
EXPLOITING HARDWARE UTILIZATION AND ADAPTIVE DATAFLOW FOR
EFFICIENT SPARSE CONVOLUTION IN 3D POINT CLOUDS

Ke Hong * 1 Zhongming Yu * 2 Guohao Dai 3 Xinhao Yang 1 Yaoxiu Lian 3 Zehao Liu 1 Ningyi Xu 3

Yuhan Dong 1 Yu Wang 1

ABSTRACT
Sparse convolution is the key operator in widely-used 3D point cloud networks. However, due to the high sparsity
of voxelized input point cloud data, three main challenges need to be solved for efficient sparse convolution
in current 3D point cloud engines: (1) Memory under-utilization: the mapping information from input data
to weight parameters of 3D point cloud networks is sparse, leading to up to 79.97% redundant memory access
and under-utilized memory space; (2) Computation under-utilization: previous FGMS (Fused Gather-Matrix-
Multiplication-Scatter) operations in sparse convolution are executed sequentially, leading to a GPU computation
utilization of only 22.84%; (3) Input dynamics: a single and static dataflow in the current point cloud engines
cannot always achieve the best performance on different input point cloud data.

To tackle these challenges, we propose PCEngine, an efficient sparse convolution engine for voxel-based 3D
point cloud networks. PCEngine proposes a novel coded-CSR (Compress Sparse Row) format to represent the
mapping information without redundancy. PCEngine also introduces the indicator-assisted segmented FGMS
fusion scheme to fully utilize the computation resources on GPU hardware. PCEngine further deploys a heuristic
adaptive dataflow for input dynamics. Extensive experimental results show that PCEngine achieves 1.81× and
1.64× speedup on average for sparse convolution operation and end-to-end point cloud networks, respectively.

1 INTRODUCTION

In recent years, 3D point cloud neural network algorithms
have achieved significant improvement in scenarios such
as autonomous driving, robotics, and AR/VR (Tang et al.,
2022; Lin et al., 2021). Even iPhone 14 has been equipped
with LiDAR that can generate point cloud data. Moreover,
3D point cloud neural network algorithms have been proven
to achieve excellent results on a variety of tasks including
object detection and tracking, semantic and instance seg-
mentation (Wang et al., 2019; Wen et al., 2020; Wang et al.,
2021). Depending on the format of the point cloud data rep-
resentation, point cloud neural network algorithms can be
roughly classified as voxel-based, point-based, BEV-based,
graph-based, etc (Mao et al., 2022). Among these methods,
voxel-based networks have achieved state-of-the-art accu-
racy for a variety of tasks such as semantic segmentation
(Choy et al., 2019; Zhu et al., 2021) and object detection
(Shi et al., 2020; Deng et al., 2021; Yin et al., 2021).

*Equal contribution 1Tsinghua University 2University of Cal-
ifornia, San Diego 3Shanghai Jiao Tong University. Correspon-
dence to: Guohao Dai <daiguohao@sjtu.edu.cn>, Yu Wang <yu-
wang@tsinghua.edu.cn>.

Proceedings of the 6 th MLSys Conference, Miami, Florida, USA,
2023. Copyright 2023 by the author(s).

LiDAR Point Cloud
Data

Voxel-based
Neural Network Output

Figure 1. An example of generating voxel-based 3D point cloud
data and corresponding neural networks.

The typical operation in the voxel-based 3D point cloud
networks is sparse convolution. The voxel-based networks
divide the 3D features into voxels at corresponding locations
based on the coordinates of the input point cloud data, and
these voxels are sparsely distributed in a 3D space. Figure
1 shows an example of generating voxel-based 3D point
cloud data and corresponding neural networks. Borrow-
ing the idea from the conventional convolution operation
in convolutional neural networks, the sparse convolution
operation is applied as a core operator for the computation
on voxels. Compared with dense image data, these voxels
are a set of discrete and highly sparse points which contain
position and depth information of objects in the real world.
The density of 3D scenes is usually in the range of 0.01% to
1% (Lin et al., 2021). Such high sparsity (low density) leads
to problems like poor locality of data access and irregular
computation workloads, resulting in poor performance of

Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds

Figure 2. Overview of challenges in sparse convolution and solutions in PCEngine. (a) An example of the sparse convolution operation.
(b) The mapping among input feature, output feature, and weight. (c) PCEngine stores the mapping using a coded-CSR (Compressed
Sparse Row) format to improve memory utilization and reduce redundant memory access. (d) PCEngine introduces the indicator-assisted
segmented FGMS (Fused Gather-Matrix-Multiplication-Scatter) fusion technique to fully utilize GPU computation capability. (e)
PCEngine proposes the heuristic adaptive dataflow to achieve better performance considering input dynamics.

3D point cloud network computation.

Figure 2(a) shows a typical example of the sparse convolu-
tion operation (Graham & van der Maaten, 2017). Sparse
output features are obtained from the convolution of sparse
input features and dense weights.

Many previous 3D point cloud engines have focused on
3D point cloud network acceleration, such as TorchSparse
(Tang et al., 2022), MinkowskiEngine (Choy et al., 2019),
SpConv (Yan et al., 2018), and etc (Rusu & Cousins, 2011).
SpConv first proposes a Gather-MM (Matrix Multiplication)
-Scatter dataflow to organize the sparse convolution com-
putation. MinkowskiEngine utilizes a Fetch-on-Demand
dataflow to handle a lighter workload. TorchSparse is one
of the state-of-the-art 3D point cloud inference engines,
which optimizes irregular computation and data movement
in sparse convolution. In order to compute the convolution,
these engines first obtain a mapping table based on the rel-
ative positions of the inputs, outputs, and weights to find
out which input P and weight W the output Q should be
computed from, as shown in Figure 2(b). Although many
works have proposed several effective techniques for 3D
point cloud computation, the sparse characteristic of input
voxels makes the sparse convolution operation still suffer
from challenges like hardware under-utilization and input
dynamics:

• Memory under-utilization. Engines like TorchSparse
use a matrix (from input features to weights) to store the
mapping information (Figure 2(c) top). However, due to
the sparsity of input voxels, most elements in the matrix
contain invalid mapping information, leading to up to
79.97% redundant memory access and under-utilization
of the memory space.

• Computation under-utilization. Previous designs or-
ganize computation of the sparse convolution operation
into multiple FGMS GPU kernels that are executed in a
sequence. However, separate FGMS suffers from compu-
tation under-utilization (e.g., 22.84% in our experiments)
if the total workload is lighter than the GPU capability
(Figure 2(d) top).
• Input dynamics. Previous designs introduce different

dataflows for the sparse convolution operation. These
different dataflows imply performance gaps on different
input data (Figure 2(e) top). Thus, the fixed dataflow
in previous work leads to performance loss considering
input dynamics.

