
TRANSCENDING RUNTIME-MEMORY TRADEOFFS IN CHECKPOINTING BY
BEING FUSION AWARE

Shangdi Yu 1 2 Horace He 3

ABSTRACT
Gradient checkpointing is an optimization that reduces the memory footprint by re-computing some operations
instead of saving their activations. Previous works on checkpointing have viewed this as a tradeoff between peak
memory and performance. However, we argue that this framing does not account for a key aspect of modern
deep learning systems – operator fusion. In this work, we demonstrate that with a fusion aware checkpointing
algorithm, we can transcend the runtime-memory tradeoffs of traditional checkpointing and improve both memory
and runtime simultaneously. We evaluate our algorithm on a wide range of standard neural network models as
well as some novel patterns. We achieve a geomean of 12% throughput improvement over an existing compiled
baseline, and the maximum batch size that can be attained is up to 1.75 times larger on standard models. In novel
patterns, we achieve up to a 10x improvement, with by a 5x reduction in peak memory.

1 INTRODUCTION

Deep neural networks (DNNs) have been shown effective to
solve problem in many fields such as computer vision (He
et al., 2016; Krizhevsky et al., 2017), natural language pro-
cessing (Vaswani et al., 2017; Devlin et al., 2019; Child
et al., 2019; Radford et al., 2019), and recommendation
systems (Yi et al., 2019; Zhang et al., 2019). As deep neural
networks (DNNs) get larger, improving execution time and
reducing the peak memory usage have become priorities.
One standard approach for reducing peak memory usage is
gradient checkpointing. Standard autograd (with backprop-
agation) requires saving significant amount of data (com-
monly known as “activations”) to compute the backwards
pass. Gradient checkpointing is a technique that reduces
activations saved by avoiding saving some activations, and
recomputing them during the backwards pass.

As we reduce our peak memory by performing more compu-
tation, previous works (Chen et al., 2016; Siskind & Pearl-
mutter, 2018; Feng & Huang, 2018; Griewank & Walther,
2000; Lanctot et al., 2022; Kirisame et al., 2021; Jain et al.,
2020; Kumar et al., 2019; Beaumont et al., 2021) on check-
pointing have primarily viewed checkpointing as a technique
for trading off a slower runtime for less peak memory.

In this paper, we argue that this framing misses a key com-

1EECS, MIT, Cambridge, MA, USA 2Work done while at
Meta Inc. 3Meta Inc., Menlo Park, CA, USA. Correspondence to:
Horace He <chilli@fb.com>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

ponent of modern deep learning systems and hardware —
operator fusion. Operator fusion (or kernel fusion) is a key
optimization in many state-of-the-art DNN execution frame-
works, such as PyTorch (Paszke et al., 2019) or TVM (Chen
et al., 2018). It combines multiple GPU kernels into a single
GPU kernel, which allows for memory-bandwidth costs to
be eliminated. In the presence of operator fusion, it is no
longer true that extra computation necessarily leads to a
slower runtime. In fact, in many cases, recomputation can
actually lead to improved runtime when combined with
operator fusion.

We present a checkpointing strategy that takes operator fu-
sion into account and demonstrate that it can lead to improve-
ments in both runtime and memory over no checkpointing.
To see how this is possible, consider the following function,
which is also in Figure 1.

def f(x):
return x.tanh().tanh()

In naive automatic differentiation, the forward pass com-
putes the outputs of f and saves all tensors that will be used
in the backward pass. The backward pass reads those saved
tensors and computes the gradient of x. In total, the for-
ward pass would save both x.tanh() and x.tanh().tanh()
for the backward pass, which incurs a total of two memory
write from the forward pass and two memory reads from the
backward pass.

However, we can reduce these memory accesses by simply
reading x in the backwards pass and recomputing x.tanh()
and x.tanh().tanh() while fusing them into other opera-
tions in the backwards pass. Since reading and writing to

Transcending Runtime-Memory Tradeoffs in Checkpointing by being Fusion Aware

x

tanh

tanh

out

t1

t2

Backward

graph

t1
t2

dout

dx

Old Forward Pass Old Backward Pass

1 mem read
3 mem writes

3 mem reads
1 mem write

x

tanh

tanh

out

Backward

graph

dout

dx

New Forward Pass New Backward Pass

1 mem read
1 mem write

2 mem reads
1 mem write

x

tanh

tanh

checkpointing

Figure 1. The forward and backward pass of naive automatic dif-
ferentiation and naive checkpointing.

the global memory takes much more cycles than comput-
ing tanh (He, 2022), gradient checkpointing will improve
the execution time. Since we are saving less activations,
peak memory will also improve. Although in this simple
example, the optimal strategy is to recompute everything
in the forwards pass, in practice, recomputing everything
(i.e. naive gradient checkpointing) is often not beneficial
or correct. For example, some computations like matrix
multiplications can be too computationally expensive, even
if fused, while other computations might not be fusible at all.
As a results, we need more sophisticated methods to choose
the checkpointing strategy. More motivating examples are
given in Section 2.

In Section 3, we describe our algorithm and show that it
gives the optimal memory bandwidth under some assump-
tions. In Section 4, we show our experimental results. In
Section 5, we discuss some related works.

In summary, our contributions are:

• We demonstrate that in some cases, gradient check-
pointing can improve both peak memory and runtime.

• We design a fusion-aware checkpointing algorithm that
leverages this fact to perform well on generic models,
and prove that this algorithm is optimal with some
assumptions on the cost model.

• We implement our algorithm in the PyTorch frame-
work, and evaluated our algorithm on various DNN
models, as well as some novel patterns. We achieve
a geomean of 12% throughput improvement over an
existing compiled baseline, and the maximum batch
size that can be attained is up to 1.75 times larger on
standard models. In novel patterns, we achieve up to
a 10x improvement, with by a 5x reduction in peak
memory.

2 PRELIMINARIES

2.1 Runtime of Neural Networks

The execution time of a DNN model can be decomposed
into three components: compute time, memory time, and
everything else. Compute time is time spent on a GPU com-
puting floating point operations, and the efficiency of it is
commonly measured by number of floating point operations
per second (FLOPS). Memory time is the time spent on
transferring tensors within a GPU, e.g. from CUDA global
memory to CUDA shared memory, and the efficiency of it
is commonly measured by bytes per second. If an operation
spends more time on memory-bandwidth than computing, it
is a memory-bandwidth-bound operation. Such operators
are common on modern GPUs. Here we give an example
comparison of compute time versus memory time on an
NVIDIA A100 GPU (NVIDIA, 2020), which has 1.5 ter-
abytes per second of global memory bandwidth, and 19.5
teraFLOPS on vector operations. So the time to read from
and write back a 4-byte floating point number to the
global memory is 104 times slower than doing a unary
operation on it (He, 2022). Memory-bandwidth cost is
important because data movement can be a key bottleneck
during training. For example, Ivanov et al. (2021) found
that over a third of the runtime in a BERT training iteration
is spent in memory-bandwidth-bound operators.

