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ABSTRACT
Training and inference with graph neural networks (GNNs) on massive graphs has been actively studied since the
inception of GNNs, owing to the widespread use and success of GNNs in applications such as recommendation
systems and financial forensics. This paper is concerned with minibatch training and inference with GNNs that
employ node-wise sampling in distributed settings, where the necessary partitioning of vertex features across
distributed storage causes feature communication to become a major bottleneck that hampers scalability. To
significantly reduce the communication volume without compromising prediction accuracy, we propose a policy
for caching data associated with frequently accessed vertices in remote partitions. The proposed policy is based
on an analysis of vertex-wise inclusion probabilities (VIP) during multi-hop neighborhood sampling, which may
expand the neighborhood far beyond the partition boundaries of the graph. VIP analysis not only enables the
elimination of the communication bottleneck, but it also offers a means to organize in-memory data by prioritizing
GPU storage for the most frequently accessed vertex features. We present SALIENT++, which extends the prior
state-of-the-art SALIENT system to work with partitioned feature data and leverages the VIP-driven caching
policy. SALIENT++ retains the local training efficiency and scalability of SALIENT by using a deep pipeline
and drastically reducing communication volume while consuming only a fraction of the storage required by
SALIENT. We provide experimental results with the Open Graph Benchmark data sets and demonstrate that
training a 3-layer GraphSAGE model with SALIENT++ on 8 single-GPU machines is 7.1× faster than with
SALIENT on 1 single-GPU machine, and 12.7× faster than with DistDGL on 8 single-GPU machines.

1 INTRODUCTION

Graph neural networks (GNNs) are an important class of ma-
chine learning models that incorporate relational inductive
bias for effective representation learning on graph structured
data (Li et al., 2016; Kipf & Welling, 2017; Hamilton et al.,
2017; Veličković et al., 2018; Xu et al., 2019). These neural
networks have been successfully applied in a number of
use cases, including product recommendation, traffic fore-
casting, and financial forensics (Ying et al., 2018; Li et al.,
2018; Weber et al., 2019). In many applications, data are
continuously collected and the resulting graph grows rapidly,
calling for efficient GNN training and inference systems that
can scale with the explosive increase of graph data.

This work considers minibatch training and inference with
neighborhood sampling in the distributed setting, where
vertex data (features) are partitioned across machines. As
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opposed to full-batch optimization, minibatch optimization
is typical for training neural networks, but it poses a unique
challenge for GNNs because of the exponential increase of
neighborhood size across network layers (Chen et al., 2018).
Neighborhood sampling is a popular and effective approach
to mitigating this issue (Hamilton et al., 2017; Chen et al.,
2018; Ying et al., 2018; Zou et al., 2019; Zeng et al., 2020;
Ramezani et al., 2020; Dong et al., 2021). In distributed
GNN training, each machine computes the training loss for a
minibatch of vertices that are local to the machine’s partition.
At every step of the training optimization, a set of partition-
wise minibatches forms a “distributed minibatch” which
is used to update the GNN model parameters. Distributed
GNN inference is organized similarly.

Even with neighborhood sampling, minibatch neighborhood
expansion creates a communication bottleneck as each ma-
chine needs to access remote data for sampled vertices. The
communication pattern is stochastic because of the random
nature of minibatch and neighborhood sampling. Commu-
nication time often dominates the time for training compu-
tations. An example of this bottleneck effect is shown in
Table 1, which we will walk through shortly.



To overcome the communication bottleneck, we propose
an analysis of neighborhood access patterns via vertex in-
clusion probabilities, as well as a caching policy based on
the analysis. We refer to this analysis as “VIP analysis.”
In contrast to commonly used heuristics for estimating ver-
tex access probabilities — e.g., based on vertex degree and
expanded boundary frontiers (Lin et al., 2020), random
walks (Dong et al., 2021; Min et al., 2021), or simulated
GNN computations (Yang et al., 2022) — VIP analysis es-
timates access probabilities for all graph vertices based on
an analytical model of the actual stochastic neighborhood
expansion process. We derive the specific VIP model for
the important class of node-wise sampling schemes (Hamil-
ton et al., 2017; Ying et al., 2018; Veličković et al., 2018;
Xu et al., 2019; Liu et al., 2020) and find that the result-
ing caching policy drastically reduces the communication
volume in distributed GNNs that employ node-wise sam-
pling with only a modest memory overhead. Moreover, VIP
analysis offers a means to organize in-memory data by prior-
itizing GPU storage for the most frequently accessed vertex
features, reducing host-to-device data transfers.

Our system, SALIENT++, is developed over SALIENT
(Kaler et al., 2022), an efficient GNN system that
achieves state-of-the-art performance through performance-
engineered neighborhood sampling, shared-memory parallel
batch preparation, and data-transfer pipelining. SALIENT
achieves per-epoch time that is nearly equal to the GPU time
for model computation alone (effectively hiding the cost of
minibatch construction, data transfer, and gradient commu-
nication), and it scales well with additional machines. But
SALIENT has the drawback of replicating the entire data
set on each machine, imposing a hard limit on the data set
size. Extending SALIENT to distribute vertex feature data
requires addressing the feature communication bottleneck.

SALIENT++ uses the VIP-analysis-driven caching policy
and a deep pipeline to achieve scalability and efficiency. It
nearly matches the performance of SALIENT with only a
fraction of SALIENT’s memory requirements. To highlight
the efficacy of SALIENT++, Table 1 lists the resulting per-
formance of progressive modifications on top of SALIENT.
This example uses the ogbn-papers100M data set (Hu et al.,
2020) and partitions the graph using METIS (Karypis &
Kumar, 1997) with an edge-cut minimization objective and
balancing constraints for the number of training, validation,
and overall vertices, as well as the total number of edges, in
each partition. Accompanying Table 1, Figure 1 illustrates
the key differences between SALIENT and the successive
optimizations in SALIENT++ using simplified computation
profiles and storage requirement depictions.

We first explore the distributed performance of SALIENT
with a disjoint partitioning of feature data across machines.
We modify SALIENT to only replicate the graph struc-

Table 1. Per-epoch runtime of a progressively more sophisti-
cated distributed GNN training system on the undirected ogbn-
papers100M data set, using a 3-layer GraphSAGE architecture
with sampling fanouts (15,10,5) and a hidden layer dimension of
256. For the system with remote feature caching, the size of the
cache relative to the size of local-vertex features for each machine
was 8% (2 machines), 16% (4 machines), or 32% (8 machines).

No. of machines

System 1 2 4 8

SALIENT (Full replication) 20.7s 10.76s 6.02s 3.08s
+ Partitioned features — 33.04s 15.98s 10.85s
+ Pipeline communication — 16.12s 8.73s 5.43s
+ Feature caching — 10.51s 5.45s 2.91s

ture and communicate vertex features on demand and in
bulk for each minibatch and its sampled neighborhood. Al-
though distributing the vertex features reduces SALIENT’s
memory requirement substantially, it also leads to an im-
mediate performance degradation. Specifically, we observe
slowdown of roughly 2–3× on two or four machines and
3.5× on eight machines relative to SALIENT with full-
replication. This slowdown presents itself in the form of
high latencies between GNN model computations (row 2 in
Figure 1). Overlapping feature communication with other
GNN operations (sampling, local feature slicing, host-to-
device transfers, training computations, and model updates)
through pipelining offers some improvement, but the system
remains bottlenecked by communication (row 3 in Figure 1).

If we allow a small memory overhead to cache frequently
accessed remote features locally, however, the combined
effects of reduced communication volume and pipelining
boost performance substantially. The sheer reduction of
communication volume due to caching makes it possible for
pipelining to (nearly) fully hide communication (4th row
in Figure 1). On K machines, SALIENT++ reduces the
total feature memory footprint of SALIENT by almost a
factor of K while matching the performance achieved by
SALIENT’s full-replication strategy.

In summary, this work makes the following contributions:

1. An analysis of vertex inclusion probabilities (VIP) during
GNN neighborhood expansion with node-wise sampling.
We show how VIP analysis can be used to minimize the
expected communication among machines as well as the
host-to-device data transfers within each machine.

