
LEARNING TO PARALLELIZE WITH OPENMP BY AUGMENTED
HETEROGENEOUS AST REPRESENTATION

Le Chen 1 Quazi Ishtiaque Mahmud 1 Hung Phan 1 Nesreen K. Ahmed 2 Ali Jannesari 1

ABSTRACT
Detecting parallelizable code regions is a challenging task, even for experienced developers. Numerous recent
studies have explored the use of machine learning for code analysis and program synthesis, including paralleliza-
tion, in light of the success of machine learning in natural language processing. However, applying machine
learning techniques to parallelism detection presents several challenges, such as the lack of an adequate dataset for
training, an effective code representation with rich information, and a suitable machine learning model to learn the
latent features of code for diverse analyses. To address these challenges, we propose a novel graph-based learning
approach called Graph2Par that utilizes a heterogeneous augmented abstract syntax tree (Augmented-AST)
representation for code. The proposed approach primarily focused on loop-level parallelization with OpenMP.
Moreover, we create an OMP Serial dataset with 18598 parallelizable and 13972 non-parallelizable loops to train
the machine learning models. Our results show that our proposed approach achieves the accuracy of parallelizable
code region detection with 85% accuracy and outperforms the state-of-the-art token-based machine learning
approach. These results indicate that our approach is competitive with state-of-the-art tools and capable of
handling loops with complex structures that other tools may overlook.

1 INTRODUCTION

The growing demand and popularity for multi-core hard-
ware systems over the past few decades require developing
highly-parallel programs to maximize performance. Numer-
ous parallel programming models and frameworks (Chandra
et al., 2001; Gabriel et al., 2004; Pheatt, 2008; Bik et al.,
2002) have been created to facilitate the development of
parallel code, but the developer’s expertise in using these
frameworks and familiarity with the codes are crucial to
achieving better performance. Loop-level auto-parallelism
helps developers in carrying out parallel tasks within the
loops to speed up the process. Modern compilers typically
detect the loop-level parallelism during compile time stati-
cally. This process is conservative and overlooks parallelism
to ensure the correctness of the detected parallelism oppor-
tunities. On the other hand, dynamic auto-parallelism tools
detect loop-level parallelism at runtime. The dynamic in-
formation captured after executing the programs improves
the accuracy but has overhead issues. Moreover, the appli-
cation of current auto-parallelization tools is constrained by
requiring either compilation or execution of the programs

1Department of Computer Science, Iowa State University,
Ames, USA 2Intel Labs, Santa Clara, CA, USA. Correspon-
dence to: Le Chen <lechen@iastate.edu>, Ali Jannesari <Jan-
nesar@iastate.edu>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

for analysis. Therefore, a more practical way to auto-detect
parallelism is required.

Machine learning (ML) techniques are usually more feasible
and cost-effective by redefining conventional software en-
gineering problems as prediction problems. Many attempts
have been made recently to use machine learning and Nat-
ural Language Processing (NLP) techniques in software
engineering, from performance optimization and passes in
compilers to solving complex problems such as malicious
code detection, code placement on CPU or GPU, and per-
formance prediction. Auto-parallelization with ML tech-
niques is also conducted in recent studies. Chen et al. (Chen
et al., 2022) detect parallelism by training code static and
dynamic information in a multi-view model. The code em-
bedding in their work is an adaption of word2vec (Mikolov
et al., 2013), a now classic NLP technique. Ben-nun et
al. (Ben-Nun et al., 2018) introduce a Neural Code Com-
prehension (NCC) representation of code by using graph
embeddings that are trained on unlabelled data before being
used for simple code comprehension tasks. Brauckmann et
al. (Brauckmann et al., 2020) show that graph-embedding
methods applied to Abstract Syntax Tree (AST) or Control
Data Flow Graph (CDFG) are more efficient at downstream
tasks than the state-of-the-art (NLP-inspired) methods, with
better ability to generalize to never-seen-before examples.

Despite their success, previous studies have shown common
challenges in applying ML and NLP techniques in code

Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation

H
et

er
og

en
ou

s
G

ra
ph

 T
ra

ns
fo

rm
er

Benchmarks

Synthetic
Code

Github
Repos OMP_Serial dataset

non-parallizable
loops

labels

AST

Labele Augmented
Heterogenous AST

parallel for

private

reduction

SIMD

Data Collection and
Generation Dataset Pre-processing Code representation Training and Prediction

parallizable
loops

non-parallel
parallel; redution
...

pragma prediction

Figure 1. Proposed methodology. Data collection and generation: our dataset contains data from GitHub crawling, benchmark collection,
and synthetic data generation. Data pre-processing: we extracted loops from codes with pre-processing steps, e.g., removing comments
and blank lines. We also label the data according to the extracted pragma. Code representation: we generate the AST of each loop data
and convert it to our proposed augmented heterogeneous AST. Training and Prediction: we feed our processed data and corresponding
labels to the HGT model for 4 different downstream tasks.

analysis. First, constructing relevant datasets is a major pain
point when attempting to solve any problem using machine
learning. Only a few public benchmarks for parallelization
using OpenMP are applicable to the parallelism detection
task. Second, code representation is crucial for machine
learning models to comprehend programs. The intuitive
solution is treating code as a natural language so NLP mod-
els can be applied directly (Dai et al., 2019). However,
the context or token representation overlooks the code’s
structural information, which is crucial for parallelization
analysis (Blume et al., 1994; Chen et al., 2022). Finally, the
performance of ML models varies across different tasks.

In this work, we propose to leverage state-of-the-art ma-
chine learning techniques to detect loop parallelism and
suggest four possible OpenMP pragmas to assist developers
in implementing parallelization with OpenMP. We tackle the
above-mentioned challenges by (a) generating a dataset con-
taining 18598 parallelizable and 13972 non-parallelizable
loops from benchmarks, GitHub projects, and synthetic data,
(b) introducing a heterogeneous augmented-AST (aug-AST)
representation for loops that considers both textual and struc-
tural information of code, and (c) training the heterogeneous
aug-AST of the loops in our dataset using a heterogeneous
graph neural network.

In particular, this paper makes the following contributions:

• Dataset. OMP Serial: a C serial loop dataset with
labels that can be used for parallelization or other code
analysis purposes.

• Method. Introducing a heterogeneous augmented AST
code representation suitable for parallelism detection
and other downstream tasks.

• Evaluation. Comparing the proposed graph-based ap-
proach with AST and token-based code representation
approach.

• Application. Implementing a heterogeneous GNN on
the proposed dataset and comparing the results with
state-of-the-art parallelization tools.

2 MOTIVATION EXAMPLES

This section demonstrates and discusses the limitations of
three widely used algorithm-based auto-parallelization tools:
DiscoPoP (Li et al., 2016), Pluto (Bondhugula et al., 2008),
and autoPar (Quinlan & Liao, 2011). These non-ML tools
are generally classified into static and dynamic (hybrid)
approaches.

Dynamic or hybrid parallelization tools like DiscoPoP (Li
et al., 2016) identify parallelism with runtime dynamic infor-
mation generated by executing the programs. Profiling and
executing programs are costly in terms of time and memory.
In contrast, static analysis tools such as Pluto (Bondhugula
et al., 2008) and autoPar (Quinlan & Liao, 2011) examine
source codes statically without execution. However, these
static analysis tools tend to be overly conservative, often
overlooking parallelization opportunities. In addition to
their inherent limitation, the use of non-ML tools is con-
strained due to their need for compilation or execution of
the program. When applied to the OMP Serial dataset intro-
duced in section 4, only 10.3% and 3.7% of the C loops can
be processed with autoPar (static) and DiscoPoP (dynamic),
respectively.