Fortunately, the memory time of such operations can be
reduced by operation fusion, which performs several com-
putations at once without reading or writing intermediate
values to global memory. Operator fusion is an commonly
used optimization in deep learning and there exists com-
pilers that can perform fusions such as NVFuser (Sarofeen
et al., 2022), TorchInductor (Ansel, 2022), and XLA (Sabne,
2020). Due to the memory-bandwidth-bound nature of many
operations, fusion leads to some surprising consequences.
For example, computing two operators (under the presence
of fusion) may take nearly the same time as computing one
of them. For example, on an A100 GPU, computing a single
cosine operation takes 62.36ms while computing two fused
cosine operations takes 62.91ms. Since computation can be
cheap under the presence of fusion, gradient checkpointing
may actually decrease runtime, despite performing more
operations.

2.2 Gradient Checkpointing

Gradient checkpointing is a standard technique for reducing
the peak memory of automatic differentiation (AD). Gradi-
ent checkpointing works by recomputing the intermediate
values of a neural network (which would ordinarily be stored
in the forwards pass) during the backwards pass.

This is typically framed as a tradeoff between runtime and

Transcending Runtime-Memory Tradeoffs in Checkpointing by being Fusion Aware

memory usage (Beaumont et al., 2020; Chen et al., 2016;
Feng & Huang, 2018; Kusumoto et al., 2019). However,
this framing misses a crucial aspect of modern deep learning
frameworks — operator fusion. In the presence of operator
fusion, we are unable to model runtime solely through each
operator’s runtime individually.

To see an example of where this simplified performance
model goes wrong, let’s look at an example of an acti-
vation function. For example, let’s benchmark the cu-
mulative time of the forwards and backwards pass of the
GeLU (Hendrycks & Gimpel, 2016) activation function.
GeLU(x) = xΦ(x), where Φ the standard Gaussian cumula-
tive distribution function. The benchmark results are sum-
marized in Table 1. With an input of size 225, running
without any checkpointing results in a runtime of 1.33ms.
However, if we apply naive gradient checkpointing (i.e. re-
computing the forwards pass in the backwards pass), we
achieve a runtime of 0.5ms!

This may be surprising, as we’re recomputing fifteen op-
erators in the backwards pass. However, if we look at the
memory accesses, we see that without gradient checkpoint-
ing, the forwards pass reads a single tensor and writes out
five, while the backwards pass reads six tensors and outputs
one. This is a total of 13 memory accesses. On the other
hand, with gradient checkpointing, the forwards pass reads
a single tensor and writes out one, while the backwards pass
reads two tensors and writes out one. This is a total of 5
memory accesses.

Note that in this case, checkpointing with fusion is the best
of both worlds — not only does it achieve the lowest run-
time, we also save less activations than without checkpoint-
ing. We note that this is an optimization very similar to the
manual combination of gradient checkpointing and fusion
of GeLU that is performed manually in the Megatron-LM
codebase (Shoeybi et al., 2019). This motivates us to look
at gradient checkpointing not as a tradeoff between mem-
ory and runtime, but as an optimization to improve both
memory and runtime.

Table 1. Results of running the forward and backward pass of
the GeLU activation function with an input of size 225. “Ops”
is the number of operations in the forward and backward pass
computation. “Mem” is the number of reading and writing memory
accesses to the DRAM. “Acts.” is short for activations. “Checkp.”
is for whether the naive gradient checkpointing is applied.

Acts. Fusion No Fusion
Checkp. (MB) Ops Mem Time Mem Time

671 47 5 0.5 98 10.1 ms
X 134 34 13 1.33 74 7.3 ms

2.3 Examples of Minimizing Runtime through
Smarter Gradient Checkpointing

Although naive gradient checkpointing can sometimes re-
duce runtime when combined with operator fusion, it’s often
not so easy. There are many situations where neither naive
AD nor naive gradient checkpointing will provide the opti-
mal result.

Partially re-compute forward pass. Sometimes, we might
only want to re-compute some nodes of the forward graph
instead of all nodes. Consider this function:

def f1(a, b, c, d):
x = a + b + c + d
return x.cos().cos()

Naive AD would end up saving x and x.cos(), resulting in 2
writes from the forwards pass and 2 reads in the backwards
pass. On the other hand, naive gradient checkpointing would
save the 4 inputs, resulting in no writes from the forwards
pass (as the inputs are already materialized) but 4 reads in
the backwards pass.

However, neither of these naive approaches are optimal.
Instead, we should save x, which is sufficient to compute
the backwards pass, and results in merely one write from
the forwards pass and one read in the backwards pass.

In practice, this results in a 21.6% performance improve-
ment over either of the naive approaches. This aligns with
the total number of memory accesses – the naive approaches
require 11 memory accesses while the optimal approach re-
quires 9.

Avoiding re-computation of some operators. Moreover,
there are some operators that should not be recomputed. For
example, nodes that are computationally intensive (matmuls)
or involve randomness. Consider this function, which is
similar to dropout:

def f2(x):
rand_like = torch.rand_like(x)
mask = rand_like < 0.5
return x * mask

Here we need to make sure that we don’t recompute
rand like. One possibility is that we simply save the
output of random operations (i.e. rand like). In this
case, however, we miss an optimization opportunity. In-
stead of saving rand like (a FloatTensor), we could save
mask (a BoolTensor), and save 3 bytes per element. In
this function, performing this optimization saves 25% of
memory and 25% of runtime.

Transcending Runtime-Memory Tradeoffs in Checkpointing by being Fusion Aware

a b c d

add1 add2 add3 cos1

grad_in

grad_out

sin2neg2mul2

sin1neg1mul1

Figure 2. The data-flow graph of naive gradient checkpointing for
f1. Yellow nodes are nodes in the forward pass. Blue nodes are
nodes that must be in the backward pass. The white nodes can
either be computed in the forward pass or backward pass.

2.4 Data-flow Graph

A computation graph or data-flow graph (Reed et al., 2022)
G = (V,E) is a DAG. Each node is an operation that has
input arguments and output values; and each directed edge
(u, v) represents a dependency of v on u, i.e. u is one of
v’s arguments. We call v a user of node u. The nodes
without any incoming edge are called placeholder nodes,
and these are the inputs to the graph. We give an example
of the data-flow graph of naive gradient checkpointing for
f1 in Figure 2. Nodes grad out and grad in are the
input and output of the backward pass, respectively. Nodes
a, b, c, d are the inputs to the forward pass. Yellow nodes
are nodes in the forward pass. For example, node add3
produce x = a + b + c + d. Blue nodes are nodes that
must be in the backward pass. The white nodes can either
be computed in the forward pass or backward pass. For
example, sin1 can be computed either in the forward pass
or backward pass because it does not require grad out.

2.5 Minimum s-t Cut Problem

The minimum s-t cut problem (Cormen et al., 2022) takes
a graph G′ = (V ′, E′) and two nodes s, t ∈ V ′ as inputs.
Each edge in E′ has a capacity. The problem finds a partition
of the nodes V ′ into S (s ∈ S, t /∈ S) and T = V ′ \ S that
minimizes the sum of the capacity of edges going from S to
T . Let S be the source partition and T be the sink partition.
This partition is call an s-t cut, and a cut-set of a cut is the
set of edges that connect the source part of the cut to the sink
part. The capacity of an s-t cut is the sum of the capacities
of the edges in its cut-set. So the minimum s-t cut problem
determine S and T such that the capacity of the s-t cut is
minimal.