To address the above challenges, we propose PCEngine.
PCEngine enables efficient processing of voxel-based 3D
point cloud networks by exploiting hardware utilization and
adaptive dataflow for input dynamics. The contributions of
PCEngine include:

Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds

(input, weight) (output, weight)
P0, W0 Q0, W0

P0, W4 Q0, W4

P1, W1 Q1, W0

P1, W4 Q1, W4

P1, W8 Q1, W7

P5, W4 Q5, W2

P5, W6 Q5, W4

P6, W4 Q6, W4

… …

(input, output, weight)
P0, Q1, W0

P2, Q4, W0

P1, Q2, W1

P3, Q4, W2

P4, Q5, W2

P2, Q1, W7

P1, Q0, W8

P4, Q2, W8

…

P0

P1

P2

P3

P4

P5

P6

P0

P1
W0

Q1patial

Q4patial

P1 W1 Q2patial

P2 W7 Q1patial

P1

P4
W8

Q0patial

Q2patial

…

Q0

Q1

Q2

Q3

Q4

Q5

Q6

!

!

!

!

=

=

=

=

Gather ScatterMM

P0

P1

P2

P3

P4

P5

P6

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Fused Gather-MM-Scatter (FGMS)Mapping

(a)

Mapping

(b)Dataflow 1 (D1): Gather-MM-Scatter Dataflow 2 (D2): Fetch-on-Demand

heavy data movement

large MMs, high parallelism!

"

small MMs, low parallelism"Input-major Output-major Weight-major

device memory
P0

P1

P1

P2

P1

P4

Q1patial

Q4patial

Q2patial

Q1patial

Q0patial

Q2patial

fetch-on-demand

W0

W1

W7

W8
…

Q1patial

Q4patial

Q2patial

Q1patial

Q0patial

Q2patial

P0

P1

P1

P2

P1

P4

!

!

!

!

=

=

=

=

shared memory
or register

!

P0

P1

P1

P2

P1

P4

Q1patial

Q4patial

Q2patial

Q1patial

Q0patial

Q2patial

Figure 3. Typical dataflow of the sparse convolution operation. (a) The mapping information is stored in two separate tables, and different
input features are gathered to a single weight to perform the MM operation, leading to high parallelism while heavy data movement. (b)
The mapping information is stored in one table, and the gather, MM, and scatter operations of each weight are fused into a GPU kernel
(denoted as FGMS) so that input features are fetched on demand, leading to small data copy overhead while low parallelism of MMs.

• We introduce the coded-CSR (Compressed Sparse Row)
format for mapping storage, reducing memory accesses
(Figure 2(c) bottom) by 21.18% in our experiments.
• We propose the indicator-assisted segmented FGMS fu-

sion scheme to merge fragmented computations and im-
prove GPU utilization (Figure 2(d) bottom), leading to
1.40× to 1.68× higher GPU utilization.
• We propose a heuristic adaptive dataflow for input dynam-

ics. PCEngine heuristically selects the better dataflow
for a certain input, leading to 1.15× to 1.57× average
speedup over static dataflow designs.

Extensive experimental results on various benchmarks show
that PCEngine achieves 1.81× and 1.64× speedup on aver-
age for the sparse convolution operation and end-to-end 3D
point cloud networks, respectively. The following of this
paper is organized as follows. Section 2 introduces back-
grounds and preliminaries. An overview of our PCEngine is
introduced in Section 3. Three techniques of PCEngine are
detailed in Section 4, 5, and 6. PCEngine is evaluated in Sec-
tion 7. Section 8 introduces related works, and Section 10
concludes the paper.

2 BACKGROUNDS AND PRELIMINARIES

2.1 Definition of Sparse Convolution

A typical example of the sparse convolution operation is
shown in Figure 2(a). Let Pi represent the feature vector
of the input data Pi, Qj represent the feature vector of the
output data Qj , and Wk represent the weight matrix of
weight Wk. In this example, we have k ∈ {0..8} for this
3×3 weight. Then we have:

Qj =
∑

k∈{0..8}

WkPj(k), Pj ̸= 0. (1)

Here, Pj(k) represents the input feature vector of the input
data Pj(k), where the offset from Pj(k) to Pj is the same as
the offset from Wk to W4 (the center of the weight matrix).
The sparsity of input and output data in the example of

Figure 2(a) and Equation (1) remains the same, because we
only calculate Qj when Pj ̸= 0. Such type of the sparse
convolution is called the submanifold sparse convolution
(Graham et al., 2018). Another typical type of the sparse
convolution is more general, where the constraint Pj ̸= 0
is removed. Such type of the sparse convolution makes the
non-zero elements grow rapidly.

2.2 Typical Dataflow of Sparse Convolution

Based on the definition of the sparse convolution operation,
the mapping information among input features, weights, and
output features can be generated, shown in Figure 2(b). Such
mapping information indicates the dependency between an
output feature vector Qj and an input feature vector Pi or
weight parameter Wk. There are two ways to store the
mapping information. The first way is storing the mapping
from input features to weight parameters and output features
to weight parameters in two separate tables, while another
way is using one table to store the tuples of (input, output,
weight). These two ways are utilized in different dataflows
of the sparse convolution operation.

2.2.1 Dataflow 1 (D1): Gather-MM-Scatter

The Gather-MM-Scatter dataflow (D1) is shown in Fig-
ure 3(a). D1 constructs two mapping tables to store the
mapping information from input features to weights, and
output features to weights, respectively. As is introduced
in TorchSparse (Tang et al., 2022), the separate mapping
enables data reuse in both gather and scatter operations.
Based on the (Pj(k), Wk) mapping, for each Wk all input
feature vectors Pj(k) are gathered together to form a feature

Table 1. Notations in this paper
Notation Meaning
Pi feature vector of input data Pi

Qj feature vector of output data Qj

Wk the k-th weight in the convolution kernel
N in the number of input features
Nout the number of output features
K the number of weights in the convolution kernel

Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds

Pipelined
mapping
search

Gather on
Coded-

CSR

Library
MMs

Scatter on
Coded-

CSR

Simple
mapping
search

Indicator-assisted segmented FGMS fusion

Heuristic
module
(Sec. 6)

Dataflow 2: Fetch-on-Demand with FGMS fusion scheme (Sec. 5)

Dataflow 1: Gather-MM-Scatter on Coded-CSR format (Sec. 4)

Sparse convolution layer (API: conv3d)

Input
data

Network
parameters

Output
data

Output
data

Figure 4. The system overview of PCEngine. Two dataflows are
wrapped and dynamically selected. The coded-CSR format and the
indicator-assisted segmented FGMS fusion scheme are introduced
to Gather-MM-Scatter dataflow and Fetch-on-Demand dataflow,
respectively.

matrix. The gathered feature matrices of all Wk are stored
in a buffer in the GPU device memory. Then during the
MM stage, the feature matrix corresponding to each Wk is
multiplied with the weight matrix Wk sequentially, deriving
the partial sum vectors Qpartial

j . Further, according to the
(Qj , Wk) mapping, these partial sum vectors are scattered
and accumulated to the corresponding output feature vectors
Qj . The MMs can be executed in high parallelism using
libraries like cuBLAS (Nvidia’s BLAS library), making D1
efficient in sparse convolution computation of scale.

