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ABSTRACT
Hypergraph Neural Network (HyperGNN) is an emerging type of Graph Neural Networks (GNNs) that can
utilize hyperedges to model high-order relationships among vertices. Current GNN frameworks fail to fuse
two message-passing steps from vertices to hyperedges and hyperedges to vertices, leading to high latency and
redundant memory consumption. The following challenges need to be solved for efficient fusion in HyperGNNs:
(1) Inefficient partition: hardware-efficient and workload-balanced partitions are required for parallel workers
to process two consecutive message passing steps after fusion. (2) Workload-Agnostic Format: current data
formats like Compressed Sparse Row (CSR) fail to represent a two-step computation workload. (3) Heavy writing
conflicts: partitioning leads to heavy writing conflicts when updating the same vertex.

To enable efficient fusion for HyperGNNs, we present HyperGef . HyperGef proposes an edge-split partition
scheme to achieve higher efficiency and better workload balancing. To represent the workload after fusion and
partition, HyperGef introduces a novel fusion workload aware format. HyperGef also introduces a shared memory-
aware grouping scheme to reduce writing conflicts. Extensive experiments demonstrate that our fused kernel
outperforms the NVIDIA cuSPARSE kernel by 3.31×. By enabling efficient fusion for HyperGNNs, HyperGef
achieves 2.25× to 3.99× end-to-end speedup on various HyperGNN models compared with state-of-the-art
frameworks like DGL and PyG.

1 INTRODUCTION

Graph Neural Network (GNN) is one of the mainstream
methods for machine learning tasks on graphs (Wu et al.,
2021b). Among different GNN models (Kipf and Welling,
2016; Hamilton et al., 2017; Veličković et al., 2017), Hyper-
graph Neural Network (HyperGNN) is becoming a prospec-
tive trend because of its promising potential for improving
algorithm accuracy (Feng et al., 2019; Bai et al., 2021), and
the extensible applications in various domains, such as so-
cial network recommendation, paper co-citation, and drug
discovery (Yu et al., 2021; Yadati et al., 2019; Cheng et al.,
2022), shown in Figure 1(a).

HyperGNNs perform GNN computation on hypergraphs,
which is capable of modeling high-order relationships
among vertices. Figure 1(b) shows an example hypergraph.
Vertices in the hypergraph are connected with hyperedges,
and hyperedges can be connected to multiple vertices (rather
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Figure 1. Hypergraph GNN examples. (a) Typical applications. (b)
Hyperedges and vertices in a hypergraph. (c) The sparse matrix
representation between hyperedges and vertices.

than two vertices in conventional graphs). Thus, the GNN
computation on hypergraphs can be processed with two
message passing steps, i.e., messages from vertices to hy-
peredges and hyperedges to vertices. We can use two sparse
matrices in Figure 1(c) to represent these two message-
passing steps, and two matrices are mutually transposed of
each other.

The two message-passing steps can be represented with two
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Figure 2. Overview of HyperGef . (a) The efficient fusion paradigm is lacking for two SpMM operations in HyperGNNs. (b) HyperGef
proposes a workload balance partitioning scheme. (c) HyperGef introduces a fusion workload aware format to represent information on
workloads. (d) HyperGef utilizes shared memory to reduce conflicts in data writing.

SpMM (Sparse Matrix-Matrix Multiplication) operations
between features of vertices and hyperedges, as shown in
Figure 2(a). Fusing these two steps is a promising way to ac-
celerate HyperGNNs by reducing the memory write of inter-
mediate data (i.e., Y in Figure 2(a)). However, current Hy-
perGNN frameworks lack the paradigm for efficient fusion
(which does not expose challenges in conventional GNN
frameworks) because of the following challenges:

• Inefficient partition: Previous partitioning methods
evenly divide vertices or hyperedges into partitions. How-
ever, these two basic partition methods suffer from in-
efficiency or imbalance problem, shown on the left of
Figure 2(b).

• Workload-Agnostic Format: Conventional formats (e.g.,
adjacency matrix or Compressed Sparse Row (CSR))
cannot directly represent the two-step workload because
only the one-step information is given in these formats,
shown on the left of Figure 2(c).

• Heavy writing conflicts: Different partitions need to
update the same vertex, leading to heavy writing conflicts,
shown on the left of Figure 2(d).

To solve these challenges, we present HyperGef , a novel
framework that enables efficient fusion for HyperGNNs on
GPUs. HyperGef makes the following contributions:

• HyperGef proposes an edge-split workload balance
partition which can balance the workload of two-step
computation, shown on the right of Figure 2(b). Such

design leads to 1.53× average speedup for typical Hyper-
GNN models according to our experiments.

• HyperGef introduces a novel format called the fusion
workload aware format to represent the workload of
two-step computation, shown on the right of Figure 2(c).

• HyperGef utilizes a shared memory aware grouping
scheme to reduce conflicts of updating the same vertex,
shown on the right of Figure 2(d). This scheme leads to
up to 1.54× speedup compared with directly updating
vertices in the GPU device memory.

