AS-EA

Figure 10. Comparing the performance speedups of AutoScratch-RL(AS-RL) and AutoScratch-EA(AS-EA) to Random Search (RS) and
Human-Designed Heuristic (HDH) at various L2 residency budgets on NVIDIA’s L4 GPU silicon. All results are relative to the baseline
without any L2 residency controls (the default configuration). The y-axis in (b) starts at 0.6 for better visibility.

L2 cache even without L2 residency controls, leaving little
room for AutoScratch to optimize. On the other hand, if the
batch size is too large, only a small portion of activations can
be pinned in the L2, even when optimized by AutoScratch.

Note that in resnet50 the original best-performing batch size
in the baseline is half of the default batch size (BS/2). Au-
toScratch shifts the overall best-performing point to the de-
fault batch size. In bert the best-performing batch sizes for
both the baseline and AutoScratch are the same (BS/2). We
conclude that AutoScratch could shift the best-performing
batch size to larger values because it alleviates DRAM band-
width bottlenecks. The realization that batch-size tuning is
integrally linked with both DRAM bandwidth utilization
and L2 residency control opens the door for future work
where AutoScratch can optimize the batch size along with
the L2 residency configuration.

5.4 Comparison Against Other Optimization Methods

We compare AutoScratch to two additional optimization
techniques: Random Search (RS) and Human-Designed
Heuristic (HDH). RS generates a random set of K config-
urations and picks the best configuration within the set. In
our experiments, we set K to be 20,000 which is equal to
the maximum number of training steps in AutoScratch-EA
for fair comparison. HDH is designed by GPU experts at
NVIDIA and has been integrated into the latest TensorRT
library (since v8.5) (NVIDIA, 2021b). HDH is turned off in
TensorRT by default, and can be enabled in software by pro-
viding the L2 residency budget ranging from 0 to 1.0 where
0 means no L2 residency and 1.0 means using the entire
L2 budget that is available for residency controls (36MB
in an L4 GPU). For a given L2 residency budget (set by a
programmer), HDH comes up with the residency settings
based on its built-in heuristic method. We sweep the L2
residency budget from 0 to 1.0 with increments of 0.25 to
cover the entire search space for HDH. In contrast, RS and

AutoScratch automatically search for the best L2 residency
settings within a given L2 capacity budget (1.0 in our exper-
iment). RS and AutoScratch may find a configuration that
does not use the entire budget for example, while HDH is
designed to always use up the entire budget.

Figure 10 summarizes the performance speedups normal-
ized to the baseline hardware-controlled cache policy. We
note that RS achieves good performance speedups in work-
loads with relatively small search spaces that correspond to
small activation buffer sizes (Table 1) such as resnet50 and
ssd-resnet34. However, RS completely fails in discovering
a comparable solution to AutoScratch in workloads with
larger search spaces, and sometimes results in substantially
worse performance than the baseline in 3d-unet and rnnt
(since random search does not necessarily find the base-
line configuration). Overall, the geomean speedup of RS is
close to 0 compared to the baseline, rendering it a useless
solution. HDH is more effective than RS, and can lead to a
geomean speedup of 2.6% with the best L2 residency budget
of 0.5 overall. However, as clearly shown in Figure 10, the
best L2 residency budget varies across different workloads,
and additional parameter tuning on the programmer side is
required to pick the best-performing L2 residency budget
for each workload. AutoScratch, on the other hand, can
automatically discover the optimal solution within the L2
residency budget without the additional parameter tuning
step, resulting in larger performance speedups overall.

5.5 Discussion

We have discussed how AutoScratch can be applied to real
GPU systems to optimize performance while treating both
the application and GPU as black boxes, with limited infor-
mation needing to be exposed to the optimizer. The main
benefit of this black box approach is that it is practical, effi-
cient, and applicable to arbitrary workloads running on an
arbitrary GPU. Nevertheless, every time there is a change in

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

the workload, the GPU configuration, or even the batch size,
AutoScratch should be re-trained to best optimize the L2
residency configuration. Though there may be cases where
one learned solution can be applied, albeit sub-optimally,
across a variety of configurations - we have not studied that
effect in this work.

AutoScratch is mostly applicable to GPU hardware configu-
rations in which the workload’s performance is limited by
DRAM bandwidth and/or energy, and a large L2 cache is
equipped to combat these limitations. An ideal example of
this is the NVIDIA’s L4 GPU, as shown in this paper. We
have also evaluated AutoScratch on a high-end NVIDIA’s
A100 GPU featuring a large L2 cache and high memory
bandwidth (NVIDIA, 2020a). When trained on an A100
GPU configuration with reduced HBM bandwidth, Auto-
Scratch could find highly optimized L2 residency solutions
yielding a notable 44% geomean DRAM traffic reduction.
However this DRAM traffic reduction did not translate into
performance speedup when deployed on the original A100
configuration, because inference performance on A100 hard-
ware was neither limited by the HBM bandwidth nor energy
though it does improve the GPU’s performance per watt.

