
REDUCING ACTIVATION RECOMPUTATION IN LARGE TRANSFORMER
MODELS

Vijay Korthikanti 1 Jared Casper 1 Sangkug Lym 1 Lawrence McAfee 1 Michael Andersch 1

Mohammad Shoeybi 1 Bryan Catanzaro 1

ABSTRACT
Training large transformer models is one of the most important computational challenges of modern AI. In
this paper, we show how to significantly accelerate training of large transformer models by reducing activation
recomputation. Activation recomputation is commonly used to work around memory capacity constraints. Rather
than storing activations for backpropagation, they are traditionally recomputed, which saves memory but adds
redundant compute. In this work, we show most of this redundant compute is unnecessary because we can
reduce memory consumption sufficiently without it. We present two novel yet very simple techniques: sequence
parallelism and selective activation recomputation. In conjunction with tensor parallelism, these techniques almost
eliminate the need to recompute activations. We evaluate our approach on language models up to one trillion
parameters in scale and show that our method reduces activation memory by 5×, while reducing execution time
overhead from activation recomputation by over 90%. For example, when training a 530B parameter GPT-3 style
model (Smith et al., 2022) on 2240 NVIDIA A100 GPUs, we achieve a Model Flops Utilization of 54.2%, which
is 29% faster than the 42.1% we achieve using recomputation.

1 INTRODUCTION

As transformer models scale towards trillions of parameters,
model parallelism is required to distribute model parameters,
activations, and optimizer state across devices for them to fit
into device memory and be trainable in a realistic amount of
time. Although model parallelism linearly reduces the num-
ber of parameters per device, e.g., number of parameters per
device is halved when model parallel size is doubled, there
are limits to scale model parallelism. Tensor-level model
parallelism increases communication requirements and in-
troduces smaller and less performant matrix multiplications,
making it inefficient to split a model across a large number
of devices. As a result, tensor-level model parallelism is
typically limited to a relatively small group of GPUs that
are connected with high speed bandwidth, such as GPUs
connected with NVLink inside a DGX server. Pipeline
parallelism requires storing the activations of several mi-
crobatches to reduce the pipeline bubble (Narayanan et al.,
2021). As a result, pipeline parallelism can only help with
the memory needed to store model parameters and optimizer
state and cannot reduce the memory needed for activations
while maintaining high device utilization. Thus the storage

1NVIDIA. Correspondence to: Vijay Korthikanti <vkor-
thikanti@nvidia.com>, Jared Casper <jcasper@nvidia.com>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

of activations quickly becomes a critical problem to scaling
large transformer models.

To quantify this, Figure 1 shows the memory required for
four model configurations ranging from 22 billion parame-
ters to 1 trillion parameters (details of the model configura-
tions are provided in Table 3). It can be seen that for all these
cases, the required memory for the baseline cases is above
the 80GB memory provided by an NVIDIA A100 GPU. The
standard approach to alleviate this memory pressure is to
simply not store most of the activations and recompute them
as necessary to calculate gradients during the backward pass
(Chen et al., 2016). Unfortunately this method, usually
called “gradient checkpointing” or “activation recomputa-
tion”, incurs a steep penalty of reducing training efficiency.
For transformer architectures, majority of prior work has
checkpointed, or stored, the activations at transformer layer
boundaries and recomputed the rest of the necessary acti-
vations in the backward pass. In this paper we refer to this
method as “full activation recomputation”. In our training
runs, we observe 30− 40% execution time overhead when
full activation recomputation is used.