2.2.2 Dataflow 2 (D2): Fetch-on-Demand

Another dataflow is the Fetch-on-Demand scheme (D2). D2
utilizes a combined mapping (Pj(k), Qj , Wk). Instead of
executing MMs after gathering all the required input feature
vectors into a buffer, D2 fuses the feature fetching process
into the MM computation. Specifically, for each Wk the
corresponding feature vectors, Pj(k) are fetched into the
shared memory or registers directly and computed to derive
the partial sum vectors Qpartial

j . Once the MM computation
is finished, the partial sum vectors are directly added to
the output features Qj . The computation corresponding to
each Wk is defined as a Fused Gather-MM-Scatter (FGMS
for short) operation in the following. In D2, no buffer is
needed to store the intermediate results, and hence the data
movement cost is significantly reduced. However, the lack
of a pre-fetch stage prevents MMs from being organized
into large-scale computations. The low parallelism makes
the MM stage become the bottleneck in D2, especially when
the size of the input feature grows large. As a result, the
reduced data movement of D2 leads to better performance
with a light workload, and the low parallelism of D2 leads
to performance degradation as the workload grows heavier.

3 OVERVIEW OF PCENGINE

The system overview of PCEngine is illustrated in Fig-
ure 4. The sparse convolution operation is exposed as a
conv3d API in upper-layer frameworks. Two typical types

of dataflow introduced in Section 2.2 and Figure 3 are both
wrapped into the API. Specifically, PCEngine introduces the
coded-CSR format for mapping to the Gather-MM-Scatter
dataflow, which will be detailed in Section 4. A pipelined
mapping search is utilized to build the coded-CSR format
mapping. Then, the following gather and scatter operations
are designed corresponding to the coded-CSR mapping for-
mat. For the Fetch-on-Demand dataflow, a simple mapping
search operation is applied. To fully utilize the parallelism
of GPU hardware, PCEngine proposes the indicator-assisted
segmented FGMS fusion instead of separate FGMSs (Choy
et al., 2019) to derive the output, which is introduced in
Section 5. In order to enable adaptability to input dynam-
ics, PCEngine takes features of input data and point cloud
networks to a heuristic module to select different dataflow
heuristically and dynamically, introduced in Section 6.

4 CODED-CSR MAPPING

Motivation. In Gather-MM-Scatter dataflow, the gather and
scatter operations take up to 40% of the total execution time
(Tang et al., 2022), becoming significant parts in acceler-
ating the sparse convolution operation. Previous designs
like TorchSparse propose to use an input-major mapping for
the gather operation and an output-major mapping for the
scatter operation (shown in green and blue in Figure 3(a),
respectively). Thus, an input feature is only read once to
different weights, and an output feature is only written once
to the device memory after accumulation. In that way, both
input-level and output-level data reuse are exploited.

However, storing and representing this input-major and
output-major mapping information fails to make full use
of memory in previous designs like TorchSparse. Particu-
larly, the input mapping is recorded as a (Pj(k),Wk) matrix
in TorchSparse. However, due to the sparsity of the point
cloud data, a specific input is not mapped to all possible
weights. The profiling result indicates that for the KITTI
dataset (Geiger et al., 2012), up to 79.97% elements of the
mapping matrix are empty with a 3×3×3 kernel, leading
to redundant memory access in memory-intense gather and
scatter operations.

Analysis. Here we take the input mapping as an example
(the analysis methodology for the output mapping is simi-
lar), two types of data are accessed, i.e., the input features
and the mapping information. The input-major mapping
scheme in TorchSparse eliminates the redundancy of load-
ing input features. However, due to the sparsity of mapping
from input features to weights, redundancy still remains in
loading the mapping information. Let IF denote the data
access amount of the input features, MP denote the data
loading amount of the mapping information, and density
denote the ratio of valid elements (not -1) in the mapping
matrix from the input features to weights. Thus, the ratio of

Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds

W0 W1 W2 W3 W4 W5 W6

P0 0 -1 -1 0 0 -1 0

P1 -1 0 -1 -1 -1 -1 -1

P2 -1 -1 0 -1 -1 -1 1

P3 -1 -1 1 1 -1 -1 2

P4 -1 1 -1 -1 -1 0 -1

P0 P1 P2 P3 P4

Row (P) 0 4 5 7 10 12

Column (W) 0 3 4 6 1 2 6 2 3 6 1 5

Value 0 0 0 0 0 0 1 1 1 2 1 0

P0 P1 P2 P3 P4

Row (P) 0 4 5 7 10 12

Coded value 0 3 4 6 1 2 15 11 12 24 10 5

(a) Matrix (b) CSR (Compress Sparse Row) (c) Coded-CSR

35 integers 30 integers 18 integers

!9

+ =

Figure 5. An example of the code-CSR format. (a) The sparse mapping matrix from input features to weights. (b) The CSR format of the
matrix. (c) The coded-CSR format encodes the column array and the value array in the CSR format with a scaling factor of 9.

redundant data loading, Rredundancy , can be formulated as:

Rredundancy =
(1− density)×MP

IF +MP

=
1− density

IF/MP + 1
.

(2)

We can find the ratio of redundancy increases when: (1)
density decreases (e.g., less valid elements are in the
mapping matrix); (2) IF decreases (e.g., the channel size
of input features decreases). We profile typical point
cloud samples, and Rredundancy can be up to 38.26% in
a (cin, cout) = (4, 16) sparse convolution layer, becoming
negligible if only the redundancy of loading input features
is removed in previous designs.

Challenge. We need to apply a proper sparse matrix format
to the mapping storage so that the redundant memory access
can be removed. Moreover, the memory usage of the input-
major and output-major mapping is much higher than the
kernel-major mapping. Thus, the storage format should be
light in memory usage. Potentially, the format conversion
brings extra latency to the system, and a specific design
needs to be proposed to reduce the overhead.

Insight. Intuitively, the Compress Sparse Row format, CSR,
for sparse matrices can be applied to store the sparse map-
ping instead of using the matrix in a dense representation
way. Valid elements in the mapping matrix are stored us-
ing three arrays, a row array, a column array, and a value
array. Specifically, the input features are rows and weights
are columns, and the value array stores the value of valid
elements in the mapping matrix. The column array stores
indices of weights, which are no larger than the size of the
sparse convolution kernel size K (e.g., 9 for a 3×3 kernel,
and 27 for a 3×3×3 kernel). Thus, our key insight is, the
value in the column array is relatively small, and can be
encoded into the the value array.

Approach. We leverage the advantage of the CSR format
to store the mapping matrix in a compressed way. Based on
the insight that the column array can be encoded into the
value array, we further generate a coded value array from
the column array and the value array in the original CSR
format. Let a and b represent a value in the column array

and its corresponding value stored in the value array, we
have a < K where K is the total number of weights in the
weight kernel. Thus, we take a simple encoder function:

c = a+K × b. (3)

Here, c represents the corresponding value in the coded
value array. Because we have a < K, we can easily get a
and b from c with a simple modulus operation. The over-
head of the coded-CSR format mapping includes the format
conversion and the encoding-decoding process. The format
conversion and the encoder are implemented into the map-
ping search operation, and the decoder is fused into both
gather and scatter operators. To alleviate the overhead in
the mapping search, we decouple the dataflow and design a
pipeline for the operators, which is detailed in Appendix C.
Since gather and scatter operators are both memory-intense
GPU kernels, the computation resources are relatively abun-
dant. As a result, the fusion of the decoder into gather and
scatter operators hardly causes any extra latency.

