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ABSTRACT
Extensive studies have shown that deep learning models are vulnerable to adversarial and natural noises, yet
little is known about model robustness on noises caused by different system implementations. In this paper,
we for the first time introduce SysNoise, a frequently occurred but often overlooked noise in the deep learning
training-deployment cycle. In particular, SysNoise happens when the source training system switches to a
disparate target system in deployments, where various tiny system mismatch adds up to a non-negligible difference.
We first identify and classify SysNoise into three categories based on the inference stage; we then build a
holistic benchmark to quantitatively measure the impact of SysNoise on 20+ models, comprehending image
classification, object detection, instance segmentation and natural language processing tasks. Our extensive
experiments revealed that SysNoise could bring certain impacts on model robustness across different tasks
and common mitigations like data augmentation and adversarial training show limited effects on it. Together,
our findings open a new research topic and we hope this work will raise research attention to deep learning
deployment systems accounting for model performance. We have open-sourced the benchmark and framework at
https://modeltc.github.io/systemnoise_web.

1 INTRODUCTION

Deep neural networks have demonstrated remarkable suc-
cess in handling multiple tasks (Krizhevsky et al., 2012; Si-
monyan & Zisserman, 2014; He et al., 2016a; Devlin et al.,
2018; Brown et al., 2020), yet they are vulnerable against
noises. Despite the progress devoted to noises made by
human-being or nature (e.g., adversarial noises (Goodfellow
et al., 2014b) and natural noises (Hendrycks & Dietterich,
2019)), little is known about model robustness on noises
caused by different system implementations. In practice,
the model deployment often faces diverse implementation
platforms spanning from general (e.g., CPU, GPU) to spe-
cialized (e.g., NPU, ASIC) computing hardware; from the
cloud server to edge devices; and often with different back-
ends (e.g., TensorRT (NVIDIA) for GPUs, SNPE (Qual-
comm) for DSPs, CANN (HUAWEI) for Ascend). These
different software-hardware system implementations would
bring certain noises resulting in considerable model perfor-
mance degeneration. More importantly, these noises cannot
be completely prohibited as long as a trained model will be
deployed to multiple target platforms.

Thus, in this paper, we pioneeringly discuss an unwanted
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yet non-negligible type of noise caused by the inconsistency
of the training-deployment system (see Fig. 1 for illustra-
tion), deemed as system noise (abbrev. SysNoise). Based
on where SysNoise could happen, we classify it into three
different types. ➀ Pre-processing: Depends on the im-
plementation of input data. For example, different image
decoding (JPEG2RGB) algorithms and different interpola-
tion methods for image resize and crop. ➁ Model Inference:
Caused by different implementations of the model during in-
ference. For instance, models with the same parameters can
have different results when the upsampling operator is dif-
ferent. Using different data types (INT8, FP16, FP32) also
leads to different accuracy. ➂ Post-processing: Includes
the further manipulation of inference results, e.g., applying
softmax function in classification tasks and calculating the
bounding box in detection tasks. Overall, SysNoise exhibits
its impact on the whole inference pipeline, leading to an
undesired performance drop.

To better understand and comprehensively evaluate the in-
fluence of SysNoise on the deployed model, we provide a
thorough quantitative benchmark on 3 common computer
vision tasks (i.e., classification, detection, and segmentation)
with 20+ representative models and typical baselines. As
for natural language processing, we provide a benchmark
on OPT (Zhang et al., 2022) model on 4 datasets. Our large-
scale experiments reveal several insights: (1) though these
noises are not chosen by any adversary, SysNoise would
bring considerable impacts on model robustness, and could
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Figure 1: An illustration of SysNoise (a) and its negative effect on model robustness (b-d). Here we take noises from the
decoder as an example. We usually use the DALI library from NVIDIA on GPU during training and the DVPP library from
HUAWEI on Ascend during deployment for decoding acceleration, which results in minor decoding differences and would
mislead the prediction.

cause up to 9.97% and 10.67% drops on classification and
detection tasks respectively; (2) different architecture fami-
lies induce different robustness on SysNoises (e.g., ViTs and
CNNs), even in the same architecture family, a larger model
tends to have low variance and low accuracy degradation
on SysNoise; and (3) SysNoise seems to be highly diverse
and different from adversarial and natural noises, where
common mitigations like data augmentation and adversarial
training show limited effects on it. Together with existing
benchmarks on adversarial and natural noises, we could
build a more comprehensive and general understanding and
ecosystems for robustness benchmarking involving more
perspectives. This benchmark for evaluating robustness to
system noises provides useful information, and hopefully, it
can open a new research direction for building robust deep
learning deployment systems.

In conclusion, our contributions can be summarized as three-
fold:

1. For the first time, we identify and systematic research
on an important problem named SysNoise (ranging from
pre-processing, model inference, and post-processing
noise), which is caused by the training-deployments sys-
tem inconsistency.

2. We build a benchmark and framework to quantitatively
evaluate SysNoise on 20+ deep neural networks, in-
cluding image classification (ImageNet), detection (MS
COCO), segmentation (CitySpace), and natural language
processing.

3. We conducted in-depth analyses and found several in-
sights, which revealed that SysNoise is an inevitable and
urgent-to-solve problem for both algorithm researchers
and hardware vendors.

2 RELATED WORK

Noises Types and Benchmarks. Extensive shreds of evi-
dence have shown that deep learning models are unstable
towards different noises, including adversarial noises and
natural noises. Adversarial noises, which are impercepti-
ble to human vision, could easily make neural networks
misclassify the input images (Szegedy et al., 2013; Good-
fellow et al., 2014a; Madry et al., 2018; Carlini & Wag-
ner, 2017; Liu et al., 2019; Liang et al., 2021; Wang et al.,
2021a). To benchmark and evaluate adversarial robustness,
(Su et al., 2018) first investigated the adversarial robustness
of 18 models on ImageNet; (Xiang et al., 2019) built the
platform DEEPSEC for adversarial robustness analysis in-
cluding 16 adversarial attacks, and 13 adversarial defenses;
meanwhile, RealSafe (Yinpeng et al., 2020) open-sourced
and benchmarked adversarial robustness on image classi-
fication tasks. More recently, large-scale benchmarks on
adversarial robustness regarding defense strategies (Robust-
Bench (Croce et al., 2020)) and model architectures (Ro-
bustART (Tang et al., 2021)) were developed. Besides ad-
versarial noises, there exist another type of model-agnostic
noise named natural noises (also deemed as corruptions),
which are commonly witnessed in the real-world scenario,
e.g., blur, snow, and frost. Some representative datasets are
constructed to simulate and benchmark the natural noises,
such as ImageNet-P, ImageNet-C (Hendrycks & Dietterich,
2019), and ImageNet-A, ImageNet-O (Hendrycks et al.,
2021b). (Hendrycks et al., 2021a) also introduced new real-
world distribution shift datasets including changes in image
style, geographic location etc. However, these studies only
focus on noises brought during data acquisition, while ig-
noring the impacts of the whole inference pipeline caused
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by different system implementations.