When comparing the RL and EA optimizers, we found that
the latter can achieve similar performance to the former,
but with significantly shorter training time. This can be
explained by the fact that in contrary to EA, RL learns more
than the optimized residency configuration itself. In fact, its
output is a policy that can reach the nearly best configuration.
This could be exploited in future work for generalization
over a search space spanning parameters such as neural
architecture, batch size, cache size, etc. For example, a pre-
trained RL agent can be deployed to generate optimized L2
residency configurations for arbitrary inference applications
without re-training. Although a generalized approach can
eliminate hours of per-application optimization overhead, it
can also complicate the pre-training process and its conver-
gence rate, potentially leading to inferior results. Therefore,
we choose to leave it as future work.

6 RELATED WORK

A variety of approaches have been used for explicit con-
trol of caches and scratchpad memories on CPUs (Nguyen,
2016), GPUs (Kerr et al., 2017; Bauer et al., 2011), hetero-
geneous systems (Komuravelli et al., 2015), and hardware
accelerators (Lacey, 2020; Pellauer et al., 2019; Chen et al.,
2014; 2016; Fowers et al., 2018). They are usually labor-
intensive and often require both manual control and explicit
software tuning. In contrast, AutoScratch is an automated
process to tune software-based cache control operations for
workloads with arbitrary memory allocations.

There have been a variety of attempts targeting RL, EA, or

other ML techniques for cache management (Khadka et al.,
2020; Li et al., 2020; Sethumurugan et al., 2021; Teran et al.,
2016; Shi et al., 2019; Liu et al., 2020). These works typ-
ically leverage ML techniques in two ways: (1) directly
applying ML-learned solutions to cache replacement pol-
icy management, or (2) using the insights observed from
ML-learned solutions to improve heuristic-based traditional
cache management schemes. A prior work (Khadka et al.,
2020) on per-layer memory placement on the Intel NNP-
I, using a combination of RL, graph neural networks, and
evolutionary search is the closest to ideas proposed in this
paper. The optimization objective in (Khadka et al., 2020)
is to find the best data placement among memory compo-
nents (DRAM, LLC and scratchpad) for the activation and
weight components of each layer, with the search space
growing exponentially with the number of layers. In con-
trast, AutoScratch focuses on finding the optimal selection
of shared activation memory slices across all layers to be ex-
plicitly pinned in the LLC. The search space of AutoScratch
depends only on the size of memory address range to be
selected among and the memory slice granularity, but is
independent of the number of layers. Because AutoScratch
uses this generic memory array abstraction, AutoScratch
could be generalized to other iterative GPU workloads with
similar dataflow patterns.

Researchers have also applied RL and EA techniques to
other problems in the field of computer architecture such as
hardware prefetching (Bera et al., 2021; Peled et al., 2015),
NoCs (Lin et al., 2020), memory controllers (Mukundan &
Martinez, 2012; Ipek et al., 2008), and hardware resource
assignments (Kao et al., 2020; Kao & Krishna, 2020; Kao
et al., 2022). While being broadly related, they are orthogo-
nal to the problem and solution described in this paper.

7 CONCLUSION

We developed AutoScratch to discover and optimize GPU
cache residency controls for DL inference workloads. Our
GPU silicon-based evaluations show that AutoScratch
achieves an impressive DRAM traffic reduction of 29%
and performance speedup of 9% (geomean) for the MLPerf
inference workloads on an inference-oriented NVIDIA’s L4
GPU. When comparing EA with RL, we found that Auto-
Scratch with EA-based optimizer learns 58× faster, while
providing nearly equivalent results, making it a suitable
choice for practical deployment.

We believe the future trajectory of architectural innovations
lies in a blending of hardware mechanisms and software
ML-based tuning. In this work, we identify and explore
one such co-design opportunity with the hope that it will
inspire architects to design additional hardware hooks to
enable these kinds of optimization mechanisms in other
architectural domains.

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

REFERENCES

AMD. Introducing AMD CDNA™ 2 Architecture, 2021.
URL https://www.amd.com/system/files/
documents/amd-cdna2-white-paper.pdf.