3 MINIMUM CUT CHECKPOINTING

As shown in the previous section, in some cases, gradient
checkpointing can improve performance when combined
with operator fusion. However, in many cases, applying

naive gradient checkpointing is insufficient to achieve run-
time improvements. Moreover, there are there are many
diverse situations in which we might wish to apply this kind
of optimization. This motivates us to come up with a princi-
pled approach for checkpointing that allows us to cover all
of these cases.

In this section we describe our minimum cut (min-cut)
checkpointing algorithm, which intelligently chooses which
nodes to save from the forwards pass, and thus which nodes
to recompute in the backwards pass. This allows us to im-
prove on both memory saved as well as execution time.
We also show that under some assumptions, our algorithm
optimally minimizes the memory-bandwidth of reading and
writing to the activations. In Section 3.7, we show that our
algorithm can also be extended to compute recomputation
between any two fusion groups.

3.1 Assumptions

First, we note that although our algorithm generally reduces
both memory usage and execution time (compared to no
checkpointing), our primary goal is to reduce the execution
time of our model. In addition, there are several assump-
tions we make in our cost model:

1. All operators can be classified into memory-bandwidth
bound operators and compute-bound operators.

2. All memory-bandwidth bound operators are free to
compute when fused with another operator. However,
if a memory-bandwidth bound operator is not fusible
with some of its users and must be materialized in the
backward pass, it is not free to re-compute anymore, be-
cause it must be materialized anyway and re-computing
it can cause extra reads and writes in the backward pass.
So we ban operators that are not fusible with some of
its users in the backward pass from re-computation.

3. When minimizing execution time, we never wish to
recompute a compute-bound operator, such as matrix
multiplication, convolution, and layer norm. These
nodes are banned from recomputation.

4. Chains of fusible operators are still fusible.

We find that these assumptions are generally true. He (2022)
shows that we need to fuse 50 multiplications into one kernel
before there is any appreciable difference in runtime. More-
over, with compute-bound operators, operator fusion has a
negligible affect on their runtime, and so computing them
multiple times is rarely worth it for reducing runtime (Sabne,
2020; Rotem et al., 2018).

Now we show that re-computing a node not fusible with
some of its users in the backward pass does not save any

Transcending Runtime-Memory Tradeoffs in Checkpointing by being Fusion Aware

memory, so we should avoid recomputing them by banning
them as described above. Let the set of nodes computable
from the forwards pass be Vf .

Lemma 3.1. Recomputing a node i not fusible with some
of its users in V \ Vf cannot avoid the cost of reading and
writing i.

Proof. Suppose i is not fusible with its user j and j ∈ V \Vf .
If i is not re-computed, we have to pay for reading and
writing i between the forward and backward pass because j
must be in the backward pass.

If we re-compute i, we still have to pay for reading and
writing i in the backward pass because i and j are not fusible.

3.2 Problem Setup

We will start with the data-flow graph of the backwards pass
with naive checkpointing, which we call the joint graph.
Note that this graph is nearly a superset of both the forwards
and backwards graphs from naive AD – the only exception
are the nodes in the forwards pass which do not need to save
any activations for the backwards pass.

We are allowed to save any valid set of nodes computable
from the forwards pass in order to minimize the runtime of
our backwards pass. We will call this set Vsaved and the set
of nodes computable from the forwards pass Vf . There are
three requirements for Vsaved to be valid. The first is that
grad in must be computable from Vsaved ∪ grad out.
The second is that Vsaved must be computable from the
inputs to the forwards pass. Finally, the banned nodes cannot
be recomputed. Vsaved becomes the input to our backwards
pass, and also corresponds to what is generally called saved
activations.

Depending on the nodes saved, this formulation may recover
both naive AD as well as naive gradient checkpointing. For
example, in Fig 2, if we saved add3 and cos1, we would
be saving the same activations as naive AD (and avoid any
recomputation). On the other hand, if we saved a, b, c, and
d, then we would be saving the same activations as naive
checkpointing. However, as discussed in Section 2.3, for
this case the optimal solution is to only save add3.

We note that choosing the inputs to our backwards pass
uniquely defines not only our backwards pass, but also our
forwards pass. Our backwards pass is all nodes computable
from Vsaved, while our forwards pass simply outputs Vsaved.

3.3 Minimum Cut

Our algorithm is outlined in Algorithm 1. The input is the
joint graph G = (V,E), and the set of nodes computable
from the forwards pass Vf ⊂ V . We want to use Vsaved ⊆ Vf

as inputs to the backward pass and we want to optimize the
memory bandwidth while improving the execution time.
We will create an auxiliary graph G′ such that solving the
min-cut problem on G′ gives us the optimal Vsaved.

The weighted auxiliary graph G′ will encode the data de-
pendency of G, the memory cost of each node, and the
restriction of banning certain nodes from recomputation as
described in Section 3.1. To avoid confusion, we will call V
in G nodes, and V ′ in G′ vertices. The graph G′ has source
and sink vertices s, t. For each node i ∈ Vf , we also create
two vertices iin and iout. Let these two nodes be i’s in-vertex
and out-vertex, respectively. For each node i ∈ V \ Vf , we
only create iin. In the min-cut partition, the partition with
the source vertex s is called the source partition, and the
other partition is called the sink partition. If iin is in the
source partition and iout is in the sink partition, then i is in
the cut set nodes. The cut set nodes are returned as Vsaved.

The edges of G′ are created like below.

• Nodes not in Vf have an edge from their in-vertices
to the sink with infinite capacity. Since these nodes
cannot be saved because they are not computable from
the inputs to the forward pass, we add these infinite-
capacity edges to avoid putting their in-vertices into
the source partition.

• The input nodes to the forward pass have an edge be-
tween their in-vertices and source with infinite capacity.
So these nodes must be in the source partition.

• If a node is in Vf and is banned from recomputation,
we add an edge between the source and its in-vertex
with infinite capacity. So these nodes must be in the
source partition.

• For each node i ∈ Vf , we create an edge with infinite
capacity from its out-vertex to its users’ in-vertices
such that we don’t have edges between vertices of dif-
ferent nodes across the cut. We also create an edge
between iin and iout. The capacity of this edge is the
cost of materializing this node, which is the cost of
backward pass reading it and the potentially cost of
forward pass writing it. The edge capacity is deter-
mined like below and the pseudocode is presented in
Algorithm 2.

Edge capacity. We first use a heuristic to re-weight the
nodes’ capacities, which we found to improve the perfor-
mance in practice and will be described in more details in
the next subsection. Let this re-weighted node weight be w.
We let the edge capacity be w if the node must be materi-
alized in the forward pass. Let these materialized nodes
be Vm. Nodes are materialized if they are input nodes or
outputs to the forward pass or itself or any of its users is

Transcending Runtime-Memory Tradeoffs in Checkpointing by being Fusion Aware

not fusible. In those cases, the node must be materialized,
and we only need to pay for an additional reading cost if
we choose to save this activation and let the backward pass
read it. Otherwise, for nodes that are not materialized in the
forward pass, we let the edge capacity be 2w because we
need to pay additional reading and writing costs.