In this paper we present novel techniques that help alleviate
the memory pressure of storing activations and thus reduce
the need to recompute activations. These techniques are
specific to the transformer architecture and are both simple
to implement and have no, or very low, impact on compute
efficiency. As we detail in Section 2, there are several other

Reducing Activation Recomputation

Figure 1. Parameters, optimizer state, and activations memory. The dashed red line represents the memory capacity of an NVIDIA A100
GPU. Present work reduces the activation memory required to fit the model. Details of the model configurations are provided in Table 3.

techniques to reduce the memory requirements of training
large models, such as partitioning various data across the
data parallel ranks or offloading data to CPU memory (Ra-
jbhandari et al., 2020; Ren et al., 2021). These techniques
are complementary to the techniques presented here and
could be additionally employed for even greater memory
savings; however, in general these other techniques have
both higher implementation cost and a larger impact on com-
pute efficiency than the techniques presented in this paper.
An analysis comparing these techniques to ours is outside
the scope of this paper and left for future work.

We begin with a brief review of the transformer architecture
and then build up an approximate formula for the memory
required to store activations of a transformer model. Using
this formula we can then study how different forms of model
parallelism impact the activation memory requirements. We
introduce sequence parallelism alongside tensor parallelism
to prevent redundant storage of activations in regions that
are not conducive to standard tensor parallelism. We then
show that by being selective in what activations are saved
and what are recomputed we can eliminate much of the
cost of recomputation while using only a fraction of the
memory when no recomputation is used. Finally, we present
several experiments that measure the improvements these
techniques make to both individual components of training
as well as the full training throughput.

2 RELATED WORK

Model parallelism enables training very large models across
multiple GPUs. Model parameters along with the associated
optimizer states of these models require a huge amount of
memory and do not fit on a single GPU. Even if we are
able to fit the model in a single GPU (e.g., by swapping
parameters between host and device memory (Ren et al.,

2021)), the high number of compute operations required can
result in unrealistically long training times. This calls for
parallelism. Two forms of model parallelism are commonly
used to distribute the model parameters across GPUs: 1)
tensor parallelism where parameters of each layer are dis-
tributed across many devices (Shazeer et al., 2018; Shoeybi
et al., 2019; Xu et al., 2021), and 2) pipeline parallelism
where the model is split along the layer dimension of the
network (Huang et al., 2019; Li et al., 2021b; Narayanan
et al., 2019). Some recent approaches combine both types
of model parallelism to enable training large models up to
1T parameters (Narayanan et al., 2021).

An alternative to model parallelism is to combine a number
of training techniques along with data parallelism to enable
large scale model training (Rajbhandari et al., 2020; Ren
et al., 2021; Rajbhandari et al., 2021; Rasley et al., 2020).
This approach is based on sharding the optimizer states,
gradients, and parameters across data-parallel ranks. Also,
a recent extension (Rajbhandari et al., 2021) uses CPU off-
loading techniques to enable multi-trillion parameter model
training on a small number of GPUs. Compared to model
parallelism, these techniques, which are based on data par-
allelism, are less efficient and do not scale well to a large
numbers of GPUs (Narayanan et al., 2021) and are thus a
better fit for finetuning models in resource-constrained en-
vironments. This paper focuses only on model parallelism
optimizations. An analysis comparing these techniques to
ours is outside the scope of this paper.

In addition, tensor parallelism as introduced in Megatron-
LM (Shoeybi et al., 2019) helps to reduce the activation
memory to some extent. In this approach, there are parts
of the transformer where activations are not split across
tensor parallel ranks, adding to activation memory over-
head. Sequence parallelism as suggested in (Li et al., 2021a)
where activations are partitioned along sequence dimensions

Reducing Activation Recomputation

throughout the network can alleviate this problem. How-
ever, their approach, similar to data parallelism, requires
the parameters and optimizer state to be replicated on all
of the devices which makes it not suitable for large model
training. Sagemaker (Karakus et al., 2021) and GSPMD
(Xu et al., 2021) propose memory efficient versions of ten-
sor parallelism which splits the activations across the de-
vices along the hidden dimension throughout the network.
The main drawback of these approaches is that they en-
compass multi-device layer normalization which is very
compute/communication inefficient. The LayerNorm opera-
tion entails computing mean and variance along the hidden
dimension sequentially. If LayerNorm were split along the
hidden dimension (i.e. using tensor parallelism) it would
add an additional two all-reduce operations. Moreover, the
LayerNorm backward pass requires two additional sequen-
tial reductions (two more all-reduces). These 4 communi-
cations per transformer layer would introduce significant
overhead compared to the layernorm compute times. This
communication overhead of LayerNorm operation can be
avoided with sequence parallelism.In this paper, we present
a new technique which leverages the advantages of both
tensor parallelism and sequence parallelism without any
of the previous approaches’ shortcomings. In other words,
our technique, which mixes both tensor and sequence paral-
lelism, reduces the activation memory significantly without
any additional compute, communication, or memory over-
head.