Anderson, M., Chen, B., Chen, S., Deng, S., Fix, J.,
Gschwind, M., Kalaiah, A., Kim, C., Lee, J., Liang, J.,
Liu, H., Lu, Y., Montgomery, J., Moorthy, A., Nadathur,
S., Naghshineh, S., Nayak, A., Park, J., Petersen, C.,
Schatz, M., Sundaram, N., Tang, B., Tang, P., Yang, A.,
Yu, J., Yuen, H., Zhang, Y., Anbudurai, A., Balan, V.,
Bojja, H., Boyd, J., Breitbach, M., Caldato, C., Calvo,
A., Catron, G., Chandwani, S., Christeas, P., Cottel,
B., Coutinho, B., Dalli, A., Dhanotia, A., Duncan, O.,
Dzhabarov, R., Elmir, S., Fu, C., Fu, W., Fulthorp, M.,
Gangidi, A., Gibson, N., Gordon, S., Hernandez, B. P.,
Ho, D., Huang, Y.-C., Johansson, O., Juluri, S., Kanaujia,
S., Kesarkar, M., Killinger, J., Kim, B., Kulkarni, R., Lele,
M., Li, H., Li, H., Li, Y., Liu, C., Liu, J., Maher, B., Malli-
pedi, C., Mangla, S., Matam, K. K., Mehta, J., Mehta, S.,
Mitchell, C., Muthiah, B., Nagarkatte, N., Narasimha, A.,
Nguyen, B., Ortiz, T., Padmanabha, S., Pan, D., Poojary,
A., Ye, Qi, Raginel, O., Rajagopal, D., Rice, T., Ross,
C., Rotem, N., Russ, S., Shah, K., Shan, B., Shen, H.,
Shetty, P., Skandakumaran, K., Srinivasan, K., Sumbaly,
R., Tauberg, M., Tzur, M., Verma, S., Wang, H., Wang,
M., Wei, B., Xia, A., Xu, C., Yang, M., Zhang, K., Zhang,
R., Zhao, M., Zhao, W., Zhu, R., Mathews, A., Qiao, L.,
Smelyanskiy, M., Jia, B., and Rao, V. First-Generation
Inference Accelerator Deployment at Facebook. In arXiv
preprint arXiv:2107.04140, 2021.

Bauer, M., Cook, H., and Khailany, B. CudaDMA: Optimiz-
ing GPU Memory Bandwidth via Warp Specialization. In
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, 2011.

Belady, L. A. A study of replacement algorithms for a
virtual-storage computer. IBM Systems Journal, 5(2):
78–101, 1966. doi: 10.1147/sj.52.0078.

Bera, R., Kanellopoulos, K., Nori, A., Shahroodi, T., Sub-
ramoney, S., and Mutlu, O. Pythia: A Customizable
Hardware Prefetching Framework Using Online Rein-
forcement Learning. In 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pp. 1121–1137,
2021.

Chatterjee, N., O’Connor, M., Lee, D., Johnson, D. R.,
Keckler, S. W., Rhu, M., and Dally, W. J. Architecting
an Energy-Efficient DRAM System for GPUs. In 2017
IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2017.

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L.,
Chen, T., Xu, Z., Sun, N., and Temam, O. DaDianNao: A
Machine-Learning Supercomputer. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, 2014.

Chen, Y.-H., Emer, J., and Sze, V. Eyeriss: A Spatial Archi-
tecture for Energy-Efficient Dataflow for Convolutional
Neural Networks. In Proceedings of the 43rd Interna-
tional Symposium on Computer Architecture, 2016.

Diamos, G., Sengupta, S., Catanzaro, B., Chrzanowski, M.,
Coates, A., Elsen, E., Engel, J., Hannun, A., and Satheesh,
S. Persistent RNNs: Stashing Recurrent Weights on-Chip.
In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume
48, pp. 2024–2033, 2016.

Dulac-Arnold, G., Mankowitz, D., and Hester, T. Chal-
lenges of real-world reinforcement learning. arXiv
preprint arXiv:1904.12901, 2019.

Fowers, J., Ovtcharov, K., Papamichael, M., Massengill,
T., Liu, M., Lo, D., Alkalay, S., Haselman, M., Adams,
L., Ghandi, M., Heil, S., Patel, P., Sapek, A., Weisz, G.,
Woods, L., Lanka, S., Reinhardt, S. K., Caulfield, A. M.,
Chung, E. S., and Burger, D. A Configurable Cloud-Scale
DNN Processor for Real-Time AI. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Ar-
chitecture (ISCA), 2018.

Fu, Y., Bolotin, E., Chatterjee, N., Nellans, D., and Keckler,
S. W. GPU Domain Specialization via Composable On-
Package Architecture. ACM Trans. Archit. Code Optim.,
19(1), dec 2021.

Goldberg, D. E. and Deb, K. A comparative analysis of
selection schemes used in genetic algorithms. In Founda-
tions of genetic algorithms, volume 1, pp. 69–93. Elsevier,
1991.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Gupta, U., Wu, C.-J., Wang, X., Naumov, M., Reagen,
B., Brooks, D., Cottel, B., Hazelwood, K., Hempstead,
M., Jia, B., Lee, H.-H. S., Malevich, A., Mudigere, D.,
Smelyanski, M., Xiong, L., and Zhang, X. The Archi-
tectural Implications of Facebook’s DNN-based Person-
alized Recommendation. In International Symposium
on High-Performance Computer Architecture (HPCA),
2020.