Furthermore, some studies introduce the influence of in-
dividual SysNoise. (Wang et al., 2021b; Boltaevich et al.,
2019; ?) show how image pre-processing progresses in-
cluding image decoder, resize method, and color conversion
generate noise. However, they only introduce one or two
noises in image pre-processing and lack investigation on the
whole training-deployment progress as well as the combina-
tion of system noise. (Stutz et al., 2021) introduces the bit
error that is caused by the Low-voltage operation of DNN
accelerators, which does illustrate that training-deployment
system inconsistency can bring error. And (Zhuang et al.,
2022) show the random noise caused by different training
systems. But this work only focuses on differences in the
training system and ignores the deployment system. In ad-
dition, (Jia & Rinard, 2021) takes the first step towards the
influence of the floating-point value representation. They
highlight that, to achieve practically reliable verification
of neural networks, the system must accurately model the
effects of any floating-point computations. However, this
paper only conducts a preliminary attempt at the effect of
floating-point numerical error for neural network verifiers.

Approaches to Improving Model Robustness. To improve
model robustness against adversarial noises, a long line of
adversarial defense works have been proposed including:
(1) adversarial training that adversarially train deep mod-
els using adversarial examples (Goodfellow et al., 2014b;
Madry et al., 2018; Tramèr et al., 2017; Shafahi et al., 2019;
Liu et al., 2021a); and (2) adversarial detection that distin-
guishes the clean example and adversarial example (Grosse
et al., 2017; Gong et al., 2017; Jiang et al., 2020).

To effectively tackle the natural noises, several studies have
been devoted primarily from the perspective of data augmen-
tation. By producing an elementwise convex combination
of two images, Mixup (Zhang et al., 2017) could regularize
neural networks to favor simple linear behavior in-between
training examples and improve model performance. Differ-
ent from Mixup, AutoAugment (Cubuk et al., 2018) adopts
and tunes a group of augmentations to optimize performance
on a downstream task. To further improve model robustness
against natural noises, AugMix (Hendrycks et al., 2020) was
proposed to mix multiple augmented images. And APR-
SP (Chen et al., 2021) was proposed to force the CNN to
pay more attention on the structured information from phase
components and keep robust to the variation of the ampli-
tude which can help with the model’s robustness of natural
noise.

Test-time adaptation is another way to improve the model’s
performance at inference. It refers to adapting a machine
learning model to a target domain at test time, without ac-
cess to the source data or even any additional labeled/unla-
beled samples from the target distribution to fine-tune the

source model. (Wang et al., 2020) propose a method to re-
duce generalization error by reducing the entropy of model
predictions on test data, and it reduces error for image clas-
sification on corrupted ImageNet and CIFAR-10/100 and
reaches a new state-of-the-art error on ImageNet-C.

3 SYSTEM NOISE BENCHMARK

In this section, we introduce the benchmark for system
noise. First, we summarize the three stages in SysNoise,
namely pre-processing noise, model inference noise, and
post-processing noise as shown in Fig. 2. Then, we intro-
duce these three stages SysNoise in detail. Note that we
only give the basic principles, a more rigorous mathematical
difference of SysNoise is provided in Appendix A.

3.1 Pre-processing Noise

Pre-processing means the preparation of the input tensor of
the neural network. Concretely, in computer vision tasks,
the pre-processing will convert an image raw file to a 3-
dimension tensor (width, height, and RGB channels). To
fulfill this conversion, two steps are required. First, the raw
file (JEPG) will be decoded to a tensor with the image’s
original shape. Then, the tensor will be resized to a certain
shape. To decode the image from the JEPG file to an RGB
tensor, it is required to perform the inverse Discrete Cosine
Transform (iDCT) operation. In theory, the principle of
iDCT is fixed, but we find decoding one image file in dif-
ferent third-party libraries (e.g., OpenCV (Bradski, 2000),
Pillow (Umesh, 2012), FFmpeg (Tomar, 2006b)) will output
different RGB tensors. This is because some libraries prefer
to use Fast iDCT (Chen et al., 1977) instead of the vanilla
one, which may sacrifice the image quality for the decoding
speed. Furthermore, there would be some minor errors in
the decoding implementation, such as the cosine function.
These minor errors can cause a shift in the pixel values of
the final RGB image tensor. As a result, when changing the
decoding tools used in training to another one in inference,
we observe a drop in accuracy.

The second cause of pre-processing noise is image resize.
Resize is a simple scaling operation that adjusts resolu-
tion to a different size, either up (increase resolution) or
down (decrease resolution). In a resize operation, one needs
to predict the pixel value at an unseen position. This is
often performed by different interpolation algorithms. For
example, nearest-neighbor interpolation directly selects the
value of its nearest know pixel. While bilinear interpolation
predicts the unknown pixel by computing the distance-based
weight average of the existing neighbor 4 pixels, i.e. top,
bottom, left, and right, which has a rather continuous inter-
polation effect. Besides, there are many other interpolation
methods. In Appendix, we provide the detailed mathemati-
cal explanation of these interpolation algorithms as well as
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Figure 2: Overview of SysNoise. SysNoise is caused by an inconsistent implementation between the training system and
deployment system, consisting of three parts, namely pre-processing noise, model inference noise, and post-processing
noise.

the supporting package in computer vision. Note that the
difference in interpolation may even occur at the package
level, i.e. even the same interpolation algorithm might differ
in different supporting packages.

The third source of inconsistency during the pre-processing
stage comes from the conversion of color space. In the prac-
tical application, there are various representation formats for
videos and images, e.g., RGB and YUV. The RGB format
defines the color space with the value of red, green, and blue
channels while the YUV format separates the brightness in-
formation (Y) from the color information (U and V), which
is the format native to TV broadcast and composite video
signals. To save the required storage, different variants of
the YUV format are devised. Among them, the NV12 for-
mat can encode one pixel with only 12bits, enjoying a low
memory consumption and high efficiency. Therefore, many
decoder accelerators such as Microsoft DirectX Video Ac-
celeration and Ascend 310 adopt this format. However, for
the training of most neural networks, input images are fed
with the RGB format. Decoding images to YUV and then
converting it to RGB is difficult to output the same direct
RGB decoded images.

3.2 Model Inference Noise

Model inference noise accounts for the difference that hap-
pens during the inference process. This is primarily due to
the implementation of various operations. For example, the
convolution can be implemented in many ways (GEMM,
Img2Col, Winograd, etc). We primarily discover 3 three
types of model inference noise that cause a performance

drop. The first one is the ceiling mode for max-pooling
layers. Ceiling mode means how to compute the output
spatial shape. Setting ceiling mode to true will allow the
sliding windows to go off-bounds if they start within the
left padding. Hardware vendors usually support different
ceiling modes, causing an inevitable mismatch.

Another important type of model inference noise is the
upsampling method. It is widely used in segmentation task.
And in the detection task, the widely used feature pyramid
networks (Lin et al., 2017a) integrate the features from
different stages within the network. These features have
an uneven resolution, requiring an upsampling operation
to match feature resolution. Same as the resize operation
we discussed in Sec. 3.1, the choice of the interpolation in
upsampling layers can play an important role and lead to
different predictions. We find that the FPN is quite sensitive
to interpolation.

Finally, the precision of data representation can also be
viewed as a type of model inference noise. Generally, the
input data and the parameters in the model are stored with
32-bit floating-point numbers. However, some hardware
systems may restrict the precision, e.g., only 16-bit floating-
point numbers or 8-bit integers are allowed. Low-bit num-
bers unavoidably preserve less information than the full-
precision numbers, causing accuracy degradation. Note that
in the field of quantization research, some training methods
could alleviate this problem (Jacob et al., 2018). We do not
use such a training-compensated method here, in order to
evaluate how much the deep learning model can resist un-
der low data precision and how a single type interacts with
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other types of SysNoise, even though there are contingency
methods.