2. The design and implementation of SALIENT++, a sys-
tem for distributed GNN training and inference that is
both efficient and scalable. The system is based on two
key components: a maximum-likelihood static caching
policy for remote and local features based on VIP analy-
sis; and a deep pipeline that overlaps feature communica-
tion with other GNN operations, ensuring high utilization
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Figure 1. Illustration of distributed GNN
computation profiles and feature data stor-
age for the precursor system SALIENT
and successive optimizations leading to
our system SALIENT++. Left: Utiliza-
tion of system resources (CPU, GPU, and
network) in one machine. The process-
ing of each minibatch is broken into three
parts. “MFG”: message-flow graph con-
struction. “Feat.”: local feature tensor slic-
ing, feature communication and joining, and
host-to-device transfers. “Model”: forward
and backward passes, plus communication
among machines for model updates. In ad-
dition to the highlighted minibatch, the pro-
files also depict parts of a preceding and
a succeeding minibatch in faded colors to
show overlap between pipelined operations.
Right: The color-stacked bars indicate the
number of locally stored feature vectors in
each of K total machines.

of available network bandwidth.

3. A systematic evaluation of the end-to-end training
performance and scalability of SALIENT++ on three
large benchmark graphs. On the largest of these data
sets, which does not fit in-memory on one machine,
SALIENT++ achieves a speedup of 1.75× when scal-
ing from 4 to 8 single-GPU machines and an additional
1.45× when scaling from 8 to 16 single-GPU machines.

2 BACKGROUND AND RELATED WORK

This section briefly recalls background and introduces nota-
tion for GNNs and their training/inference. It also discusses
related work on systems and distributed training.

2.1 Graph neural networks

This work focuses on the class of message passing neural
networks (MPNNs) (Gilmer et al., 2017), which encom-
passes many GNNs of major interest for massive graphs.
Let G = (V, E) be a graph with V being the vertex set and
E being the edge set. Let X ∈ RN×D be the vertex feature
matrix, where N is the number of vertices and D is the
feature dimension. A row of X , denoted by xv ∈ RD, is
the feature vector of a vertex v. Let ℓ = 0, . . . , L denote the
layer index and N1(v) be the one-hop neighborhood of v.
MPNNs use the following update rule to define a layer:

hℓ
v = UPDℓ

(
hℓ−1
v , AGGℓ

(
{hℓ−1

u | u ∈ N1(v)}
))

, (1)

where hℓ
v is the layer-ℓ representation of v, AGGℓ is a set

aggregation function, UPDℓ is a two-argument update func-
tion, and h0

v = xv. One sees that the representation of a

vertex v depends on the past-layer representations of v and
its neighbors in N1(v); and this dependence is recursive.

GNNs differ in their design of the two functions in (1). For
example, in GraphSAGE (Hamilton et al., 2017), AGGℓ is a
mean, LSTM, or pooling operator, and UPDℓ concatenates
the two arguments and applies a linear layer. In GIN (Xu
et al., 2019), AGGℓ is the sum of {hℓ−1

u } and UPDℓ is the sum
of its arguments followed by an MLP. In GAT (Veličković
et al., 2018), AGGℓ is the identity and UPDℓ computes hℓ

v

as a weighted combination of W ℓ−1hℓ−1
u for all u ∈ {v} ∪

N1(v), where the weights are attention coefficients and
W ℓ−1 is the parameter matrix of the layer.

2.2 Minibatch training

Neural networks can be trained with gradient descent (full-
batch training) or stochastic gradient descent methods (mini-
batch training). A majority of the deep learning literature
advocates minibatch training, with theoretical and empiri-
cal evidence suggesting that it converges faster, generalizes
better, and is more suitable for GPU-oriented computing
infrastructures (Bottou et al., 2018).

Minibatch training incurs a unique challenge for GNNs,
often termed the “neighborhood explosion” problem: to
compute the training loss for a vertex v, equation (1) indi-
cates that it requests information from the neighborhood
recursively, growing its size exponentially with the number
of layers. For a reasonably sized minibatch, the multi-hop
neighborhood quickly covers a large portion of the graph,
incurring a prohibitive time cost that eclipses the saving
in convergence speed. Moreover, the storage requirement
easily exceeds the memory capacity of a GPU.



2.3 Neighborhood sampling

Restricting the neighborhood size by sampling is an effec-
tive method for tackling the neighborhood explosion prob-
lem. Three major types of sampling strategies are node-wise
sampling (Hamilton et al., 2017; Ying et al., 2018), layer-
wise sampling (Chen et al., 2018; Zou et al., 2019), and
subgraph sampling (Chiang et al., 2019; Zeng et al., 2020).

Node-wise sampling approaches modify the neighborhood
for each vertex v separately by taking a random subset con-
taining at most f neighbors (called the fanout). Layer-wise
sampling approaches collect the neighbors of all vertices
in a minibatch and sample the neighborhood from their
union. Such sampling proceeds recursively layer by layer
and can use a nontrivial sampling distribution to control
pre-activation variance while preserving unbiasedness. Non-
linear activation functions destroy unbiasedness anyway, but
training convergence results can still be established based
on asymptotic consistency (Chen & Luss, 2018). Subgraph
sampling approaches sample a connected subgraph and com-
pute the minibatch loss restricted to this subgraph. This
work focuses on node-wise sampling for its widespread use.

2.4 Minibatch inference

Similar to training, inference can be performed in either full
batches or minibatches. Whereas the choice between full
batch or minibatch training centers on convergence and gen-
eralization, the choice made for inference depends on the
computational pattern and implementation effort. Full-batch
inference avoids neighborhood sampling but requires a sep-
arate implementation of the forward pass for different GNN
architectures. On the other hand, minibatch inference can
reuse the forward function for training, improving productiv-
ity for application developers and architecture designers, but
the stochastic nature of neighborhood sampling may return
different predictions and does not guarantee the same accu-
racy as the case of not performing sampling. Nevertheless,
the authors of SALIENT demonstrate strong empirical re-
sults that show that prediction accuracy is not compromised
with a reasonable choice of the fanouts (Kaler et al., 2022).
This work follows the practice of minibatch inference.

2.5 Related work

Due to the computational pattern of neighborhood aggrega-
tion, GNN training systems on massive graphs differ sub-
stantially from those for usual neural networks in design
and implementation. Many GNN systems are developed
based on full-batch training for simplicity, which avoids
the complication of neighborhood sampling. Examples in-
clude NeuGraph (Ma et al., 2019), Roc (Jia et al., 2020),
DeepGalois (Hoang et al., 2021), FlexGraph (Wang et al.,
2021a), Seastar (Wu et al., 2021), GNNAdvisor (Wang et al.,

2021b), DistGNN (Md et al., 2021), and BNS-GCN (Wan
et al., 2022). Some of these systems are built on common
deep learning frameworks, such as TensorFlow (Abadi et al.,
2015) and PyTorch (Paszke et al., 2019), while others are
built on self-developed programming models.

Examples of systems that perform minibatch training in-
clude DistDGL (Zheng et al., 2020), Zero-Copy (Min et al.,
2021), GNS (Dong et al., 2021), and P 3 (Gandhi & Iyer,
2021). However, these publications report results on ei-
ther multiple machines with only CPUs or a single machine
with one or multiple GPUs. A newer version of DistDGL
(DistDGLv2 (Zheng et al., 2021)), SALIENT (Kaler et al.,
2022), and our system SALIENT++ demonstrate results in
the distributed multi-GPU setting.

SALIENT++ employs edge-cut graph partitioning to dis-
tribute data across machines. An alternative approach,
adopted by DistGNN (Md et al., 2021), is vertex-cut parti-
tioning, which ensures each edge is local to some machine.
A drawback of this approach is that a vertex may be as-
signed to multiple machines, leading to memory overhead
due to feature replication that is reported to be as high as 5×.
SALIENT++, on the other hand, achieves high distributed
performance with less than 50% memory overhead due to
caching in our experiments.