There are four types of loops where tools mostly make
mistakes in our observation: loops with reduction, loops

Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation

with function calls, loops with reduction and function calls,
and nested loops. Listings 1, 2, 3, 4 and 5 present the
example of mistakes made by autoPar, Pluto, and DiscoPoP.
Figure 2 illustrates the statistic of our findings regarding
the number and type of the loops these tools fail to detect
parallelism.

1019

489

39

383

1035

825 94
1

597

253

9

2525

948

36
0

500

1000

1500

2000

2500

Loops missed by Pluto Loops missed by autoPar Loops missed by DiscoPoP

Loops with reduction
Loops with function call
Loops with reduction and function call
Nested loops
Others

N
um

be
r o

f l
oo

ps

Figure 2. Category-wise loops missed by renowned parallelization
assistant tools. The results are generated using the OMP Serial
dataset introduced in section 4.

f o r (i = 0 ; i < 30000000; i ++)
e r r o r = e r r o r + f a b s (a [i] − a [i + 1]) ;

Listing 1. Parallel loop with reduction and function call. DiscoPoP,
Pluto, and autoPar fail to detect the parallelism due to the fabs
function call.

f o r (i n t i = 0 ; i < n u m p i x e l s ; i ++) {
f i t n e s s += (abs (o b j e t i v o [i] . r −
i n d i v i d u o −>imagen [i] . r) +
abs (o b j e t i v o [i] . g −
i n d i v i d u o −>imagen [i] . g)) +
abs (o b j e t i v o [i] . b −
i n d i v i d u o −>imagen [i] . b) ;

}

Listing 2. Parallel loop with reduction and function call missed by
Pluto because of the abs function call.

f o r (i n t i = 0 ; i < s i z e ; i ++) {
v e c t o r [i] = s q u a r e (v e c t o r [i]) ;

}
f l o a t s q u a r e (i n t x) {

i n t k = 0 ;
whi le (k < 5000)

k ++;
re turn s q r t (x) ;

}

Listing 3. Parallel loop with a function call missed by autoPar
because of the square function call.

f o r (i n t i =0 ; i<N; i += s t e p) {
v += 2 ;
v = v + s t e p ;

}

Listing 4. Parallel loop with reduction missed by Discopop be-
cause of the reduction operation on variable v.

f o r (j = 0 ; j < 4 ; j ++)
f o r (i = 0 ; i < 5 ; i ++)

f o r (k = 0 ; k < 6 ; k += 2)
l ++;

Listing 5. Nested parallel loop (outermost for) missed by Discopop
and Pluto.

We are motivated to explore cutting-edge machine learning
techniques for a more feasible and precise solution. The
evaluation in section 6 demonstrates that our proposed ap-
proach surpasses the tools we examined in detecting paral-
lelism within complex-structure loops.

3 BACKGROUND

The field of source code analysis encompasses a broad spec-
trum of topics, including bug detection, optimization, and
auto-parallelization. Specifically, the parallelization of se-
quential programs constitutes a sub-field that concentrates
on tasks such as detecting parallelism, classifying paral-
lelization patterns, and implementing parallelization. This
section delves into the background of parallelization analy-
sis and explores machine learning approaches pertinent to
this task.

3.1 Auto-parallelization and Algorithm-based Tools

Sequential program parallelization poses considerable chal-
lenges, generally involving two phases: parallelism iden-
tification and parallelization implementation. Parallelism
identification entails the analysis of sequential program frag-
ments to identify opportunities for parallelism. Paralleliza-
tion implementation or execution involves capitalizing on
the detected parallelism to fully exploit the hardware capa-
bilities.

Parallelism can be expressed through two fundamental con-
cepts: task-level parallelism and loop-level parallelism.
Task-level parallelism demarcates regions within an ap-
plication that can be executed simultaneously on multiple
cores or threads. Task-level parallelism methods require
predefined distinct regions in the program, which can limit
fine-grained opportunities. Loop-level parallelism consid-
ers loop bodies parallel regions, where iterations can be
distributed across threads (Wismüller, 2011). This work
primarily focuses on loop-level parallelism.

The identification of loops eligible for parallelism often
relies on the program author, as modern compilers are un-
able to fully take advantage of parallel loop classification.
However, This process imposes a significant burden on de-
velopers, particularly for extensive projects. Most dynamic
approaches employ dependency analysis to record execu-
tion order constraints between instructions, enabling a more
accurate automatic parallelizable loop identification. In con-
trast, static methods infer dependencies by conservatively

Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation

analyzing the program during compilation.

Different static, dynamic, and hybrid (i.e., combining static
and dynamic) tools have been developed to automatically
identify parallelization opportunities. Polly (Grosser et al.,
2012), an automatic parallelism detection tool, is based on
static analysis, LLVM (Lattner & Adve, 2004), and the poly-
hedral model. Kremlin (Garcia et al., 2012) determines the
critical path length within the loops using dependency infor-
mation and subsequently calculates a metric, namely self-
parallelism, for parallelism detection. Alchemist (Zhang
et al., 2009) identifies parallelization candidates by com-
paring the number of instructions with the read-after-write
(RAW) dependencies, both of which are generated by Val-
grind (Nethercote & Seward, 2007) during runtime. Dis-
coPoP (Li et al., 2016; Huda et al., 2016) extracts dynamic
profiling and instruction dependency data from instrumented
sequential programs. Information like dependency type, the
number of incoming and outgoing dependencies, and criti-
cal path length are extracted from a data dependency graph
for parallelism detection. As a hybrid method tool, Dis-
coPoP provides comprehensive dynamic analysis statistics
that complement static analysis, yielding an improved un-
derstanding conducive to detecting parallel opportunities.

3.2 Machine Learning-based Auto-Parallelization

Machine learning, as defined by Alpaydin et al. (Alpaydin,
2020), involves programming computers to optimize a per-
formance criterion using example data or past experience.
Despite its potential, machine learning techniques have been
under-explored and infrequently employed in parallelization
analysis tasks. Fried et al. (Fried et al., 2013) investigated
an automatic method for classifying regions of sequential
programs that could be parallelized, using benchmarks with
hand-annotated OpenMP directives for training. Tournavitis
et al. (Tournavitis et al., 2009) applied SVM in conjunc-
tion with static and dynamic features extracted from source
codes to identify parallel regions in programs. They used
NAS parallel benchmarks (Jin et al., 1999) and SPEC OMP
benchmarks (Aslot et al., 2001) to evaluate their model. Ma-
chine learning techniques have achieved significant progress
since (Fried et al., 2013)’s and (Tournavitis et al., 2009)’s
work, with the recent advancements demonstrating the ca-
pabilities of deep neural networks in code representation
(Cummins et al., 2021; Ma et al., 2021) and parallelization
analysis (Shen et al., 2021; Chen et al., 2022).

3.3 Code Representations

The representation of code is crucial for applying machine
learning techniques in the area of code analysis. This sub-
section discusses commonly used code representations and
their corresponding machine learning approaches.