To the best of our knowledge, HyperGef is the first frame-
work that provides a series of detailed investigations to pro-
pose paradigms of efficient kernel fusion for HyperGNNs.
Extensive experiments demonstrate that our fused kernel
outperforms two cuSPARSE-based kernels by 3.31×. Hy-
perGef also achieves achieves 2.25× to 3.99× end-to-end
speedup on various HyperGNN models compared with state-
of-the-art frameworks like DGL (Wang et al., 2019) and
PyG (Fey and Lenssen, 2019) for both training and infer-
ence.

The following paper is organized as below: Section 2 intro-
duces backgrounds and preliminaries for HyperGNN mod-
els and systems. The analysis of our HyperGef kernel fusion
is introduced in Section 3, followed by three techniques for
efficient kernel fusion are detailed in Section 4. We conduct
comprehensive experiments in Section 5 and have some dis-
cussions about this paper in Section 6. Section 7 concludes
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the whole paper.

2 BACKGROUND AND MOTIVATION

This section describes the preliminaries of hypergraph and
HyperGNN. We will also discuss the inefficiencies of SOTA
frameworks supporting HyperGNNs.

2.1 Hypergraphs

A traditional graph is represented as G = (V,E), where V
is a set of vertices and E is a set of edges. The group E con-
sists of pairs of vertices, i.e., it can either describe directed or
undirected connections. However, in undirected hypergraph
H = (V, E), the edge is defined as a set that could include
any number of vertices. The directed hypergraph differs in
that its hyperedges are not sets, but ordered pairs of subsets
of V that form the tails and heads of the hyperedges. Here
we let V = (v1, v2, · · · , vn) and E = (e1, e2, · · · , em). As
in HyperGNN we mainly talk about undirected cases, then
for every hypergraph, we could construct an n×m incidence
matrix named H . For an undirected hypergraph, H = a(ij)
which is 1 is vi ∈ ej , or 0 otherwise. The incidence matrix
representation is widely used in the matrix-based computa-
tion of Hypergrah NN models (Feng et al., 2019; Bai et al.,
2021; Gao et al., 2022; Dong et al., 2020).

2.2 HyperGNN

Different from only one aggregation step that happens in
the message-passing process of GNN (Wang et al., 2021),
convolution in HyperGNNs (Feng et al., 2019; Bai et al.,
2021; Gao et al., 2022) needs to be expressed by two aggre-
gation stages (Huang and Yang, 2021; Chien et al., 2021)
or equivalent to two SpMMs, as shown in figure 2(a). In
the first stage of SpMM, each hyperedge in the hypergraph
figure 2(a) aggregates features from vertices that belonged
to it. In the second stage of SpMM, each vertex updates its
feature by aggregating messages from the connected hyper-
edges. This two-stage message passing can be expressed by
equation 1:

h(l)
e = F1

({
x
(l−1)
j | vj ∈ e

})
x
(l)
i = F2

({
h(l)
e | e ∈ Ñ (vi)

}) (1)

where xi refers to the feature of vertex i, he refer to the
feature of edge e , F1 and F2 denote the aggregation func-
tion in the first and second stage respectively. Here we
choose two representative HyperGNNs that this two-stage
message-passing scheme could represent.

Hypergraph Neural Network (HGNN) (Feng et al., 2019).

This model proposed a convolution operator to learn the

hidden representation under the hypergraph structure. This
model outperforms traditional GNN like GCN (Kipf and
Welling, 2016) in graph applications and could be extended
to other applications such as visual object recognition.
HGNN has a two-stage sum aggregation as shown in equa-
tion 2:

h(l)
e =

1√
dvj

∑
vj∈e

{
x
(l−1)
j

}
x
(l)
i =

1√
dvi

∑
e∈Ñ (vi)

{
we

de
h(l)
e Θ

} (2)

In the equation 2, dvi and de means the degree of vi and
e, respectively. This network also has another version with
row-normalization (Bai et al., 2021; Gao et al., 2022), which
enjoys similar mathematical properties with equation 2.
HGNN is widely used in the backbone of many models (Li
et al., 2022; Zhang et al., 2022) and has been extended to
various applications including group recommendations (Jia
et al., 2021), multi-label image classification (Wu et al.,
2020), causal inference (Ma et al., 2022), etc.

UniGNN (Huang and Yang, 2021)

GCNII (Chen et al., 2020a) is a powerful graph convolu-
tion model which could defeat over-smoothing challenges.
UniGCNII put forward by UniGNN (Huang and Yang, 2021)
expands the strength of GCNII to hypergraphs with the ag-
gregation process defined as equation 3:

h(l)
e =

1√
dvj

∑
vj∈e

{
x
(l−1)
j

}
x̃i =

1√
de

∑
e∈Ñ (vi)

{
h(l)
e

}
x
(l)
i = (1− α)x̃i + αx

(l−1)
i {(1− β)I+ βΘ}

(3)

Another simple yet expressive model proposed by
UniGNN (Huang and Yang, 2021) is UniGIN, which is
generalized from Graph Isomorphism Networks(GIN) (Xu
et al., 2018). UniGIN is formulated as the equation 4.

h(l)
e =

∑
vj∈e

x
(l−1)
j

x
(l)
i =

(1 + ϵ)xl−1
i +

∑
e∈Ñ (vi)

h(l)
e

Θ

(4)