Lemma 3.2. The cut set of the minimum s-t cut only
contains edges connecting an in-vertex and an out-vertex,
i.e. the (iin, iout) edges.

Proof. There always exists a finite-capacity cut in G′. We
can let all the vertices corresponding to nodes in V \ Vf

and all out-vertices incident to them be in the sink partition
with the sink vertex, and all other vertices be in the source
partition. This corresponds to not recomputing anything
from the forward pass.

Now we show all edges across this cut have finite capacity.
From Algorithm 1, we can see there are four types of edges
with infinite capacity, and we will show that none of them
can exist across the cut. For the first type (Line 6), vertices
for nodes in V \ Vf have infinite-capacity edges to sink, but
all those nodes are already in the sink partition with the sink
vertex. For the second and third type (Line 9 and 11), sink
partition does not contain in-vertices of nodes in Vf . The
only other infinite-capacity edges (Line 14) are between out-
vertices of nodes and in-vertices of their users. If we have
an edge (iout, jin) across the partitions, then jin is in the sink
partition and j must be in V \ Vf because only out-vertices
can be in the sink partition without corresponding to nodes
in Vf . However, by construction iout, which is incident to jin
must be in the sink partition as well. This a contradiction,
so we cannot have such edge.

Since there exists a finite-capacity cut, the minimum cut
must have finite capacity. The only finite-capacity edges are
the (iin, iout) edges. So the cut set of the minimum s-t cut
only contains the (iin, iout) edges.

By Lemma 3.2, the edges across the source partition and
the sink partition are the (iin, iout) edges. So we can let
Vsaved to be the cut set nodes, i.e. the set of i such that
iin is in source partition and iout is in sink partition. The
capacity of any finite s-t cut with cut set nodes Vsaved is∑

i∈Vm∩Vsaved
weight(i) +

∑
i∈Vsaved\Vm

2 ∗ weight(i).

3.4 Heuristics to improve performance

There are cases when the simplifications we described in
Section 3.1 don’t hold true, so we add the following heuris-
tics to make our algorithm work better in practice.

First, we re-weight the nodes to bias towards saving nodes
closer to the backwards pass, primarily as a tiebreak mecha-

Algorithm 1 Min-cut Checkpointing
1: input: G = (V,E), Vf

2: V ′ = {s, t} ∪ {iin, iout|i ∈ Vf} ∪ {iin|i ∈ V \ Vf},
E′ = {}

3: G′ = (V ′, E′)
4: for i ∈ V do
5: if i /∈ Vf then
6: G′.edge(iin, t, ∞)
7: Continue
8: if i is an input to forward pass then
9: G′.edge(s, iin, ∞)

10: if ban-recomputation(i) then
11: G′.edge(s, iin, ∞)
12: G′.edge(iin,iout, get-capacity(i))
13: for j ∈ i.users do
14: G′.edge(iout, jin, ∞)
15: Vsaved = minimum-cut(G′, s, t)
16: Return Vsaved

Algorithm 2 Get Capacity
1: function is materialized(i)
2: if i is input then
3: Return True
4: Return not (node and all node.users are fusible)
5: function get capacity(i)
6: w = re-weight(i.capacity)
7: if is materialized(i) then
8: Return w
9: else

10: Return w * 2

nism. If node A and B are the same sizes, we can compute B
from A, but we only need node B, there’s no reason to save
A, although our min-cut algorithm would naively weight
them the same.

Second, in addition to the operators mentioned in Sec-
tion 3.1, we ban recomputation of the following operations:
reduction operations where the output of the reduction is
significantly smaller (we choose 4 times smaller in our ex-
periments), and operations that involve randomness.

In the case that the shapes are static, we only need to run
this algorithm once at the beginning of training. If shapes
change throughout training, however, it’s possible that a
different cut would be optimal for different shapes. Luckily,
we observe that the vast majority of dynamic shapes do
not affect the min-cut significantly. This is since most of
the decisions the algorithm makes involve simply saving
less activations, activations with a smaller data type, or
activations that are drastically smaller (such as the output
of a reduction). Thus, we can simply substitute an arbitrary
shape and obtain most of the benefits (in practice, we simply
peek at the underlying shape of the first inputs we see). Note
that all possible cuts are “valid”, they only differ in their
performance characteristics.

Transcending Runtime-Memory Tradeoffs in Checkpointing by being Fusion Aware

legends

a b c d

add3inadd1 add2 cos1

sin1neg1grad_inin sin1neg1mul1in

sin2neg2mul2in

t grad_outin

sin2neg2

i = i_in i_out

add3out

Figure 3. The auxiliary graph G′ of the data-flow graph G in Fig-
ure 2. The pentagons are the vertices in G′ and the squares repre-
sent an in-vertex, an out-vertex, and the edge between them. The
yellow vertices and white vertices correspond to nodes in Vf . The
cut set node of the min-cut in G′ is {add3} and the vertices of
this node are bolded.
3.5 Example

In Figure 3, we give the auxiliary graph G′ of the data-glow
graph G in Figure 2. The pentagons are the vertices in
G′ and the squares represent an in-vertex, an out-vertex,
and the edge between them. The yellow vertices and white
vertices correspond to nodes in Vf . The cut set node of
the min-cut in G′ is {add3} and the vertices of this node
are bolded. For the optimal strategy where only add3 is
saved, we would put {source,add3in}∪{iin, iout} for i ∈
[a,b,c,d,add1,add2] in the source partition, and other
nodes in the sink partition.

The naive AD corresponds to putting {source} ∪
{iin} for i ∈ [a,b,c,d] in the source partition, and other
nodes in the sink partition.

The naive gradient checkpointing corresponds to
putting {source,add3in,cos1in} ∪ {iin, iout} for i ∈
[a,b,c,d,add1,add2] in the source partition, and other
nodes in the sink partition.

3.6 Optimality

In this section, we show the optimality of our algorithm.

Lemma 3.3. For any valid set Vsaved, we can find a finite
s-t cut such that Vsaved is the cut set nodes.

Proof. Let VB be the set of nodes used to compute
grad in from Vsaved ∪ grad out. VB must exist be-
cause Vsaved is valid. Let the in-vertices of Vsaved be in
the source partition and the out-vertices of Vsaved be in the
sink partition. Let the vertices corresponds to VB be in the
sink partition. Let the rest of the vertices be in the source
partition.

Now we show that the cut set of this cut is {(iin, iout)|i ∈

Vsaved}. The infinite-capacity edge (iin, t) added on Line 6
cannot be in the cut set because i /∈ Vf , so i must be in VB

and iin is in the sink partition.

The infinite-capacity edge (s, iin) added on Line 9 cannot
be in the cut set because a forward pass input node has no
incoming edge and so it cannot be computed from other
nodes and thus cannot be in VB .

Since a valid Vsaved requires that banned nodes are not re-
computed, the banned nodes cannot be part of VB , so the
edges added on Line 11 cannot be in the cut set.