Ipek, E., Mutlu, O., Martı́nez, J. F., and Caruana, R.
Self-Optimizing Memory Controllers: A Reinforcement
Learning Approach. In International Symposium on Com-
puter Architecture, pp. 39–50, 2008.

https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

Jain, A. and Lin, C. Back to the Future: Leveraging Be-
lady’s Algorithm for Improved Cache Replacement. In
2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), pp. 78–89, 2016. doi:
10.1109/ISCA.2016.17.

Jaleel, A., Theobald, K. B., Steely, S. C., and Emer, J. High
Performance Cache Replacement Using Re-Reference
Interval Prediction (RRIP). In Proceedings of the 37th
Annual International Symposium on Computer Architec-
ture, pp. 60–71, 2010.

Jiang, N. and Li, L. Doubly robust off-policy value evalua-
tion for reinforcement learning. In International Confer-
ence on Machine Learning, pp. 652–661. PMLR, 2016.

Jouppi, N. P., Hyun Yoon, D., Ashcraft, M., Gottscho, M.,
Jablin, T. B., Kurian, G., Laudon, J., Li, S., Ma, P., Ma,
X., Norrie, T., Patil, N., Prasad, S., Young, C., Zhou, Z.,
and Patterson, D. Ten Lessons From Three Generations
Shaped Google’s TPUv4i : Industrial Product. In Inter-
national Symposium on Computer Architecture (ISCA),
pp. 1–14, 2021.

Kao, S.-C. and Krishna, T. GAMMA: Automating the HW
Mapping of DNN Models on Accelerators via Genetic
Algorithm. In 2020 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pp. 1–9, 2020.

Kao, S.-C., Jeong, G., and Krishna, T. ConfuciuX: Au-
tonomous Hardware Resource Assignment for DNN Ac-
celerators using Reinforcement Learning. In 2020 53rd
Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pp. 622–636, 2020.

Kao, S.-C., Pellauer, M., Parashar, A., and Krishna, T.
DiGamma: Domain-aware Genetic Algorithm for HW-
Mapping Co-optimization for DNN Accelerators. In 2022
Design, Automation & Test in Europe Conference & Ex-
hibition (DATE), pp. 232–237, 2022.

Kerr, A., Merrill, D., Demouth, J., and Tran, J. CUT-
LASS: Fast Linear Algebra in CUDA C++, 2017.
URL https://developer.nvidia.com/blog/
cutlass-linear-algebra-cuda/.

Khadka, S., Aflalo, E., Marder, M., Ben-David, A., Miret,
S., Mannor, S., Hazan, T., Tang, H., and Majumdar,
S. Optimizing Memory Placement using Evolution-
ary Graph Reinforcement Learning. In arXiv preprint,
arXiv:2007.07298, 2020.

Knowles, S. Graphcore Colossus Mk2 IPU. In HotChips-33,
2021.

Komuravelli, R., Sinclair, M. D., Alsop, J., Huzaifa, M.,
Kotsifakou, M., Srivastava, P., Adve, S. V., and Adve,
V. S. Stash: Have your scratchpad and cache it too. In

2015 ACM/IEEE 42nd Annual International Symposium
on Computer Architecture (ISCA), pp. 707–719, 2015.

Krashinsky, R., Giroux, O., Jones, S., Stam,
N., and Ramaswamy, S. NVIDIA Am-
pere Architecture In-Depth, 2020. URL
https://developer.nvidia.com/blog/
nvidia-ampere-architecture-in-depth/.

Lacey, D. Intelligent memory for in-
telligent computing, 2020. URL
https://www.graphcore.ai/posts/
intelligent-memory-for-intelligent-computing.

Li, B., Wang, Y., Wang, R., Tai, C., Iyer, R., Zhou, Z., Her-
drich, A., Zhang, T., Haj-Ali, A., Stoica, I., and Asanovic,
K. RLDRM: Closed Loop Dynamic Cache Allocation
with Deep Reinforcement Learning for Network Func-
tion Virtualization. In 2020 6th IEEE Conference on
Network Softwarization (NetSoft), pp. 335–343, 2020.
doi: 10.1109/NetSoft48620.2020.9165471.

Lie, S. Wafer Scale Deep Learning. In HotChips-31, 2019.

Lin, T.-R., Penney, D., Pedram, M., and Chen, L. A Deep
Reinforcement Learning Framework for Architectural
Exploration: A Routerless NoC Case Study. In 2020
IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 99–110, 2020.

Liu, E. Z., Hashemi, M., Swersky, K., Ranganathan, P.,
and Ahn, J. An Imitation Learning Approach for Cache
Replacement. In Proceedings of the 37th International
Conference on Machine Learning, 2020.

Mukundan, J. and Martinez, J. F. Morse: Multi-objective re-
configurable self-optimizing memory scheduler. In IEEE
International Symposium on High-Performance Comp
Architecture, pp. 1–12, 2012.