2.3 Kernel Fusion Support in Prior Framworks

Kernel fusion is widely used to reduce data movement, miti-
gate the overhead of operator execution gaps, and improve
computing resource utilization on GPUs. (Sabne, 2020;
Chen et al., 2018)
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1 # input: graphVE, graphEV,
feat, W, degE, degV

2 # vertex-to-edge aggregation
3 Xe = dgl.ops.copy_u_sum(

graphVE, feat)
4 Xe *= degE
5 Xe *= W
6 # edge-to-vertex aggregation
7 Xv = dgl.ops.copy_u_sum(

graphEV, Xe)
8 Xv *= degV
9 return Xv

Listing 1. HGNN in DGL

1 # input: vertexes, edges,
feat, W, degE, degV

2 # vertex-to-edge aggregation
3 Xve = X[vertex]
4 Xe = scatter(Xve, edges)
5 Xe *= degE
6 Xe *= W
7 # edge-to-vertex aggregation
8 Xev = Xe[edges]
9 Xv = scatter(Xev, vertex)

10 Xv *= degV
11 return Xv

Listing 2. HGNN in PyG

1 # input: hyper_graph, feat,
W, degE, degV

2 # hyper graph aggregation
3 Xv = HyperGef.ops.

HyperAggregation(
hyper_graph, feat, W,
degE, degV)

4 return Xv

Listing 3. HGNN in HyperGef

By analyzing and optimizing the computational graph logic
of an existing network, kernel fusion splits, reconstructs,
and fuses the original computation flow.

In traditional DNN workloads, many papers provide detailed
discussions on fusion techniques, encompassing topics such
as fusion exploration, code generation, and more. (Ma et al.,
2020; Niu et al., 2021; Zhao et al., 2022)

However, unlike fusion in DNN, fusion in graph and hyper-
graph is more challenging because of dynamic shape and
sparse data attributes.

The current mainstream GPU-based GNN frameworks, such
as PyG (Fey and Lenssen, 2019) and DGL (Wang et al.,
2019) implement few optimizations for kernel fusion. GNN-
customized frameworks on GPU like (Ma et al., 2019; Wu
et al., 2021a; Chen et al., 2020b; Huang et al., 2021; Fu
et al., 2022; Xie et al., 2022) adopt practices that fuse GNNs
within the paradigm of vertex-centric programming. (Zhang
et al., 2021) extends the paradigm by using the unified
thread mapping technique. However, none of these existing
frameworks can optimize kernel fusion with HyperGNNs
workload. As such, we need to explore high-performance
fusion-based GPU frameworks optimized for HyperGNNs.

2.4 Inefficiency of Prior Frameworks
PyG (Fey and Lenssen, 2019) build up a hypergraph model
with inefficient two message-passing procedures. Con-
sider an HGNN layer. The core computation is shown in
Equation 2. It first aggregates the vertex features to their
connected hyperedges and generates edge messages with
aggregation function sum, followed by normalization. It
then aggregates the messages on edges back to vertices
with aggregation function sum, followed by normalization.
DGL (Wang et al., 2019) does not support hyper convolu-
tion, 1 so we use their built-in SpMM-based kernel for two
steps of aggregation.

1Please note that DGL did not propose its HGNN model until
February 2023 in its v1.0 release. Thus, we were unable to access
this version while developing our paper in 2022.

The implementation in DGL breaks the update of one
HGNN layer into two independent aggregation processes
as shown in Listing 1, therefore causing repeated excessive
global memory access as well as memory consumption.

PyG implements this process with two independent message-
passing processes, which is also not efficient, as shown in
Listing 2.

Table 1. Notations in message passing.
Notation Description Shape

H
Normalized incidence
matrix of hypergraph [|V|, |E|]

W
Diagonal weight
parameter of hyperedge [|E|, |E|]

Θ
Learning parameter
of hypernode [Kl,Kl+1]

X Node feature embedding [|V|,Kl+1]
Dv Degrees of hypernode [|V|, |V|]
De Degrees of hyperedge [|E|, |E|]

3 ANALYSIS OF KERNEL FUSION

In this section, we perform a comprehensive analysis of the
feasibility and benefits of kernel fusion for HyperGNNs.
We adopt HGNN (Feng et al., 2019) as a concrete example
to investigate the benefits of kernel fusion on HyperGNNs.
Other models, such as UniGNN (Huang and Yang, 2021),
can be easily adapted from HGNN by removing the trainable
parameters on hyperedges (Equation 5). Therefore, benefits
of kernel fusion still apply.

In general, matrix form convolution computation in HGNN
can be described by the following message-passing formula:

X(l) = σ
(
D−1/2

v HWD−1
e H⊤D−1/2

v X(l−1)Θ(l)
)

(5)

where the notations are described in Table 1. H is the
hypergraph adjacent matrix, Θ is a linear transformation,
and σ is an activation function. Note that W is a diagonal
matrix.
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Table 2. Different calculating methods demonstrate the forward and backward propagation of HGNN message passing.
Calculation

method
Forward

Propagation
Memory
footprint

Backward
Propagation

Memory
footprint

Two
SpMMs

X1 = GTX′

Y = GX1
(|V|+ |E|)K ∆X′ = G∆X1

∆X1 = GT∆Y
(|V|+ |E|)K

Fused Y = GGTX′ |V|K ∆X′ = GGT∆Y |V|K

Because the multiplication of parameter Θ and X is per-
formed by a GEMM (General Matrix-Matrix Multiplication)
operator, we can combine these two into a whole. (Note
that the GEMM operator has a standalone schedule and
has been well-optimized, thus is not in the fusion scope. )
Furthermore, we can simply integrate the normalized diag-
onal matrix W, D−1/2

v and D−1
e into H. As a result, the

message-passing formula can be simplified as the following
equation Y = GGTX′ once we substitute XΘ with X′

and substitute D
−1/2
v HW1/2D

−1/2
e with G.