We also cannot have edge (iin, iout) on Line 12 from the
source partition to sink partition for i /∈ Vsaved because
vertices of nodes not in Vsaved are all in the same partition
by construction.

Finally, we cannot have edge (iout, jin) from the source par-
tition to sink partition for any i, j because if iout is in the
source partition and jin is in the sink partition, nodes i and
j are both not in Vsaved. Moreover, node j should be in VB .
However, since i is an input of j, i should also be in VB and
iout should be in the sink partition, which is a contradiction.

Lemma 3.4. For any finite s-t cut, its cut set nodes Vsaved

is valid.

Proof. First, we show grad in is computable from
Vsaved ∪ grad out. If grad in is not computable,
then there must exist a path from a forward pass input to
grad in that contains no node in Vsaved. This means
there’s also a path from s to t without any vertex corre-
sponding to nodes in Vsaved. However, this is impossible
because there must be some finite-capacity edge going from
the source partition to the sink partition in the path.

Second, we show Vsaved is computable from the inputs to
the forwards pass. By construction, Vsaved ⊆ Vf , and Vf

is the set of nodes computable from the forward pass by
definition.

Finally, we show Vsaved would not recompute banned node,
because we added the infinite-capacity edges on Line 11.
Since the cut has finite capacity, the in-vertices of any
banned node must be in the source partition. If a banned
node i is in Vsaved, it is not recomputed. If node i is not
in Vsaved, then the iout is also in the source partition with
iin. Since the sink t is in the sink vertex, there must exist
some finite-capacity edge (jin, jout) such that j ∈ Vsaved on
every path from iout to t. So i does not need to recomputed
because grad in can be computed from j without i.

Lemma 3.5. Let Vsaved be the cut set nodes of some cut.
Without the re-weighting heuristics, the capacity of the cut

Transcending Runtime-Memory Tradeoffs in Checkpointing by being Fusion Aware

is the same as the cost of writings Vsaved \Vm in the forward
pass plus the cost of reading Vsaved in the backward pass.

Proof. The capacity of any finite s-t cut with cut set nodes
Vsaved is

∑
i∈Vm∩Vsaved

weight(i)+
∑

i∈Vsaved\Vm
2∗weight(i)

by construction of our graph.

The cost of writing non-materialized nodes in Vsaved in the
forward pass is Wf =

∑
i∈Vsaved\Vm

weight(i). The cost
of reading Vsaved in the backward pass is Wb =

∑
i∈Vsaved

weight(i).

So the total cost is
∑

i∈Vsaved\Vm
2 ∗ weight(i) +∑

i∈Vsaved∩Vm
weight(i), which is the same as capacity of

the cut.

Theorem 3.6. The checkpointing strategy found by the min-
cut algorithm is the checkpointing strategy with the lowest
memory cost in our cost model among all valid subsets of
forward pass nodes. Specifically, it minimizes the cost of
reads and writes between the forward and backward passes
plus the cost of extra reads and writes in the backwards pass
caused by some nodes being recomputed in the backward
pass.

Proof. We’ve shown that we can create a valid set of saved
activations from any finite-capacity partition (Lemma 3.4),
and we can also create a finite-capacity partition from any
valid set of saved activations (Lemma 3.3). So there is a
1-to-1 relationship between valid checkpointing plans in G
and finite-capacity s-t cut in G′. Also by Lemma 3.5, the
cut capacity is same as the cost of writings Vsaved \Vm in the
forward pass plus the cost of reading Vsaved in the backward
pass. Moreover, by Lemma 3.2, the minimum s-t cut must
have finite capacity. So the partitioning plan found by the
min-cut algorithm is the partitioning plan with the lowest
cost of writings Vsaved \Vm in the forward pass plus the cost
of reading Vsaved in the backward pass.

The forward pass has three disjoint sets of nodes to write:
1) the non-fusible nodes, 2) the fusible output nodes, and
3) the nodes in Vsaved excluding the first two types and the
inputs to the forward pass. The inputs do not need to be
written because they are already in the DRAM before the
forward pass. We see that the third set is exactly Vsaved \Vm,
and the first two sets have to be written in any checkpointing
strategy. So minimizing cost of writings Vsaved \ Vm in the
forward pass plus the cost of reading Vsaved in the backward
pass minimizes the memory cost of reading and writing
between the forward and backward pass.

Extra reads and writes in the backwards pass can only be
caused by recomputing nodes materialized in the backward
pass, but we’ve banned those nodes from recomputation,
so the total cost is equal to the cost of reads and writes
between the forward and backward passes. We’ve shown in

Lemma 3.1 that recomputing these nodes does not decrease
the total cost.

Thus, the partitioning plan found by the min-cut algorithm
is the partitioning plan with the lowest memory cost.

3.7 Checkpointing between Fusion Groups

Let the operators within a fused kernel be a fusion group.
We note that this algorithm can be extended to a heuristic
for computing a checkpointing plan between any two fu-
sion groups. The heuristic works on pairs of fusion groups
(A,B) that are touching, meaning fusion group A’s out-
put is directly used by fusion group B. Instead of saving
activation from the forward pass, it can be used to save
activation from A and reduce the reading and writing cost
between fusion groups by recomputing some fusible nodes
in A. Similarly, we use a min-cut algorithm to determine
which nodes should be saved. Let G be the joint graph of
A and B, and let Vf be the nodes in A. One slight change
to make is that if a node in A is used by any node not in
A and B, it is considered to be in Vm because it must be
materialized for other nodes to read.

To see that re-computation between fusion groups are help-
ful, we give an example in Figure 4. In the figure, the
white nodes are input and output nodes; the green nodes are
fusible nodes; and the red nodes are non-fusible nodes. The
orange boxes are the fusion groups formed. The left graph
is the original graph, and we see that fusion group 1 has 1
input and 3 outputs while fusion group 2 has 3 inputs and
1 output. This means that there are 4 memory reads and 4
memory writes in total. In the right graph, we recompute b
and c from fusion group 1 in fusion group 2. Now, fusion
group 1 has 1 input and 1 output while fusion group 2 has
2 inputs and 1 output. This means that there are 3 memory
reads and 2 memory writes in total. We reduce 2 writes
and 1 read, which means less memory bandwidth. If the
green nodes are all cheap computation nodes like point-wise
operations, we also reduce execution time.

In this example, the whole fusion group 1 is recomputed in
fusion group 2, which is the optimal transformation when
all nodes have the same input and output sizes, but this is
not always the case. If node b is a reduce operator like SUM
and a is a very large tensor, then the optimal solution is to
only recompute c in fusion group 2.

4 EVALUATION

4.1 Evaluation Setup

Our algorithm is implemented in PyTorch (Paszke et al.,
2019) on top of AOTAutograd (Horace He, 2021). The data-
flow graphs we work with are torch.fx graphs (Reed et al.,
2022), which are produced by AOTAutograd. To perform

Transcending Runtime-Memory Tradeoffs in Checkpointing by being Fusion Aware

fusion
group 2

a

b

c

d

e

g

f

output

fusion
group 1

b

c

a

b

c

d

e

g

f

output

fusion
group 1

fusion
group 2

Figure 4. An example of data-flow graph and recomputation of b
and c.