Our paper is focused on examining the Transformer archi-
tecture in particular as we believe it is an important and
widely used architecture to justify manually inspecting the
individual layers to understand their memory and compute
contributions and deducing the best parallelization scheme.
Through analytical modelling, we show that memory (both
activation and parameter) is uniformly partitioned across the
devices. In other words, we can claim that our paralleliza-
tion strategy is optimal in terms of memory requirements.
Transformer networks are widely used enough that this man-
ual search and validation of the best parallelization strategy
is highly leveraged. It is possible an automated search (Jia
et al., 2019; Wang et al., 2019) can find this optimal strat-
egy but to the best of our knowledge we have not seen any
published results of these methods applied to transformer
networks.

Like the parallelization scheme, The selective activation
recomputation presented in the paper is based on manual
search for the best trade-off between activation memory
requirement and recomputation for the transformer model.
Exploring if automated methods (Feng & Huang, 2021) can
add to and potentially improve the trade-off is an interesting
direction for future work.

3 TRANSFORMER ARCHITECTURE

In this work, we consider a single stack transformer encoder
or decoder with L layers as shown in Figure 2. At the start of
the network, the input tokens are fed into a word embedding
table with size v×h and the token embeddings are combined
with learned positional embeddings with size s× h where
s is the sequence length, h is the hidden dimension, and
v is the vocabulary size. The output of the embedding
layer, which is the input to the transformer block, is a 3-D
tensor of size s × b × h where b is the microbatch size.
Each transformer layer consists of a self-attention block
with a attention heads followed by a multi-layer perceptron
(MLP) with two layers which increase the hidden size to
4h and then reduce it back to h. Input to and output from
each transformer layer have the same size s× b× h. The
output from the last transformer layer is projected back
into the vocabulary dimension to calculate the cross-entropy
loss. We assume that word embedding and output layer
weights are shared. Variable names are listed in Table 1 for
reference.

a # attention heads p pipeline parallel size
b microbatch size s sequence length
h hidden dimension size t tensor parallel size
L # transformer layers v vocabulary size

Table 1. Variable names.

4 ACTIVATION MEMORY

In this section, we derive an approximate formula for the
memory required to store activations in the forward pass
of a single stack transformer model as shown in Figure 2.
Note that “activations” in this paper refers to any tensor that
is created in the forward pass and is necessary for gradient
computation during back-propagation. As a result, this ex-
cludes the main parameters of the model and optimizer state,
but, for example, includes the mask used by the dropout
operation.

In addition, we only consider the main contributors to the
memory and ignore small buffers. Small buffers include
layernorm input’s mean and variance (2sb) and GEMM
operation’s bias (O(h)). Combined, these buffers account
for much less than 1% of activation memory because the
hidden dimension (h) and sequence dimensions (s) are both
in the order of thousands and so compared to the O(sbh)
sizes of the GEMM and layernorm activations both 2sb and
O(h) are missing one of those factors.

We also assume that the network and the activations are
stored in a 16-bit floating point format and therefore each
element requires 2 bytes for storage. The only exceptions
are the dropout masks which only require a single byte per

Reducing Activation Recomputation

Figure 2. Transformer Architecture. Each gray block represents a single transformer layer that is replicated L times.

element. Note that all the reported sizes in this section
are in bytes and not number of elements unless explicitly
mentioned.