Nguyen, K. Introduction to Cache Allocation Technology
in the Intel® Xeon® Processor E5 v4 Family, 2016.
URL https://www.intel.com/content/www/
us/en/developer/articles/technical/
introduction-to-cache-allocation-technology.
html.

NVIDIA. NVIDIA Tesla V100 Architecture,
2017. URL http://images.nvidia.com/
content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf.

NVIDIA. NVIDIA A100 Tensor Core
GPU Architecture, 2020a. URL https:
//www.nvidia.com/content/dam/
en-zz/Solutions/Data-Center/
nvidia-ampere-architecture-whitepaper.
pdf.

https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://www.graphcore.ai/posts/intelligent-memory-for-intelligent-computing
https://www.graphcore.ai/posts/intelligent-memory-for-intelligent-computing
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

NVIDIA. NVIDIA T4 70W Low Profile PCIe
GPU Accelerator, 2020b. URL https:
//www.nvidia.com/content/dam/en-zz/
Solutions/Data-Center/tesla-t4/
t4-tensor-core-product-brief.pdf.

NVIDIA. CUDA Toolkit Documentation v11.5.0,
2021a. URL https://docs.nvidia.com/cuda/
index.html.

NVIDIA. NVIDIA TensorRT SDK, 2021b. URL https:
//developer.nvidia.com/tensorrt.

NVIDIA. NVIDIA Ada GPU Architecture, 2023a.
URL https://images.nvidia.com/
aem-dam/Solutions/Data-Center/l4/
nvidia-ada-gpu-architecture-whitepaper-v2.
0.pdf.

NVIDIA. Optimizing Convolutional Lay-
ers User’s Guide, 2023b. URL https:
//docscontent.nvidia.com/dita/
00000186-1a08-d34f-a596-3f291b140000/
deeplearning/performance/pdf/
Optimizing-Convolutional-Layers-User-Guide.
pdf.

NVIDIA. NVIDIA L4 Tensor Core GPU, 2023c. URL
https://nvdam.widen.net/s/rvq98gbwsw/
l4-datasheet-2595652.

Park, J., Naumov, M., Basu, P., Deng, S., Kalaiah, A., Khu-
dia, D., Law, J., Malani, P., Malevich, A., Nadathur, S.,
Pino, J., Schatz, M., Sidorov, A., Sivakumar, V., Tulloch,
A., Wang, X., Wu, Y., Yuen, H., Diril, U., Dzhulgakov,
D., Hazelwood, K., Jia, B., Jia, Y., Qiao, L., Rao, V.,
Rotem, N., Yoo, S., and Smelyanskiy, M. Deep Learning
Inference in Facebook Data Centers: Characterization,
Performance Optimizations and Hardware Implications.
In arXiv preprint arXiv:1811.09886, 2018.

Peled, L., Mannor, S., Weiser, U., and Etsion, Y. Seman-
tic Locality and Context-Based Prefetching Using Rein-
forcement Learning. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture, pp.
285–297, 2015. ISBN 9781450334020.

Pellauer, M., Shao, Y. S., Clemons, J., Crago, N. C., Hegde,
K., Venkatesan, R., Keckler, S. W., Fletcher, C. W., and
Emer, J. S. Buffets: An Efficient and Composable Stor-
age Idiom for Explicit Decoupled Data Orchestration. In
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 2019.

Pettis, K. and Hansen, R. C. Profile Guided Code Posi-
tioning. In Proceedings of the ACM SIGPLAN 1990

Conference on Programming Language Design and Im-
plementation, pp. 16–27, New York, NY, USA, 1990.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto,
A., and Dormann, N. Stable baselines3. https:
//github.com/DLR-RM/stable-baselines3,
2019.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regular-
ized Evolution for Image Classifier Architecture Search.
In Proceedings of the Thirty-Third AAAI Conference on
Artificial Intelligence and Thirty-First Innovative Appli-
cations of Artificial Intelligence Conference and Ninth
AAAI Symposium on Educational Advances in Artificial
Intelligence, 2019.

Reddi, V. J., Cheng, C., Kanter, D., Mattson, P.,
Schmuelling, G., Wu, C.-J., Anderson, B., Breughe, M.,
Charlebois, M., Chou, W., Chukka, R., Coleman, C.,
Davis, S., Deng, P., Diamos, G., Duke, J., Fick, D., Gard-
ner, J. S., Hubara, I., Idgunji, S., Jablin, T. B., Jiao, J.,
John, T. S., Kanwar, P., Lee, D., Liao, J., Lokhmotov, A.,
Massa, F., Meng, P., Micikevicius, P., Osborne, C., Pekhi-
menko, G., Rajan, A. T. R., Sequeira, D., Sirasao, A.,
Sun, F., Tang, H., Thomson, M., Wei, F., Wu, E., Xu, L.,
Yamada, K., Yu, B., Yuan, G., Zhong, A., Zhang, P., and
Zhou, Y. MLPerf Inference Benchmark. In Proceedings
of the ACM/IEEE 47th Annual International Symposium
on Computer Architecture, pp. 446–459, 2020.

Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., and
Keckler, S. W. VDNN: Virtualized Deep Neural Net-
works for Scalable, Memory-Efficient Neural Network
Design. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, 2016.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sethumurugan, S., Yin, J., and Sartori, J. Designing a
Cost-Effective Cache Replacement Policy using Machine
Learning. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pp.
291–303, 2021. doi: 10.1109/HPCA51647.2021.00033.

Shah, I., Jain, A., and Lin, C. Effective Mimicry of Belady’s
MIN Policy. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pp.
558–572, 2022. doi: 10.1109/HPCA53966.2022.00048.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.0.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.0.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.0.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.0.pdf
https://docscontent.nvidia.com/dita/00000186-1a08-d34f-a596-3f291b140000/deeplearning/performance/pdf/Optimizing-Convolutional-Layers-User-Guide.pdf
https://docscontent.nvidia.com/dita/00000186-1a08-d34f-a596-3f291b140000/deeplearning/performance/pdf/Optimizing-Convolutional-Layers-User-Guide.pdf
https://docscontent.nvidia.com/dita/00000186-1a08-d34f-a596-3f291b140000/deeplearning/performance/pdf/Optimizing-Convolutional-Layers-User-Guide.pdf
https://docscontent.nvidia.com/dita/00000186-1a08-d34f-a596-3f291b140000/deeplearning/performance/pdf/Optimizing-Convolutional-Layers-User-Guide.pdf
https://docscontent.nvidia.com/dita/00000186-1a08-d34f-a596-3f291b140000/deeplearning/performance/pdf/Optimizing-Convolutional-Layers-User-Guide.pdf
https://docscontent.nvidia.com/dita/00000186-1a08-d34f-a596-3f291b140000/deeplearning/performance/pdf/Optimizing-Convolutional-Layers-User-Guide.pdf
https://nvdam.widen.net/s/rvq98gbwsw/l4-datasheet-2595652
https://nvdam.widen.net/s/rvq98gbwsw/l4-datasheet-2595652
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

Shi, Z., Huang, X., Jain, A., and Lin, C. Applying Deep
Learning to the Cache Replacement Problem. In Pro-
ceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 413–425, 2019.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Teran, E., Wang, Z., and Jiménez, D. A. Perceptron learning
for reuse prediction. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO),
pp. 1–12, 2016.

Underwood, C. Use Cases of Recommen-
dation Systems in Business – Current Ap-
plications and Methods. 2020. https:
//emerj.com/ai-sector-overviews/
use-cases-recommendation-systems/.

Villa, O., Lustig, D., Yan, Z., Bolotin, E., Fu, Y., Chatterjee,
N., Jiang, N., and Nellans, D. Need for Speed: Experi-
ences Building a Trustworthy System-Level GPU Simu-
lator. In International Symposium on High-Performance
Computer Architecture (HPCA), 2021.

Wu, C.-J., Jaleel, A., Hasenplaugh, W., Martonosi, M.,
Steely, S. C., and Emer, J. SHiP: Signature-based Hit
Predictor for high performance caching. In 2011 44th
Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pp. 430–441, 2011.

Young, V., Chou, C.-C., Jaleel, A., and Qureshi, M. Ship++:
Enhancing signature-based hit predictor for improved
cache performance. In The 2nd Cache Replacement
Championship (CRC-2 Workshop in ISCA 2017), 2017.

https://emerj.com/ai-sector-overviews/use-cases-recommendation-systems/
https://emerj.com/ai-sector-overviews/use-cases-recommendation-systems/
https://emerj.com/ai-sector-overviews/use-cases-recommendation-systems/

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

A COMPARISON TO HARDWARE-BASED
CACHE REPLACEMENT POLICIES

We have explored AutoScratch performance on the state-
of-the-art NVIDIA L4 GPU product. Prior research also
has proposed several hardware-based cache replacement
policies (Jaleel et al., 2010; Wu et al., 2011; Young et al.,
2017; Jain & Lin, 2016; Shi et al., 2019; Shah et al., 2022),
unfortunately most of them are less practical as the rely
either on oracle information or on exposing the PC infor-
mation to the LLC. Because modern high performance sys-
tems do not propagate expensive PC information from all
cores to all LLC banks, we focus our comparison to high-
performance cache replacement policy that is practical to
implement, such as hardware-based Signature-based Hit
Predictor (SHiP) (Wu et al., 2011). As such to further un-
derstand the effectiveness of AutoScratch, we compare it
with both SHiP and Belady’s algorithm (Belady, 1966) to
measure the benefits of explicit cache control against the
state-of-the-art hardware policy and the theoretical upper
bound of performance. Inspired by AutoScratch that only
learns for activations, we also implement a novel software-
assisted SHiP (SHiP-SW) to try and close the performance
gap between AutoScratch and SHiP. Compared to SHiP that
learns the re-reference interval for all signatures, SHiP-SW
only learns the re-reference interval for important signatures
that are identified (activations for inference workloads) and
prioritized by software while the remaining signatures are
treated with low priority.