With the above simplification, we compare the calculation
between the fusion and non-fusion methods on both forward
and backward propagation, as shown in Table 2. As for
the non-fusion method, we interpret the overall computa-
tional process mainly as two sparse matrix multiplication
(SpMM) operations. We point out that using the SpGEMM
method to compute GGT is inefficient, for we have to com-
pute a new sparse matrix, which takes up large computing
overhead (Parger et al., 2020; Winter et al., 2019; Liu and
Vinter, 2014). Also, the sparsity of the new sparse ma-
trix G′ = GGT is much larger than G, which leads to the
SpMM function of calculating G′X′ even slower than non-
fusion based two SpMMs. Another drawback is that directly
calculating the SpGEMM cannot accommodate other ag-
gregation types, which commonly appear in GNN training.
Please refer to our discussion Section 6 for more detail. By
directly fusing the whole computation of HGNN convolu-
tion, it could save memory by eliminating the intermediate
hyperedge feature as shown in table 2. Also, in Figure 2
(a) we show operator fusion could also avoid the global
read/write of the hypergraph feature caused by the second
SpMM.

4 HyperGef DESIGN

Overview. Rather than the two-step message-passing proce-
dures, we design a simple frontend to express the message-
passing procedure in hypergraph with a unified aggregation
interface (Listing 3). It is easy to use and implement with
efficient operator fusion and workload balance techniques.

4.1 Workload-Balanced Efficient Partition

In order to compute fusion in parallel, the partitioned work-
load assigned to parallel workers is essential for determin-

ing the overall performance. A well-designed partition will
reduce the hardware overhead, exploit the potential paral-
lelism and achieve better workload balancing. In particular
for balancing problems on GPU, while dynamic schedul-
ing methods (Fu et al., 2022; Wu et al., 2021a), which
primarily encompass persistent threads and GPU warps’
latency-hiding techniques, can address the graph imbalance
to some extent, these approaches cannot allocate more warps
to vertices with larger workloads. Consequently, they do not
fundamentally resolve the imbalance problem. We investi-
gate various partition strategies and create a novel solution
that can achieve efficiency with a balanced workload.

4.1.1 Workload Definition

To clearly demonstrate the partition algorithm, we first need
to define the workload of fusion in HyperGNN. Different
partition methods can result in varying computation and
memory access workloads. Here for better illustration, we
set the worker to be the block under the CUDA program-
ming semantics.

In Figure 3, we list three types of arrows representing work-
loads that appeared in different partitions. The grey ar-
row pointing from the input vertex to the hyperedge rep-
resents the read operation from the input vertex. The blue
arrow symbolizes the write operation from the hyperedge to
the output vertex, while the dotted blue arrow denotes the
atomic operation. If multiple arrows point to the same circle,
this leads to reduction operations, which are highlighted in
red text. By presenting this workload definition, we can
effectively analyze the advantages and disadvantages of the
subsequent partition algorithms.

4.1.2 Edge-Split Workload Balance Partition

Motivation. While the hypergraph partition has been imple-
mented in frameworks like (Heintz et al., 2019; Jiang et al.,
2018), they mainly focus on the optimal cut for supporting
the distributed system and targeting the traditional hyper-
graph algorithms. Similar to partition algorithms for solving
the GNN workload on GPU such as vertex partition (Huang
et al., 2020), and edge partition (Dai et al., 2022), we il-
lustrate these two different types of partitions as shown in
figure 3.

Challenges. The partition for the HyperGNN workload
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Challenge 1: Inefficient partition
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Figure 3. The workload analysis over vertex balance, edge balance,
and our edge-split balance method are demonstrated by different
colors of arrows. The reduction’s workload is shown in red text
with a number to indicate.

is not well-studied, and the partition paradigms we gave
before are not optimized. Since the vertex partition needs
to iterate the second-hop neighbors of the vertex, it leads to
more workload compared to the original non-fusion operator
SpMM. To be specific, the input vertex partition brings
large atomic operations overhead because of overlapping
output vertexes, while the output vertex partition results
in the redundant overhead of read operations. As for the
hyperedge partition, the output and input vertex indexes
are the same within each edge partition, which implies it
is needless to iterate the second-hop neighbors. However,
this hyperedge partition has a severe imbalance brought
by the hypergraph’s power-law degrees attribute. In our
demonstrated hypergraph, e1 is a super hyperedge since it
contains much more vertex connections than e0 or e2. The
workload of the partition of e1, which is four reductions and
four read operations in detail, leads to a severe tail effect on
GPU. (Note that atomic operations on GPU are handled by
L2 cache but not warps in SM, so we do not calculate here
within a partition.)