Example. Figure 5 shows a simple example of implement-
ing the coded-CSR format. Figure 5(a) stores the mapping
information from 5 input features to 7 weights. The non-
negative value in the matrix represents the index of input
features multiplied by a certain weight, while the “-1” value
represents an invalid mapping. Figure 5(b) represents a
typical CSR representation for the matrix in Figure 5(a). Be-
cause there are 7 weights in the matrix, the maximum value
in the column array is smaller than 7. For general purposes,
the scaling factor K in Equation (3) can be an arbitrary
integer no smaller than K. Here, we set the scaling factor
to be 9 (>7), and encode the column and the value array
into the coded value array in Figure 5(c). Compared with
35 integers stored in the matrix, only 18 integers are stored
in the row array and the coded value array. The coded-CSR
format significantly improves memory space utilization and
eliminates redundant access to invalid mappings.

5 INDICATOR-ASSISTED SEGMENTED
FGMS FUSION

Motivation. FGMS operations are dominant in the fetch-
on-demand dataflow, taking up to 75% runtime. Due to
the sparsity and the irregularity of the point cloud, differ-
ent input features Pi(i ∈ {0..N in − 1}) are gathered and

Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds

W0 W2W1

Group0

one unit of workload padding

(a) Separate FGMS with parallelism under-utilization (b) Batched FGMS with redundant padding (c) Indicator-assisted segmented FGMS fusion

Hardware capability: 12

W3

W2

W1

W0

Gro
up
0

gridDim.x

gridDim.y

gri
dD
im
.z

FGMS_ptr

0
1

5
9

W0 W2W1

Group0

Group1

W0

W2Grou
p 0

Grou
p 2

gridDim.x

gridDim.y

gri
dD
im
.z

gridDim.x

gridDim.y

gri
dD
im
.z

parallelism
under-

utilization

W2

W1

W0 W2W1

Group0

W0

Grou
p 0

gridDim.x

gridDim.y

gri
dD
im
.z

redundancy

redundancy

W3W3

Group1

W3

Group3

Group2

W3

Grou
p 1

gridDim.x

gridDim.y

gri
dD
im
.z

W1

Grou
p 1

gridDim.x

gridDim.y

gri
dD
im
.z

W3

Grou
p 3

gridDim.x

gridDim.y

gri
dD
im
.z

FG
M
S

pa
rti
tio
n

FG
M
S

m
ap
pi
ng

parallelism
under-utilization

Figure 6. Examples of different FGMS schemes. One unit of workload represents the computation on a valid mapping (Pj(k), Qj , Wk),
i.e., to load Pj(k), multiply Pj(k) by Wk, and add Qpartial

j to Qj . (a) Using small groups for the separate FGMS, leading to computation
parallelism under-utilization. (b) Using paddings for the batched FGMS, leading to computation redundancy. (c) The indicator-assisted
segmented FGMS fusion executes FGMSs of different sizes, eliminating computation redundancy and improving hardware utilization.

weighted with different Wk(k ∈ {0..K−1}). Naturally, we
can not piece together the FGMS operations of different Wk

to derive a larger FGMS. As a result, those separate FGMS
operations are too light for hardware utilization. Although
those separate FGMSs can not be fused from the mathe-
matical perspective, they can be executed simultaneously
on GPU with specific mapping designs. In this way, the
computation utilization of GPU hardware can be improved.

Analysis. As mentioned in Section 2.2, it is significant to
improve the hardware parallelism during the FGMS stage
in D2. According to the experiments, the workload of a sep-
arate FGMS is far from GPU capacity. On ModelNet40, the
average GPU utilization of FGMSs is only 22.84% with D2
on an Nvidia RTX 3090 GPU. In sparse convolution practice,
TorchSparse proposes to batch MMs together for computa-
tion in D1. The idea of batching segmented computations
together can be applied to D2 as well. However, the batch-
ing technique is designed to batch computations of the same
size, which is not the case with sparse convolution for point
clouds. Thus, the application of batched FGMS in sparse
convolution needs extra paddings and causes computation
redundancy. Some adaptive strategies for batched MMs
(Tang et al., 2022) can be used to reduce the redundancy,
by only batching computations of similar sizes together.
However, the redundancy avoidance principle causes small
FGMSs not to be batched with neighboring FGMSs due to
size difference, which still leads to the issue of hardware
under-utilization. The profiling results on ModelNet40 (Wu
et al., 2015) with an Nvidia RTX 3090 GPU shows that the
average GPU utilization of batched FGMSs is only 30.48%.

Challenge. As our analysis has shown, previous schemes
such as separate FGMS and batched FGMS suffer from
various drawbacks. The computation of a separate FGMS
is far from GPU capacity, and the batched FGMS fails to

improve the utilization without bringing redundancy. Thus,
a fusion scheme that fully considers the specific workload
of sparse convolution is needed for FGMS operations to be
efficiently executed on GPU.

Insight. Drawing inspiration from works like CUTLASS
(Nvidia, 2023) and ByteTransformer (Zhai et al., 2023),
we discover that a group of FGMS operators can be fused
together without any padding, thereby eliminating the redun-
dancy issue and increasing GPU utilization. The batching
technique pads different workloads into equal sizes so that
each workload is easily recognized on the hardware. Thus,
the key insight is that no padding is needed if the workload
of different FGMS can be distinguished during compu-
tation through some other method. To achieve that goal,
we propose a method called indicator-assisted fusion, which
is detailed as follows.

Approach. In order to index the workload for each FGMS
without padding, we propose the indicator-assisted seg-
mented FGMS fusion scheme. Based on the fact that only
one FGMS dimension (i.e., the input size dimension) varies
in sparse convolution, we propose to achieve the FGMS
scheduling based on an indicator. The fused FGMS utilizes
an auxiliary array, FGMS ptr, to indicate the mapping
table address for each FGMS in the memory, shown in Fig-
ure 6(c). Each FGMS is enabled to index and gather the
corresponding input features (or scatter the partial sums)
based on its own part of the mapping table independently.
In that way, the computation redundancy brought by the size
difference is removed, and the separate FGMSs can be con-
tinuously mapped to the computation units until sufficient
hardware utilization is reached.

Example. Figure 6 shows the example of the indicator-
assisted segmented FGMS fusion scheme and compares it
with the separate FGMS and the batched FGMS schemes.

Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds

0.0

1.0

2.0

3.0

4.0

5.0

(4, 16) (16, 16) (32, 32) (64, 64) (64, 96) (128, 128) (256, 256)

(cin, cout) (cin, cout)

0.0

4.0

8.0

12.0

16.0

20.0

(4, 16) (16, 16) (32, 32) (64, 64) (64, 96) (128, 128) (256, 256)

|input| = 9971 D1 |input| = 9971 D2

|input| = 39147 D1 |input| = 39147 D2

|input| = 162055 D1 |input| = 162055 D2

la
te
nc
y
(m
s)

Figure 7. Performance comparison between D1 and D2 with dif-
ferent numbers of input voxels and sizes of input/output channels.