A.1 Hardware-Based Replacement Polices

Architects traditionally improve on-chip caching efficiency
by optimizing hardware-based cache replacement policies.
Recent work has proposed a variety of advanced hardware-
based replacement policies (Jaleel et al., 2010; Wu et al.,
2011; Jain & Lin, 2016; Shi et al., 2019; Shah et al., 2022)
to address the limitations of least recently used (LRU) re-
placement policy. However, many recent proposals rely on
program counter (PC) information at the last-level cache,
which is not available in modern high performance proces-
sors due to the cost of passing that information from all
execution pipelines across the on-chip interconnect hierar-
chy. Adding support for this functionality in the GPU’s L2
cache would introduce significant overhead, as there are
a large number of streaming multiprocessors (SMs) on a
GPU and the memory subsystem would require PC infor-
mation to be forwarded from each of the SMs to the L2
cache alongside each request. In this paper, we choose to
compare AutoScratch to SHiP (Wu et al., 2011) and its vari-
ants that do not rely on PC information to understand if
ML-based LLC control can be better than state-of-the-art
hardware-based cache replacement policies.

Signature-Based Hit Predictor (SHiP): SHiP (Wu et al.,

2011) is a fine-granularity cache replacement policy that
categorizes cache insertions into different groups by associ-
ating a signature with each cache reference. SHiP proposed
three different signatures: a memory address, a PC of the
missing memory instruction, or an instruction sequence. In
this work, we use the 4KB aligned memory address the
cache reference falls into as the signature. SHiP relies on
the insight that cache references having the same signature
will likely have the same re-reference interval. The origi-
nal SHiP paper utilizes the re-reference pattern learned by
SHiP to improve the SRRIP replacement policy (Jaleel et al.,
2010). In this work, we use SHiP to help classify L2 cache-
lines into either the L2-resident or regular class similar to
what AutoScratch does.

To learn the re-reference pattern of a signature, SHiP main-
tains two additional fields with each cacheline: the signature
itself and a single bit to track the outcome of the cache in-
sertion. The outcome bit is initially set to zero and set to
one only if the cacheline receives a hit after insertion. SHiP
learns the re-reference interval of a given signature by main-
taining a table of saturating counters called the Signature
History Counter Table (SHCT). SHiP updates the SHCT
upon cache evictions – when a cacheline is evicted, the
SHCT is indexed with the signature and the corresponding
counter is decremented (if the outcome bit is zero) or incre-
mented (if the outcome bit is one). The SHCT counter value
indicates the re-reference behavior of a signature. If the
counter value is zero, it implies that future cache insertions
by the signature are unlikely to be re-referenced, thus the
associated cachelines will be classified as the regular class.
Otherwise, the associated cachelines will be classified as
the L2-resident class.

Software-Assisted SHiP (SHiP-SW): SHiP learns a re-
reference interval prediction for all signatures that exist in
an application. However, there are two drawbacks with
the conventional SHiP design. First, for practical SHCT
sizes, multiple signatures indexing the same SHCT entry
can cause destructive interference. In such scenarios, the
SHCT is unable to provide an accurate re-reference pre-
diction for the interfering signatures. Second, SHiP treats
all signatures equally and makes the same re-reference pre-
diction for all signatures that receive cache hits. While
this approach attempts to maximize cache utility by retain-
ing signatures that receive cache hits, it does not take into
account the criticality of a signature to performance. For
example, cache lines inserted by a given signature S1 might
be more critical to performance than cachelines inserted by
a different signature S2 (even if both of them receive cache
hits). In such situations, it is more important to give more
cache space to cachelines inserted by signature S1 than by
signature S2.

Signature criticality can either be learned dynamically or di-

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

resnet50 ssd-resnet34 ssd-mobilenet 3d-unet bert dlrm rnnt geomean

N
o

rm
al

iz
ed

 D
R

A
M

 T
ra

ff
ic

Baseline Silicon Baseline Simulation AS-RL Silicon AS-RL Simulation AS-EA Silicon AS-EA Simulation

Figure 11. Normalized DRAM traffic comparison with Baseline, AutoScratch-RL, and AutoScratch-EA between silicon and simulation
results.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o

rm
al

iz
ed

 D
R

A
M

 T
ra

ff
ic Baseline RD AS-RL RD AS-EA RD SHiP RD SHiP-SW RD Belady RD

ssd-mobilenet 3d-unetresnet50 ssd-resnet34 bert dlrm rnnt geomean

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o

rm
al

iz
ed

 D
R

A
M

 T
ra

ff
ic

Baseline WR AS-RL WR AS-EA WR SHiP WR SHiP-SW WR Belady WR

Figure 12. Simulated DRAM traffic with AutoScratch-RL, AutoScratch-EA, SHiP, SHiP-SW, and Belady’s algorithm, normalized to the
baseline without L2 residency controls.

