
Reducing Activation Recomputation

A FLOPS CALCULATION

For FLOPs calculations, we follow the derivation from
Narayanan, et.al.(Narayanan et al., 2021) and only con-
sider the matrix multiplications (GEMMs) which are the
main contributors to the number of floating-point operations.
For the attention block, the main contributors to floating-
point operations are: key, query, and value transformation
(6Bsh2 operations), attention matrix computation (2Bs2h
operations), attention over values (2Bs2h operations), and
post-attention linear projection (2Bsh2 operations) where
B is the microbatch size.

For the feed-forward network that increases the hidden
size to 4h and then reduces it back to h, we have 16Bsh2

floating-point operations. Summing these together, each
transformer layer results in 24Bsh2 + 4Bs2h FLOPs for
the forward pass. The other main contributor to the number
of floating-point operations is the logits layer in the lan-
guage model head, which transforms features of dimension
h to the vocabulary dimension v. The required FLOPs for
this operation is 2Bshv.

The backward pass requires double the number of FLOPs
since we need to calculate the gradients with respect to both
input and weight tensors. Summing all the contributions,
the number of FLOPs required to do one forward and one
backward pass (denoted by model FLOPs) is:

model FLOPs per iteration = 72BLsh2
(
1 +

s

6h
+

v

12hL

)
.

(7)

Selective activation recomputation requires an additional for-
ward pass attention matrix computation (2Bs2h operations)
and attention over values (2Bs2h operations). Adding these
required FLOPs to Equation 7, the total number of FLOPs
we require per iteration (denoted by hardware FLOPs) is:

hardware FLOPs per iteration = 72BLsh2

(
1 +

2s

9h
+

v

12hL

)
.

(8)

One can see that in our approach, model FLOPs are very
close to the hardware FLOPs. Assuming 9h ≫ 2s and
12hL ≫ v and only considering main terms, the ratio of the
hardware to model FLOPs can be approximated as:

hardware FLOPs

model FLOPs
≈ 1 +

s

18h
. (9)

B PIPELINE PARALLELISM MEMORY
OPTIMIZATION

As mentioned in Section 4.2.3, efficient pipeline parallelism
strategies do not uniformly divide the total memory across
pipeline ranks. Figure 9 illustrates this memory pattern for
the 530B model detailed in Table 3, showing the memory

Figure 9. Activation memory of each pipeline parallel rank, shown
for both an unoptimized case (blue), and with our memory opti-
mization that deallocates the output tensor of each pipeline rank
(yellow). The 530B model (see Table 3) is used for this experi-
ment.

imbalance across pipeline ranks for both an unoptimized
case, and when deallocating each microbatch’s output tensor
after its forward pass. This optimization relies on the fact
that, after a microbatch’s forward pass, the output tensor’s
data is redundant with the input data of the following stage,
thereby making it safe to deallocate. We should note that
in all other results shown in this paper, this output-tensor-
deallocation optimization is used.

In this figure, we can observe the linear memory decrease
along the pipeline ranks (directly observable for pipeline
ranks 1 and above), along with the additional sbhp mem-
ory spike on pipeline rank 0 due to the embedding layer’s
activation memory (see Section 4.3).

In the case of applying the output-tensor-deallocation opti-
mization, we save sbhr memory per pipeline rank, where
r is the number of microbatches in flight on each rank,
peaking at r = p on the first pipeline stage. Using the hy-
perparameters for the 530B model (see Table 3), and this
setup’s 2 bytes per data element, the theoretical savings for
this optimization on the first pipeline stage is sbhp = 2.73
GB, which closely matches the difference between the lines
shown in the figure for rank 0.

C MICROBATCH LEVEL ACTIVATION
RECOMPUTATION

GPUs used in pipeline parallel model training store the input
activations of layers until they are consumed at the gradient
computation during back-propagation. As discussed in Sec-
tion 4.2.3, the first pipeline stage stores the most activations,
an equivalent of storing activations for all of the transformer



Reducing Activation Recomputation

layers in the model.

The computation and memory usage patterns of the first
pipeline stage are illustrated in Figure 10. Yellow, red, and
blue boxes indicate the execution of forward, recomputa-
tion, and back-propagation of one microbatch, respectively.
This example uses the pipeline-parallel size of four and nine
microbatches per iteration for training. Here the recomputa-
tion can be either full or selective. Figure 10.a depicts the
execution flow of the baseline approach. Although there is
some GPU memory left unused, if it is not large enough to
store all of the activations and thus not require any recompu-
tation, the activations of every microbatch is checkpointed
and recomputed during back-propagation.

1 2 3 4 1 5

1 3 4

1 2 62 3 73 4 84 5 95 66 77 88 99

1 5 2 3 73 4 84 5 9 66 77 88 92 62

Skip checkpointing the activation of 1 micro-batch out of each 4 micro-batch window

(a) Baseline

(b) Skip checkpointing micro-batches out of the outstanding micro-batch back-propagation steps

G
P

U
 M

em
or

y
G

P
U

 M
em

or
y

Memory allocated

Memory allocated

Forward prop
Recompute
Backprop

Skip activation checkpoint

GPU memory unused

Figure 10. Computation and memory usage patterns of the base-
line activation recomputation and microbatch level activation re-
computation. Yellow boxes are a forward pass with activations
checkpointed (i.e. only some activations are saved), red boxes
are activation recomputation, blue boxes are backpropagation, and
white boxes are a foward pass with all activations saved.

Microbatch level activation recomputation uses all the avail-
able device memory to store activations of some outstanding
microbatches, and checkpoint the rest until the backprop-
agation frees enough memory to store another full layer
of activations. We skip checkpointing microbatches (i.e.
store all their activation) until all device memory is used.
In Figure 10.b, the activations of the first microbatch are
stored out of four microbatches. Once the activations of the
first microbatch are consumed by the its back-propagation,
enough memory is now free to store all activations of the
fifth microbatch. This can be seen as a moving window of
microbatches in which a certain number of them can have
all activations stored.

Later pipeline stages have fewer outstanding backpropa-
gation steps thus we can save all activations for the same
number of microbatches within a smaller microbatch win-
dow. The size of outstanding microbatch backpropagation
steps at each pipeline stage is calculated as max(0, p− S),
where S is the stage number. Based on our observations,

many of later pipeline stages do not need any activation
recomputation.

Microbatch level activation recomputation increases the
model FLOPs utilization of the 175B and 530B parameter
models to 52.3% (+0.7%) and 56.4% (+0.4%), respectively,
compared to the baseline with both sequence parallelism
and selective activation recomputation. The gain is small
because the selective recomputation overhead is as small
as ∼2%. However, one can imagine model parallel con-
figurations where there is nearly enough memory for no
recomputation, in which case microbatch level activation
recomputation could provide more improvement to training
speed.