4.1 Activations Memory Per Transformer Layer

As shown in Figure 2, each transformer layer consists of an
attention and an MLP block connected with two layer-norms.
Below, we derive the memory required to store activations
for each of these elements:

Attention block: which includes self attention followed
by a linear projection and an attention dropout. The linear
projection stores its input activations with size 2sbh and the
attention dropout requires a mask with size sbh. The self
attention shown in Figure 3 consists of several elements:

• Query (Q), Key (K), and Value (V) matrix multi-
plies: We only need to store their shared input with
size 2sbh.

• QKT matrix multiply: It requires storage of both Q
and K with total size 4sbh.

• Softmax: Softmax output with size 2as2b is required
for back-propagation.

• Softmax dropout: Only a mask with size as2b is
needed.

• Attention over Values (V): We need to store the
dropout output (2as2b) and the Values (2sbh) and
therefore need 2as2b+ 2sbh of storage.

Summing the above values, in total, the attention block
requires 11sbh+ 5as2b bytes of storage.

MLP: The two linear layers store their inputs with size 2sbh
and 8sbh. The GeLU non-linearity also needs its input with
size 8sbh for back-propagation. Finally, dropout stores its
mask with size sbh. In total, MLP block requires 19sbh
bytes of storage.

Figure 3. Self-attention block. The red dashed line shows the re-
gions to which selective activation recomputation is applied (see
Section 5 for more details on selective activation recomputation).

Layer norm: Each layer norm stores its input with size
2sbh and therefore in total, we will need 4sbh of storage.

Summing the memory required for attention, MLP, and the
layer-norms, the memory required to store the activations
for a single layer of a transformer network is:

Activations memory per layer = sbh
(
34 + 5

as

h

)
(1)

The above equation is for the case that no form of model
parallelism is applied.

4.2 Model Parallelism

In this section we start by quantifying the effect of tensor
parallelism on the required activation memory per layer. We
then introduce a novel method to mix sequence parallelism
with tensor parallelism that further reduces per layer mem-
ory required by activations. At the end of this section, we
also discuss the effect of pipeline parallelism on activations
memory and derive a formula for the total memory required
by activations.

4.2.1 Tensor Parallelism

We use tensor parallelism developed by Shoeybi,
et.al.(Shoeybi et al., 2019) and parallelize the attention as
well as MLP blocks as shown in Figure 4. This form of paral-

Reducing Activation Recomputation

lelism introduces two additional communication operations
f and f̄ . For more details, please see the paper(Shoeybi
et al., 2019).

Not only does tensor parallelism parallelize model param-
eters and optimizer states inside the attention and MLP
blocks, but it also parallelizes the activations inside those
blocks. Note that the input activations to these blocks (for
example input to the Q, K, and V matrix multiplies or input
to the h → 4h linear layer) are not parallelized, and only
activations within each block are divided across the tensor
parallel group1. Assuming t-way tensor parallelism, the
per-layer memory required to store the activations reduces
from Equation 1 to:

Activations memory per layer = sbh

(
10 +

24

t
+ 5

as

ht

)
(2)

4.2.2 Sequence Parallelism

Tensor parallelism, as shown in Figure 4, parallelizes the
parts of the transformer layer that take the most time during
training and as a result, it is computationally efficient. How-
ever, it leaves the layer-norms as well as the dropouts after
attention and MLP blocks intact and as a result, they are
replicated across the tensor parallel group. These elements
do not require a lot of compute but demand a considerable
amount of activation memory. Quantitatively, the 10sbh
part of Equation 2 is due to these replicated operations and
as a result they are not divided by the tensor parallel size t.

We notice that in the non-tensor parallel regions of a trans-
former layer, the operations are independent along the se-
quence dimension. This characteristic allows us to partition
these regions along the sequence dimension s. Partitioning
along the sequence dimension reduces the memory required
for the activations. This extra level of parallelism introduces
new communication collectives before f and after f̄ which
will act as converters between sequence and tensor parallel
regions. For example, in the forward pass, we need an extra
all-gather before the operator f in Figure 4. These extra
communications introduce overhead and will slow down the
training.