3.3 Post-Processing Noise

Post-processing is used to convert the network output to
the prediction results. In image classification, this refers to
the Softmax function which applies the exponential func-
tion to normalize the output to (0, 1). In object detection,
the predicted output of the network needs to be calculated
to the final bounding box. During this process, there are
rounding operations to get integer resolution coordinates.
Then, all the candidate bounding boxes will be sorted with
the predicted confidence and filtered with non-maximum
suppression. This procedure is easy to introduce noises
in detail, e.g., the rounding up or rounding down choice,
etc. Many hardware vendors provide black-box implemen-
tations of these operations to accelerate the deployment.
Unfortunately, we find that they often fail to produce the
same results, causing an impact on the final performance.

3.4 Benchmarking SysNoise

Types of SysNoise. SysNoise originates from the imple-
mentation difference in hardware and software. In Table 1,
we briefly summarize the types of SysNoise in each stage,
as well as their applied task, dependence on input data, level
of effect, and the number of categories. We highlight that
here we view SysNoise as random noise since in practice
it is inflexible to train a unique model for corresponding
hardware.

• Preprocessing Noise

1. Decoder: To simulate noise during decoding process,
four different python packages are selected to decode
images — PIL (Umesh, 2012), OpenCV (Bradski,
2000), FFmpeg (Tomar, 2006a) and DALI (Nvidia),
which implement their own image decode function, and
output different image tensors.

2. Resize: We choose up to 11 different resize methods to
represent noise that occurred in image resizing. Specif-
ically, we utilize two Python packages, the Pillow and
the OpenCV. For Pillow, we adopt interpolations from
{bilinear, nearest, box, hamming, bicubic, lanczos}
methods, and for OpenCV, we adopt interpolations
from {bilinear, nearest, area, bicubic, lanczos}.

3. Color mode: To simulate noise that comes from the
conversion of color space, we generate the noised
images by first decoding the images to RGB and
then transforming them to YUV color space and
then back to RGB with Ascend Computing Lan-
guage (ACL) (HUAWEI).

• Model Inference Noise

1. Ceil mode: This can only be tested on models which

has stride 2 max-pooling layers, such as ResNets (He
et al., 2016b). We train the model with floor mode but
test it with ceil mode.

2. Upsample: Nearest neighbor and bilinear are the two
most commonly supported algorithms for upsampling.
Following (Lin et al., 2017b), we train the original
upsample layers with nearest-neighbor interpolation
and test it with bilinear interpolations.

3. Data Precision: To evaluate the model’s robustness
under different precisions, we quantize the model to
FP16 or INT8 and test it.

• Postprocessing Noise

1. Detection proposal: We evaluate the influence of
whether to add the value of 1 when calculating bound-
ing boxes from offsets, both of which are common in
hardware implementations.

Evaluation Metrics. For classification/detection/segmenta-
tion/natural language processing, we report the top-1 accu-
racy/mean Average Precision/mean Intersection over Union
difference for measuring the robustness of models. If the
SysNoise has multiple options, we report the mean differ-
ence as well as the max difference, otherwise, only the
metric difference is reported.

4 EXPERIMENT AND ANALYSIS

In this section, we conduct a thorough benchmark and analy-
sis on the SysNoise. In Sec. 4.1, we illustrate the experimen-
tal setting for image classification, detection, segmentation,
and NLP tasks; in Sec. 4.2 we extensively evaluate all types
of SysNoise on these four tasks; in Sec. 4.3, we interpret the
SysNoise by comparing it with natural noise and adversarial
noise as well as some visualizations.

4.1 Experimental Setting

Classification Task. We benchmark SysNoise on the Im-
ageNet dataset for the classification task, including both
Convolutional Neural Networks (CNNs) and Vision Trans-
formers (ViTs). For CNNs, we evaluate ResNet (He et al.,
2016b), MobileNetV2 (Sandler et al., 2018), RegNet (Ra-
dosavovic et al., 2020), and EfficientNet (Tan & Le, 2020)
families. In addition, we evaluate an extremely small ar-
chitecture — MCUNet (Lin et al., 2020), which only has
0.74MB parameters. For ViTs we evaluate the original Vi-
sion Transformer (Dosovitskiy et al., 2021) and the Swin
Transformer (Liu et al., 2021b) families. Each family covers
different computation and memory budgets to ensure both
large and tiny models are verified. During training, we use
Nvidia DALI (NVIDIA) to prepare data, i.e., image decode,
resize and color space are configured by default function in
DALI. All models take an input shape of 224× 224 except
EfficientNet. We train the default model using FP32 format
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Table 1: List of our discerned system noise, including 3 stages (pre-processing, model inference, post-processing). Affected
tasks consists of image classification (Cls), object detection (Det), semantic segmentation (Seg)

and natural language processing(NLP)
Stage Pre-processing Model inference Post-processing

Type Decoder Resize Color Space Ceil Mode Upsample Data Prec. Detection Proposal

Task Cls/Det/Seg Cls/Det/Seg Cls/Det/Seg Cls/Det/Seg Det/Seg Cls/Det/Seg/NLP Det
Input Dependence ✗ ✗ ✓ ✗ ✗ ✓ ✗
Noise Effect Level High Very High Middle High Very High High Middle
Number of Categories 4 11 2 2 2 3 2
Occurrence Frequency Very High Very High High High Middle High Middle

as this is the standard format in GPU training. For ResNet,
we train it with the floor mode of its max-pooling layer. All
other training settings follow the original settings of the
model.

Detection and Segmentation Task. For object detection,
we use COCO dataset and adopt 3 backbones: ResNet-34,
ResNet-50, and MobileNetV2 in both Faster RCNN (Ren
et al., 2015) with FPN (Lin et al., 2017b) and RetinaNet (Lin
et al., 2017c). We use the CitySpace dataset to benchmark
SysNoise on Segmentation Task, where we evaluate two
architectures (Deeplabv3 and U-Net). As for DeepLabv3,
following (Chen et al., 2017), Resnet-50 and Resnet-101
backbones are used. During Training, we use the Pillow
package and choose bilinear as an image resize interpolation
method to prepare data. Following (Lin et al., 2017b) ,we
resize images by keeping the ratio the same as the origi-
nal image and make the maximum size of the image to be
1333 × 800. Following common practice, all backbones
are pre-trained on ImageNet. We train the default model
using FP32 format and train the original upsample layers
with the nearest-neighbor interpolation. For the models with
the ResNet backbone, we train it with the floor mode of its
max-pooling layer. All other implementations follow the
original settings of the model.

Natural Language Processing Task For natural language
processing tasks, we use pre-trained OPT (Zhang et al.,
2022) models which are transformer-based models with
125M to 175B parameters. For different natural lan-
guage processing tasks, we use different datasets including
PIQA(Bisk et al., 2020), LAMBADA (Paperno et al., 2016),
HellaSwag (Zellers et al., 2019) and WINOGRANDE (Sak-
aguchi et al., 2019). Compared with computer vision, nat-
ural language tasks have less noise during pre-processing
and post-processing progress. For simplicity, we use model
inference noise, or data precision noise to measure SysNoise
in these tasks.

To benchmark the robustness against SysNoise, we train
deep neural networks with one fixed setting, also commonly
used in the PyTorch framework, and evaluate the task per-
formance under other settings depending on the different

types of SysNoise ( Sec. 3.4).