SALIENT++ employs a caching policy to reduce commu-
nication and data transfer. We introduce a policy based
on an analysis of vertex access probabilities during neigh-
borhood sampling. Although caching has been explored
by several other systems in this context, previous caching
policies are heuristic, using proxy measures such as vertex
degrees (Lin et al., 2020), random walks (Dong et al., 2021;
Min et al., 2021), or simulated access frequencies (Yang
et al., 2022). A complementary approach to reducing com-
munication time is taken by DGCL (Cai et al., 2021), which
uses a communication-planning algorithm to optimize the
communication pattern for a specific network topology.

Marius and MariusGNN (Mohoney et al., 2021; Waleffe
et al., 2022) are out-of-core training systems that work on a
single machine by exploiting external memory. They oper-
ate in a different setting from ours, but our vertex inclusion
probability analysis may be used in complement to optimize
on-disk data representation and disk I/O.

3 VERTEX INCLUSION PROBABILITIES FOR
GNNS WITH NODE-WISE SAMPLING

This section describes a principled approach to estimat-
ing and reducing data access costs in distributed GNNs
with node-wise sampling. Node-wise sampling was notably
introduced in GraphSAGE (Hamilton et al., 2017) and is
used with a variety of GNN architectures (Ying et al., 2018;
Veličković et al., 2018; Xu et al., 2019; Liu et al., 2020). We



first introduce vertex-inclusion probability (VIP) analysis
to calculate the probability that any vertex will be present
in the sampled L-hop expanded neighborhood of a mini-
batch in some partition. VIP analysis takes into account
the distinctive structure of neighbor accesses in GNNs with
minibatches and node-wise sampling. We then demonstrate
that VIP analysis enables a simple but highly effective strat-
egy for reducing data movement during GNN computations.

The VIP model for node-wise sampling derived in this sec-
tion does not apply to other sampling schemes, such as
layer-wise or subgraph sampling. It may be possible to
derive VIP models for these other sampling schemes in a
similar way, but this is outside our scope.

3.1 Analysis of vertex inclusion probabilities in L-hop
neighborhoods with node-wise sampling

We analyze the following random process, which models
neighborhood expansion in GNN architectures with node-
wise sampling. (i) Start from a set of vertices rather than a
single vertex. (ii) For each vertex in the starting set, sam-
ple a set of direct neighbors without replacement, thereby
expanding the walk frontier. (iii) Using the union of sam-
pled neighborhoods as the new starting set, repeat step (ii).
The process terminates after L repetitions (i.e., hops). We
assume that sampling is independent across hops and across
vertices in the current-hop set. That is, although each vertex
samples among its direct neighbors without replacement,
different vertices may sample the same direct neighbor.

We seek to estimate the vertex inclusion probabilities, or
VIP values, in expanded neighborhoods that are obtained
per the above random process. The VIP values form a
vector of probabilities p(u) over all graph vertices. We can
express p(u) via hop-wise VIP vectors p[h](u) that contain
the probabilities that any vertex u is sampled exactly h
hops away from the starting set. (The hop-h neighborhood
contains the input vertices for the ℓ-th GNN layer, ℓ =
L − h.) A vertex u is not sampled at hop h only if, for
each of its neighbors v ∈ N1(u), either v was not sampled
at hop h − 1 or v was sampled but did not pick u among
its neighbors. The following Proposition shows how to
propagate the initial-set probabilities through the graph to
compute the VIP values. We give a proof in Appendix C.

Proposition 1 (Vertex inclusion probabilities in minibatch
neighborhood expansion with node-wise sampling). The
probability that vertex u ∈ V appears in the node-wise
sampled L-hop expanded neighborhood of any minibatch is

p(u) = 1−
L∏

h=1

(
1− p[h](u)

)
, (2)

p[h](u) = 1−
∏

v∈N1(u)

(
1− th(u, v) p

[h−1](v)
)
, (3)

where p[0](v) is the probability that v is in the minibatch
and th(u, v) is the transition probability that v samples u
as a neighbor at hop h = 1, . . . , L.

The VIP model of Proposition 1 applies to any initial
sampling and hop-wise transition probability function for
node-wise sampling. For example, if minibatches and
vertex-wise neighbors are sampled uniformly at random
without replacement as in GraphSAGE, then we have:
p[0](u) = B/|T | if u ∈ T and 0 otherwise, where B is
the minibatch size and T is the set of training vertices; and
th(u, v) = min{1, fh/d(v)} if u ∈ N1(v) and 0 otherwise,
where d(v) is the (outgoing) degree of v. Non-uniform
neighbor sampling models are accommodated via the corre-
sponding transition probability matrix or matrices.

The neighborhood expansion random process parametrizes
a continuum between a random walk and full neighborhood
expansion. If the initial set size and layer-wise fanouts are
equal to 1, it becomes a random walk. If the fanouts are
greater than the max in-degree of graph vertices, it becomes
a full neighborhood expansion. The VIP model for the above
two special cases is linear, while the generalized model in
Proposition 1 is nonlinear; nonetheless, these models all
have the same computational complexity: O(L(M +N)).

3.2 Vertex feature caching

We now show how to embody VIP analysis into a caching
policy for minimizing communication among distributed
machines and host-to-device data transfers in each machine.

Communication reduction We consider the optimal
static caching policy, in the maximum-likelihood sense,
for reducing inter-partition communication volume in dis-
tributed GNNs. The policy is straightforward: each machine
extends its local vertex feature storage with copies of the
remote features that are most likely to be accessed by the
machine, thereby minimizing the total expected communi-
cation volume. For some given initial partitioning — and
making no assumptions about the order in which minibatch
and neighboring vertices are sampled — this policy is di-
rectly related to the VIP analysis. Specifically, we calculate
partition-wise VIP values pk(u) from the corresponding ini-
tial probabilities p

[0]
k (u). The cache contents for the k-th

partition are then determined by ranking the remote vertices
in order of decreasing pk(u).

We measure the size of a remote-feature cache by its cor-
responding replication factor α. The replication factor
is defined such that the number of cached feature vectors
stored in each machine is αN/K, where K is the number
of partitions or machines. That is, the fraction of cached to
local vertices for each partition is α, and each feature vector
is stored in (1 + α) machines on average. We may say that



Figure 2. Comparison of caching policies with respect to remote
feature communication volume. GNN: 3-layer GraphSAGE, vary-
ing fanouts f , minibatch size 1024. Data set: ogbn-papers100M
(undirected). Partition: 8-way METIS with edge-cut objective plus
edge and training/validation/test vertex balancing. (a)–(c) Average
per-epoch communication in number of vertices over 100 epochs
(log-scale). Lower is better. The feasible region between the com-
munication upper bound (no caching) and lower bound (oracle
caching) is shaded gray. (d) Geometric-mean improvement across
fanouts, relative to no caching (log-scale). Higher is better.

a partition or cache replicates a remote vertex to mean that
it copies the corresponding vertex feature data.

Figure 2 compares a number of static feature-caching poli-
cies and provides evidence that the analytical VIP model of
Proposition 1 effectively yields the optimal policy. The spe-
cific policies being compared are as follows: “deg.” ranks
vertices by degree, after filtering out remote vertices that
are not reachable from a partition’s training set (Lin et al.,
2020); “1-hop” replicates the entire 1-hop halo of each par-
tition; “wPR” ranks vertices by their score after 5 iterations
of a weighted reverse-PageRank model (Min et al., 2021)
with damping factor 0.85; “#paths” ranks vertices by the
number of paths with length ≤ L that reach them from any
local training vertex; “sim.” ranks vertices by empirical VIP
estimates, measured by counting vertex-wise frequencies of
access over 2 simulated training epochs (Yang et al., 2022);
“VIP” ranks vertices by VIP values as per Proposition 1; and
“oracle” retroactively ranks vertices by their actual access
frequencies after training, providing a lower bound on com-
munication volume.1 We make the following observations.

1With all caching policies, we calculate vertex rankings with
respect to each partition. This is different from the original setting
in which some of these policies were introduced, where vertices
are cached based on a single, global ranking score.

• Optimality. The analytical VIP policy yields near-optimal
communication volume (within 5% of “oracle”) across
fanouts and replication factors. The bigger gap (∼30%)
for f = (5, 5, 5) and α = 1.0 is due to variance in the
accesses of lower-ranked vertices; the gap narrows with
more samples (e.g., bigger fanouts or more epochs).