Token. Programming tokens are fundamental elements that

comprise the source code of a program. A token is a string
of characters that can be classified as constants, identifiers,
operators, reserved words, or separators according to the
syntax of the programming language. Inspired by word
embedding in natural language processing (NLP), various
studies have focused on generating token-based embedding
that can serve as input for machine learning approaches. The
state-of-the-art token embedding method, code2vec (Alon
et al., 2019), is trained on the task of predicting method
names.

AST. The abstract syntax tree (AST) is one of the most vi-
able representations for code. Every programming language
has an explicit context-free grammar, allowing source code
to be parsed into an abstract syntax tree (AST) that repre-
sents the source code’s abstract syntactic structure. Each
non-leaf node in an AST corresponds to a non-terminal in
the context-free grammar that conveys structural informa-
tion, while each leaf node corresponds to a terminal in the
context-free grammar encoding program text. Figure 3 il-
lustrates an example of AST for listing 1. An AST can be
easily converted back to source code. As our work focuses
on parallelism at the loop level, we concentrate on partial
ASTs that represent the desired loop.

CFG. The control flow graph (CFG) delineates the sequence
in which code statements are executed and the requirements
that must be satisfied for a specific path of execution. Nodes
represent statements and predicates, while directed edges
connect them and indicate the flow of control. Although
edges of CFGs need not follow any specific order, as in
abstract syntax trees, it is still necessary to identify each
edge as true, false, or otherwise CFG has been employed
for various purposes, such as detecting versions of well-
known malicious apps and guidng fuzz testing tools. They
are also now a common code representation in reverse engi-
neering to aid in program comprehension. However, control
flow graphs do not reveal data flow, making them unsuit-
able for detecting statements that process data modified by
an attacker, a limitation particularly relevant to tasks like
vulnerability analysis.

Comprehensive graph representations. Recent works
with code representation have focused on comprehensive
graph representations to incorporate more information about
programs. Ben-Nun et al. (Ben-Nun et al., 2018) aimed to
create an embedded representation of code based on LLVM
IR, introducing an intermediate representation of programs
by combining NLP techniques with code dependencies.

Cummins et al. (Cummins et al., 2021) expanded upon the
work of Ben-Nun et al. to propose an IR graph representa-
tion called PrograML, which is both comprehensive and rich
in code information. The downstream task experiments set
a new state-of-the-art standard. However, the requirements
for using PrograML are stringent due to LLVM compilation,

Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation

and only 31.2% of the data in our dataset can be processed
with PrograML. Consequently, we adopt AST as our base
representation of code to utilize all the data for training.

3.4 Heterogeneous Graph Neural Networks (HGNN)

Graph Neural Networks (GNN) models have gained success
in various research domains, including biology (Zhang et al.,
2021; Kim et al., 2022), natural language processing (Yao
et al., 2018; Huang et al., 2019), image processing (Vasude-
van et al., 2022; Shi et al., 2019), and software engineering
(Allamanis et al., 2017; Kammoun et al., 2022; Huda et al.,
2016; TehraniJamsaz et al., 2022). The application of GNNs
relies on the ability to represent sequential data or databases
as a complex structure with large-scale nodes and edges with
structural information (Kipf & Welling, 2016). However,
the homogeneous representation of these GNN models hin-
dered their ability to represent meaningful information for
prediction. Heterogeneous Graph Neural Network (HGNN)
models are proposed to overcome this challenge (Zhang
et al., 2019). Compared to original GNNs, HGNN has
the following advantages. First, HGNNs allow nodes to
connect to all types of neighborhood nodes. In HGNNs,
we can define the connection between any type of node
without any restriction, which overcomes the drawback of
several graph datasets that restrict the type of source node
and target node for each edge, such as in (Zhang et al.,
2019). Second, HGNNs can accept not only different types
of nodes but also nodes with different attributes. For ex-
ample, with an academic graph, HGNN allows embedding
information of profile picture and description of the au-
thor, as well as embedding information of textual content
of Paper node, since Paper has no information like ”profile
picture”. HGNNs propose a new mechanism for concatenat-
ing information and linear transformation between nodes to
handle this. Third, HGNNs provide a solution for aggregat-
ing neighborhood information between neighbor nodes of
different types to a more meaningful embedding per each
iteration of training/ inference. To achieve this, HGNN
allows representing the learning thanks to different types
and weights of edges beside the nodes. The first complete
HGNN model was proposed by Zhang et al. (Zhang et al.,
2019), called HetGNN. Hu et al. (Hu et al., 2020) proposed
HGT, a transformer-based HGNN model that utilizes the
graphs’ properties more efficiently than HetGNN (Zhang
et al., 2019) by decomposing interaction and transformation
matrices to capture common and specific patterns of rela-
tionships between nodes and edges’ types. Moreover, HGT
allows embedding dynamic features such as the timeline of
nodes and edges. From the work of Hu et al. (Hu et al.,
2020), we justify the original HGT model to be trained and
inference on parallelism detection.

4 DATASET SELECTION AND ANALYSIS

In this study, we propose a dataset, OMP Serial, from two
distinct sources: open-source projects containing OpenMP
pragmas and synthetic codes with specific parallelization
patterns generated by template programming. In this section,
we will discuss both approaches in detail.

4.1 Open-source code data

Our primary source of data is GitHub, where we crawled
around 16000 source files from over 6000 repositories. We
focused on C source files containing loops with and without
OpenMP pragmas (pragmas can be either ”#pragma omp
parallel for” or ”#pragma omp for”), ensuring that develop-
ers have intentionally used OpenMP directives in their code.
To validate the data, we attempted to compile all the source
codes using Clang to verify their correctness. Out of the
16000 source files, we were able to compile and retain 5731
source files for further analysis and experiments. Finally, we
examined the label of the collected data using parallelization
tools: Pluto, autoPar, and DiscoPoP and observed a small
number of parallel loops missed by developers.

4.2 Data Processing

Data processing is necessary for the crawled source codes.
The source codes are parsed to extract loops with comments
removed and pragmas extracted. The loops are initially
labeled as either parallel or non-parallel based on the pres-
ence of OpenMP pragmas. Loops without a pragma are
classified as non-parallel. Parallel loops with OpenMP
pragmas are further divided into four categories, namely
private, reduction, simd, and target based on the ex-
tracted pragma and verified with various parallelization
tools. Consequently, the OMP Serial dataset comprises
labeled loops with their corresponding pragma clause, if
present.

4.3 Synthetic data

To ensure pattern diversity for the OMP Serial dataset, we
complemented the filtered crawled data with synthetic data.
Both the crawled and synthetic data will be processed as
described in section 4.2. We utilized Jinja2 (Ronacher,
2008) to generate complete C programs. For the do-all and
reduction patterns, we created ten templates for each pattern
and generated 20 variations of C source files from each tem-
plate. We sourced the templates mainly from well-known
parallel benchmarks such as the NAS Parallel Benchmark
(Jin et al., 1999), PolyBench (Pouchet & Yuki, 2017), the
BOTS benchmark (Duran et al., 2009), and the Starbench
benchmark (Andersch et al., 2013). To create complete C
programs, we inserted randomly generated variables, con-
stants, and operators into the templates. The variable names

Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation

Table 1. Statistic Summary of the proposed OMP Serial dataset comprises synthetic code and code collected from GitHub. Each data in
the OMP Serial represents a loop with labels indicating whether it is parallelizable or not. Parallelizable loops also include parallel pattern
labels. The Loops column displays the number of loops for each type of pragmas. The Function Call and Nested Loops columns represent
the number of loops with functions and nested loops for each type of pragmas, respectively. The Avg. LOC stands for the average length
of code.