4.2 Experimental Results

Impact from single SysNoise. Our evaluation is summa-
rized in Table 2 for ImageNet classification, Table 3 for
COCO detection, Table 4 for CitySpace segmentation, and
Table 5 for natural language processing. It can be observed
that different types of SysNoise cause different levels of per-
formance drop. For classification, The color mode and FP16
precision have a subtle impact on the performance of CNNs,
while the image decode and resize can have a 0.6-2.3%
accuracy decrease on average. In model inference noise,
the ceiling mode has a profound effect, where the accuracy
drops by 0.8-2.7%. For detection and segmentation tasks,
there are extra types of SysNoise, the interpolation for up-
sample layer, and the proposal operation for post-processing.
Notably, these two types cause a considerable performance
drop. They cause Faster RCNN with ResNet-50 backbone
drop of 1.7 and 2.4 mAP, respectively. For natural language
processing tasks, the impact of data precision has a greater
relationship with the datasets. In addition, we find SysNoise
behaves differently at the task level. For example, The re-
size noise has a relatively larger impact on the detection task
than the classification task. While the decoder noise nearly
has no impact on detection and segmentation tasks but can
affect classification models.

Architecture-wise robustness again SysNoise. We also
observe some relationships between architecture and Sys-
Noise for classification. First, in the same architecture
family, a larger model tends to have low accuracy degrada-
tion. For instance, in ResNet and RegNet family the average
accuracy decrease by decode noise reduces from 1.6% to
0.6% when switching from tiny to large models. The same
trend is also found in other noises and tasks. Second, the
lightweight architecture family is more prone to SysNoise.
Specifically, the MobileNetV2 family shows a larger accu-
racy decrease than other architecture families. The largest
MobileNetV2 drops 1.65% accuracy due to different resize
methods while the similar-accuracy-level ResNet-50 only
drops 0.75%. Furthermore, the MCUNet for STM32F746
with just 320KB memory has the worst robustness among
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all models, which suffers from an average 4.0% accuracy
drop and a maximum 9.3% accuracy drop in resizing noise.
Third, ViTs demonstrate different robustness compared with
CNNs. The Swin Transformers are more robust than CNNs
when attacked by decoder noise. Interestingly, both ViTs
and Swin Transformers suffer from higher accuracy lost in
color mode noise than CNNs. These results demonstrate the
extremely high diversity of SysNoise.

Impact from multiple SysNoise. The single noise type may
only have limited impacts on task performance. However, it
is likely that SysNoise will happen in multiple stages during
inference, and will have a combined effect with multiple
noises to bring further influences on the accuracy.

We show how combined SysNoise affects a single model
step by step in Fig. 3. For example, on ResNet-50, we select
the most influential SysNoise type and gradually add them
to impose noise coherently. As shown in Fig. 3, we show
that some SysNoise is lessened while others are strength-
ened when combined together. For instance, adding resize
to ResNet-50 incurs 0.71% extra accuracy loss which is
even lower compared to the average 0.75% accuracy loss in
Table 2. On the contrary, the INT8 quantization increases its
damage from 0.06% to 1.09%. This reveals two discoveries.
First, different types of pre-processing noise can overlap
with each other. Second, model inference noise might be
magnified with other noises. We will provide more in-depth
future studies. Interestingly, we show that the impact from
SysNoise can be magnified especially in detection tasks
whose model has ceil mode and upsample noise together.
We deduce that this may be because they are both noises
about the relative position and value of the model’s feature
map and the superposition of these two noises can cause
effects beyond their own noise.

In Table 2, Table 3 and Table 4, we show how combined
SysNoise affects different models on different model archi-
tecture. As shown in Table 2 and Table 3, adding all Sys-
Noise to ResNet-50 together can damage 3.95% accuracy
for classification and 10.67% mAP for detection, which
equals degenerating a ResNet-50 lower than ResNet-34.
Adding all SysNoise to EfficientNet-B4 makes it lower than
the B3 variant. According to the original paper (Tan & Le,
2020), B4 consumes 2.3× more FLOPs than B3 and 1.6×
higher parameters, yet only 1.4% accuracy improvement.
However, SysNoise can easily make the architecture im-
provement useless, with up to 2.3% accuracy degradation to
EfficientNet-B4.

4.3 Interpreting SysNoise

Does data augmentation improve model robustness
against SysNoise? Studies have shown that data augmen-
tation techniques can be used to improve model robust-
ness against natural noises (Hendrycks et al., 2020; 2021b).
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Figure 3: Illustration of the worst-case study by combin-
ing multiple SysNoise types step by step.

We, therefore, employ these augmentation methods to see
whether they could also improve the robustness against Sys-
Noise. In particular, we train a ResNet-50 model using
standard augmentation (He et al., 2015), APR-SP (Chen
et al., 2021), Deepaug (Hendrycks et al., 2021a), Aug-
Mix (Hendrycks et al., 2020), and Deepaug combined with
the other two methods (denoted “Deepaug+APR-SP” and
“Deepaug+AugMix”). As shown in Fig. 4, we could reach
several observations as follows (1) there exist no single data
augmentation methods that could universally achieve pos-
itive effects on all of the five different SysNoise types; (2)
specifically, data augmentations could improve model ro-
bustness against image decoder, the ceiling mode of the max-
pooling layers (lower ∆ACC). However, they fail to gener-
alize for data precision and image resize (higher ∆ACC).
These indicate that SysNoise is highly diverse and inherently
different from natural noises.

Does adversarial training improve model robustness
against SysNoise? Besides natural noises, another axis
to analyze SysNoise is to examine whether adversarially-
robust models could be also effective against SysNoise.
Here, we use adversarial training (the most effective method
to defend adversarial noises) (Madry et al., 2018), and adver-
sarially train ResNet-50 and RegNetX-3.2GF models with
ℓ∞-PGD attacks (Madry et al., 2018) using the standard
setting (Tang et al., 2021; Croce et al., 2020). The results
are summarized in Fig. 4, from which we can tell that ad-
versarial training has limited effect on improving model
robustness against SysNoise (significantly higher ∆ACC on
80% SysNoise types). In some cases, like image decode and
resize, adversarial training even significantly damages the
model performance on SysNoise (significantly high ∆ACC).
Together with the data augmentation analysis, we show that
SysNoise differs from both natural noises and adversarial
noise, and the effectiveness of defenses that are designed
for adversarial and natural noises is limited for SysNoise.
We hope all these observations could inspire more in-depth
future studies on building robust models against SysNoise.



SysNoise: Exploring and Benchmarking Training-Deployment System Inconsistency

Decode ResizeColor Mode INT8 Ceil Mode
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 A
cc

ur
ac

y

(a) SysNoise v.s. Augmentations
Standard
APR SP
Deepaug+APR SP

Deepaug+AugMix
Deepaug
AugMix

Decode ResizeColor Mode INT8 Ceil Mode
0.00

0.50

1.00

1.50

2.00

2.50

 A
cc

ur
ac

y

N/A

(b) SysNoise v.s. Adversarial Train
ResNet-50
ResNet-50-Adv
RegNetX-3.2GF
RegNetX-3.2GF-Adv

Figure 4: Illustration of data augmentations and adversarial training for SysNoise on ImageNet.