Insight. Our key insight is to eliminate the overload brought
by super hyperedges, e.g. e1 in Figure 3 to reduce the
imbalance. The major problem here is that only one worker
to compute the e1 partition would hinder the overall parallel
process. If some method enables us to cut the workload
of e1 into partitions that own evenly distributed workloads,
then it would address the imbalance under this case.

Approach. We propose an adaptive edge-split workload
balance partition that derivates from the hyperedge partition.
Essentially, we cut the connections into small groups so that
we could generate more balanced partitions and bring more
parallelism. As for the overall computation flow in the e1
partition, e1 needs to reduce messages from four vertexes
and scatter the reduction result to the same four vertexes.
Thus, the output of each output vertex in the partition e1 is
related to all of the input vertexes. To implement our adap-
tive workload partition, we first select a hyper-parameter
gs that indicates a split in the super edge if there exists a

number of vertexes larger than this hyper-parameter. For
example, let us choose gs = 2 here. Thus, we divide the
vertexes into two groups, v1 and v2 form group one, v3 and
v4 form group two, respectively. According to the compu-
tation flow we analyzed before, the reduction of group one
needs to be scattered to all of the vertexes in group one and
group two. That is the reason why the e1 is separated into
four independent partitions. Thus, the standard deviation of
all partitions workload here is 0.41, much lower than that of
the hyperedge-balanced partition which is 1.53. Generally,
if we apply gs to an arbitrary large hyperedge with he ver-
texes connections, then we will generate ⌈he/gs⌉2 different
partitions as a result. We design gs that is adaptive to the
input data attributes since gs affects other two factors not
restricted to imbalance. First of all, gs would change the
parallelism. If the input hypergraph is relatively small, more
partitions will fill up SMs resources on GPU which leads
to higher GPU hardware utilization. Secondly, the overall
atomic operations increase with gs going down, thus it is im-
portant to find an adequate gs to apply a trade-off between
parallelism, imbalance, and less atomics. We further discuss
our tuning result in Section 5.4.

4.2 Fusion Workload Aware Format

Motivation. Many existing techniques to indicate the work-
load are applying dynamic scheduler (Yang et al., 2018;
Merrill and Garland, 2016; Dai et al., 2022), with no trans-
formation of the original CSR format. However, these
types of dynamic schedulers need additional operations like
searching and synchronizing (Dai et al., 2022), which cause
overhead in the schedule. Some existing solutions in GNN
(Huang et al., 2021; Wang et al., 2021) reduce this runtime
overhead by generating the static format to indicate different
partitions, which motivates us to promote a workload-aware
format for HyperGNN.

Challenge. An adequate format that is aware of the balanced
workload partition reduces the runtime overhead, thus vital
to the parallel kernel acceleration. The major challenge
here is the lack of a fusion-workload-aware format to indi-
cate our partition algorithm introduced above. As shown in
Challenge (c) in figure 2, the widely-used CSR format only
represents the vertex workload within each hyperedge(or
the hyperedge workload within each vertex). Thus, using
the CSR format is unable to represent our balanced partition
in Section 4.1. Other variations of sparse formats (Mag-
gioni and Berger-Wolf, 2013; Liu and Vinter, 2015; Chou
et al., 2018) do not target this workload such fail to solve
the problem well. Naive formats can indicate every detailed
information within each partition while ending up with a
large memory access overhead in the runtime kernel sched-
ule. For example, the second partition related to e1 has the
input connections of v1 and v2, output connections of v3,
v4. Thus, the naive format records all the output and input
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Figure 4. From the original CSR format (left top) to the fusion
workload aware format (left bottom).

vertex indexes, leading to a large memory access overhead
in scheduling.

Insight. To generate a workload-aware format that is also
friendly to schedule, we are inspired by the fact that the
input vertexes and output vertexes share equal partition
groups. To be specific, here we take the second partition of
e1 in the two-hop balanced algorithm for example. With the
knowledge of v1 and v2 belong to group one, and v3 and v4
belong to group two, we only need to take down the group
indexes of input and output.

Approach. Our workload-aware format is deduced by the
following process. The first step is to mark the boundary
of different partitions given the gs condition. In this exam-
ple, we still set gs equal to two. Observing that e1 is larger
than gs, so we iterate through the vertexes in e1 to find
the boundary according to gs. Since e1 here contains four
vertexes, there exists only one boundary that lies between
vertex 2 and vertex 3. To indicate the boundary’s informa-
tion, we use the starting location of the second group within
e1, which is the fourth nonzero of the whole vertex index
array. Thus, we could derive the partition array by applying
the group information from the original CSR row pointer.
After introducing the partition array, we still need to indicate
each input and output of independent partitions. To better
describe our approach, we utilize a workload array here
which demonstrates how many groups are located within
each hyperedge. Note that there are total ⌈he/gs⌉2 within
each hyperedge that has he vertexes, we generate every pair
of input and output within the form of (gi, go). gi and go
would first iterate through 0 to ⌈he/gs⌉ − 1, respectively.
Plus, both gi and go need to add the starting offset of he,
which is indicated by the prefix sum of the workload before
he.