Source Type Total Loops Pragma Type Loops Function Call Nested Loops Avg. LOC

GitHub Parallel 18598

reduction 3705 279 887 6.35
private 6278 680 2589 8.51
simd 3574 42 201 2.65
target 2155 99 191 3.04

Non-parallel 13972 - - 3043 5931 8.59

Synthetic Parallel 400 reduction 200 200 100 31.59
private (do-all) 200 200 100 28.26

Non-parallel 700 - - 0 0 6.43

were generated using a combination of English language
alphabets (a-z, A-Z), digits (0-9), and underscores (). For
do-all loops, we considered the operators: +, −, ∗, /. For
reduction loops, we considered only + and ∗ operators since
reduction operations need to be associative and commutative
for parallelization.

We used DiscoPoP to verify the generated reduction and do-
all templates. Loops not identified as do-all or reduction by
DiscoPoP were manually checked for inter-iteration depen-
dencies or data-race conditions. If such conditions existed
in the loop body, they were labeled as non-parallel loops.
More details and examples on the generation of synthetic
data can be found in Appendix A. Finally, the OMP Serial
dataset, comprising both open-source and synthetic data, is
summarized in Table 1.

5 APPROACH

The representation of code is crucial for any analysis task.
We propose an augmented heterogeneous AST represen-
tation for comprehending code in semantic and structural
views. We first introduce the augmented AST (aug-AST)
representation based on the control flow graph (CFG) and
token distance in text format. Next, we append the types
of nodes and edges in the aug-AST and build the aug-
mented heterogeneous AST graph for each data point in
our OMP serial dataset. We use the heterogeneous graph
transformer (HGT) model (Hu et al., 2020) as our base
model, taking the augmented heterogeneous AST graph as
input.

5.1 Code representation

Code representations like AST and CFG provide crucial
data for code analysis. However, a single representation
is often insufficient to capture all the dependencies and
parallelism. To address this issue, we propose an augmented

AST that merges edges and nodes from the CFG, creating a
single graph that incorporates the benefits of each distinct
representation. Additionally, we address long-dependence
problems by incorporating texture edges that follow the
token distance map.

5.1.1 Transforming the Abstract Syntax Tree

To build a joint representation, we propose an augmented
AST that incorporates both AST and CFG. We express the
AST as a heterogeneous graph HA = (VA, EA, λA, µA),
where nodes VA represent AST tree nodes and edges EA

represent corresponding tree edges labeled as AST edges by
the labeling function λA. Each node is assigned an attribute
using µA that corresponds to the operator or operand the
node represents. Furthermore, we assign an attribute to each
node to reflect the tree’s ordered structure (left or right). The
color blocks in Figure 3 represent the heterogeneous node
attributes, while the black edges represent edges from the
AST.

5.1.2 Merging the Control Flow Graph

To include the CFG in the joint representation, we express
it as a heterogeneous graph GC = (VC , EC , λC , ·). The
nodes VC represent statements and predicates in the loop
AST. We also introduce edges from nodes shared by the
AST and CFG to nodes in the AST graph. These edges are
represented by yellow dash lines in figure 3, where node
f1 is a function call node shared by both AST and CFG.
These edges enable the machine learning model to identify
potential data races within the function call and explore
parallelization opportunities.

5.1.3 Texture token relations

In the work of (Zügner et al., 2021), Zugner et. al revealed
that AST alone may miss important lexical token distance in-

Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation

= < ++ =

ForStmt

i 0 i 30000000 i +error

error fabs

= < ++ =

ForStmt

v1 0 v1 30000000 v1 +v2

v2 f1

UnaryOperator BinaryOperator

int int int int int int

int CallExpr

AST edge

Lexical edge
CFG edge

BinaryOperatorBinaryOperator

UnaryOperator

Figure 3. An example of the proposed heterogeneous augmented AST (Heterogeneous aug-AST) representation of code in Listing 1 is
shown. The colored blocks indicate the heterogeneous attributes assigned to the AST nodes. The red and yellow lines represent the control
flow graph (CFG) and token representation, respectively.

formation, leading to difficulties in capturing long-distance
dependence relations. To address this issue, we add extra
edges to link each leaf with its neighbors in the token rep-
resentation as shown in figure 3. The added lexical edges
(represented by red dashes) help aug-AST track the token
distance.

5.2 Heterogeneous Graph Transformer

In this study, the input for the Heterogeneous Graph Trans-
former (HGT) model is the aug-AST graph generated from
the original AST plus augmented nodes and edges. An aug-
AST graph is represented as a heterogeneous graph, denoted
by G = (V,E,A,R). Here, V denotes the set of nodes, E
denotes the set of edges, A represents the possible types of
nodes in V , and R represents the possible types of edges in
E. For a given edge e = (s, t) with source node s and target
node t, a meta-relation of the edge e is defined by the type
of s, the type of t, and the type of edge e. In our work, three
types of edges are considered: parent-child edges generated
by the original AST and augmented CFG and lexical edges
added to capture the control flow information and the rela-
tionship between neighbor leaf nodes. In the original GNN
model, information is updated from the (l − 1)-th layer to
the l-th layer by the formula 1.

H l[t] = Aggregate(Extract(H l−1[s];H l−1[t]; e)) (1)

Here, h(l)
v is the feature representation of node v at the l-

th layer, σ is the activation function, Nout
r (v) is the set of

nodes that have an outgoing edge of type r from v, W (l)
r is

the trainable weight matrix for edge type r at layer l, and
d
(l−1)
v is the degree of node v in the (l − 1)-th layer.

In formula 1, the Extract operator extracts information from
neighbor nodes s to target node t and the Aggregate() com-
bines information from all the source that has the target
node as t. In HGT, the mechanism of passing information
between layers is split into three components: Heteroge-
neous Mutual Attention, Heterogeneous Message Passing,
and Target Specific Aggregation.

Mutual Attention. The input of this step is the node t and
a set of N(t), which represents all the source nodes of the
relation r. The heterogeneous mutual attention mechanism
is calculated by taking the dot product between the source
node s (Key vector) and the node t (Query vector). Next, the
Key vector is projected using a linear projection to h atten-
tion heads, where each head is represented by a vector with
d
h dimension. Similarly, the Query vector is also projected
into h Query vectors. For each head h, the Query vector
is compared with the projection of the Key vector using
a distinct edge-based matrix W ATT. Finally, the attention
vector for each pair of nodes is produced by concatenating
the h attention heads. The gathering of all attention vectors
from the set of neighbor nodes N(t) to the target node t is
shown in the formula 2.

AttentionHGT(s, e, t) = Softmax
s∈N(t)

(||
i∈[1,h]

ATT − headi(s, e, t))

(2)

Message Parsing. While the Mutual Attention compares
between Key vector and Query vector as target node and
source node, the Message Passing mechanism operates in
parallel. The input of Message Passing is not only the edge
but also its meta relations. The formula of the Message
operator is shown in the formula 3, where the MSG-head
function is calculated by a number of components.