The example contains 4 weights (W0 to W3) with different
workloads (e.g., 1 unit for W0 and 4 for W1). Figure 6(a)
divides weights into 4 groups while the parallelism of GPU
capacity is not fully utilized. Figure 6(b) divides weights
into 2 groups, and pads the workload for W0, leading to
computation redundancy. Figure 6(c) depicts our indicator-
assisted segmented FGMS fusion scheme. For weights
of different workloads, the FGMS ptr is introduced to
distinguish the FGMS workload of each weight. The group0
in Figure 6(c) can fully utilize GPU parallelism capacity by
using our proposed scheme.

6 HEURISTIC ADAPTIVE DATAFLOW

Motivation. Input dynamics lead to differentiated relative
performance among different sparse convolution dataflows.
For two typical types of dataflow introduced in Section 2.2,
D1 (Gather-MM-Scatter) makes better utilization of GPU
hardware, which leads to better performance in sparse con-
volution computation of scale. D2 (Fetch-on-Demand) elim-
inates frequent input/output feature copies in GPU device
memory, which is better for small-scale problems. Thus,
adaptive dataflow is required to achieve better performance
considering input dynamics.

Analysis. The input dynamics have great impacts on the
relative performance between D1 and D2. The major input
characteristics include the input size and the input-output
channel size pair (cin, cout). To visualize the influence of
each input characteristic, we test the latency of a sparse
convolutional layer with different input characteristics and
dataflows on an Nvidia RTX 2080 GPU. As shown in Figure
7, D2 enables the sparse convolution to perform faster than
D1 when the channel sizes and the input size are both small.
However, the performance of D2 degrades rapidly as the
channel sizes expand, and a larger input size accelerates the
degradation. The profiling results indicate that we need to
be cautious in selecting D2 for computation, otherwise, the
latency brought by improperly using D2 can significantly
hurt the system performance.

Challenge. We observe that the naive heuristic principle
brings little benefit to the system. Specifically, the inap-
propriate design causes redundant mapping searches in the

Algorithm 1 Dataflow Heuristic Algorithm
Input: layer set L, input channel list cin, output channel
list cout, stride list s, channel threshold B
Output: D2 layer candidate setM
M← L; st ← 1;
Build up the temporary stride list st

for i, si in enumerate(s) do
if layer i is not the first layer then
sti ← si × sti−1

end if
end for
Traverse all the layers
for i in range(|L|) do

if i not inM then
continue

end if
if max(cini , couti) > B then
M←M\ i
continue

end if
Check the layers within the same group
for j ∈ {k ∈ L|sk = si} ∩ {k ∈ L|stk = sti} do

if max(cinj , coutj) > B then
M←M\ {i, j}
break

end if
end for

end for

network, which is quite time-consuming. Based on the fact
that different mapping patterns are used in D1 and D2 (as
shown in Section 2.2), an extra mapping search is demanded
whenever neighboring layers employ different dataflows.
Thus, the algorithm is supposed to be carefully designed to
adapt to the user-defined network.

Insight. Based on our analysis, the channel size pair
(cin, cout) is the key factor to influence the relative per-
formance between different dataflows. Our key insight is,
D1 achieves better performance for large-scale problems,
while D2 is better for small-scale problems. A channel
size threshold B can be introduced to determine how large
the channel size is when we stop using D2. The other in-
sight is that the sparse convolution layers with the same
mapping can be found based on the network structure.
On the basis of that, we can separate the sparse convolution
layers of a network into groups. The layers within the same
group share the same mapping, and the dataflow selection
decision can be made on a group basis to avoid additional
mapping searches caused by heuristics.

Approach. The detailed algorithm is presented in Algo-
rithm 1. First, we build up the temporary stride list by
enumerating the stride s of each layer in order. The tempo-

Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds

rary stride st of a layer is the product of all the former layer
strides, and the layers of the same (s, st) pair use the same
mapping. Based on that, we divide the layers into groups. A
candidate list m including the layers that potentially apply
D2 is maintained, and the list is initialized with all layers.
In each group, max(cini , couti) of every layer i is compared
with the channel threshold B. If the max channel size of
any layer in the group exceeds B, we delete the group from
the candidate list. Finally, the layers in the groups left as
candidates are arranged to apply D2 to the convolution.

Example. Figure 8 shows an example of applying the
heuristic adaptive dataflow. PCEngine can apply different
dataflows for different sparse convolution layers in a point
cloud network. Specifically, we set B = 64 and apply the
proposed heuristic algorithm to SparseResNet. SparseRes-
Net contains 21 sparse convolution layers. Those layers are
divided into eight groups according to the mapping usage,
and the heuristic algorithm arranges the layers in the first
four groups to use D2.

7 EVALUATION

7.1 Experiments Setup

7.1.1 Baselines

PCEngine is implemented with a C++ and CUDA backend
based on CUDA 11.1, and a PyTorch-based front-end based
on PyTorch 1.10.0. We compare the inference performance
with two state-of-the-art designs:

• TorchSparse v2.0.0 (Tang et al., 2022) is one of the main-
stream sparse convolution engines on GPUs, which opti-
mizes the Gather-MM-Scatter dataflow and outperforms
the former works like MinkowskiEngine.

• SpConv v2.2.3 (Traveller59, 2022) is the updated ver-
sion of the work in (Yan et al., 2018), which computes
the sparse convolution in the implicit GEMM (General
Matrix Multiplication) way similar to the dense convolu-
tion, and currently achieves the best performance in some
circumstances.

We use the same downsampling principle defined by
TorchSparse (Tang et al., 2022) in the strided sparse con-
volutional layers for all engines. All the experiments are
conducted under FP32 precision.

7.1.2 Benchmarks

We test the performance of PCEngine and other engines on
two typical 3D point cloud networks:

• SparseResNet (Choy et al., 2019) is a common sparse
convolution network with the ResNet (He et al., 2016)
structure, which contains 21 sparse convolutional layers.

• MinkUNet (Choy et al., 2019) adopts the U-Net (Ron-

Relu

Pooling

…

Relu

Pooling

…

point cloud
network A

point cloud
network B

Relu

Pooling

…

Relu

Pooling

…

point cloud
network A

point cloud
network B

Relu

Pooling

…
Relu

Pooling

…
point cloud
network A

point cloud
network B

(a) Static dataflow (b) heuristic for different networks (c) heuristic for different layers

D1 dataflow for sparse convolution D2 dataflow for sparse convolution Other operations

Group0 Group1 Group2 Group3 Group4 Group5 Group6 Group7
(d) heuristic grouping on SparseResNet

Figure 8. Examples of heuristic adaptive dataflow. (a) The static
dataflow. (b) Heuristics for different networks. (c) Heuristics for
different layers. (d) Heuristic grouping on SparseResNet.

neberger et al., 2015) structure, which contains 42 sparse
convolution layers.

7.1.3 Datasets

We use 3 datasets for different point cloud applications:

• ModelNet40 (Wu et al., 2015) is a comprehensive collec-
tion of 3D CAD models for objects from 40 categories.
Input voxels from this dataset are of 1%-level density.

• S3DIS (Armeni et al., 2016) is an indoor scene 3D point
cloud dataset, which is generally used for 3D semantic
segmentation. The points from a whole scene are sampled
and voxelized into input data of 1%-level density.