Table 2. Benchmark models and the maximum batch size that
can be achieved by each method. Table column ‘full’ represents
full-checkpoint and ‘none’ represents no-checkpoint.
dataset full min-cut none

densenet121 (Huang et al., 2017) 2880 512 384
hf Albert (Lan et al., 2020) 1088 64 48
hf GPT2 (Radford et al., 2019) 480 56 32
mobilenet v2 (Sandler et al., 2018) 5504 768 512
resnet18 (He et al., 2016) 5504 2560 1536
timm efficientnet (Tan & Le, 2019) 5120 768 512
timm regnet (Xu et al., 2022) 5120 768 512
timm resnest (Zhang et al., 2020) 4096 896 768
timm vovnet (Lee & Park, 2020) 4352 768 512
vgg16 (Simonyan & Zisserman, 2014) 4096 512 512

operator fusion, we leverage compilers built into PyTorch
– specifically TorchInductor (Ansel, 2022). We used the
push-relabel algorithm in NetworkX (Hagberg et al., 2008)
to compute the minimum cut.

We evaluate our algorithm on an AWS p4d.24xlarge ma-
chine with 8 A100-40GB GPUs, although all of our bench-
marks run with only a single GPU. For each experiment, we
use the median of the results of 50 runs.

4.2 Throughput

We evaluate our methods on a variety of models using Torch-
Bench (Constable et al., 2020). As our approach improves
both memory and runtime, we evaluate the peak throughput
we can achieve with each method, varying the batch size.
For example, if a method has no latency improvements for
a fixed batch size, it may still lead to throughput improve-
ments by allowing us to run with a bigger batch size and
make more effective use of our hardware. We run all models
in automatic mixed precision and in CUDA.

We measure 3 different settings.

• no-checkpoint: Models are run with a compiler but
no checkpointing.

• full-checkpoint: Models are run with a compiler
and a standard checkpointing setup, where we choose

only to save the inputs at every layer.
• min-cut: Models are run with a compiler and our

checkpointing approach.

Note that the same compiler is used for all methods, so the
performance differences among them can be attributed to
our checkpointing scheme.

We present the results in Figure 5. Across all
models benchmarked, min-cut results in improved
throughput compared to both no-checkpoint and
full-checkpoint.

Compared to no-checkpoint, min-cut generally im-
proves for two reason. The first is that we’re simply reducing
the memory bandwidth, as presented above. The second is
that we’re able to reduce the number of activations saved,
thus allowing us to increase our batch size.

However, the throughput of full-checkpoint shows
that simply increasing batch size through the standard check-
pointing approach is not sufficient to improve throughput.
Although full-checkpoint is able to drastically re-
duce peak memory and run with batch sizes significantly be-
yond what min-cut or no-checkpoint can, it comes
at the cost of recomputing the entire forwards pass again.
This additional recomputation results in the lowest through-
put on all of the models tested.

Zooming in on some particular models, we see a wide
variety in choices of what’s being rematerialized. On
hf Albert, for example, there is a reimplementation of
GeLU, and we automatically perform the optimization previ-
ously described in Section 2. On timm regnet, there are
several dtype conversions (such as from float16 to float32)
where we are able to avoid saving both a float16 and a
float32 version of an activation.

4.3 Latency

To verify that our performance improvements are not solely
coming from an increased batch size, we also run min-cut
with the same batch size that no-checkpoint is run with.
This allows us to verify that our approach not only improves
throughput but also latency.

We see that for the majority of models we see
that min-cut-nc-bs has improved performance over
no-checkpoint, with a geomean improvement of 10%.
Thus, even just from the perspective of latency, min-cut
improves upon no-checkpoint. And as we see from
Table 2, min-cut increases the max batch size we are able
to run with.

Transcending Runtime-Memory Tradeoffs in Checkpointing by being Fusion Aware

densenet121
hf Albert

hf GPT2

mobilenet v2
resnet18

timm efficientnet

timm regnet

timm resnest

timm vovnet
vgg16

0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

or
m

al
iz

ed
T

hr
ou

gh
pu

t

0.85

1.00
1.10
1.12 full-checkpoint

no-checkpoint

min-cut-nc-bs

min-cut

Figure 5. Normalized throughput of all methods. The throughput is normalized with respect to the no-checkpoint method. A higher
bar means more throughput. min-cut-nc-bs is the same implementation as min-cut but uses the same batch size as the maximum
batch size of no-checkpoint. The dotted lines are the geometric means of the methods respectively.
4.4 Runtime of our Algorithm

Although the theoretical complexity of min-cut is
O(|V |2

√
|E|), the runtime in practice is much faster than

that.

For example, on our largest graph, hf GPT2, with over
5000 nodes, our algorithm finishes in 0.48 seconds. This
is despite the fact that we use NetworkX, which is written
completely in Python. Preliminary experiments with a C++
implementation of min-cut suggest that we could get another
order of magnitude reduction of runtime by simply porting
the algorithm into C++.

4.5 Benchmark on Non-Standard Models

Although our algorithm finds speedups from standard mod-
els, in many cases, frameworks like PyTorch hand-write
what tensors are saved and what tensors are recomputed.
For example, with the GeLU operator in Section 2.2, Py-
Torch has an hand-written derivative formula for it that
minimizes the memory saved 1.

One of the advantages of our algorithm is that it rediscovers
many of these hand-written rules automatically. However,
we can also see the benefits of our approach when applied
to unconventional architectures. With unconventional ar-
chitectures, there are often many more optimizations for
smart checkpointing that would be hand-optimized if the
architecture was standard.

For example, if we apply our algorithm to Daulton et al.
(2020), a bayesian optimization model with a novel acqui-
sition function, we see much larger speedups and mem-
ory savings. The results are summarized in Table 3. For
no-checkpoint we see execution times of 1.13 seconds
with a memory usage of 5.3 GB. However, when apply-
ing our algorithm, we achieve an execution time of 0.158
seconds with a peak memory usage of 0.946 GB.

The reason for such a drastic performance and memory

1https://github.com/pytorch/pytorch/blob/
master/tools/autograd/derivatives.yaml#L1919

Table 3. Results of running the forward and backward pass of
Daulton et al. (2020). The best memory and time are bolded.

Method Peak Mem. (GB) Time (sec)

min-cut 0.946 0.158
no-checkpoint 5.3 1.13

improvement is the existence of large intermediate values.
Naive autograd will save these values, forcing the compiler
to load and store to them. However, our algorithm will
automatically avoid saving large intermediates when they
can be cheaply computed from smaller values. Thus, we
store 5.2 GB of activations without our algorithm, and only
0.83 GB with our algorithm (the rest of the peak memory
usage is from the parameters).

If this were a standard model, then it’s likely PyTorch would
have provided a custom operator and derivative formula that
avoids saving this large intermediate value. However, due
to the novel nature of Daulton et al. (2020), our approach is
able to discover the optimization, demonstrating one of the
advantages of compiler-based approaches.