MessageHGT(s, e, t) = ||
i∈[1,h]

MSG − headi(s, e, t) (3)

The amount of components in the equation 3 is equal to the
number of hidden layers. Similar to Formula 2, the Mes-
sage Passing step also needs a matrix WMSG that embeds
information of the edge dependency.

Target Specific Aggregation. This Target Specific Aggre-
gation operator combines the Attention operator calculated
by Formula 2 and the Message operator calculated by For-
mula 3 to generate an update vector for each head, as shown

Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation

in equation 4.

H̄(l)[t] = Aggregate(Attention(s, e, t).Message(s, e, t))
(4)

In the final step, the output of each head calculated by the
formula 4 is combined with a type-specific distribution of
target node t through a linear projection:

H̄(l)[t] = A− Linear(type(t))(σ(H̄
(l)[t])) +H(l−1)[t] (5)

In Graph2Par, the distribution of type(t) is the set of differ-
ent node types in the aug-AST. In the work of Hu et al. (Hu
et al., 2020), they provide Inductive Timestamp Assignment
and Relative Temporal Encoding to represent the dynamic
heterogeneous graphs. However, since Graph2Par works
with static and structural information of AST, we set the
same temporal encoding mechanism and deactivated the
inductive timestamp assignment in our HGT model.

6 RESULTS

In this section, we present the results of our experiments
aimed at answering two research questions: 1. evaluating
the performance of the proposed Heterogeneous augmented
AST code representation, and 2. assessing the effectiveness
of the proposed Graph2Par method for OpenMP pragma
suggestion. Additional training results are provided in the
appendix (see Appendix B).

6.1 Performance of the Heterogeneous aug-AST

We demonstrate that our proposed Heterogeneous aug-AST
representation outperforms both token-based and original
AST representations by evaluating its performance in pre-
dicting parallelism. We compare the vanilla AST and the
Heterogeneous aug-AST by using them as inputs to the
same HGT model. Additionally, we reproduce PragFormer,
the work of Harel et. al (Harel et al., 2022), to compare
the performance of token representation and Heterogeneous
aug-AST representation. PragFormer uses token-based rep-
resentation as input to a transformer model for parallelism
detection. Table 2 shows that our Heterogeneous aug-AST
outperforms PragFormer in parallelism detection.

Table 2. Result of pragma existence prediction. PragFormer uses
token representations.

Precision Recall F1 Accuracy
AST 0.74 0.73 0.74 0.74

PragFormer 0.81 0.81 0.80 0.80
Graph2Par 0.92 0.82 0.87 0.85

6.2 Parallelism Discovery: Comparing with other tools

The results of the above experiments demonstrate that the
proposed Heterogeneous aug-AST representation outper-

Table 3. Number of detected parallel loops comparing with
algorithm-based approaches.

Approach # of detected parallel loops
Graph2Par 17563
HGT-AST 16236
DiscoPoP 953
PLUTO 1759
autoPar 6391

forms both original AST and token-based representations
in parallelism detection. In this subsection, we continue
the evaluation of the aug-AST presentation by comparing
it with well-known algorithm-based parallelism assistant
tools: PLUTO, autoPar, and DiscoPoP. PLUTO and autoPar
are algorithm-based static analysis tools, whereas DiscoPoP
is an algorithm-based dynamic analysis tool. All three auto-
parallelization tools can detect parallelism in codes they can
handle. However, parallelization pattern classification is not
supported by all the tools. For example, simd and target
clause predictions are not supported by any tools at present.

Therefore, we conduct a performance comparison for the
task of parallelism detection. As mentioned in section
4, loops in the OMP serial dataset are labeled 1 when
the OpenMP clauses are present and labeled 0 otherwise.
Graph2Par predicts the parallelism within a loop by a bi-
nary classification. PLUTO directly reports the parallelism
detection results within a loop. autoPar injects OpenMP
clauses like ”#pragma omp parallel for” including ”private”
clause and ”reduction” clause to the programs. We mark the
detection results as parallel when the injected clauses are
present. DiscoPoP can detect reduction and do-all patterns
within a loop, and we considered the loops detected as either
do-all or reduction by DiscoPoP as parallel loops.

Different tools usually work with different sizes of data
because they may require different information about the
codes. DiscoPoP, for example, requires execution infor-
mation for analysis, making it works with a much smaller
dataset compared with static tools like PLUTO. Therefore,
we divided our test dataset into three subsets for a fair com-
parison between Graph2Par and different tools. The results
are presented in Table 4. Our Graph2Par model achieves
superior performance compared to the other tools, indicat-
ing its effectiveness in detecting parallelism in sequential
programs.

• Subset PLUTO: This subset contains the loops that are
in our testing set and can also be successfully processed
by PLUTO. This set contains 4032 loops.

• Subset autoPar: This subset contains the loops that
are in our testing set and can also be successfully pro-

Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation

Table 4. Comparing Graph2Par model with PLUTO, autoPar and DiscoPoP for the task of parallelism detection (Detecting the presence of
”#pragma omp for” or ”#pragma omp parallel for”)

TP TN FP FN Precision Recall F1 Accuracy(%)

Subset PLUTO PLUTO 1593 0 0 2439 100.00 39.51 56.64 39.51
Graph2Par 2860 617 356 199 88.93 93.49 91.16 86.24

Subset autoPar autoPar 345 952 0 2059 100.00 14.35 25.10 38.65
Graph2Par 1800 897 187 472 90.59 79.23 84.53 80.36

Subset DiscoPoP DiscoPoP 541 240 0 445 100.00 54.87 70.86 63.70
Graph2Par 635 366 64 161 90.84 79.77 84.95 81.65

cessed by autoPar. This set contains 3356 loops.

• Subset DiscoPoP: This subset contains the source files
that are in our testing set and can also be successfully
processed by DiscoPoP. This set contains 1226 loops.

We train our Graph2Par approach the three subset described
above separately for comparison. In each training, one of the
subsets was excluded to ensure that the model had not seen
the samples before. The results are presented in tables 3
and 4. For all three subsets, our Graph2Par model achieved
better precision, recall, F1 score, and accuracy than all the
other tools.

6.3 OpenMP Clause Classification

The above results demonstrate that Graph2Par has the abil-
ity to learn the latent features of code for parallelism de-
tection. In this subsection, we evaluate the extensibility
of our Graph2Par model for predicting OpenMP pragmas,
including ”private”, ”reduction”, ”simd”, and ”target”. We
apply the same labeling strategy as the parallelism detec-
tion task, where the presence of the corresponding pragma
determines the label of the loop. We train Graph2Par on
the entire OMP serial dataset and evaluate on a separate
test set. The results are presented in Table 5. We observe
that our Graph2Par model performs well for the ”private”
and ”reduction” pragma prediction tasks but struggles with
the ”simd” and ”target” pragma prediction tasks. This is
due to the limited representation of the aug-AST for certain
pragma patterns, as some patterns may require additional
information beyond the control flow graph and lexical edges
represented by the aug-AST.

It is worth noting that algorithm-based tools are not able to
predict all of these pragmas or process every data point in
our dataset. As the state-of-the-art model, PragFormer is
used as a baseline for comparing the results of Graph2Par.
Table 5 shows that our Graph2Par approach outperforms the
SOTA token-based approach in both ”private” and ”reduc-
tion” pragma prediction tasks. Overall, the results demon-
strate that our Graph2Par model has the potential to be
extended to other OpenMP pragma prediction tasks, but

additional features and representations may be required to
handle more complex patterns.