• Communication reduction efficacy. VIP-driven caching
is highly effective for reducing communication volume.
Compared to no caching, the VIP policy achieves a
geometric-mean reduction of 2.2×–5.3× with small repli-
cation factors α ∈ [0.05, 0.20] and more than 10× with
replication factors over 0.50. Compared to the other
caching policies, it achieves consistently lower commu-
nication volume and its relative improvement increases
with the replication factor.

• Local information is not sufficient. The high-degree and
1-hop halo policies, which do not take neighborhood ex-
pansion into account, offer only marginal improvements
over no caching. Caching multi-hop neighbors will re-
duce communication further (Lin et al., 2020) but it will
also blow up the replication factor.

• Impact of tailoring the model to the expansion process.
The VIP-driven policy is up to 4× and 2× more effec-
tive than the “wPR” and “#paths” policies, respectively.
Both of these policies take graph-structural expansion
into account, but “wPR” is agnostic to the GNN fanout
and number of layers, while “#paths” does not directly
account for sampling.

• Benefits and limitations of empirical estimation. The em-
pirical and analytical VIP estimates (“sim.” and “VIP”
policy, respectively) yield comparable results for low
replication factors and high fanouts, but the empirical
estimates become less effective as the replication factor
increases or the fanouts decrease. For replication factors
0.50 and 1.0, the relative aggregate improvement of the
analytical over the empirical policy is 1.6× and 3.2×, re-
spectively. The empirical approach has the benefit that it
can be used for any sampling scheme, but it also requires
increasingly many samples to accurately estimate VIP
values for infrequently accessed vertices.

Host-to-device data transfer reduction VIP analysis can
also be used to reduce the volume of host-to-device data
transfers for local features on each machine. For example,
assume that each GPU can retain a fraction of the local
feature data in memory throughout the GNN computations
(i.e., across all minibatches). We may rank the local vertices
in the k-th partition by pk(u) and keep the highest-ranking-
vertex features on the GPU. As with remote-vertex caching,
this policy minimizes the expected data transfer volume due
to local vertices in each partition.



4 SALIENT++: FAST AND SCALABLE
DISTRIBUTED GNN TRAINING VIA
CACHING AND PIPELINING

This section describes the design of SALIENT++, a fast
and scalable system for performing distributed minibatch
training of GNNs on large partitioned datasets. The design
of SALIENT++ is comprised of three majors components:

Vertex reordering A vertex ordering based on the graph
partitions and VIP values that facilitates efficient sub-
partitioning of local feature data between CPU and
GPU to reduce host-to-device data transfers.

Data replication An economical data replication strategy
that uses VIP analysis to reduce communication vol-
ume for fetching remote features while using only a
small amount of additional memory.

Pipelined communication A pipelined distributed mini-
batch preparation system that hides latencies due to
sampling, data transfers, and inter-machine communi-
cation of remote feature data.

These three techniques together enable SALIENT++ to per-
form GNN training on partitioned data-graphs while match-
ing the efficiency of highly optimized GNN training systems
that perform distributed computations with full replication
of vertex feature data across all machines. This enables
SALIENT++ to perform GNN training efficiently on large
datasets where full replication is impractical.

As we shall discuss in our empirical evaluation in Section 5,
SALIENT++ achieves high performance for GNN training
on large datasets even when operating in clusters with only
modest hardware configurations.

4.1 Partitioning and reordering of vertex features

Let us describe how SALIENT++ partitions the vertex fea-
tures of a graph to reduce inter-machine and host-to-device
communication. SALIENT++ employs a two-level strat-
egy for distributing the vertex features across machines and
devices, as illustrated in Figure 3. The top level involves
distributing vertex features based on a vertex partitioning of
the graph, and the bottom level involves dividing each parti-
tion’s local vertex features between GPU and CPU memory.

SALIENT++ operates on graph data sets that are par-
titioned using a graph partitioning algorithm such as
METIS (Karypis & Kumar, 1997). The graph partitions are
generated such that the training, validation, and test vertices
are balanced. As a heuristic to balance work-per-partition,
an additional criterion is used to balance the amount of
edges per partition. Each machine is assigned a subset of
training/validation/test vertices and stores vertex feature
data locally according to the machine’s partition.

The graph is reordered such that: (a) indices for vertices in

Partitioned feature tensor

M2

M3

M1 CPUGPU

CPUGPU

GPU CPU

In order of increasing 
frequency of access

Local vertex features partitioned
between CPU / GPU

Vertex features partitioned 
across 3 machines

Replicated remote 
vertex features

M3M2M1

Most frequently accessed 
remote features

Figure 3. Illustration of the partitioned data set with VIP-driven
local ordering and caching of remote features across machines.

the same partition are contiguous; and (b) vertices within a
partition are ordered based on how beneficial it is for them
to be stored on the GPU. Each machine stores a prefix of its
ordered list of vertex features on the GPU, which when using
VIP ordering corresponds to those vertices that are accessed
most frequently by the local machine. This partitioning
structure facilitates efficient determination of whether a
vertex is remote or local, where a local vertex is stored on
the machine, and index calculations using only a constant
amount of additional memory. Figure 3 provides a graphical
illustration of the VIP-reordered partitioned dataset.

4.2 Replication of remote vertex features

Each machine maintains a replica or static cache of features
for vertices in remote partitions, where the size of the cache
is determined by a given replication factor α. The vertices
whose features are cached in each machine are determined
by their VIP rank to reduce network communication, as
described in Section 3.2.

Once the neighborhood sampling code prepares a batch,
SALIENT++ partitions the vertices in the expanded neigh-
borhood into local and remote vertices. Among the subset
of remote vertices, an efficient lookup is performed using
a hash table to determine whether the features for a remote
vertex can be found in the local machine’s cache. Only re-
mote vertices that are not resident in the local cache proceed
to be requested from remote machines.

4.3 Minibatch preparation pipeline

SALIENT++ implements a deep multi-stage pipeline which
enables overlap between neighborhood sampling, host-to-
device data transfers, network communication between ma-
chines, and training computation. SALIENT++’s pipeline is
more complex than the one used in SALIENT (Kaler et al.,
2022), but it maintains the latter’s usability and efficiency.
SALIENT++’s pipeline can be used in place of standard
data loaders for GNNs by changing just a few lines of code.

Sampling and slicing SALIENT++ uses a modified ver-
sion of SALIENT’s optimized neighborhood sampling and
slicing code to prepare minibatches using shared-memory



parallelism. The original SALIENT batch-preparation code
fused the neighborhood sampling and feature tensor slic-
ing operations. In SALIENT++, these tensor-slicing opera-
tions are only performed on the subset of the vertices in the
sampled neighborhood that are stored locally in the CPU
memory of each machine. For the remaining vertices in the
sampled neighborhood, SALIENT++ distinguishes between
vertices in the following categories: vertices belonging to
the local partition whose features are stored on GPU; remote
vertices that are replicated on the local machine; and remote
vertices that belong to other partitions.

Feature collection pipeline We briefly summarize the
pipeline operations. The expanded neighborhood of each
minibatch may include remote vertices, remote vertices
whose features were cached on the local machine following
VIP analysis, and local vertices which are split across CPU
and GPU storage. Immediately following sampling, ver-
tices are categorized by their storage location so that vertex
features are properly retrieved. Communication rounds in-
terspersed with host-to-device and device-to-host transfers
are enqueued with remote machines to coordinate retrieval
of remote features. Replicated and local features partitioned
across CPU and GPU storage are sliced locally. Finally, all
features are concatenated into a single tensor and reordered
for compatability with the message-flow graph generated
during neighborhood sampling.

A total of 10 mini-batches can be “in-flight” in the
SALIENT++ pipeline at any time, each mini-batch being
processed by a separate stage of the pipeline. Pipelining
enables overlap between host-to-device data transfers and
network communication, and it also allows for hiding laten-
cies related to CPU-GPU data transfers and inter-machine
communication. A more detailed stage-by-stage description
of SALIENT++’s pipeline is provided in Appendix D.