Original Image Decode Resize Color Mode INT8 Ceil Mode

Figure 5: Visualization of SysNoise. To make the noise more perceptible, we scale it to [0, 255].
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Table 2: Measuring SysNoise on ImageNet classification benchmark. We record Top-1 accuracy and the difference,
∆ACC = ACCoriginal-ACCSysNoise. We report both mean and max ∆ACC for decode and resize. The lower ∆ACC the
better.

Architecture Trained Decode Resize Color Mode Precision (FP16/INT8) Ceil Mode Combined

ACC ∆ACC ∆ACC ∆ACC ∆ACC ∆ACC ∆ACC ∆ACC

MCUNet-293KB 63.40 0.41 (0.42) 4.02 (9.31) 0.20 0.01 0.04 - 9.97

ResNet18x0.25 48.96 1.98 (2.12) 2.11 (3.71) 0.14 -0.01 0.82 2.34 6.61
ResNet18x0.5 61.64 1.67 (1.76) 1.76 (3.25) 0.19 -0.01 0.15 2.72 6.10
ResNet-18 69.96 1.02 (1.03) 1.01 (2.05) 0.13 0.00 0.20 2.40 4.97
ResNet-34 73.59 0.99 (1.00) 0.77 (1.67) 0.14 0.00 0.04 0.85 4.25
ResNet-50 76.39 0.98 (0.98) 0.75 (1.69) 0.09 0.00 0.06 1.24 3.95
ResNet-101 78.10 0.68 (0.69) 0.62 (1.47) 0.24 0.01 0.69 0.75 4.50

MobileNetV2-0.5 64.94 1.98 (2.00) 2.04 (3.14) 0.18 0.01 0.57 - 5.81
MobileNetV2-0.75 70.26 1.39 (1.39) 1.47 (2.56) 0.16 0.01 0.72 - 5.58
MobileNetV2-1 73.12 1.39 (1.39) 1.48 (2.43) 0.07 0.02 0.77 - 5.03
MobileNetV2-1.4 75.84 1.01 (1.02) 1.65 (2.15) 0.10 0.01 0.53 - 5.04

RegNetX-400M 70.97 1.63 (1.63) 1.42 (2.65) 0.07 0.01 0.09 - 5.70
RegNetX-800M 74.04 1.12 (1.14) 0.97 (2.00) 0.19 0.02 0.24 - 4.38
RegNetX-1.6G 76.29 0.84 (0.85) 0.79 (1.88) 0.20 0.01 0.19 - 4.15
RegNetX-3.2G 77.89 0.61 (0.62) 0.53 (1.42) 0.20 0.00 0.24 - 3.70

EfficientNet-B0 76.83 0.75 (0.76) 1.70 (3.79) 0.15 0.03 0.19 - 4.39
EfficientNet-B1 78.13 0.57 (0.58) 1.18 (2.84) 0.26 0.01 0.39 - 3.26
EfficientNet-B2 79.97 0.57 (0.58) 1.13 (2.31) 0.05 0.04 0.41 - 3.10
EfficientNet-B3 82.03 0.71 (0.72) 0.99 (1.74) 0.16 0.05 0.38 - 2.65
EfficientNet-B4 83.43 0.29 (0.30) 0.45 (0.93) 0.17 0.02 0.26 - 2.32

ViT-Tiny 75.61 1.04 (1.04) 0.99 (1.79) 0.46 0.01 0.68 - 3.21
ViT-Small 81.58 0.57 (0.58) 0.37 (1.01) 0.80 -0.01 0.80 - 2.68
Vit-Base 84.63 0.61 (0.62) 0.43 (0.74) 0.93 -0.01 1.12 - 2.89

Swin-Tiny 81.32 0.18 (0.19) 0.42 (1.76) 1.21 0.00 0.76 - 4.93
Swin-Small 83.03 0.18 (0.18) 0.23 (1.33) 1.00 0.00 0.45 - 3.51
Swin-Base 83.54 0.11 (0.30) 0.21 (1.27) 0.97 -0.01 0.55 - 3.59

Does test-time adaptation improve model robustness
against SysNoise? Different from data augmentation and
adversarial training that try to solve issues during the train-
ing process, test-time adaptation tries to solve data shifts
problem during the testing process. A fully test-time adapta-
tion method called TENT (Wang et al., 2020) was proposed
which is taken effect by minimizing the entropy of model
predictions during model inference. Experiments were car-
ried out to find whether test-time adaptation improves model
robustness against SysNoise. And results are shown in Ta-
ble 6, from which we can tell that TENT harms the model
robustness against SysNoise, except the ViT model zoo on
color mode noise. It may be because the data shifts caused
by SysNoise are so small compared with that caused by
other corruption mentioned in this paper that test-time adap-
tation harms the performance of the model.

Potential methods to improve robustness against Sys-
Noise. To solve SysNoise on the decoder and resize, a
natural way is to make the model "see" all kinds of decoders

and resize methods during the training process. Based on
this principle, we introduce mix training method to enhance
the model’s robustness on system noise. The main process
of mix training is to select the decoder or resize method ran-
domly instead of just using one kind of method during the
whole process of training. The pseudocode of our algorithm
is shown in Algo. 1.

To test the effect of mix training, we set up the following
experiment. We use ResNet50 as the base model of this
experiment. To comprehensively demonstrate the training
effect, we train single decoding and resize as well as our
mix training models. We set the default decoder as Pil-
low and the default resize method as Pillow bilinear when
conducting ablation studies on resizing method or decoder,
respectively. Then we use top-1 accuracy as well as their
mean and standard deviation as assessments. The results
of this experiment are shown in Table 8 and Table 7. From
these tables, we can conclude that: (1) The model has a
better performance (usually the best) when we train and
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Table 3: Measuring SysNoise on MS COCO detection. We record mAP and the difference ∆mAP = mAPoriginal-
mAPSysNoise. We report both mean and max ∆mAP for decode and resize. The lower ∆mAP the better.

Method Architecture Trained Decode Resize Color Mode Upsample Precision INT8 Ceil Mode Post-processing Combined

mAP ∆mAP ∆mAP ∆mAP ∆mAP ∆mAP ∆mAP ∆mAP ∆mAP

ResNet-34 36.76 0.02 (0.04) 0.93 (2.63) 0.25 1.28 0.06 2.50 2.29 10.25
Faster RCNN ResNet-50 37.36 0.02 (0.01) 1.12 (3.15) 0.10 1.66 0.10 3.14 2.39 10.67

MobileNetV2 30.32 0.01 (0.01) 0.38 (1.14) 0.24 0.96 0.07 - 2.23 3.45

RetinaNet ResNet-34 35.71 0.01 (0.01) 0.77 (2.20) 0.29 0.35 0.10 2.72 3.44 8.21
ResNet-50 36.59 0.01 (0.02) 0.99 (2.78) 0.36 0.69 0.03 3.12 3.00 8.93

Table 4: Measuring SysNoise on CitySpace segmentation. We record mIOU and the difference ∆mIOU = mIOUoriginal-
mIOUSysNoise. We report both mean and max ∆mIoU for decode and resize. The lower ∆mIOU the better.

Method Architecture Trained Decode Resize Color Mode Upsample Precision INT8 Ceil Mode Combined

mIoU ∆mIoU ∆mIoU ∆mIoU ∆mIoU ∆mIoU ∆mIoU ∆mIoU

DeepLabV3 ResNet-50 78.05 0.001 (0.001) 0.02 (0.04) 0.02 3.06 0.01 4.02 4.51
ResNet-101 79.88 0.001 (0.001) 0.01 (0.02) 0.02 3.85 0.01 4.65 5.11

U-Net - 61.98 0.003 (0.005) 0.04 (0.06) 0.04 2.74 0.02 - 2.85

Table 5: Measuring SysNoise on Multiple NLP Datasets.
We record ACC on FP32 data precision and the difference
∆ACC = ACCoriginal-ACCSysNoise on FP16 and INT8 data
precision. The lower ∆ACC the better.