Table 5. Performance of Graph2Par for four pragma prediction.

Pragma Approach Precision Recall F1-score Accuracy
private Graph2Par 0.88 0.87 0.87 0.89

PragFormer 0.86 0.85 0.86 0.85
reduction Graph2Par 0.9 0.89 0.91 0.91

PragFormer 0.89 0.87 0.87 0.87
SIMD Graph2Par 0.79 0.76 0.77 0.77

PragFormer N/A N/A N/A N/A
target Graph2Par 0.75 0.74 0.74 0.74

PragFormer N/A N/A N/A N/A

6.4 Dealing with False Positives

From Table 4, it can be observed that our proposed
Graph2Par has some false positives, meaning that it pre-
dicted some loops that are not parallel as parallel loops. In
contrast, traditional tools like PLUTO, autoPar, and Dis-
coPoP have zero false positives. However, Graph2Par is
able to detect 1.8x, 5.2x, and 1.2x more parallel loops
(true positives) in the Subset PLUTO, Subset autoPar, and
Subset DiscoPoP datasets, respectively. This suggests that
although Graph2Par may wrongly predict some loops as
parallel, it can discover more parallelization opportunities
than traditional approaches that are often conservative and
may miss out on such opportunities. False positives are in-
evitable when embracing machine learning techniques since
no model is perfect and can make mistakes. Parallelizing
serial programs is complex, which makes it hard to do end-
to-end auto-parallelization, even with algorithm-based tools.
There is more to consider for end-to-end approaches other
than the parallelization pattern within the code, such as the
characteristics of the platform on which the code executes,
as well as the input data size and data dependencies. These
factors can significantly impact the performance of the paral-
lelized code, and their consideration is crucial for achieving
optimal speedup. Therefore, it is important to carefully
analyze and tune these factors in addition to identifying
the parallelism opportunities within the code. Therefore,
Graph2Par handles the false positives by only providing sug-

Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation

gestions instead of generating end-to-end parallel code. The
suggestion provided by Graph2Par includes whether paral-
lelism exists within a loop and whether the loop inhibits any
parallel patterns when parallelism is present. Developers
can then use this information to parallelize the loops using
any framework they prefer. For example, if a developer
finds that a loop is parallel and has a reduction pattern, they
can easily parallelize the loop using the ”#pragma omp par-
allel for reduction” clause of OpenMP. However, there may
be scenarios where the false positives are significant and
need to be reduced to avoid confusion and save developers
time. In such cases, developers may use additional tools to
manually verify the suggested parallelism by Graph2Par.

6.5 Overhead.

When generating the proposed aug-AST representation for
a loop, the steps mentioned in section 5 are followed. The
overhead of creating an aug-AST comes from two steps:
code compilation with Clang and AST traversal with tree-
sitter (Brunsfeld, 2018). However, both steps introduce
minimal overhead. It is important to note that the overhead
of creating an aug-AST may increase for larger size codes.
However, for the loops in the OMP serial dataset, which
have an average size of 6.9 lines, the overhead is minimal
and in the order of milliseconds.

6.6 Case Study

In the evaluation, it is observed that our proposed model
can successfully identify 48 parallel loops missed by all
three algorithm-based tools. An example of one such loop is
presented in Listing 6, and other examples can be found in
Listings 1, 2, 3, 4, and 5 in the motivation examples. These
results demonstrate the effectiveness of our Graph2Par ap-
proach in detecting parallelism opportunities that are missed
by traditional algorithm-based tools.

f o r (i = 0 ; i < 1000 ; i ++){
a [i] = i * 2 ;
sum += i ;

}

Listing 6. Parallel loop missed by DiscoPoP, PLUTO and autoPar
with array and reduction

Another example is shown in Listing 7. We believe that the
conservative nature of non-AI-based parallelism assistant
tools may be the reason for missing such opportunities. In
this specific example, although there is a reduction operation
on the variable sum and memory access to the 2D array
a, only the j index is changing, and there are no inter-
iteration dependencies. Therefore, this loop can be executed
in parallel, and it is successfully detected by our Graph2Par
model.

f o r (j = 0 ; j < 1000 ; j ++){
sum += a [i] [j] * v [j] ;

}

Listing 7. Parallel loop missed by DiscoPoP, PLUTO and autoPar
with array and reduction

Furthermore, our proposed Graph2Par model can handle
parallelism detection in nested loops effectively, which is
a challenging problem due to the complex dependencies
between the loops. As an example, in Listing 8, the outer
parallel loop has been missed by all traditional parallelism
assistant tools due to its nested structure. However, our
model successfully detects that the outer-most for loop
can be parallelized. By observing that each cell of the 3-d
array a will eventually have the same value and that m is
just a constant, we can verify that there are no loop-carried
dependencies, and the loop can be safely parallelized.

f o r (i = 0 ; i < 1 2 ; i ++) {
f o r (j = 0 ; j < 1 2 ; j ++) {

f o r (k = 0 ; k < 1 2 ; k ++) {
tmp1 = 6 . 0 / m;
a [i] [j] [k] = tmp1 + 4 ;

}
}

}

Listing 8. Parallel loop missed by DiscoPoP, PLUTO and autoPar
with nested loop

7 RELATED WORK

Recent research has shown an increasing trend in employ-
ing machine learning techniques for parallelization analysis.
These studies can be broadly classified into two categories
based on their code representations. Token-based code anal-
ysis studies (Fried et al., 2013; Harel et al., 2022) used
natural language processing (NLP) models trained on raw
code text data. In contrast, recent studies such as (Shen
et al., 2021; Chen et al., 2022) have leveraged structured
graphical models with the structural representation of code,
such as the Abstract Syntax Tree (AST). Compared to these
works, our proposed Heterogeneous augment-AST repre-
sentation is easy to process and contains rich information
on nodes and edges, enabling more accurate and efficient
parallelization analysis.

8 CONCLUSION
In this paper, we propose a static approach to discover par-
allelism in sequential programs using an augmented AST
representation. To address the issue of data insufficiency,
we created the OMP Serial dataset, which can be used for
other parallelization tasks as well. We evaluate the aug-AST
representation using a GNN-based model, and it outper-
forms traditional parallelization tools as well as token-based
machine learning approaches. However, there is still room

Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation

for improvement in our model. Currently, Graph2Par can
only detect whether a pragma is applicable for a loop or not,
but future research directions could focus on developing
a model that can generate complete OpenMP pragmas for
sequential loops.

REFERENCES

Allamanis, M., Brockschmidt, M., and Khademi, M.
Learning to represent programs with graphs. CoRR,
abs/1711.00740, 2017. URL http://arxiv.org/
abs/1711.00740.

Alon, U., Zilberstein, M., Levy, O., and Yahav, E. code2vec:
Learning distributed representations of code. Proceedings
of the ACM on Programming Languages, 3(POPL):1–29,
2019.

Alpaydin, E. Introduction to machine learning. MIT press,
2020.

Andersch, M., Juurlink, B., and Chi, C. A benchmark suite
for evaluating parallel programming models. In Proceed-
ings of Workshop on Parallel Systems and Algorithms
(PARS), volume 28, pp. 1–6, 2013.