rectly specified in the software. Motivated by AutoScratch,
we propose SHiP-SW, a hardware-software co-designed
cache replacement policy where the application provides
SHiP hardware with critical signature(s) for the application.
For example, when SHiP uses the memory address as the
signature, the software will provide the cache hardware with
the memory address region(s) that are deemed performance
critical. We assume that the critical signatures are specified
using a set of programmable registers within the SM and
criticality information is sent down to the memory hierarchy
as part of the memory request packet. This additional criti-
cal bit is still substantially less costly than a full PC used in
some of previously proposed PC-based hardware replace-
ment policies. At the L2, SHiP-SW then assigns cachelines
at the regular class for all non-critical signatures and learns
to classify cachelines as either regular or L2-resident for
critical signatures only.

Belady’s Algorithm: Belady’s algorithm (Belady, 1966) is
a theoretical cache replacement policy that provides optimal
cache performance in terms of cache hit rate. The key idea
is to always evict the cacheline that is reused furthest in
the future during cache replacement. Because it requires
oracular information about future cacheline accesses, it is
impractical to implement in real silicon. Therefore in this
work, we use it only to serve as a theoretical upper bound

for comparison purposes.

A.2 Additional Results

Thus far we have reported the performance speedups and
DRAM traffic reductions achieved by AutoScratch on
NVIDIA L4 GPU silicon. To compare AutoScratch to a
previously proposed non-PC-based hardware replacement
policy (SHiP) and the theoretical best Belady’s replacement
algorithm, we perform a simulation-based evaluation.

To enable comparison with hardware-based cache replace-
ment policies, we use a variant of a trace-based GPU sim-
ulator similar to NVArchSim (Villa et al., 2021) to simu-
late the same GPU configuration and workloads as in the
silicon-based evaluation. Because the GPU’s L2 cache is
concurrently accessed by multiple SMs, similar to a multi-
core CPU, the Belady’s algorithm is not well defined in such
scenario (Shah et al., 2022). The cache access order changes
with every differing cache replacement decision. To over-
come this issue, we choose to record the L2 access traces
from the GPU simulator using the default cache replacement
policy and feed them back into a separate functional python-
based L2 cache model in order to simulate L2 and memory
system behavior. By doing this, we generate a deterministic
L2 access sequence for each workload, allowing us to use a

AutoScratch: ML-Optimized Cache Management for Inference-Oriented GPUs

straightforward implementation of Belady’s algorithm along
with other replacement policies.

First, to demonstrate confidence in the fidelity of our sim-
ulation infrastructure, we compare the normalized DRAM
traffic reductions of AutoScratch-RL and AutoScratch-EA
against the silicon results in Figure 11. Our results indicate
that the DRAM traffic reductions reported by our simula-
tion infrastructure track very closely with the silicon results
and are within 3% geomean across all evaluated workloads.
Thus we report our simulation results as-is, without adding
any manual correction factors when showing simulation
results.

Figure 12 shows the simulated DRAM traffic with
AutoScratch-RL (AS-RL), AutoScratch-EA (AS-EA), SHiP,
software-assisted SHiP (SHiP-SW) and Belady’s algorithm,
normalized to the baseline without L2 residency controls.
Both AutoScratch-RL and AutoScratch-EA outperform
SHiP across all workloads except for rnnt, with an extra
overall traffic reductions of 11% and 10% in geomean re-
spectively, that mostly come from write traffic minimization.
SHiP-SW slightly reduces the DRAM traffic by additional
2% over SHiP, but is unable to close the gap with Auto-
Scratch. Compared to the theoretical best Belady’s algo-
rithm, AutoScratch-RL and AutoScratch-EA result in a 26%
and 27% gap in terms of DRAM traffic reductions, respec-
tively. We conclude that there is still potential room for
improvement beyond AutoScratch.

In summary, we show in simulation that AutoScratch out-
performs the state-of-the-art hardware-based replacement
policy SHiP, by achieving a 11% larger DRAM traffic re-
duction and reducing the gap with an oracular Belady’s to
26%. We augment SHiP with software-identified address
regions (SHiP-SW) to achieve an additional 2% DRAM
traffic reduction versus the original SHiP, but cannot close
the gap with AutoScratch. We conclude that ML-based soft-
ware control of caches is a promising new technique that
can be utilized in modern GPU architectures and hope that
our results motivate additional further research into advanc-
ing both hardware and software cache control techniques to
close the gap with the theoretical best Belady’s algorithm.