5 EVALUATION

In this section, we evaluate the performance of SALIENT++
and investigate the impact of its optimizations relating to
pipelining and use of VIP analysis (as developed in Sec-
tion 3). Additionally, we report end-to-end performance re-
sults, model accuracies, and contextualize our performance
in relation to existing distributed GNN training systems.

5.1 Experimental setup

Computing environment Our experiments were run on
a cluster consisting of 16 machines, each equipped with
a 16-core (2-way hyperthreaded) AMD CPU with 128GB
DRAM and 1 NVIDIA A10G GPU with 24GB memory.
The cluster was configured using the Amazon Web Ser-
vices (AWS) ParallelCluster software and employed fleets of
AWS g5.8xlarge instances. The network SLA specified for

Table 2. Summary of data sets. Edge counts reflect the number of
edges in the graph after standard preprocessing (e.g., making the
graph undirected). The mag240c data set is the papers-to-papers
citation subgraph of the lsc-mag240 heterogeneous graph data set.

Data Set #Vertices #Edges #Feat. Train. / Val. / Test

products 2.4M 123M 100 197K / 39K / 2.2M
papers 111M 3.2B 128 1.2M / 125K / 214K
mag240c 121M 2.6B 768 1.1M / 134K / 88K

Table 3. GNN architecture hyperparameters for all experiments in
Section 5. Fanout is for training. Batch size is per GPU.

Data Set GNN #Layers Hidden Dim. Fanout Batch

products SAGE 3 256 (15, 10, 5) 1024
papers SAGE 3 256 (15, 10, 5) 1024
mag240c SAGE 2 1024 (25, 15) 1024

Figure 4. Impact of pipelining and VIP optimizations in
SALIENT++. Illustrates the performance improvements obtained
by successively more optimized versions of SALIENT++ for prod-
ucts (4 partitions), papers (8 partitions), and mag240c (16 parti-
tions). The GNN architectures for each benchmark are listed in
Table 3. The replication factors for VIP-based caching were 0.16,
0.32, and 0.32 for products, papers, and mag240c, respectively.

this instance type is 25Gbps. Distributed communications
were implemented via PyTorch’s DistributedDataParallel
module with the NCCL backend. Since our cluster com-
prises machines with 1 GPU each, experiments with K
GPUs involve K separate machines communicating over
the network.

Datasets We evaluate SALIENT++ on three standard
benchmark data sets: ogbn-products (products), ogbn-
papers100M (papers) (Hu et al., 2020), and lsc-mag240
(mag240c) (Hu et al., 2021). The graph and training set in
these data sets vary in size, with papers and mag240c being
two of the largest open benchmarks at the time of this work.
See Table 2 for detailed information. All graphs were made
undirected (if originally not), as is common practice. For
mag240c, we train on the homogeneous papers-to-papers
component of the graph.

GNN architectures We evaluated SALIENT++’s perfor-
mance using standard GraphSAGE (Hamilton et al., 2017)
architectures with each data set’s most commonly used hy-
perparameters. Table 3 lists the GNN architectures and
hyperparameters that were used for each data set.
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5.2 Performance analysis of SALIENT++

We analyze the performance of SALIENT++ by investigat-
ing the impact of its component optimizations, and mea-
suring end-to-end performance and scalability across three
large graph data sets.

Summary of performance improvements Figure 4 sum-
marizes how SALIENT++’s optimizations result in in-
creasingly better end-to-end training performance on prod-
ucts, papers, and mag240c in the distributed setting. Sig-
nificant improvements are observed for both the papers
and mag240c benchmarks. In relative terms, the papers
benchmark benefits equally from pipelining and VIP-based
caching, while the mag240c benchmark benefits slightly
more from caching on top of pipelining. This is mainly
due to the larger feature dimensionality for mag240c, which
causes the communication of remote feature data to be rela-
tively more throughput-bound than for papers.

Scalability Figure 5 (left plot) illustrates the reduction in
per-epoch runtime when using SALIENT++ to execute the
products, papers, and mag240c benchmarks on 2–16 GPUs.
For all three benchmarks, the reported runtimes include
warm-up time to fill up the pipeline at the start of each
training epoch, which results in diminished scalability once
per-epoch runtimes become less than a second. The prod-
ucts benchmark achieves 1.7× speedup when going from
2 to 4 GPUs, but does not significantly benefit from more
scaling. The papers benchmark achieves 1.9× speedup
from 2 to 4 GPUs and another 1.9× from 4 to 8 GPUs.
The mag240c benchmark achieves 1.75× speedup going
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Figure 7. Replication factor impact on per-epoch runtime. Results
are shown for papers (left) for 4 and 8 partitions, and for mag240c
for 8 and 16 partitions for replication factors α varied between
0 and 0.32. The percentage of the local partition stored on GPU
for this experiment was 90% for papers and 10% for mag240c.
Reported numbers are the mean value over 10 epochs and vertical
bars indicate the standard deviation across epoch runtimes.

from 4 to 8 GPUs, and 1.45× speedup from 8 to 16 GPUs.
SALIENT++’s performance matches that of prior fast sys-
tems which perform distributed GNN training with full repli-
cation (Kaler et al., 2022), while SALIENT++ uses substan-
tially less memory. Figure 5 (right plot) shows the total
memory for storing vertex feature data (including replicated
vertices) across all machines. Note that full replication with
K machines corresponds to replication factor α = K − 1.

Local partition storage on CPU versus GPU Figure 6
illustrates the performance impact of increasing the percent-
age of the local partition stored on GPU while running the
papers benchmark. Given an ordering of the vertices in the
local partition and a percentage β% of local data to store
on GPU, SALIENT++ stores the first β% of vertex features
on the GPU. The results labeled “no reorder” show an es-
sentially linear reduction in per-epoch runtime as a function
of β% when ranking local vertices by their initial ordering.
The results labeled “VIP reorder,” on the other hand, show
that when ranking local vertices by their VIP values, data
transfer bottlenecks are effectively eliminated with as little
as 10% of the local partition data on the GPU.

Impact of replication factor Figure 7 illustrates the im-
pact on per-epoch runtime of increasing the number of repli-
cated vertex features for papers on 4 and 8 partitions (left)
and on mag240c for 8 and 16 partitions (right). Figure 7
shows that modest replication factors of 0.08–0.16 and 0.16–
0.32 are sufficient for minimizing per-epoch runtime when
using 4 and 8 partitions respectively on the papers dataset.

Performance breakdown for SALIENT++ Figure 8 il-
lustrates the performance bottlenecks in SALIENT++ before
and after incorporating pipelining and caching via VIP anal-
ysis.2 A comparison of the “pipelining on” and “pipelining

2The performance-breakdown experiments in Figure 8 store
all local node features on the GPU. Consequently, the “pipelin-
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synchronize at the first collective operation of the training back-
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off” breakdowns for α = 0 illustrates that network com-
munication is the primary bottleneck for distributed GNN
training, and it remains the bottleneck even when communi-
cation is pipelined to overlap with computation. When using
caching with α = 0.32, the time spent performing commu-
nication is sufficiently small so that it can be overlapped
nearly perfectly with other computation in the program.

Performance on a slow network Figure 9 illustrates the
performance of SALIENT++ on a slow network where
higher replication factors are needed to alleviate communica-
tion bottlenecks. The slower network speeds were enforced
using the Linux traffic control subsystem with the token-
bucket filter (TBF) queuing discipline (Hubert et al., 2002).
In this setting, we compare the two best caching policies
from Section 3, VIP (analytic) and VIP (simulation). Recall
from Section 3 that these two policies tend to perform very
similarly for low replication factors, but diverge as the repli-
cation factor grows. On the papers dataset, the relative gap
between these two policies grows up to 30% until α = 0.64
and then starts to shrink once communication ceases to bot-
tleneck training time. For the mag240c dataset, which uses
node features that are 6× larger than papers, the relative

ing off” system with α = 0 is slightly faster in Figure 8 than in
Table 1 where all local node features are on CPU. The “pipelin-
ing on” system uses a version of SALIENT++’s pipeline with
extra synchronization, resulting in modest slowdown, to facilitate
the attribution of time among multiple network operations and
concurrent computations running on different CUDA streams.
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Figure 9. Comparison of VIP-analytic versus VIP-simulation on
end-to-end runtime on slow networks. Illustrates the per-epoch
runtime of 16-node executions on papers and mag240c when
using the VIP-analytic and VIP-simulation caching policies with
different replication factors.

gap between VIP (analytic) and VIP (simulation) is larger
(up to 45% with α = 0.48) and persistent. Whether or not
VIP (analytic) is preferred to VIP (simulation) depends on
the workload characteristics (e.g., fanout and size of node
features) as well as the network bandwidth budget.