4.3 Shared Memory Aware Grouping

Motivation. Our two-hop partition utilizes a large num-
ber of atomic operations for reduction to compute the final
output vertex. We want to exploit the potential benefits of
shared memory so as to reduce the overhead brought by the
atomic operations.

Challenge. Unlike applying shared memory techniques
to dense workloads, the unpredictability of sparse work-
loads makes shared-memory-aware schedules difficult to
implement. Besides, the well-studied shared memory opti-
mization in traditional GNN workload cannot be tailored to
HyperGNN workload. For example, (Huang et al., 2020)
proposes a coalesced row caching technique that is restricted
to the vertex-balanced partition, while the method given
by (Wang et al., 2021) is under the condition of GNN’s
neighbor-group partition. Thus, we have to design a shared
memory scheduler that is tailored to our two-hop balanced
partition algorithm.

Insight. Our key insight here is that we find the adjacent
partitions by our two-hop balanced algorithm that could
target the same output group. Thus, if we combine them

Algorithm 1 Shared-memory grouping schedule
Input: group key gk, vertex indexes vi input groups gi,
output groups go, input vertex feature Fi

Output: output vertex feature Fo

# P Warps, P Partitions
warpId = partitionId
# Reduce the input vertexes feature
inVertexes = getVertex(vi, gi)
acc← reduceAll(inVertexes, Fi, acc)
# Store temporary reduction in Shared Memory
warpId.sharedAcc = acc

syncthreads()
outVertexes = getVertex(vi, go)
# Use a list to record warpId for grouped output
OutWarpList[warpId] = calcOutWarp(go,P)
if warpId in OutWarpList then

nextOutWarpId = OutWarpList[warpId+1]
# Shared memory based prefix sum
for p in range(warpId, nextOutWarpId) do

warpId.sharedAcc += p.sharedAcc
end for

end if
syncthreads()

# Only use atomic when warpId belongs to output list
if warpId in OutWarpList then

for v in outVertexes do
atomicAdd(Fo[v], warpId.sharedAcc)

end for
end if
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Table 3. Hypergraph datasets used in our experiments.
Cora Citeseer Pubmed Cora-CA DBLP-CA Zoo 20News Mushroom NTU2012 ModelNet40 Yelp House Walmart

#Vertex 2708 3312 19717 2708 41302 101 16242 8124 2012 12311 50758 1290 88860
#Edge 1579 1079 7963 1072 22363 43 100 298 2012 12311 679302 341 69906

#Feature 1433 3703 500 1433 1425 16 100 22 100 100 1862 100 100
#Class 7 6 3 7 6 7 4 2 67 40 9 2 11
max |e| 5 26 171 43 202 93 2241 1808 5 5 2838 81 25

together to compute, we could reduce the atomic operations
by being aware of the shared memory schedule.
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Figure 5. Grouping partitions to utilize shared memory, which re-
duces atomic write to the GPU device memory.

Approach. With the knowledge of adjacent partitions is
more likely to have the same output, we implement a group-
wise combination schedule that utilizes the shared memory
to generate a temporary reduction result. Essentially, we
group the adjacent partitions to be executed together in
one GPU block. Different partitions will be distributed to
different warps within a block. To better express our shared-
memory-aware schedule, we write down the specific process
as shown in Algorithm 1. Here, we allocate P warps per
block mapping to P partitions respectively. Our schedule
will check whether adjacent partitions have the same output,
and calculate the leading output warpID in the OutWarpList.
Then, if the current warp is in the OutWarpList, this warp
will go through a for loop to reduce the results stored in
the shared memory until it meets the next leading output
warpID, which is similar to a prefix sum operator. After
the prefix sum, we only apply atomic operations to warpId
which belongs to the output list, thus it enables us to reduce
the overall atomic overhead.

5 EXPERIMENT

5.1 Experimental Setup

Baselines: First we choose two commonly used GNN frame-
works that support HyperGNN training on GPUs, and we
also use the cuSPARSE vendor library as a baseline for our
kernel design.

Deep Graph Library (DGL) (Wang et al., 2019) is one of
the SOTA GNN frameworks that support both GPU and
CPU with a backend built upon framework PyTorch, Ten-
sorflow, and MXNet. DGL utilizes a generalized-SDDMM
and generalized-SpMM abstraction to express the message-
passing paradigm with sparse matrix operations. We use
DGL’s PyTorch backend on GPU for comparison.

PyTorch-Geometric (PyG) (Fey and Lenssen, 2019) is an-
other SOTA GNN framework for GPU and CPU built upon
PyTorch. PyG provides the user with a general message-
passing interface that is highly flexible and customizable.

cuSPARSE (Naumov et al., 2010) is the standard sparse
linear algebra library maintained by NVIDIA. We use the
cusparseSpMM API in the library to simulate the prototype
of the non-fusion operator in HyperGNN.

Datasets: We use the datasets from Allset (Chien et al.,
2021), which use thirteen real-world hypergraphs for node
classification tasks. Statistics are summarised in Table 3.

Platform & Metrics: We implement our proposed tech-
nique with a CUDA backend and a PyTorch-based frontend.
The evaluation platform we used is a server with one 10-
core 20-thread Intel Xeon Silver 4210 CPU @ 2.2GHz and
an NVIDIA 3090 GPU with CUDA 11.3. For the software
version, we use Pytorch 1.11, PyG 2.0, and DGL 0.9.