• KITTI (Geiger et al., 2012) is a common algorithm evalu-
ation dataset in autonomous driving, including real data
collected in outdoor scenarios. Input data are of 0.01%-
level density after voxelization, and this dataset is gener-
ally used for 3D object detection and tracking.

7.1.4 Platforms

The evaluation experiments are conducted both on an Nvidia
RTX 2080 GPU and an Nvidia RTX 3090 GPU. Note that
Nvidia RTX 3090 GPU enables the usage of TF32 precision
in MMs to accelerate computation for all engines.

7.2 Overall Performance

End-to-end Performance. We compare the end-to-end
performance of PCEngine and two state-of-the-art engines,
as illustrated in Figure 9(a). The results indicate that, on
average, PCEngine achieves 1.64× and 1.23× speedup over
TorchSparse and SpConv, respectively. Notably, PCEngine
achieves a higher 1.73× speedup over TorchSparse on RTX
3090. This can be attributed to PCEngine’s superior GPU
utilization, which results in higher performance gains on
more powerful GPUs.

Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds

0

1

2

3
M

od
el

Ne
t4

0

S
3D

IS

K
IT

TI

M
od

el
Ne

t4
0

S
3D

IS

K
IT

TI
SparseResNet MinkUNet

TorchSparse on 3090 SpConv on 3090 PCEngine on 3090 TorchSparse on 2080 SpConv on 2080 PCEngine on 2080

(a) end-to-end performance (b) kernel performance

N
or
m
al
iz
ed
sp
ee
du
p

0

1

2

3

4

M
od

el
Ne

t4
0

S
3D

IS

K
IT

TI

M
od

el
Ne

t4
0

S
3D

IS

K
IT

TI

M
od

el
Ne

t4
0

S
3D

IS

K
IT

TI

M
od

el
Ne

t4
0

S
3D

IS

K
IT

TI

M
od

el
Ne

t4
0

S
3D

IS

K
IT

TI

(4, 16) (32, 32) (64, 96) (128, 128) (256, 384)

Figure 9. Performance comparison between PCEngine and state-of-the-art point cloud engines. (a) End-to-end performance. (b) Sparse
convolution kernel performance.

0

1

2

ModelNet40 S3DIS KITTI ModelNet40 S3DIS KITTI

SparseResNet MinkUNet

Gather on 3090

N
or
m
al
iz
ed
sp
ee
du
p

Scatter on 3090 Gather on 2080 Scatter on 2080
Figure 10. Gather and scatter kernel speedup over TorchSparse.

Kernel Performance. We further compare the kernel per-
formance of the sparse convolution operation. We vary the
sizes of input and output channels to prove the effectiveness
of PCEngine. We set five different channel sizes (cin, cout),
and the results are shown in Figure 9(b). PCEngine achieves
1.81× and 1.76× speedup on average for the sparse convo-
lution operation over TorchSparse and SpConv, respectively.
In particular, PCEngine achieves up to 3.20× speedup over
TorchSparse on small channel size (i.e., (4,16) on RTX 3090)
because PCEngine removes redundant access of mapping
information, which is negligible for features of small sizes.
PCEngine also achieves up to 5.56× speedup over SpConv
on large channel size (i.e., (256, 384) on RTX 3090) because
SpConv is not optimized for large feature sizes.

Gather and Scatter Performance. The gather and scatter
operations take up to 40% of the total execution time for
the Gather-MM-Scatter dataflow, and PCEngine proposes
coded-CSR mapping to reduce redundant mapping load-
ings for these two kernels. We compare the performance
of these two kernels with TorchSparse in Figure 10, as
only TorchSparse adopts the Gather-MM-Scatter dataflow.
PCEngine outperforms TorchSparse in all cases, achieving
1.31× and 1.33× average speedup for gather and scatter
kernels, respectively.

7.3 Benefits of PCEngine Designs

Coded-CSR. Figure 11 shows the speedup brought by the
coded-CSR format. The coded-CSR format eliminates re-
dundant mapping information access, leading to 1.21× and

0

1

2

ModelNet40 S3DIS KITTI ModelNet40 S3DIS KITTI

SparseResNet MinkUNet

Gather on 3090
N
or
m
al
iz
ed
sp
ee
du
p

Scatter on 3090 Gather on 2080 Scatter on 2080
Figure 11. Gather and scatter kernel speedup using coded-CSR.

1.10× speedup for the gather and scatter kernels. Moreover,
we profile the average data transfer for these two kernels.
The coded-CSR format leads to 21.18% less memory access
on average for two kernels.

Indicator-assisted Segmented FGMS Fusion. Figure 12
shows the performance comparison of separate FGMSs,
batched FGMSs and indicator-assisted segmented FGMS
fusion by PCEngine. The proposed scheme in PCEngine
outperforms the other two schemes in all cases, with an
average speedup of 1.75× and 1.41× over two schemes.
More importantly, the proposed scheme improves the GPU
utilization by 1.68× and 1.40×, respectively.

Heuristic Adaptive Dataflow. Figure 13 demonstrates the
benefits of our heuristic adaptive dataflow. The end-to-end
performance is normalized to the heuristic adaptive dataflow.
The results reveal that a static dataflow (Gather-MM-Scatter
or Fetch-on-Demand) is slower than the heuristic adaptive
dataflow. Our heuristic design achieves 1.15× and 1.57×
speedup over two static designs on average, indicating that
applying heuristic adaptive dataflow does accelerate 3D
point cloud network processing.

7.4 Threshold Choice

PCEngine heuristically utilizes different dataflows for dif-
ferent channel sizes by setting the threshold B. Figure 14
shows the influence of choosing different thresholds on
the end-to-end latency, running SparseResNet using RTX
3090. As we can see, B > 64 is better for the ModelNet40
and KITTI datasets, while B = 32 is better for the S3DIS

Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds

0%

20%

40%

60%

0

1

2

3

ModelNet40 S3DIS KITTI ModelNet40 S3DIS KITTI

RTX 3090 RTX 2080

G
P

U
 u

tiliza
tio

n

N
o

rm
a

liz
e

d
 s

p
e

e
d

u
p

Speedup: separate FGMSs

Speedup: batched FGMSs

Speedup: indicator-assisted
segmented FGMS fusion

Utilization: separate FGMSs

Utilization: batched FGMSs

Utilization: indicator-assisted
segmented FGMS fusion

Figure 12. Benefits of the indicator-assisted segmented FGMS fu-
sion scheme.

dataset. We set B = 64 for evaluation without loss of gener-
ality. The results indicate that the performance of PCEngine
can be further improved. We do not intentionally tune the
performance of PCEngine in previous results.

8 RELATED WORKS

Point Cloud Networks. (Wu et al., 2015; Maturana &
Scherer, 2015) leverage a regular 3D voxel grid to represent
the point cloud and perform 3D convolution on the vox-
els. But the voxel grid resolution is strictly limited in these
methods as the memory and computational cost grow cubi-
cally with the resolution expanding. (Riegler et al., 2017;
Wang et al., 2017) perform convolution based on the octree
structure of the 3D shape, which reduces the memory and
computational cost to support high resolution. (Liu et al.,
2019; Boulch, 2019; Wu et al., 2019) apply the convolution
directly on the 3D points by performing a weighted sum
over a local subset according to the center point.