5.3 Context for SALIENT++’s performance

To conclude our empirical evaluation, we contextualize
SALIENT++’s performance by reporting model accuracy
results, discussing preprocessing overheads, and comparing
our performance to existing systems.

Model accuracy The optimizations in SALIENT++ do
not impact model accuracy. SALIENT++ is integrates with
PyTorch Geometric (PyG) and can use existing GNN mod-
els implemented with PyG. Regardless, we report accuracies
for products, papers and mag240c so that one can contextu-
alize the performance numbers. For computing accuracies,
we executed SALIENT++ on 8 machines for 30 epochs
with a fixed learning rate of 0.001 and a batch size of 1024
per machine.3 Sampling was used during inference with
fanouts (20, 20, 20) for papers and products, and (25, 15)
for mag240c. On products, we observed a test accuracy of
0.785 for the 3-layer SAGE architecture. On papers, we
observed a test accuracy of 0.646 for the 3-layer SAGE
architecture. On mag240c, the 2-layer GraphSAGE archi-
tecture achieves an accuracy of 0.651.4

3These hyperparameters were not tuned for accuracy, but are
known to be reasonable values.

4Validation accuracy is reported instead of “test-dev” or “test-
challenge” accuracy, which we did not measure at the time of



Table 4. Comparison of SALIENT++, DistDGL (public code), and
DistDGLv2 (Zheng et al., 2022). All numbers are reported for
a 3-layer GraphSAGE architecture with fanouts 15,10,5 and 256
hidden nodes run on the papers dataset.

System Time (s) Notes

SALIENT++ 2.9 8 NVIDIA A10G GPUs, 25Gbps network
throughput, $19.5 / hr.

DistDGL 37.0 Same hardware as is used by SALIENT++. Ex-
ample distributed code from Github5

DistDGLv2 ≈ 5 64 NVIDIA T4 GPUs, 100Gbps network
throughput, $62.6 / hr.6

Preprocessing overheads SALIENT++’s preprocessing
overheads fall into two categories: (a) runtime overheads
incurred before each execution on a dataset; and, (b) dataset
preparation overheads that are incurred only once and can
be amortized over multiple experiments. The runtime over-
heads for an 8-node execution of SALIENT++ on the pa-
pers dataset with replication factor α = 0.32 are as follows.
Loading the dataset from disk takes approximately 10 sec-
onds. Computing the VIP weights for fanouts (15, 10, 5)
takes 11.8 seconds when implemented in PyTorch with
sparse transition weight matrices and dense hop-wise VIP-
vectors. For large graphs, the VIP computation code streams
batches of matrix rows to the GPU, overlapping commu-
nication and data transfer. The communication of remote
feature vectors and the related tensor slicing operations take
about 22 seconds. The dataset preprocessing overheads
are highly dependent on the workflow used for partitioning
graphs. Our (unoptimized) workflow for graph partitioning
uses serial METIS to partition graphs and, additionally, uses
machines with limited memory necessitating the use of swap
files. In this setting, partitioning the papers dataset takes
∼2 hours and creating a reordered dataset from that parti-
tion takes 30 minutes. Optimized workflows for partitioning
can generate partitions substantially faster. For example,
DistDGLv2 (Zheng et al., 2022) reports a 12 minute run-
time for partitioning when using ParMETIS (Karypis et al.,
1998) and 4 large multicores. SALIENT++ is agnostic to
the source of the graph partitioning, and can be used in
conjunction with more scalable graph partitioning codes.

Comparison to DistDGL We compared the performance
of SALIENT++ to DistDGL on papers using the Graph-
SAGE architecture. A summary of this comparison is pro-
vided in Table 4. The DistDGL code was obtained from
DGL’s public GitHub repository and executed in the same
computing environment used to evaluate SALIENT++. Dist-

submission. Prior results published on the OGB leaderboard show
that this result is consistent for GraphSAGE on this dataset.

6Hardware details obtained from DistDGLv2 paper (Zheng
et al., 2022), and pricing information obtained from Amazon Web
Services for the g4dn.metal instance type reported as being used.

DGL’s public code for distributed multi-GPU training was
approximately 12.7× slower than SALIENT++ on 8 GPUs
(1 GPU per machine). Of course, DGL is under active
development and its support for efficient GNN training (es-
pecially in distributed environments) is evolving rapidly. As
such, we also report performance results from the recent
work “DistDGLv2” (Zheng et al., 2022) that describes in-
novations in the DistDGL system for improving distributed
GNN training performance. Although not all of these inno-
vations are publicly available, their reported performance
can be used to contextualize the performance we achieve
with SALIENT++. A full comparison of the hardware used
by DistDGLv2 and SALIENT++ shows that SALIENT++
consistently achieves similar (often better) performance than
what was reported for DistDGLv2, while using substantially
less resources. SALIENT++’s 8-GPU runtime is approxi-
mately 1.7× faster than DistDGLv2’s reported numbers for
executing a training epoch on papers using 64 GPUs. This
faster per-epoch time is achieved with 8× fewer GPUs, 4×
smaller network bandwidth, and 3.2× cheaper hardware.

6 CONCLUSIONS AND FUTURE WORK

We have presented a distributed multi-GPU system,
SALIENT++, for GNN training and inference on massive
graphs. This system is built on top of SALIENT, a prior
state-of-the-art system that attains efficiency and scalability
through fast sampling and pipelining, at the cost of full data
replication on all machines. In SALIENT++, we distribute
the vertex feature data and address the resulting communi-
cation bottleneck through analyzing the access pattern of
the out-of-machine (i.e., remote) vertices and proposing a
caching strategy that replicates a small amount of the most
frequently accessed vertex features. Together with a deep
pipelining of all operations from communication to compu-
tation, SALIENT++ retains the efficiency and scalability of
SALIENT while consuming only a fraction of the storage
required by SALIENT.

An avenue of future work is to further apply the access pat-
tern analysis to improve the initial graph partitioning, with
an aim of reducing the communication volume orthogonally
to the use of caching. This would require incorporating the
vertex inclusion probabilities in the graph partitioning objec-
tive, on top of edge cuts and load balancing. Additionally,
a hierarchical graph partitioning may better leverage the
higher intra-machine bandwidth among GPUs than inter-
machine communication. Another line of future work is
to explore distributing the graph structure across machines.
Distributing the graph incurs nontrivial challenges in the
multi-round communication of node features, but resolving
this challenge will further reduce memory consumption and
bears the potential of handling graphs that are orders of
magnitudes larger than the current largest benchmarks.
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P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Waleffe, R., Mohoney, J., Rekatsinas, T., and Venkatara-
man, S. Marius++: Large-scale training of graph
neural networks on a single machine. arXiv preprint
arXiv:2202.02365, 2022.

Wan, C., Li, Y., Li, A., Kim, N. S., and Lin, Y. Bns-gcn: Effi-
cient full-graph training of graph convolutional networks
with partition-parallelism and random boundary node
sampling. In Marculescu, D., Chi, Y., and Wu, C. (eds.),
Proceedings of Machine Learning and Systems, volume 4,
pp. 673–693, 2022. URL https://proceedings.
mlsys.org/paper/2022/file/
d1fe173d08e959397adf34b1d77e88d7-Paper.
pdf.

Wang, L., Yin, Q., Tian, C., Yang, J., Chen, R., Yu, W.,
Yao, Z., and Zhou, J. FlexGraph: a flexible and efficient
distributed framework for GNN training. In EuroSys,
2021a.