Architecture PIQA LAMBADA HellaSwag WINOGRANDE

FP32(ACC)/FP16(∆ACC)/INT8(∆ACC)

OPT-125M 63.00/0.05/-0.06 37.90/0.04/0.37 29.20/0.01/0.15 50.28/0.00/-0.31
OPT-350M 64.36/-0.11/-0.33 45.16/0.00/-0.10 32.04/0.00/0.05 52.33/-0.08/0.24
OPT-1.3B 71.71/-0.05/0.16 58.06/0.07/0.19 41.45/-0.03/0.08 59.67/0.00/-0.24
OPT-2.7B 73.78/0.06/0.16 63.65/0.09/0.02 45.85/-0.01/0.01 61.01/0.00/0.00
OPT-6.7B 76.06/0.16/0.22 67.61/0.06/0.33 50.46/0.01/0.03 65.04/0.00/0.48
OPT-13B 75.90/0.11/0.06 68.72/0.07/0.29 52.44/-0.02/0.01 65.11/0.00/0.39
OPT-30B 77.69/0.11/0.16 71.47/0.02/0.00 54.29/-0.01/0.01 68.19/0.02/0.23

test using the same decoder and resize method. (2) Mix
training can improve the robustness of a model on system
noise greatly without hurting the clean accuracy. The Std.
using mix training drop from 0.36 to 0.0653 on decoder
experiment, and drop from 0.463 to 0.270 on resize experi-
ment. Meanwhile, it can maintain the model’s accuracy at
about 76%. In a contrast, the same ResNet50 model using
L∞−Robust adversarial training drops the Std. from 1.07
to 0.420 by paying a 19.2% drop of clean accuracy.

Visualization. Here, we visualize the SysNoise by showing
the difference in pixels. In specific, we calculate the differ-
ences between the clean image (or feature) and corrupted
ones using SysNoise. As shown in Fig. 5, we can draw
several interesting observations as follows. For the decode
noise, it seems to be irregular (totally random or centered
around the edge). As for resize and color mode noise, we
observe that the differences often appear in edges or corners
of an object (i.e., shape). Specifically, Resize noise tends to
mismatch in the red channel while color mode noise mis-
matches in all 3 channels. For Ceil Mode noise, it injects

Table 6: Measuring SysNoise on models with/with-
out TENT. We record Top-1 accuracy and the difference,
∆ACC = ACCoriginal-ACCSysNoise. We report both mean
and max ∆ACC for decode and resize. The lower ∆ACC
the better.

Architecture Trained Decode Resize Color Mode
ACC ∆ACC ∆ACC ∆ACC

MCUNet-293KB(w/o TENT) 63.40 0.41 (0.42) 4.02 (9.31) 0.20
MCUNet-293KB(w/ TENT) 63.40 5.03 (7.25) 4.76 (6.22) 0.95

ResNet-18(w/o TENT) 69.96 1.02 (1.03) 1.01 (2.05) 0.13
ResNet-18(w/ TENT) 69.96 4.01 (4.22) 3.33 (4.06) 2.16
ResNet-34(w/o TENT) 73.59 0.99 (1.00) 0.77 (1.67) 0.14
ResNet-34(w/ TENT) 73.59 4.02 (4.39) 2.99 (3.51) 1.89
ResNet-50(w/o TENT) 76.39 0.98 (0.98) 0.75 (1.69) 0.09
ResNet-50(w/ TENT) 76.39 4.81 (5.44) 4.67 (5.41) 3.78

MobileNetV2-0.5(w/o TENT) 64.94 1.98 (2.00) 2.04 (3.14) 0.18
MobileNetV2-0.5(w/ TENT) 64.94 7.30 (8.24) 3.67 (4.76) 1.04
MobileNetV2-1(w/o TENT) 73.12 1.39 (1.39) 1.48 (2.43) 0.07
MobileNetV2-1(w/ TENT) 73.12 5.58 (6.09) 2.26 (3.07) 0.77

ViT-Tiny(w/o TENT) 75.61 1.04 (1.04) 0.99 (1.79) 0.46
ViT-Tiny(w/ TENT) 75.61 1.38 (1.57) 1.16 (1.81) 0.28
Vit-Base(w/o TENT) 84.63 0.61 (0.62) 0.43 (0.74) 0.93
Vit-Base(w/ TENT) 84.63 1.71 (1.91) 1.07 (1.37) 0.90

Swin-Tiny(w/o TENT) 81.32 0.18 (0.19) 0.42 (1.76) 1.21
Swin-Tiny(w/ TENT) 81.32 7.32 (9.11) 3.68 (4.95) 2.28
Swin-Base(w/o TENT) 83.54 0.11 (0.30) 0.21 (1.27) 0.97
Swin-Base(w/ TENT) 83.54 5.98 (6.57) 3.43 (4.47) 2.68

two bands of noises at the bottom right of the image. There
is no obvious pattern for the INT8 noise.

5 CONCLUSION

This paper introduces SysNoise, a harmful noise that fre-
quently happens when the source training system switches
to a disparate target system in deployments. We first iden-
tify and classify SysNoise based on the inference stage,
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Table 7: Mix training on resize method.

Train
Test

Pillow-bilinear Pillow-nearest Pillow-cubic OpenCV-nearest OpenCV-bilinear OpenCV-cubic Mean Std.

Pillow-bilinear 76.572 72.168 76.512 72.090 75.346 74.072 74.460 2.02E+00
Pillow-nearest 74.872 75.988 75.548 75.970 76.002 76.056 75.739 4.63E-01
Pillow-cubic 76.312 72.828 76.596 72.876 75.810 74.666 74.848 1.68E+00
OpenCV-nearest 74.818 76.298 75.474 76.092 76.082 76.192 75.826 5.71E-01
OpenCV-bilinear 75.840 75.268 76.446 75.248 76.682 76.436 75.987 6.29E-01
OpenCV-cubic 76.194 72.812 76.510 72.940 75.736 74.818 74.835 1.62E+00
mix 76.154 75.876 76.344 75.786 76.444 76.330 76.156 2.70E-01

Algorithm 1: Mixed training for improving robustness
on systematic noise.
Input: Resize set RS; Decoder set D; Model to train
Set Pillow-bilinear as default Resize;
Set Pillow as default Decoder;
for all j = 1, 2, . . . , T -iteration in training do

if use mix-decoder strategy then
Randomly sample a Decoder from D;

if use mix-resize strategy then
Randomly sample a Resize function from RS;

Load the images from the file system according to
the Decoder type and Resize type;

Model Optimization.
return An optimized robust model for systematical

noise.

Table 8: Mix training on the decoder.

Train
Test

Pillow OpenCV FFmpeg Mean Std.

Pillow 76.430 76.426 75.310 76.055 6.45E-01
OpenCV 76.510 76.510 75.368 76.126 6.56E-01
FFmpeg 75.730 75.664 76.318 75.904 3.60E-01
mix 76.53 76.524 76.414 76.489 6.53E-02

and thereafter build a holistic benchmark and framework
to quantitatively measure the impact of SysNoise on image
classification, object detection, segmentation, and natural
language processing tasks. Our large-scale experiments re-
vealed that SysNoise is highly-influential and will cause
model performance degeneration; additionally, common
mitigations like data augmentation and adversarial training
show limited effects on SysNoise.