5 RELATED WORK

There has been many works on checkpointing and intermedi-
ate value recomputation in register allocation (Chaitin et al.,
1981; Briggs et al., 1992; Punjani, 2004), reverse-mode au-
tomatic differentiation (AD) (Griewank, 1994; Griewank &
Walther, 1997; 2000; Hascoet & Pascual, 2013; Siskind &
Pearlmutter, 2018; Moses et al., 2021) and in deep learning
(Beaumont et al., 2020; Chen et al., 2016; Feng & Huang,
2018; Kusumoto et al., 2019).

In register allocation, an allocator may recompute values if
there are not enough registers for assignment and doing so
is cheaper than storing the value and then loading it back
from the memory. Register allocation has been formulated
as graph coloring problem (Chaitin et al., 1981), integer
program (Goodwin & Wilken, 1996; Lozano et al., 2018),
and network flow (Koes & Goldstein, 2006).

Reverse-mode AD can produce a large “tape” to store in-

https://github.com/pytorch/pytorch/blob/master/tools/autograd/derivatives.yaml#L1919
https://github.com/pytorch/pytorch/blob/master/tools/autograd/derivatives.yaml#L1919

Transcending Runtime-Memory Tradeoffs in Checkpointing by being Fusion Aware

termediate values and this leads to large memory footprints.
Checkpointing methods are used to recompute segments of
the tape to reduce the number of values saved. Recently,
Moses et al. (2021) proposes an automatic differentiation
tool called Enzyme to generate gradients of LLVM code.
They also leverage a min-cut algorithm to determine what
values they should read from cache as opposed to recom-
puting. However, Enzyme operates at a substantially lower
level of representation from our work (LLVM IR as opposed
to an operator graph), and so has a substantially different set
of performance characteristics and concerns. For example,
Enzyme is not able to take advantage of a fusing compiler
like XLA or TorchInductor.

Chen et al. (2016) extends the checkpointing methods in
reverse-mode AD to deep learning and divides the data-flow
graphs into segments for recomputation during backprop-
agation. Chen et al. (2016) assumes that all nodes in the
graph have the same cost and that the forward pass has a
linear data flow graph. These assumptions limits the al-
gorithm’s ability to reflect the true computation. Kumar
et al. (2019) considers the problem where given a computa-
tion graph as an input, construct a schedule that minimizes
peak memory via tree decomposition. Jain et al. (2020)
formalizes the problem of trading-off DNN training time
and memory requirements as the tensor rematerialization
optimization problem, and solves for the optimal solution
using a mixed integer linear program or approximates us-
ing a linear program. Zheng et al. (2020) reduces the GPU
memory footprint used for training by recomputing the fea-
ture maps of the attention and RNN layers. Kirisame et al.
(2021) proposed a greedy online heuristic algorithm for
checkpointing. It enables training under a limited memory
budget. Beaumont et al. (2021) combines rematerialization
and offloading to optimize training throughput of linearized
DNNs under memory constraints. Zhang et al. (2022) used
intermediate data recomputation to optimize graph neural
networks.

Our checkpointing algorithm differs from prior work be-
cause our primary goal is to improve execution time while
reducing the memory footprint, while these works focus
on managing the execution vs. memory footprint trade-
off. Moreover, these works do not take operator fusion into
consideration. As we present in Section 2, this insight is
what allows us to avoid these tradeoffs and strictly improve
both memory and runtime. Although these works may be
able to speed up training overall by enabling a larger batch
size, to the best of our knowledge, we are the first work to
demonstrate that performance can be improved even with
the same batch size.

6 CONCLUSION

We demonstrate that with a fusion-aware gradient check-
pointing algorithm, we can achieve the best of both worlds
and improve both memory and runtime. More generally, we
argue that optimizations on deep learning models need to
take into account the practical details of the hardware and
frameworks.

REFERENCES

Ansel, J. Torchinductor: a pytorch-native compiler
with define-by-run ir and symbolic shapes. 2022.
URL https://dev-discuss.pytorch.org/
t/torchinductor-a-pytorch-native-
compiler-with-define-by-run-ir-and-
symbolic-shapes/747.

Beaumont, O., Herrmann, J., Pallez, G., and Shilova, A.
Optimal memory-aware backpropagation of deep join
networks. Philosophical Transactions of the Royal Soci-
ety A, 378(2166):20190049, 2020.

Beaumont, O., Eyraud-Dubois, L., and Shilova, A. Efficient
combination of rematerialization and offloading for train-
ing dnns. Advances in Neural Information Processing
Systems, 34:23844–23857, 2021.

Briggs, P., Cooper, K. D., and Torczon, L. Rematerialization.
In Proceedings of the ACM SIGPLAN 1992 Conference
on Programming Language Design and Implementation,
PLDI ’92, pp. 311–321, New York, NY, USA, 1992.

Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke, J.,
Hopkins, M. E., and Markstein, P. W. Register allocation
via coloring. Computer Languages, 6(1):47–57, January
1981.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H.,
Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. {TVM}: An
automated {End-to-End} optimizing compiler for deep
learning. In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18), pp. 578–594,
2018.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gener-
ating Long Sequences with Sparse Transformers. April
2019. arXiv: 1904.10509.

Constable, W., Zhao, X., Bittorf, V., Christoffersen, E.,
Robie, T., Han, E., Wu, P., Korovaiko, N., Ansel, J.,
Reblitz-Richardson, O., and Chintala, S. TorchBench:
A collection of open source benchmarks for PyTorch

https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747
https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747
https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747
https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747

Transcending Runtime-Memory Tradeoffs in Checkpointing by being Fusion Aware

performance and usability evaluation, 9 2020. URL
https://github.com/pytorch/benchmark.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
Introduction to algorithms. MIT press, 2022.

Daulton, S., Balandat, M., and Bakshy, E. Differentiable
expected hypervolume improvement for parallel multi-
objective bayesian optimization. Advances in Neural
Information Processing Systems, 33:9851–9864, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171–4186,
Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

Feng, J. and Huang, D. Cutting down training memory by
re-fowarding. 2018.

Goodwin, D. W. and Wilken, K. D. Optimal and Near-
optimal Global Register Allocation Using 0–1 Integer
Programming. Software: Practice and Experience, 26(8):
929–965, 1996.

Griewank, A. Achieving logarithmic growth of temporal and
spatial complexity in reverse automatic differentiation.
Optimization Methods and Software, 1, 04 1994. doi:
10.1080/10556789208805505.

Griewank, A. and Walther, A. Treeverse: An implementa-
tion of checkpointing for the reverse or adjoint mode of
computational differentiation. ACM Trans. Math. Soft-
ware, 26:200–0, 1997.

Griewank, A. and Walther, A. Algorithm 799: revolve: an
implementation of checkpointing for the reverse or ad-
joint mode of computational differentiation. ACM Trans-
actions on Mathematical Software (TOMS), 26(1):19–45,
2000.

Hagberg, A., Swart, P., and S Chult, D. Exploring net-
work structure, dynamics, and function using networkx.
Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

Hascoet, L. and Pascual, V. The tapenade automatic dif-
ferentiation tool: Principles, model, and specification.
ACM Trans. Math. Softw., 39(3), May 2013. ISSN 0098-
3500. doi: 10.1145/2450153.2450158. URL https:
//doi.org/10.1145/2450153.2450158.