Point Cloud Engines. The convolution operation for sparse
input data is proposed in (Graham, 2015). In order to
maintain the sparsity of features in sparse convolution net-
works, (Graham & van der Maaten, 2017) proposes subman-
ifold sparse convolutions to constrain the non-zero elements
through the network to a certain spatial range. SparseCon-
vNet (Graham, 2015) and SpConv (Yan et al., 2018) are
frameworks to support sparse convolution computation. By
constructing mapping, effective computations are extracted,
and sparse convolutions are converted into dense matrix
multiplication operations. MinkowskiEngine (Choy et al.,
2019) achieves parallel acceleration for the above Gather-
MM-Scatter dataflow by using CUDA libraries. In addition,
it also proposes Fetch-on-Demand dataflow to reduce data
movement and support small-scale computing. TorchSparse
(Tang et al., 2022) optimizes irregular computation and data
movement in sparse convolution calculations, which greatly
improves the performance of Gather-MM-Scatter dataflow.
Recently, another dataflow, implicit GEMM (Traveller59,
2022), has been proposed, which computes sparse convolu-
tion in a dense way to improve computational parallelism.

0

1

ModelNet40 S3DIS KITTI ModelNet40 S3DIS KITTI

SparseResNet MinkUNet

Gather-MM-Scatter on 3090

N
or
m
al
iz
ed
sp
ee
du
p

Fetch-on-Demand on 3090

Heuristics on 3090

Gather-MM-Scatter on 2080

Fetch-on-Demand on 2080

Heuristics on 2080

Figure 13. Performance comparison between the heuristic dataflow
and different static dataflow.

10

12

14

16

18

20

<16 16 32 64 >64

Ti
m
e
(m
s)

ModelNet40 S3DIS KITTI

B
Figure 14. Execution time of different channel size threshold B.

However, this dataflow inevitably leads to redundant com-
putation and incurs high data movement costs, resulting in
significant performance degradation when the channel size
increases.

9 DISCUSSION

Considering that some GPUs have no tensor core unit
(Markidis et al., 2018), and the usage of tensor cores leads
to precision issues, optimization based on tensor cores is
not included in this work. Nevertheless, tensor core support
(Feng et al., 2021; Wang et al., 2023) can be combined with
the proposed designs smoothly, which enables the perfor-
mance to be further enhanced. E.g., in an FGMS operation,
with the indicated mapping address, the input features and
the weight matrix can be tiled and fed into tensor cores
for matrix multiplication computation to achieve higher
throughput. (Ye et al., 2023)

10 CONCLUSION

An efficient sparse convolution engine for 3D point clouds,
PCEngine, is proposed in this paper. PCEngine innova-
tively proposes techniques like the coded-CSR format and
the indicator-assisted segmented FGMS fusion scheme to
improve utilization of GPU hardware for the sparse con-
volution operation. PCEngine subtly points out that in-
put dynamics damage the performance of previous sparse
convolution engines, and introduces the heuristic adaptive
dataflow for the problem. Extensive experimental results
show that PCEngine achieves 1.81× and 1.64× speedup on
average for sparse convolution operation and end-to-end 3D
point cloud networks, respectively. More importantly, we
believe that the insights and techniques in this paper can
benefit other sparse problems.

Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds

REFERENCES

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I.,
Fischer, M., and Savarese, S. 3D Semantic Parsing of
Large-scale Indoor Spaces. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1534–1543, June 2016.

Boulch, A. Generalizing Discrete Convolutions for Unstruc-
tured Point Clouds. 2019.

Choy, C., Gwak, J., and Savarese, S. 4D Spatio-Temporal
ConvNets: Minkowski Convolutional Neural Networks.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 3075–3084,
2019.

Deng, J., Shi, S., Li, P., Zhou, W., Zhang, Y., and Li, H.
Voxel R-CNN: Towards High Performance Voxel-based
3D Object Detection. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pp. 1201–1209,
2021.

Feng, B., Wang, Y., Chen, G., Zhang, W., Xie, Y., and Ding,
Y. EGEMM-TC: Accelerating Scientific Computing on
Tensor Cores with Extended Precision. In Proceedings
of 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pp. 278–291,
2021.

Geiger, A., Lenz, P., and Urtasun, R. Are We Ready for
Autonomous Driving? The KITTI Vision Benchmark
Suite. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3354–3361, 2012.

Graham, B. Sparse 3d convolutional neural networks. arXiv
preprint arXiv:1505.02890, 2015.

Graham, B. and van der Maaten, L. Submani-
fold Sparse Convolutional Networks. arXiv preprint
arXiv:1706.01307, 2017.

Graham, B., Engelcke, M., and Van Der Maaten, L. 3D
Semantic Segmentation with Submanifold Sparse Con-
volutional Networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp.
9224–9232, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Lin, Y., Zhang, Z., Tang, H., Wang, H., and Han, S.
PointAcc: Efficient Point Cloud Accelerator. In MICRO-
54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 449–461, 2021.

Liu, Y., Fan, B., Xiang, S., and Pan, C. Relation-shape Con-
volutional Neural Network for Point Cloud Analysis. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8895–8904, 2019.

Mao, J., Shi, S., Wang, X., and Li, H. 3D Object Detection
for Autonomous Driving: A Review and New Outlooks.
arXiv preprint arXiv:2206.09474, 2022.

Markidis, S., Der Chien, S. W., Laure, E., Peng, I. B., and
Vetter, J. S. Nvidia tensor core programmability, per-
formance & precision. In 2018 IEEE international par-
allel and distributed processing symposium workshops
(IPDPSW), pp. 522–531. IEEE, 2018.

Maturana, D. and Scherer, S. VoxNet: A 3D Convolutional
Neural Network for Real-time Object Recognition. In
2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 922–928. IEEE, 2015.

Nvidia. CUTLASS. https://github.com/NVIDIA/
cutlass, 2023.

Riegler, G., Osman Ulusoy, A., and Geiger, A. OctNet:
Learning Deep 3D Representations at High Resolutions.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3577–3586,
2017.

Ronneberger, O., Fischer, P., and Brox, T. U-Net: Convo-
lutional Networks for Biomedical Image Segmentation.
In International Conference on Medical Image Comput-
ing and Computer-assisted Intervention, pp. 234–241.
Springer, 2015.

Rusu, R. B. and Cousins, S. 3D is Here: Point Cloud
Library (PCL). In IEEE International Conference on
Robotics and Automation (ICRA), Shanghai, China, May
9-13 2011. IEEE.

Shi, S., Wang, Z., Shi, J., Wang, X., and Li, H. From Points
to Parts: 3D Object Detection from Point Cloud with
Part-aware and Part-aggregation Network. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 43
(8):2647–2664, 2020.

Tang, H., Liu, Z., Li, X., Lin, Y., and Han, S. TorchSparse:
Efficient Point Cloud Inference Engine. In Proceedings
of Machine Learning and Systems, pp. 302–315, 2022.

Traveller59. Spconv: Spatially Sparse Convolution
Library. https://github.com/traveller59/
spconv, 2022.