Wang, Y., Feng, B., Li, G., Li, S., Deng, L., Xie, Y., and
Ding, Y. GNNAdvisor: An adaptive and efficient runtime
system for GNN acceleration on GPUs. In OSDI, 2021b.

Weber, M., Domeniconi, G., Chen, J., Weidele, D. K. I.,
Bellei, C., Robinson, T., and Leiserson, C. E. Anti-money
laundering in Bitcoin: Experimenting with graph convolu-
tional networks for financial forensics. In KDD Workshop
on Anomaly Detection in Finance, 2019.

Wu, Y., Ma, K., Cai, Z., Jin, T., Li, B., Zheng, C., Cheng, J.,
and Yu, F. Seastar: vertex-centric programming for graph
neural networks. In EuroSys, 2021.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In ICLR, 2019.

Yang, J., Tang, D., Song, X., Wang, L., Yin, Q., Chen, R.,
Yu, W., and Zhou, J. GNNLab: A factored system for
sample-based GNN training over GPUs. In EuroSys, pp.
417–434, 2022.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In KDD,
2018.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. GraphSAINT: Graph sampling based in-
ductive learning method. In ICLR, 2020.

Zheng, D., Ma, C., Wang, M., Zhou, J., Su, Q., Song, X.,
Gan, Q., Zhang, Z., and Karypis, G. DistDGL: Dis-
tributed graph neural network training for billion-scale
graphs. In IA3, 2020.

Zheng, D., Song, X., Yang, C., LaSalle, D., and Karypis,
G. Distributed hybrid CPU and GPU training for

https://doi.org/10.1145/3419111.3421281
https://doi.org/10.1145/3419111.3421281
https://www.usenix.org/conference/osdi21/presentation/mohoney
https://www.usenix.org/conference/osdi21/presentation/mohoney
https://proceedings.mlsys.org/paper/2022/file/d1fe173d08e959397adf34b1d77e88d7-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/d1fe173d08e959397adf34b1d77e88d7-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/d1fe173d08e959397adf34b1d77e88d7-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/d1fe173d08e959397adf34b1d77e88d7-Paper.pdf


graph neural networks on billion-scale graphs. Preprint
arXiv:2112.15345, 2021.

Zheng, D., Song, X., Yang, C., LaSalle, D., and Karypis,
G. Distributed hybrid cpu and gpu training for graph
neural networks on billion-scale heterogeneous graphs.
In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, KDD ’22, pp.
4582–4591, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450393850. doi: 10.
1145/3534678.3539177. URL https://doi.org/
10.1145/3534678.3539177.

Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu, Q.
Layer-dependent importance sampling for training deep
and large graph convolutional networks. In NeurIPS,
2019.

https://doi.org/10.1145/3534678.3539177
https://doi.org/10.1145/3534678.3539177


A ARTIFACT APPENDIX

A.1 Abstract

This section describes the software artifacts associ-
ated with this paper. The code is distributed via
GitHub at https://github.com/MITIBMxGraph/
SALIENT_plusplus_artifact and can be used
to perform the experiments presented in the paper. We
provide scripts to run: (a) the simulation experiments to
compare different caching policies and generate data for
Figure 2; and (b) the distributed experiments that produce
data for Table 1 and Figures 4–7. Detailed instructions
for running these scripts are provided in a dedicated
README file for artifact evaluation located at https:
//github.com/MITIBMxGraph/SALIENT_
plusplus_artifact/blob/main/README.md.

A.2 Artifact check-list (meta-information)

• Algorithm: SALIENT++ distributed training algorithms
for GNNs and VIP analysis algorithms for caching poli-
cies for GNNs.

• Program: PyTorch, CUDA

• Compilation: gcc/g++ version 7 or greater; nvcc ver-
sion 11.

• Data set: Node classification benchmark data sets from
OGB.

• Run-time environment: Ubuntu 20.04 (or modern Linux
distribution) with NVIDIA drivers installed.

• Hardware: NVIDIA GPU with sufficient memory. Dis-
tributed experiments require SLURM cluster with GPU
nodes. Simulation experiments require up to 200 GB of
main memory.

• Experiments: Local simulation experiments for compar-
ing different caching policies in terms of remote vertex
communication volume, and distributed experiments for
analyzing the impact on per-epoch training time of differ-
ent optimizations, varying replication factor, and varying
percentage of data stored in-memory on GPU.

• How much disk space required (approximately)?:
1.5 TB for all experiments, 100 GB for a substantial subset
of experiments.

• How much time is needed to prepare workflow (ap-
proximately)?: 1–2 hours with prior experience and ac-
cess to hardware/clusters.

• How much time is needed to complete experiments (ap-
proximately)?: 4–12 hours for all experiments if using
pre-processed datasets.

• Publicly available?: Yes

• Code licenses: Apache License 2.0

• Data licenses: Amazon license and ODC-BY.

• Archive DOI: https://doi.org/10.5281/
zenodo.7889203

A.3 Description

A.3.1 How delivered

The code is available on GitHub at https:
//github.com/MITIBMxGraph/SALIENT_
plusplus_artifact. Within the repository,
scripts for streamlining the process of exercising the
artifact are provided in the experiments directory.
Instructions for running the scripts can be found in
the repo’s top-level README document at https:
//github.com/MITIBMxGraph/SALIENT_
plusplus_artifact/blob/main/README.md.

A.3.2 Hardware dependencies

The minimum requirements for exercising the software arti-
fact are as follows.

The simulation experiments can be performed on the ogbn-
papers100M dataset using a single machine (with or without
a GPU) that has 160GB or more of main memory. On
machines with lower memory capacity, it is possible to
run these experiments by using swapfiles, ideally on fast
SSDs. Simulation experiments on the smaller ogbn-products
dataset require less than 10 GB of memory.

The distributed multi-GPU experiments require access to
either a SLURM cluster with GPU nodes or a single machine
with multiple GPUs. Those opting to use a single machine
with multiple GPUs should pass the appropriate flags to
experimental scripts to indicate they are running scripts
locally. Access to a SLURM cluster with GPU nodes may be
obtained through cloud services and accompanying software
packages. For example, on Amazon Web Services one can
use the ParallelCluster software to launch a SLURM cluster.

Depending on the used hardware and available disk space,
certain experiments may not be feasible. We have made
an effort to reduce the memory requirements for running
performance experiments on the largest data sets, and we
expect that GPUs with 16GB of memory and machines with
128GB of main memory will be sufficient for running all or
almost all of the distributed experiments.

A.3.3 Software dependencies

Reasonably up-to-date NVIDIA drivers must be installed
on the machine. For the distributed experiments, a SLURM
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cluster is required. The remaining external software depen-
dencies can be resolved using the conda package manager.

A.3.4 Data sets

Graph data sets for node property prediction are taken from
the Open Graph Benchmark (OGB) repository. To decrease
the time and minimum hardware resources required for
experiments, we have provided the option to download pre-
processed versions of the graph data. If electing to not
download the preprocessed graphs, the first execution of
the code on a new graph will download it from OGB and
perform pre-processing locally. Note that, for the distributed
experiments, additional pre-processing is needed to generate
partition labels and reorder vertices by partition; this can be
achieved using provided scripts, as described in the artifact
README.

A.4 Installation

We recommend referring to the installation instructions pro-
vided at https://github.com/MITIBMxGraph/
SALIENT_plusplus_artifact/blob/main/
INSTALL.md. We summarize the installation process
here.

Installation in Python environment: We provide instruc-
tions to install the artifact in a Python virtual environment.
The installation can be used for both the single-machine and
distributed multi-GPU experiments. The instructions for
installing the artifact in a conda environment are summa-
rized below.