Aslot, V., Domeika, M., Eigenmann, R., Gaertner, G., Jones,
W. B., and Parady, B. Specomp: A new benchmark
suite for measuring parallel computer performance. In
International Workshop on OpenMP Applications and
Tools, pp. 1–10. Springer, 2001.

Ben-Nun, T., Jakobovits, A. S., and Hoefler, T. Neural
code comprehension: A learnable representation of code
semantics. Advances in Neural Information Processing
Systems, 31, 2018.

Bik, A. J., Girkar, M., Grey, P. M., and Tian, X. Auto-
matic intra-register vectorization for the intel® architec-
ture. International Journal of Parallel Programming, 30
(2):65–98, 2002.

Blume, W., Eigenmann, R., Hoeflinger, J., Padua, D., Pe-
tersen, P., Rauchwerger, L., and Tu, P. Automatic de-
tection of parallelism. IEEE Parallel and Distributed
Technology, 2(3):37–47, 1994.

Bondhugula, U., Hartono, A., Ramanujam, J., and Sa-
dayappan, P. A practical automatic polyhedral par-
allelizer and locality optimizer. SIGPLAN Not., 43
(6):101–113, jun 2008. ISSN 0362-1340. doi: 10.
1145/1379022.1375595. URL https://doi.org/
10.1145/1379022.1375595.

Brauckmann, A., Goens, A., Ertel, S., and Castrillon, J.
Compiler-based graph representations for deep learning

models of code. In Proceedings of the 29th Interna-
tional Conference on Compiler Construction, pp. 201–
211, 2020.

Brunsfeld, M. Tree-sitter-a new parsing system for program-
ming tools. In Strange Loop Conference,. Accessed–.
URL: https://www. thestrangeloop. com//tree-sitter—a-
new-parsing-system-for-programming-tools. html, 2018.

Chandra, R., Dagum, L., Kohr, D., Menon, R., Maydan,
D., and McDonald, J. Parallel programming in OpenMP.
Morgan kaufmann, 2001.

Chen, L., Mahmud, Q. I., and Jannesari, A. Multi-view
learning for parallelism discovery of sequential programs.
In 2022 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), pp. 295–303.
IEEE, 2022.

Cummins, C., Fisches, Z. V., Ben-Nun, T., Hoefler, T.,
O’Boyle, M. F., and Leather, H. Programl: A graph-
based program representation for data flow analysis and
compiler optimizations. In International Conference on
Machine Learning, pp. 2244–2253. PMLR, 2021.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Duran, A., Teruel, X., Ferrer, R., Martorell, X., and
Ayguade, E. Barcelona openmp tasks suite: A set of
benchmarks targeting the exploitation of task parallelism
in openmp. In 2009 international conference on parallel
processing, pp. 124–131. IEEE, 2009.

Fried, D., Li, Z., Jannesari, A., and Wolf, F. Predicting
parallelization of sequential programs using supervised
learning. In 2013 12th International Conference on Ma-
chine Learning and Applications, volume 2, pp. 72–77.
IEEE, 2013.

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra,
J. J., Squyres, J. M., Sahay, V., Kambadur, P., Barrett, B.,
Lumsdaine, A., et al. Open mpi: Goals, concept, and
design of a next generation mpi implementation. In Euro-
pean Parallel Virtual Machine/Message Passing Interface
Users’ Group Meeting, pp. 97–104. Springer, 2004.

Garcia, S., Jeon, D., Louie, C., and Taylor, M. B. The
kremlin oracle for sequential code parallelization. IEEE
Micro, 32(4):42–53, 2012.

Grosser, T., Groesslinger, A., and Lengauer, C.
Polly—performing polyhedral optimizations on a low-
level intermediate representation. Parallel Processing
Letters, 22(04):1250010, 2012.

http://arxiv.org/abs/1711.00740
http://arxiv.org/abs/1711.00740
https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1145/1379022.1375595

Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation

Harel, R., Pinter, Y., and Oren, G. Learning to parallelize in
a shared-memory environment with transformers. arXiv
preprint arXiv:2204.12835, 2022.

Hu, Z., Dong, Y., Wang, K., and Sun, Y. Heterogeneous
graph transformer. In Proceedings of The Web Conference
2020, pp. 2704–2710, 2020.

Huang, L., Ma, D., Li, S., Zhang, X., and Wang, H. Text
level graph neural network for text classification. CoRR,
abs/1910.02356, 2019. URL http://arxiv.org/
abs/1910.02356.

Huda, Z. U., Atre, R., Jannesari, A., and Wolf, F. Auto-
matic parallel pattern detection in the algorithm structure
design space. In Proc. of the 30th IEEE International
Parallel and Distributed Processing Symposium (IPDPS),
Chicago, USA, pp. 43–52. IEEE, May 2016. ISBN 978-
1-5090-2140-6. doi: 10.1109/IPDPS.2016.60.

Jin, H., Frumkin, M., and Yan, J. The openmp implemen-
tation of nas parallel benchmarks and its performance.
Technical report, Citeseer, 1999.

Kammoun, A., Slama, R., Tabia, H., Ouni, T., and Abid,
M. Generative adversarial networks for face generation:
A survey. ACM Computing Surveys, mar 2022. doi: 10.
1145/1122445.1122456. URL https://doi.org/
10.1145%2F1122445.1122456.

Kim, Y., Jeong, Y., Kim, J., Lee, E. K., Kim, W. J., and
Choi, I. S. Molnet: A chemically intuitive graph neu-
ral network for prediction of molecular properties, 2022.
URL https://arxiv.org/abs/2203.09456.

Kipf, T. N. and Welling, M. Semi-supervised classi-
fication with graph convolutional networks. CoRR,
abs/1609.02907, 2016. URL http://arxiv.org/
abs/1609.02907.

Lattner, C. and Adve, V. Llvm: A compilation framework
for lifelong program analysis & transformation. In Inter-
national Symposium on Code Generation and Optimiza-
tion, 2004. CGO 2004., pp. 75–86. IEEE, 2004.

Li, Z., Atre, R., Huda, Z. U., Jannesari, A., and Wolf, F.
Unveiling parallelization opportunities in sequential pro-
grams. Journal of Systems and Software, 117:282–295,
July 2016. doi: 10.1016/j.jss.2016.03.045.

Ma, G., Xiao, Y., Capotă, M., Willke, T. L., Nazarian, S.,
Bogdan, P., and Ahmed, N. K. Learning code representa-
tions using multifractal-based graph networks. In 2021
IEEE International Conference on Big Data (Big Data),
pp. 1858–1866. IEEE, 2021.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space, 2013.

Nethercote, N. and Seward, J. Valgrind: a framework for
heavyweight dynamic binary instrumentation. ACM Sig-
plan notices, 42(6):89–100, 2007.

Pheatt, C. Intel® threading building blocks. Journal of
Computing Sciences in Colleges, 23(4):298–298, 2008.

Pouchet, L.-N. and Yuki, T. Polybench: The polyhedral
benchmark suite (version 4.2), 2017.

Quinlan, D. and Liao, C. The ROSE source-to-source com-
piler infrastructure. In Cetus users and compiler infras-
tructure workshop, in conjunction with PACT, volume
2011, pp. 1. Citeseer, 2011.

Ronacher, A. Jinja2 documentation. Welcome to
Jinja2—Jinja2 Documentation (2.8-dev), 2008.