Wang, P.-S., Liu, Y., Guo, Y.-X., Sun, C.-Y., and Tong, X.
O-CNN: Octree-based Convolutional Neural Networks
for 3D Shape Analysis. ACM Transactions On Graphics
(TOG), 36(4):1–11, 2017.

https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://github.com/traveller59/spconv
https://github.com/traveller59/spconv

Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds

Wang, X., Ang, M. H., and Lee, G. H. Voxel-based Network
for Shape Completion by Leveraging Edge Generation. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 13189–13198, October
2021.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. Dynamic Graph CNN for Learning
on Point Clouds. Acm Transactions On Graphics (tog),
38(5):1–12, 2019.

Wang, Y., Feng, B., Wang, Z., and Ding, Y. TC-GNN:
Accelerating Sparse Graph Neural Network Computa-
tion Via Dense Tensor Core on GPUs. arXiv preprint
arXiv:2112.02052, 2023.

Wen, X., Li, T., Han, Z., and Liu, Y.-S. Point Cloud Comple-
tion by Skip-attention Network with Hierarchical Folding.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 1939–1948,
2020.

Wu, W., Qi, Z., and Fuxin, L. PointConv: Deep Convo-
lutional Networks on 3D Point Clouds. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9621–9630, 2019.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang,
X., and Xiao, J. 3D ShapeNets: A Deep Representa-
tion for Volumetric Shapes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1912–1920, June 2015.

Yan, Y., Mao, Y., and Li, B. Second: Sparsely Embedded
Convolutional Detection. Sensors, 18(10):3337, 2018.

Ye, Z., Lai, R., Shao, J., Chen, T., and Ceze, L. Sparsetir:
Composable abstractions for sparse compilation in deep
learning. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pp. 660–
678, 2023.

Yin, T., Zhou, X., and Krahenbuhl, P. Center-based 3D
Object Detection and Tracking. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11784–11793, 2021.

Zhai, Y., Jiang, C., Wang, L., Jia, X., Zhang, S., Chen,
Z., Liu, X., and Zhu, Y. ByteTransformer: A High-
Performance Transformer Boosted for Variable-Length
Inputs. arXiv preprint arXiv:2210.03052, 2023.

Zhu, X., Zhou, H., Wang, T., Hong, F., Ma, Y., Li, W., Li,
H., and Lin, D. Cylindrical and Asymmetrical 3D Convo-
lution Networks for Lidar Segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9939–9948, 2021.

Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds

A STRIDED SPARSE CONVOLUTION

Usually, the submanifold sparse convolution restricts the
outputs only to the set of inputs with non-zero features so
that the data sparsity will not dilate as the network grows
deeper, which can also be interpreted as a stride equal to
one situation. In (Graham & van der Maaten, 2017), it also
talks about settings like strides larger than one. Specifi-
cally, the input coordinates are quantified by the stride to
downsample the input set and derive the output set. The
application of the strided sparse convolutional layer enables
data downsampling through networks.

B INVERSE SPARSE CONVOLUTION

In order to restore the original spatial shape of the input
data (e.g., in MinkUNet), the inverse sparse convolution
is introduced into the sparse convolutional networks to do
the upsampling work. A strided sparse convolutional layer
shares the opposite input and output set with its inverse
sparse convolutional layer so that the downsampled data
can be upsampled into the original spatial shape. In order
to do that, the mapping of the strided layer is stored and
shared with its inverse layer for reuse. Because of that, we
are able to find the layers using the same mapping based on
the network structure in Section 6 for heuristic designs.

C MAPPING SEARCH

We present the details of the mapping search operation here.
Vanilla mapping search can be divided into three steps: (1)
Output set generation. (2) Building input hash table. (3)
Querying the hash table to derive the mapping. As the
coded-CSR format mapping is utilized in our design, we
need an extra step (4) to cover the format conversion and
the encoding overhead, and step (4) is denoted as mapping
processing.

In the mapping search operation, first, the output set can
be directly generated based on the input set. Specifically,
the output set is the same as the input set for a submanifold
sparse convolutional layer, and the output set takes a sub-
set of the input set in a quantization manner for a strided
sparse convolutional layer. Then we build a hash table that
maps the input coordinates to the input indices inO(1) time.
Before querying the hash table, we calculate the candidate
input coordinates based on the convolution dependency of
inputs, outputs, and weights. A candidate coordinate is used
in a query to the hash table, and if a valid input index can be
reached, the corresponding dependency of the input, output,
and weight becomes a valid mapping.

In general, we use the same paradigm for mapping search
operations as the previous works. Besides, we design the
whole process into a pipeline to reduce the mapping search

(4) input mapping
processing

(4) output mapping
processing

(3) querying
hash table

(1) output set
generation

(2) building
hash table

Stream 0:

Stream 1:

input set

Figure 15. Pipeline design of the mapping search operation.

latency. As is depicted in Figure 15, we decouple the step
(4) mapping processing into two independent operators to
separately deal with the input or output mapping, and sched-
ule all the operators into two streams. The two streams
execute operators in a parallel manner so that the overall
latency can be reduced.

D ARTIFACT APPENDIX

D.1 Abstract

This section is mainly the guideline to perform artifacts
evaluation for the paper. The source code of PCEngine
includes an optimized CUDA and C/C++ backend and a
PyTorch-based frontend. The optimized sparse convolution
kernel is accessed through the Python wrapper. The follow-
ing context shows how to build and use the runtime library
to conduct the evaluation.

D.2 Artifact check-list (meta-information)

• Algorithm: Inference stage of sparse convolution on
GPU and the optimizations.

• Program: CUDA, C/C++ and Python code.

• Compilation: nvcc11.1 with -O3 flag.

• Run-time environment: Ubuntu 20.04 with CUDA
SDK 11.1 installed.

• Hardware: Any Nvidia GPUs with compute capa-
bility >= 7.0 (Recommended GPU: Nvidia GeForce
RTX 3090 or Nvidia GeForce RTX 2080).

• Expected memory required to run the artifact: with
64GB main memory and 8GB GPU Memory.

• Expected time to run the experiments: 5 hours.

• Public available: Yes.

D.3 Description

D.3.1 How delivered

The source code is available in the form of Github repository
(https://github.com/hkeee21/PCEngine) and
archived on Zenodo (https://doi.org/10.5281/
zenodo.7893091).

https://github.com/hkeee21/PCEngine
https://doi.org/10.5281/zenodo.7893091
https://doi.org/10.5281/zenodo.7893091

Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds

D.3.2 Hardware dependencies

The implementation works on Intel x86 CPUs and Nvidia
GPUs.

D.3.3 Software dependencies

• CUDA 11.1+

• PyTorch 1.10.0+

• TorchSparse 2.0.0+

• SpConv 2.2.3+

D.3.4 Datasets

• ModelNet40

• S3DIS

• KITTI

D.4 Installation

The runtime library is built based on PyTorch C/C++ exten-
sions. Please follow the README.md in the source code
repository to install PCEngine.

D.5 Experiment workflow

Before the artifacts evaluation can be conducted, please
follow the README.md in the source code repository to
install requirements and download datasets. For evaluation,
we have prepared a Python script for each figure result.

D.6 Evaluation and expected result

Please follow the README.md to run Python scripts, and
the evaluation results will be generated into .csv files and
stored in evaluation/results/ directory.