# Download and install miniconda
wget https://repo.anaconda.com/miniconda/\

Miniconda3-py38_4.10.3-Linux-x86_64.sh
bash Miniconda3-py38_4.10.3-Linux-x86_64.sh

# Create a conda environment for the artifact
conda create -n salientplus python=3.9.5 -y
conda activate salientplus

# Install Pytorch, PyG, OGB, prettytable
conda install -y pytorch==1.13.1 torchvision==0.14.1 \
torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia

conda install -y -c conda-forge ogb
conda install -y pyg -c pyg -c conda-forge
conda install -y pytorch-sparse -c pyg
conda install -y -c conda-forge nvtx
conda install -y -c conda-forge matplotlib
conda install -y -c conda-forge prettytable

# Install fast_sampler
cd fast_sampler
python setup.py install
cd ..

# (Optional) Install METIS
# - omitted, see INSTALL.md in the artifact repository

A.5 Experiment workflow

We recommend referring to the artifact evaluation documen-
tation located in the GitHub repository at https:

//github.com/MITIBMxGraph/SALIENT_
plusplus_artifact/blob/main/README.md.
We summarize the experimental workflow here. Un-
less otherwise noted, all file paths are relative to the
experiments directory in the repository.

Initial setup for experiments

We provide two utility scripts to streamline
the process of downloading the pre-processed
datasets and partitionings. A configuration script
(configure_for_environment.py) determines
which datasets to download based on the available
disk space and the maximum number of GPUs (and
partitions) to use for the experiments. A separate script
(download_datasets_fast.py) downloads the
datasets selected during configuration. Please see the
artifact repository README for instructions on using these
setup scripts.

Simulation experiments

The script run_sim_experiments_paper.sh runs
simulation experiments on the ogbn-papers100M dataset to
reproduce the results in Figure 2. This script assumes that
the 8-partition ogbn-papers100M dataset was downloaded
using the setup scripts described above.

The driver script for running custom simulation experiments
is run_sim_experiments.sh. The custom simulation
script options are documented in the artifact README.

Distributed multi-GPU experiments

These experiments require the use of a SLURM cluster with
GPU nodes or a local machine with multiple GPUs. Each
of the distributed-experiment scripts provides options to
customize the experiment, and will display a table of results
in the terminal after the experiment has completed.

A summary of the provided scripts is as follows:

• experiment_optimization_impact.py re-
produces the experiment in Table 1 and Figure 4 to
show the end-to-end impact of different optimizations
on per-epoch runtime.

• experiment_vary_replication_factor.py
reproduces the experiments in Figures 5 and 7 to show
the performance scalability with increasing number
of distributed nodes and the relationship between
per-epoch runtime and replication factor.

• experiment_vary_gpu_percent.py repro-
duces the experiment in Figure 6 to analyze the
performance impact of storing features on GPU.

• experiment_accuracy.py performs end-to-end
training on the datasets and reports accuracy on the
validation and test sets.
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If running these scripts on a SLURM cluster, it is neces-
sary to configure the provided experimental driver script
exp_driver.py by editing the SLURM_CONFIG vari-
able at the top of the file. Additional details are provided
in the artifact evaluation guide in the repository. If run-
ning these scripts locally on a single machine with mul-
tiple GPUs, one must pass the command line argument
--run_local 1 to the script.

Users who wish to run custom experiments may use the core
experiment driver script exp_driver.py directly.

A.6 Evaluation and expected result

Upon completion of the simulation experiments, a table
will be produced with the GNN training communication
volume for different caching policies. This reproduces the
data shown in Figure 2.

Upon completion of the distributed GPU experiments, mul-
tiple tables will be produced with the results of Table 1
and Figures 4–7. Participants might opt to execute these
experiments on different datasets or for different parameters
depending on their hardware and time constraints.

A.7 Experiment customization

The following experiment customizations are possible.
The simulation and distributed experiment scripts provide
command-line options to run on different datasets and
with different parameters. The experimental driver script
exp_driver.py may be used directly to run custom per-
formance experiments in the multi-machine multi-GPU set-
ting on different datasets, using different model architec-
tures, and training parameters. The software may be used
separately from the experimental driver scripts. The in-
cluded pre-processing utility scripts can be used to partition
graphs and reorder datasets according to a graph partition-
ing.

B CODE REPOSITORY

In addition to the artifact repository that focuses on
benchmarking and reproducibility, an implementation
of SALIENT++ for general-purpose usage is avail-
able at https://github.com/MITIBMxGraph/
SALIENT_plusplus.

C PROOF FOR LAYER-WISE
PROBABILITIES IN PROPOSITION 1

We start by considering the probability that some vertex
u ∈ V is sampled as a 1-hop neighbor of some minibatch B.
This is equal to the probability that, for any vertex v, all of
the following are true: v is included in the minibatch, u is a

neighbor of v, and u is sampled among v’s direct neighbors.
If we denote by N s

h(B) the vertices in the expanded neigh-
borhood that are sampled after exactly h expansion steps
away from B, we have:

p[1](u) = Pr[u ∈ N s
1 (B)]

= Pr

 ⋃
v∈NT

1 (u)

(
(v ∈ B) ∩ (u ∈ N s

1 (v))
)

= 1− Pr

 ⋂
v∈NT

1 (u)

(
(v /∈ B) ∪ (u /∈ N s

1 (v))
)

= 1−
∏

v∈NT
1 (u)

Pr[(v /∈ B) ∪ (u /∈ N s
1 (v))]

= 1−
∏

v∈NT
1 (u)

(
Pr[v /∈ B]

+ Pr[(u /∈ N s(v)) ∩ (v ∈ B)]
)

= 1−
∏

v∈NT
1 (u)

(
1− p[0](v) +

(
1− t1(u, v)

)
p[0](v)

)
= 1−

∏
v∈NT

1 (u)

(
1− t1(u, v) p

[0](v)
)
.

The product in the 4th line follows from the assumption of
neighborhood-sampling independence between vertices in
the minibatch. Each factor therein is the probability that u is
not sampled as a neighbor of v. For directed graphs, when
we write NT

1 (u) for the union, intersection, and product
indices, we mean the outgoing direct neighbors of u. For
undirected graphs, NT

1 (u) = N1(u).

By a similar reasoning, the probability that a vertex u is sam-
pled exactly ℓ hops away when expanding the neighborhood
of some minibatch is

p[h](u) = Pr[u ∈ N s
h(B)]

= Pr

 ⋃
v∈NT

1 (u)

(
(v ∈ N s

h−1(B)) ∩ (u ∈ N s
1 (v))

)
= · · ·

= 1−
∏

v∈NT
1 (u)

(
1− th(u, v) p

[h−1](v)
)
,

where the omitted steps are similar to the ones for p[0](u)
above.

D WALKTHROUGH OF SALIENT++’S
PIPELINING STAGES

The minibatch preparation process proceeds in the follow-
ing stages. Stage 1 obtains the next processed minibatch by
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SALIENT++ from the neighborhood sampler. Stage 2 per-
forms an all-to-all communication to broadcast the number
of remote vertices each machine will send/receive. Stage
3 transfers the metadata from stage 2 to the CPU so that
appropriately sized tensors can be allocated. Stage 4 per-
forms an all-to-all communication in which each machine
i sends to each machine j a list of nodes whose features
are local to machine j and needed by machine i. Stage 5
receives the list of nodes requested by other machines, maps
their global identifiers to local identifiers, and performs a
device-to-host transfer so that the list of requested nodes is
accessibly from CPU memory. Stage 6 launches an asyn-
chronous worker thread that performs a “masked selection”
operation to split each list of requested node indices into
two groups based on whether the referenced node is stored
in the local CPU or GPU memory. The background thread
launched by Stage 6 also performs tensor slicing for the
requested nodes whose features are stored in CPU memory.
Note that the, seemingly innocuous, operation of performing
a “masked selection” operator to divide indices into a CPU
group and a GPU group can induce a device synchroniza-
tion if it is performed on the GPU in Stage 5, which is why
we assign this task to the background CPU thread. Stage
7 starts a host-to-device data transfer to send the results
of Stage 6 to the GPU. Stage 8 performs tensor slicing on
GPU for requested node features stored locally on GPU, and
combines the CPU/GPU results so that features requested
by each remote machine are in a single tensor. Additionally,
Stage 8 slices the machine’s local feature cache to extract
the remote features needed by the current machine 7 Stage
9 performs an all-to-all communication to communicate all
requested remote features. Stage 10 combines the received
remote features into a single tensor that is permuted so as
to be consistent with the locally-generated message-flow
graph for the batch.

7The placement of these operations in the pipeline is some-
what arbitrary, as these operations do not depend on non-local
information.