In the future, we will evaluate SysNoise on the real-world
systems, and will continuously develop the benchmark to
include more tasks. Our findings open a new research topic
and we hope it will raise research attention to the perfor-
mance and robustness of deep learning deployment systems.
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A MATHEMATICAL DIFFERENCE OF
SYSNOISE

In this section, we try to use equations to describe how
different processing, operations are formulated. Note that
our explanation might not be exactly the same with third-
party implementations, as there are always some hyper-
parameters to determine. Our goal is to provide an intuition
rather than a strict comparison.

Image Decode. In the decoding process, the inverse discrete
cosine transform (iDCT) occupies the majority of the com-
putation. Given a transformed matrix X̂ with shape N ×N
(excluding channels), the original image X at coordinates
(m,n) can be given by

f [m,n] =

N−1∑
k=0

N−1∑
l=0

α(k)α(l)F (k, l)

cos[
(2m+ 1)πk

2N
]cos[

(2n+ 1)πl

2N
]

(1)

where,

α(k) =


√

1
N if k = 0√
2
N if k ̸= 0

. (2)

The iDCT costs a lot of operations and some implemen-
tations choose to utilize Fast DCT and Fast iDCT (Chen
et al., 1977) where the computation is sped up by matrix
decomposition. Due to its complexity, we do not display the
equations here. Note that the de-quantization in decode will
also bring different values, which will be introduced in the
data precision section.

Resize Interpolation. Formally, considered an image X to
be resized where a pixel in some position needs to be pre-
dicted and yet its neighbors are already known or predicted.
Different interpolation algorithms rely on different functions
to determine the unknown pixel. (1) Nearest interpolation,
this method simply copy the nearest neighbor’s pixel value,
i.e., the neighbor with the lowest Euclidean distance, given
by X[argminx,y((x−x′)2+(y−y′)2)]. Here, the x, y is the
coordinates of the known neighbor and x′, y′ is the coordi-
nates of the pixel that needs to be determined. (2) Bilinear in-
terpolation, determines the pixel by linearly calculating the
ratio of distance. Assume we have four spatially-close coor-
dinates: Q11 = (x1, y1), Q12 = (x1, y2), Q21 = (x2, y1),
and Q22 = (x2, y2). Their values are already know, for
example f(Q11). The formulation of bilinear interpolation
is given by:

f(x, y) =
y2 − y

y2 − y1
f(x, y1) +

y − y1
y2 − y1

f(x, y2), (3)

where,

f(x, y1) =
x2 − x

x2 − x1
f(Q11) +

x− x1

x2 − x1
f(Q21),

f(x, y2) =
x2 − x

x2 − x1
f(Q12) +

x− x1

x2 − x1
f(Q22).

(3) Bicubic interpolation, in contrast to the bilinear inter-
polation which only takes 4 pixels (2 × 2), the bicubic
interpolation takes 16 pixels (4× 4). The algorithm tries to
use existing known pixel values to fit a binary cubic function

f(x, y) =

3∑
i=0

3∑
j=0

aijx
iyj (4)

To find the total 16 coefficients aij , ij ∈ {0, 1, 2, 3}, we
need to solve a system of linear equations Aα = x. Due to
the complexity of this algorithm, we refer the readers to this
link1 for more details. Bicubic interpolation yields better
performance than the previous two algorithms, however, it
also needs huge time to solve the linear equations to find
optimal interpolated values. We omit other interpolations
methods as they are more complex that these three methods.

YUV color mode. As a matter of fact, there are tons of
encoding standards for YUV color space. The formats de-
scribed here all use 8 bits per pixel location to encode the Y
channel (also called the luma channel), and use 8 bits per
sample to encode each U or V chroma sample. However,
most YUV formats use fewer than 24 bits per pixel on aver-
age, because they contain fewer samples of U and V than
of Y. The full-size YUV (32 bits per pixel) is represented as
4:4:4, which means no downsampling of chroma channels.
Following BT.601 (Rec, 1993), converting RGB to YUV
4:4:4 can be formulated by

Y = round(0.256788×R+ 0.504129×G+ 0.097906×B) + 16

U = round(−0.148223×R− 0.290993×G+ 0.439216×B) + 128

V = round(0.439216×R− 0.367788×G− 0.071427×B) + 128

.(5)

Here, we can derive an inverse transform from YUV to
RGB,


R = clip(round(1.164383 ∗ C + 1.596027 ∗ E))

G = clip(round(1.164383 ∗ C − (0.391762 ∗D)− (0.812968 ∗ E)))

B = clip(round(1.164383 ∗ C + 2.017232 ∗D))

,where


C = Y − 16

D = U − 128

E = V − 128

.(6)

Here, clip(·) denotes clipping to a range of [0, 255]. In some
implementation (Wikipedia), Eq. (6) can be approximated
by:

R = clip((298 ∗ C + 409 ∗ E + 128) >> 8)

G = clip((298 ∗ C − 100 ∗D − 208 ∗ E + 128) >> 8)

B = clip((298 ∗ C + 516 ∗D + 128) >> 8)

.(7)

1https://www.ece.mcmaster.ca/~xwu/interp_
1.pdf

https://www.ece.mcmaster.ca/~xwu/interp_1.pdf
https://www.ece.mcmaster.ca/~xwu/interp_1.pdf
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As we could see, the conversion cannot be lossless with the
existence of rounding and clipping operations, which could
be generally summarized to quantization-dequantization
conversion. In addition, usually, the hardware supports
YUV 4:2:0 rather than 4:4:4, making the conversion to RGB
more unstable cause YUV 4:2:0 should be transformed to
YUV 4:4:4 and then transformed to RGB format (Wood &
Baron, 2005).

Ceiling mode. For pooling layers, the output shape of the
feature map is calculated by

O =

⌊
W −K + 2P

S

⌋
+ 1, (8)

where W is the width (we assume the feature map is square),
K is the kernel size, P is the padding size, and S is the
stride of pooling layers. The above equation uses floor
operation ⌊·⌋ to compute the size of the output feature while
we can use ceiling operation ⌈·⌉ operation in ceiling mode.
Therefore, the border of the output feature is dependent on
the ceiling mode.

Data Precision. We here discuss two types of precision:
FP16 and INT8. The FP16 still uses floating-point numbers
with less bitwidth. According to IEEE 754, the FP32 format
uses 1 bit for sign, 8 bits for the exponent, and the rest 23
bits for fraction, while the FP16 uses 1 bit for sign, 5 bits for
the exponent, and 10 bits for fraction. Normally, converting
FP32 to FP16 only causes a negligible error, as shown in our
experiments. For INT8, this is usually done by quantization
and de-quantization functions:

X̄ = clip

(
⌊X
s
⌉+ z,Nmin, Nmax

)
(9)

X̂ = s ∗ (X̄− z), (10)

where ⌊·⌉ is the rounding-to-nearest function. Nmin, Nmax

are the range of integers that can be represented. For INT8,
Nmin = −128 and Nmax = 127. s ∈ R and z ∈ Z are
the scale and zero point parameters to fit the original FP32
tensor’s range. For more details of quantization, readers are
recommended to (Li et al., 2021).