5.2 End-to-end Performance

Figure 6 shows the end-to-end performance on all 13
datasets under representative hidden dimensions (i.e., 32, 64,
and 128). HyperGef outperforms the other two SOTA sys-
tems on all three HyperGNN networks in every dataset. The
geomean speedup of HyperGef is 2.25× and 2.60× over
DGL and PyG for training, respectively. For inference, Hy-
perGef gains 3.50× and 3.99× geomean speedup compared
to DGL and PyG. With the growth of feature size, HyperGef
continuously outperforms DGL and PyG in both inference
and training for all model settings. In particular, HyperGef
reaches up to 16.59× training speedup compared to PyG
and 4.38× speedup compared to DGL. Note that here we
choose the hyperparameter gs as a result of our kernel-based
tuning. In our framework implementation, we utilize the mu-
tual transposition information between H and Ht, needless
to use transpose kernel within the backward propagation. It
is worth noting that kernel fusion will largely reduce kernel
launching times, which also makes our framework much
more efficient compared to DGL and PyG.

5.3 Kernel Performance

We test the performance of kernels within our HyperGef
framework. To be specific, the fusion kernel is compared to
two cascades of SpMM from the vendor cuSPARSE library.
The fusion kernel shown in Figure 7 is optimized by all
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Figure 7. Overall normalized kernel performance of HyperGef
under feature size of 32 and 64. We set the cuSPARSE as our
normalization baseline.

of our three techniques with a selected hyperparameter gs
after tuning. Each kernel runs 200 times and we perform
the geomean time as the final result. As shown in Figure
7, our kernel performance beats cuSPARSE in all of our
datasets under feature size 32, with a geomean of 3.89×
and a maximum speedup of up to 10.9×. Under feature size
64, we gain a geomean of 2.81× and a maximum of 8.91×
speedup.

5.4 Ablation study

In this section, we present the performance gains brought
by each technique separately and have an analysis of the
reasons for acceleration.

Kernel fusion. As we introduced in Figure 2 (a), kernel
fusion can reduce memory access by eliminating the read
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Figure 8. The normalized global memory access of edge-balanced
partition compared to cuSPARSE under feature size is 32.

and write access caused by Y, thus bringing a significant
speedup over two SpMMs’ computation flow. Figure 8
shows that we can save an average of 39% and a peak up
to 65% global memory access compared to cuSPRARSE-
based SpMM by utilizing the edge-balanced partition kernel
fusion. Note that here the global memory access is defined
as the total read and write transactions from the DRAM of
GPUs. In our experiments, we find that kernel fusion with
edge balanced itself achieves an average of 2.58× and up to
9.06× speedup over cuSPARSE.

Worload Balanced Partition. We proposed an Edge
Split workload balanced partition to explore the parallelism
within fusion and reduce the imbalance. Intuitively, the
performance of kernels should be affected by the number
and distribution of non-element elements in the adjacency
matrix. To deal with the graph input dynamics that affect the
partition strategy, we tune the performance of our fusion ker-
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Figure 9. The normalization speedup of edge split and hyperedge
balance algorithm based on cuSPARSE.

nels under different hs to get better overall performance. In
Figure 9, our kernel empowered by workload-balanced par-
tition reaches a 5.31× speedup compared to naive-version,
with an average speedup of 1.53×. Note that we find using
the edge split method gains extremely large speedup, espe-
cially for those data suffering from severe imbalance such
as Mushroom and 20News.
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Shared Memory Aware Grouping. To show the benefit
of the shared memory grouping method, we use two repre-
sentative datasets Mushroom and 20newsW100 which have
salient attributes of imbalance. The number of partitions
in block P is set to 2. As illustrated in Figure 10, kernels
using shared memory exhibits better performance compared
to those without shared memory grouping. In particular, in
all of the partition settings we choose, our shared memory
aware grouping algorithm gains a speedup of 1.33× on the
Mushroom dataset and a speedup of 1.52× on the 20News
dataset. This is mainly because our grouping algorithm ef-
fectively reduces the number of atomic operations. The gaps
between shared memory grouping and schedule without it
will become closer when gs goes larger since a larger gs
will only cut those bigger hyperedges into different parti-
tions. As a result, fewer hyperedges will be separated into
different partitions which reduces the chances of adjacent
partitions. Another interesting thing we find is that under
the setting when gs goes larger, we find the performance
with shared memory grows higher at first. Then it would
reach an optimized status with a specific partition size gs, as
shown in the Mushroom dataset in Figure 10. Though it is
hard to fully explain the phenomenon, we summarized this
phenomenon as a tradeoff of atomic operations, balanced

workload, and parallelism, as we analyzed in 4.1.2.

6 DISCUSSIONS

Overhead of Fusion Workload Aware Format. To sup-
port our kernel backend, we need to generate our fusion-
workload aware format deduced from the original CSR.
Note that we have already chosen the heuristic of hs in our
end-to-end implementation, thus we only need to generate
such a format once. Our experiments show this preprocess-
ing time of format conversion is trivial compared to training
time, which is less than 5% of training time on average.