Shen, Y., Peng, M., Wang, S., and Wu, Q. Towards paral-
lelism detection of sequential programs with graph neural
network. Future Generation Computer Systems, 125:
515–525, 2021.

Shi, L., Zhang, Y., Cheng, J., and Lu, H. Skeleton-based
action recognition with directed graph neural networks.
In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 7904–7913, 2019. doi:
10.1109/CVPR.2019.00810.

TehraniJamsaz, A., Popov, M., Dutta, A., Saillard, E., and
Jannesari, A. Learning intermediate representations using
graph neural networks for numa and prefetchers optimiza-
tion. In 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 1206–1216. IEEE,
2022.

Tournavitis, G., Wang, Z., Franke, B., and O’Boyle, M. F.
Towards a holistic approach to auto-parallelization: inte-
grating profile-driven parallelism detection and machine-
learning based mapping. ACM Sigplan notices, 44(6):
177–187, 2009.

Vasudevan, V., Bassenne, M., Islam, M. T., and Xing, L.
Image classification using graph neural network and mul-
tiscale wavelet superpixels. CoRR, abs/2201.12633, 2022.
URL https://arxiv.org/abs/2201.12633.

Wismüller, R. Loops, Parallel, pp. 1079–1087. Springer
US, Boston, MA, 2011. ISBN 978-0-387-09766-4. doi:
10.1007/978-0-387-09766-4 27. URL https://doi.
org/10.1007/978-0-387-09766-4_27.

Yao, L., Mao, C., and Luo, Y. Graph convolutional networks
for text classification. CoRR, abs/1809.05679, 2018. URL
http://arxiv.org/abs/1809.05679.

Zhang, C., Song, D., Huang, C., Swami, A., and Chawla,
N. V. Heterogeneous graph neural network. In Proceed-
ings of the 25th ACM SIGKDD international conference

http://arxiv.org/abs/1910.02356
http://arxiv.org/abs/1910.02356
https://doi.org/10.1145%2F1122445.1122456
https://doi.org/10.1145%2F1122445.1122456
https://arxiv.org/abs/2203.09456
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2201.12633
https://doi.org/10.1007/978-0-387-09766-4_27
https://doi.org/10.1007/978-0-387-09766-4_27
http://arxiv.org/abs/1809.05679

Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation

on knowledge discovery & data mining, pp. 793–803,
2019.

Zhang, X., Navabi, A., and Jagannathan, S. Alchemist: A
transparent dependence distance profiling infrastructure.
In 2009 International Symposium on Code Generation
and Optimization, pp. 47–58. IEEE, 2009.

Zhang, X.-M., Liang, L., Liu, L., and Tang, M.-J. Graph
neural networks and their current applications in bioinfor-
matics. Frontiers in genetics, 12, 2021.

Zügner, D., Kirschstein, T., Catasta, M., Leskovec, J., and
Günnemann, S. Language-agnostic representation learn-
ing of source code from structure and context. arXiv
preprint arXiv:2103.11318, 2021.

Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation

A SYNTHETIC DATASET GENERATION

A.1 Generating Loops with Do-all Pattern

Let us consider the template in Listing 9 and the generated
code using that template in Listing 10. Here the counter
is replaced by variable o. We generated the variable names
randomly by using a combination of English language al-
phabets (a-z, A-Z), digits (0-9) and underscore (). limit is
replaced by an arbitrary integer 246. In the left side of do-all
equation we replace the operand by one of our randomly
generated array variables s. In the right side of the do-all
equation we can have both variables and constants which
are also chosen arbitrarily. For the operator we consider
+, −, ∗, / operations.

f o r ({{ c o u n t e r }} = 0 ; {{ c o u n t e r }} <
{{ l i m i t }} ; {{ c o u n t e r }} = {{ c o u n t e r }} +
{{ c o n s t a n t }})
{

/ / do− a l l e q u a t i o n
{{ ope rand }} = {{ ope rand }}
{{ o p e r a t o r }} {{ ope rand }} ;

}

Listing 9. A sample template of a loop containing do-all pattern

f o r (o = 0 ; o < 246 ; o = o + 1)
{

s [o] = j 6 + 2 0 ;
}

Listing 10. A loop containing do-all pattern generated from the
template in Listing 9

Listing 11 presents another one of our templates for do-all
pattern. Listing 12 represents the loop generated from this
template.

f o r ({{ c o u n t e r }} = 0 ; {{ c o u n t e r }} <
{{ l i m i t }} ; {{ c o u n t e r }} = {{ c o u n t e r }} +
{{ c o n s t a n t }})
{

/ / do− a l l e q u a t i o n 2
{{ ope rand }} = {{ ope rand }} ;

}

Listing 11. A sample template of a loop containing do-all pattern

f o r (cb1 = 0 ; cb1 < 33211 ; cb1 = cb1 + 1)
{

a r [cb1] = q522 ;
}

Listing 12. A loop containing do-all pattern generated from the
template in Listing 11

A.2 Generating Loops with Reduction Pattern

Now let us consider the reduction template in Listing 13
and the generated reduction loop in Listing 14. counter
and red var are replaced using randomly generated vari-
ables n and quC respectively. limit and term are replaced
by randomly generated integer constants 184 and 4 respec-
tively. The reduction operation needs to be associative and
commutative so we only considered + and ∗ operation and
arbitrarily picked one of them in place of red operator.

f o r ({{ c o u n t e r }} = 0 ; {{ c o u n t e r }} <
{{ l i m i t }} ; {{ c o u n t e r }} = {{ c o u n t e r }} +
{{ c o n s t a n t }})
{

/ * r e d u c t i o n e q u a t i o n * /
{{ r e d v a r }} = {{ r e d v a r }}
{{ r e d o p e r a t o r }} ({{ t e rm }}) ;

}

Listing 13. A sample template of a loop containing reduction pat-
tern

f o r (n = 0 ; n < 184 ; n = n + 1) {
quC = quC + 4 ;

}

Listing 14. A loop containing reduction pattern generated from the
template in Listing 13

Listing 15 presents another one of our templates for the re-
duction pattern and listing 16 represents the loop generated
from this template.

f o r ({{ c o u n t e r }} = 0 ; {{ c o u n t e r }} <
{{ l i m i t }} ; {{ c o u n t e r }} = {{ c o u n t e r }} +
{{ c o n s t a n t }})
{

/ * r e d u c t i o n e q u a t i o n 2 * /
{{ r e d v a r }} {{ r e d o p e r a t o r }} =

({{ t e rm }}) ;
}

Listing 15. A sample template of a loop containing reduction pat-
tern

f o r (nd3 = 0 ; nd3 < 184 ; nd3 = nd3 + 5) {
C 2a *= 411 ;

}

Listing 16. A loop containing reduction pattern generated from the
template in Listing 13

B EVALUATION

Figure 4, 5, and 6 present the training details.

Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation

Figure 4. Average validation loss for AST and Aug-AST represen-
tation.

0.00

0.25

0.50

0.75

1.00

10 20 30 40 50

Heterogeneous aug-AST AST

Figure 5. Accuracy of Heterogeneous aug-AST and Aug-AST rep-
resentation.

Models

A
cc
ur
ac
y

0.00

0.25

0.50

0.75

1.00

DiscoPoP Pluto AutoPar HGT PragFormer

Figure 6. Accuracy of identifying the need for an OpenMP direc-
tive.