Post-processing. For object detection, the post-processing
involves multiple operations: 1. calculate the anchors, 2. get
the offsets for anchors from the predicted outputs, 3. calcu-
late the final bounding box. Some details of these operations
are easy to bring the noise. Some details of these opera-
tions are easy to cause noise. The following code shows an
example procedure for post-processing. For different hard-
ware implementations, the ALIGNED_FLAG.offset in
the code often has different values of 0 or 1. This minor
difference will bring a perturbation to the final accuracy
performance. Besides, other operations like the rounding
from float-point output to integer coordinate or the precision
of exponential also need to be treated carefully.

# anchors from xyxy format to xywh
format

ctr_x, ctr_y, widths, heights =
xyxy2xywh(boxes)

# normalize the offsets predicted from
the neural network

means = offset.new_tensor(means).view
(1, -1).repeat(1, offset.size(-1)
// 4)

stds = offset.new_tensor(stds).view(1,
-1).repeat(1, offset.size(-1) // 4)

offset = offset * stds + means

# calculate the delta of x, y, w and h
wx, wy, ww, wh = weights
dx = offset[:, 0::4] / wx
dy = offset[:, 1::4] / wy
dw = offset[:, 2::4] / ww
dh = offset[:, 3::4] / wh

dw = torch.clamp(dw, max=np.log(1000. /
16.))

dh = torch.clamp(dh, max=np.log(1000. /
16.))

# calculate the predicted coordinate of
center point,

# and the height & weight of bbox
pred_ctr_x = dx * widths[:, None] +

ctr_x[:, None]
pred_ctr_y = dy * heights[:, None] +

ctr_y[:, None]
pred_w = torch.exp(dw) * widths[:, None

]
pred_h = torch.exp(dh) * heights[:,

None]

# calculate the final bbox
pred_boxes = offset.new_zeros(offset.

shape)
# x1
pred_boxes[:, 0::4] = pred_ctr_x - 0.5

* pred_w
# y1
pred_boxes[:, 1::4] = pred_ctr_y - 0.5

* pred_h
# x2
pred_boxes[:, 2::4] = pred_ctr_x + 0.5

* pred_w - ALIGNED_FLAG.offset
# y1
pred_boxes[:, 3::4] = pred_ctr_y + 0.5

* pred_h - ALIGNED_FLAG.offset
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B DOSE LEARNING-BASED DECODER
IMPROVE MODEL ROBUSTNESS
AGAINST SYSNOISE?

Different from the traditional image encoding/decoding
method some work uses a learning-based image codec to
minimize the gap between the original image and the en-
coded image. (Sun et al., 2020) introduce a learning-based
image compression method, which achieves about 32.625dB
for the CLIC2020 validation dataset. To explore whether the
learning-based method can improve the model’s robustness
on SysNoise, we carried out experiments on the ImageNet
dataset using the decoder trained on the CLIC2020 dataset.
We used ResNet-50 as a base model, and compare it with the
other 2 commonly used decoder methods in Table 9. We can
see that there is no obvious gain in using the learning-based
decoder.

Table 9: Compare Performance on Learning-Based Decoder

Train
Test

Pillow OpenCV Learning-Based Mean Std.

Pillow 76.430 76.426 75.310 76.055 6.45E-01
OpenCV 76.510 76.510 75.368 76.126 6.56E-01
Learning-Based 75.340 76.441 76.530 76.104 6.63E-01

C PRELIMINARY RESULTS FOR SYSNOISE
ON TEXT-TO-SPEECH TASK

For evaluating SysNoise on text-to-speech tasks, we use
FastSpeech 2 (Ren et al., 2019) and Tacotron 2 (Shen et al.,
2018) these two commonly used models. LJ Speech dataset
(Ito & Johnson, 2017), which contains 13,100 English audio
clips (about 24 hours) and corresponding text transcripts,
was chosen for the training and testing process. Different
from other text-to-speech work using MOS(mean opinion
score) to evaluate audio quality, we use MSE(mean square
error) since we pay more attention to the difference between
the generated audio and the original audio under the influ-
ence of SysNoise. The result is shown in Table 10. From this
result, we can tell that the text-to-speech task has a unique
SysNoise when doing STFT(short-time Fourier transform).
SysNoise introduced by different operators in STFT can
harm the model’s performance during model inference.

Table 10: Measuring SysNoise on Text-to-Speech Taks.
We record MSE The lower MSE the better.

Method Precision (FP16/INT8) STFT Combined

MSE MSE MSE MSE

FastSpeech 2 0.82 1.41 2.14 4.12
Tacotron 2 0.71 1.21 3.01 5.02

D BROADER IMPACTS AND LIMITATIONS

Together with existing benchmarks on adversarial and natu-
ral noises, we could build a more comprehensive and general
understanding and ecosystems for robustness benchmarking
involving more perspectives. We hope this benchmark could
draw the attention of both algorithm researchers and hard-
ware vendors to this inevitable and urgent-to-solve problem,
and open a new research direction for building robust deep
learning deployment systems.

Though having investigated several types of SysNoise in
this paper, there may still exist other noises that would cause
model performance degeneration during deployment. In the
future, we will keep the benchmark growing.

E CONSISTENCY OF RESULTS

To maintain consistency of results, we use following
method. (1) Fix in the requirements torch==1.8.1,
opencv==4.1.1.26 and Pillow==6.2.1 in our framework. (2)
Set torch.backends.cudnn.benchmark=True in the code. We
test the ResNet-18 Model on all kinds of noise multiple
times in our framework and observe little different result
(< 0.0001%) on accuracy. This result also holds for object
detection and instance segmentation task. So other factors
are less likely to affect the results of the model inference
process.

F REPRODUCIBILITY AND RUN TIME

We provide the code to run this benchmark on GitHub where
everyone can download from freely. As for the setup steps
and instructions about our code, we provided them in the
README file. The installation instructions are also pro-
vided in the README file, users can easily install the re-
quired run time environment of this codebase. For some
noises that need to be generated on specific hardware and
are not easy to reproduce, we provide our own resulting
datasets generated on specific hardware, which involve Im-
ageNet validation set and COCO validation set. All these
datasets can be freely downloaded on our website.

Since our benchmark experiments need us to train multiple
models and evaluate them on different kinds of noises, it
needs a large amount of GPU resources. The total cost of
our GPU resources to build this benchmark is about 5 GPU
years. Most of our experiments are run on Nvidia Tesla
V100 GPU. For one training experiment, we run it on 16
GPUs parallel. For inference experiments, we run it on 4
GPUs parallel.

For other users who just want to test their trained model
with our framework, the GPU time they require will be
greatly reduced. In most cases it only takes 10 to 40 minutes
of GPU time to test the effect of one noise on one model,
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depending on the GPU type they are using.

G FUTURE WORK

Based on the research conducted in this paper, our future
work will focus on extending the SysNoise to other fields
such as speech and audio. We will explore how SysNoise oc-
curs in the different steps of the ML pipeline and benchmark
it. We will keep updating our website and the final results
will release on it at https://modeltc.github.io/
systemnoise_web

H LICENSE

Our code is released under Apache License 2.0. Most model
architectures are added to the code with the license cho-
sen by the original author. The ImageNet-1K, COCO, and
CitySpace datasets we use are downloaded from the official
release. Some system noise datasets we generated from the
original dataset follow the license of its original dataset.

https://modeltc.github.io/systemnoise_web
https://modeltc.github.io/systemnoise_web