Using SpGEMM In section 3 we mentioned the inefficiency
of the SpGEMM method to calculate the aggregation ac-
cording to our experiments. In specific, take the dataset
widely-used Pubmed as an example, setting the incidence
matrix of Pubmed as G, input feature as X, the time of
calculating G′X is even larger than that of calculating two
cascaded SpMMs. This is due to the fact that the sparsity
of G′ is much larger than that of G. (2.9× times sparsity
growth).

Mini-batch training. Though we didn’t find models that
partition a large hypergraph into mini-batches for hyper-
graph training, we discover research like (Lim et al., 2022)
uses mini-batch training and HGNN as its backbone net-
work. In this setting, our work can be easily extended to
adapt to mini-batches by using the format conversion for
every hypergraph batch.

Non-SpMM aggregation. For system implementation, non-
SpMM aggregation impacts our techniques, such as parti-
tion strategy. Our technique fully supports the widely used
mean aggregation. However, when it comes to supporting
max aggregation, our methods will degrade to the original
hyperedge partition.

7 CONCLUSIONS

In this paper, we introduce HyperGef , the first framework
that proposes paradigms of efficient kernel fusion for Hyper-
graph Neural Networks. HyperGef proposes an edge-split
workload balance partition method to process the fused ker-
nel in parallel. The workload can be calculated using the
fusion workload aware format, rather than inferred from
conventional formats with runtime overheads. HyperGef
also utilizes shared memory to reduce data writing con-
flicts to GPU device memory. The fused kernel outperforms
two cuSPARSE-based kernels by 3.31×, and HyperGef
achieves 2.25× to 3.99× end-to-end speedup on various
HyperGNN models compared with state-of-the-art frame-
works like DGL (Wang et al., 2019) and PyG (Fey and
Lenssen, 2019) for both training and inference.
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A ARTIFACT APPENDIX

A.1 Abstract

Our work proposes a novel kernel fusion methodology to
optimize the computation of HyperGNNs on GPUs. Our
work mainly consists of two parts. The first part is the GPU
kernels responsible for the aggregation of HyperGNN mod-
els and is implemented with our proposed kernel fusion,
efficient format, and shared memory optimization. The sec-
ond part is the Python code that wraps the kernels to provide
a PyTorch-based front-end and uses them as building blocks
to build up different HyperGNN models. Our experiments
show our proposed methods significantly improve the perfor-
mance of representative HyperGNN models on mainstream
hypergraphs datasets.

A.2 Artifact check-list (meta-information)
• Program: https://github.com/AEtmp/
HyperGef_AE.

• Hardware:

– Intel CPU x86 64 with host memory ≥ 64GB. Tested
on Intel Xeon Gold 6226R (16-core 32-thread) CPU
with 251 GB host memory and 2.90GHz frequency.

– 24 GB device memory RTX3090, which has 82 SM
cores and 128KB L1 cache per SM.

• Compilation: Ubuntu 20.04+, nvcc(CUDA 11.3+).

A.3 Description

A.3.1 How delivered

The source code and scripts are available at https://github.
com/AEtmp/HyperGef_AE and archirved at https://
doi.org/10.5281/zenodo.7894072

A.3.2 Hardware dependencies

Our implementation works on Intel x86 CPUs and Nvidia GPUs.

A.3.3 Software dependencies

• CUDA 11.3+

• PyTorch 1.8.0+ (Do not support 2.0+)

• DGL 0.9.0+

• PyG 2.1+

• Ninja 1.10+

• GPUtil 1.4+

A.4 Installation

To build our software, you need to install Ninja and PyTorch as
shown in the dependencies. We use the PyTorch extension to build
a runtime library.

A.5 Experiment workflow

We have prepared the README in the source code repository,
which included other setup steps like downloading datasets, etc.
Please make sure to finish these steps before doing the following
experiments.

• Go to experiment/ directory.

• Figure 6 result: python fig6.py to run end-to-
end experiments on three HyperGNN models. Generate
fig6.csv.

• Figure 7 result: python fig7.py to run overall normal-
ized kernel performance. Generate fig7.csv.

• Figure 8 result: python fig8.py to run an ablation
study for operator fusion. Generate fig8.csv.

• Figure 9 result: python fig9.py to run the ablation
study for the edge split partition algorithm. Generate
fig9.csv.

• Figure 10 result: python fig10.py to run an abla-
tion study for shared memory aware grouping and generate
fig10.csv.

A.6 Evaluation and expected result

Once you have run the experiment workflow, you can see the .csv
result under the experiment/ directory. The related results are
stored in figX.csv. To be specific, the result of figure8 is stored
in the experiment/profile/ directory.

The data we used for figures in the paper is given in the folder
example data.

A.7 Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/
submission-20190109.html

• http://cTuning.org/ae/
reviewing-20190109.html

• https://www.acm.org/publications/
policies/artifact-review-badging

https://github.com/AEtmp/HyperGef_AE
https://github.com/AEtmp/HyperGef_AE
https://github.com/AEtmp/HyperGef_AE
https://github.com/AEtmp/HyperGef_AE
https://doi.org/10.5281/zenodo.7894072
https://doi.org/10.5281/zenodo.7894072
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
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