He, H. Making deep learning go brrrr from first
principles. 2022. URL https://horace.io/
brrr intro.html.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Horace He, R. Z. functorch: Jax-like composable func-
tion transforms for pytorch. https://github.com/
pytorch/functorch, 2021.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Ivanov, A., Dryden, N., Ben-Nun, T., Li, S., and Hoefler, T.
Data movement is all you need: A case study on optimiz-
ing transformers. Proceedings of Machine Learning and
Systems, 3:711–732, 2021.

Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel,
P., Keutzer, K., Stoica, I., and Gonzalez, J. Check-
mate: Breaking the memory wall with optimal ten-
sor rematerialization. In MLSys, 2020. URL https:
//proceedings.mlsys.org/book/320.pdf.

Kirisame, M., Lyubomirsky, S., Haan, A., Brennan, J.,
He, M., Roesch, J., Chen, T., and Tatlock, Z. Dy-
namic tensor rematerialization. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=Vfs 2RnOD0H.

Koes, D. R. and Goldstein, S. C. A Global Progressive
Register Allocator. In Proceedings of the 27th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’06, pp. 204–215, New York,
NY, USA, 2006. ACM. event-place: Ottawa, Ontario,
Canada.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Communications of the ACM, 60(6):84–90, 2017.

Kumar, R., Purohit, M., Svitkina, Z., Vee, E., and Wang, J.
Efficient rematerialization for deep networks. Advances
in Neural Information Processing Systems, 32, 2019.

Kusumoto, M., Inoue, T., Watanabe, G., Akiba, T., and
Koyama, M. A graph theoretic framework of recompu-
tation algorithms for memory-efficient backpropagation.
Advances in Neural Information Processing Systems, 32,
2019.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,
and Soricut, R. ALBERT: A lite BERT for self-supervised

https://github.com/pytorch/benchmark
https://aclanthology.org/N19-1423
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1145/2450153.2450158
https://horace.io/brrr_intro.html
https://horace.io/brrr_intro.html
https://github.com/pytorch/functorch
https://github.com/pytorch/functorch
https://proceedings.mlsys.org/book/320.pdf
https://proceedings.mlsys.org/book/320.pdf
https://openreview.net/forum?id=Vfs_2RnOD0H
https://openreview.net/forum?id=Vfs_2RnOD0H

Transcending Runtime-Memory Tradeoffs in Checkpointing by being Fusion Aware

learning of language representations. In 8th Interna-
tional Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020. URL https://openreview.net/
forum?id=H1eA7AEtvS.

Lanctot, M., Gruslys, A., Danihelka, I., and Munos, R.
Memory-efficient backpropagation through time, 2022.
US Patent 11,256,990.

Lee, Y. and Park, J. Centermask: Real-time anchor-free
instance segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 13906–13915, 2020.

Lozano, R. C., Carlsson, M., Blindell, G. H., and Schulte,
C. Combinatorial Register Allocation and Instruction
Scheduling. April 2018. arXiv: 1804.02452.

Moses, W. S., Churavy, V., Paehler, L., Hückelheim, J.,
Narayanan, S. H. K., Schanen, M., and Doerfert, J.
Reverse-mode automatic differentiation and optimization
of gpu kernels via enzyme. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–16, 2021.

NVIDIA. Nvidia tesla v100 gpu architecture.
https://images.nvidia.com/aem-dam/
en-zz/Solutions/data-center/nvidia-
ampere-architecture-whitepaper.pdf,
2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Punjani, M. Register Rematerialization in GCC. In GCC
Developers’ Summit, volume 2004. Citeseer, 2004.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Reed, J., DeVito, Z., He, H., Ussery, A., and Ansel, J. torch.
fx: Practical program capture and transformation for deep
learning in python. Proceedings of Machine Learning
and Systems, 4:638–651, 2022.

Rotem, N., Fix, J., Abdulrasool, S., Catron, G., Deng,
S., Dzhabarov, R., Gibson, N., Hegeman, J., Lele, M.,
Levenstein, R., et al. Glow: Graph lowering com-
piler techniques for neural networks. arXiv preprint
arXiv:1805.00907, 2018.

Sabne, A. Xla : Compiling machine learning for peak
performance, 2020.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520,
2018.

Sarofeen, C., Bialecki, P., Jiang, J., Stephano, K., Kozuki,
M., Vaidya, N., and Bekman, S. Introducing nvfuser,
a deep learning compiler for pytorch. 2022. URL
https://pytorch.org/blog/introducing-
nvfuser-a-deep-learning-compiler-for-
pytorch/.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Siskind, J. M. and Pearlmutter, B. A. Divide-and-conquer
checkpointing for arbitrary programs with no user an-
notation. Optimization Methods and Software, 33(4-6):
1288–1330, 2018.

Tan, M. and Le, Q. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. In International
conference on machine learning, pp. 6105–6114. PMLR,
2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is All you Need. In Guyon, I., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems 30, pp. 5998–6008. Curran Associates, Inc., 2017.

Xu, J., Pan, Y., Pan, X., Hoi, S., Yi, Z., and Xu, Z. Regnet:
self-regulated network for image classification. IEEE
Transactions on Neural Networks and Learning Systems,
2022.

Yi, X., Yang, J., Hong, L., Cheng, D. Z., Heldt, L.,
Kumthekar, A., Zhao, Z., Wei, L., and Chi, E. Sampling-
bias-corrected neural modeling for large corpus item rec-
ommendations. In Proceedings of the 13th ACM Confer-
ence on Recommender Systems, pp. 269–277, 2019.

Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z.,
Sun, Y., He, T., Mueller, J., Manmatha, R., Li, M., and
Smola, A. Resnest: Split-attention networks, 2020.

Zhang, H., Yu, Z., Dai, G., Huang, G., Ding, Y., Xie,
Y., and Wang, Y. Understanding gnn computational
graph: A coordinated computation, io, and memory
perspective. In Marculescu, D., Chi, Y., and Wu, C.

https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning -compiler-for-pytorch/
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning -compiler-for-pytorch/
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning -compiler-for-pytorch/

Transcending Runtime-Memory Tradeoffs in Checkpointing by being Fusion Aware

(eds.), Proceedings of Machine Learning and Systems,
volume 4, pp. 467–484, 2022. URL https://
proceedings.mlsys.org/paper/2022/file/
9a1158154dfa42caddbd0694a4e9bdc8-
Paper.pdf.

Zhang, S., Yao, L., Sun, A., and Tay, Y. Deep learning based
recommender system: A survey and new perspectives.
ACM Computing Surveys (CSUR), 52(1):1–38, 2019.

Zheng, B., Vijaykumar, N., and Pekhimenko, G. Echo:
Compiler-based gpu memory footprint reduction for lstm
rnn training. In 2020 ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pp.
1089–1102. IEEE, 2020.

https://proceedings.mlsys.org/paper/2022/file/9a1158154dfa42caddbd0694a4e9bdc8-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/9a1158154dfa42caddbd0694a4e9bdc8-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/9a1158154dfa42caddbd0694a4e9bdc8-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/9a1158154dfa42caddbd0694a4e9bdc8-Paper.pdf