To avoid these extra communications, we combine these
operations with the f and f̄ operators and introduce new
operations g and ḡ as shown in Figure 5. As it can be seen,
g and ḡ are the converters between sequence and tensor
parallel regions. We derive these operations in the remainder
of this section.

We detail g and ḡ’s derivation using the MLP block. In
the non-parallel form, as shown in Figure 2, the layer-norm

1The tensor parallel group is the group of accelerators that
participate in tensor parallelism

followed by the MLP block can be formulated as:

Y = LayerNorm(X),

Z = GeLU(Y A),

W = ZB,

V = Dropout(W),

where X is input to the layer-norm with size s× b× h and
A and B are the weight matrices of the linear layers with
size h× 4h and 4h× h, respectively. The combined tensor
and sequence parallel form of the above operations is shown
in Figure 6. The subscripts represent splitting among accel-
erators and superscripts depict the dimension along which
the splitting is done. For example, Xs

1 is the first accelera-
tor’s part of X that is split along the s dimension (sequence
dimension) while Zh

2 is the second accelerator’s part of Z
that is split along the h dimension (hidden dimension).

The input to the layer-norm is parallelized along the se-
quence dimension X = [Xs

1 , X
s
2]. As a result, the output

of the layer-norm will also be parallel along the sequence
dimension Y = [Y s

1 , Y
s
2]. The linear layer with GeLU non-

linearity requires the entire input Y and therefore we need
to perform an all-gather. This implies that g is an all-gather
operation along the sequence dimension in the forward pass.
By splitting A along its columns (Ac

1 and Ac
2) and B along

its rows (Br
1 and Br

2), we avoid communications (for more
details please see (Shoeybi et al., 2019)) and arrive at W1

and W2. These two tensors are not parallel anymore and
need to be summed as W = W1 +W2 before they are fed
into the dropout layer. However, dropout needs its input to
be parallel in the sequence dimension s. Instead of summing
and then parallelizing in the sequence dimension, we com-
bine these two operations into a reduce-scatter operation.
As a result, ḡ can be a single reduce-scatter operation in the
forward pass. Putting it all together, we arrive at:

[Y s
1 , Y

s
2] = LayerNorm([Xs

1 , X
s
2]),

Y = g(Y s
1 , Y

s
2),

[Zh
1 , Z

h
2] = [GeLU(Y Ac

1), GeLU(Y Ac
2)],

W1 = Zh
1B

r
1 and W2 = Zh

2B
r
2 ,

[W s
1 ,W

s
2] = ḡ(W1,W2),

[V s
1 , V

s
2] = [Dropout(W s

1), Dropout(W s
2)]

(3)

If we follow a similar break-down for the backward pass,
we find that g and ḡ are conjugate of each other. g is an
all-gather in the forward pass and a reduce-scatter in the
backward pass, and ḡ is a reduce-scatter in the forward pass
and an all-gather in the backward pass. A similar breakdown
done for the layer-norm followed by the attention part of the
transformer layer arrives at Figure 5.

Tensor parallelism requires four all-reduces in a single for-
ward and backward pass whereas tensor together with se-

Reducing Activation Recomputation

Figure 4. Transformer layer with tensor parallelism. f and f̄ are conjugate. f is no operation in the forward pass and all-reduce in the
backward pass. f̄ is all-reduce in the forward pass and no operation in the backward pass.

Figure 5. Transformer layer with tensor and sequence parallelism. g and ḡ are conjugate. g is all-gather in the forward pass and
reduce-scatter in the backward pass. ḡ is reduce-scatter in forward pass and all-gather in backward pass.

Figure 6. MLP layer with tensor and sequence parallelism. g and ḡ
are conjugate. g is all-gather in forward pass and reduce-scatter in
backward pass. ḡ is reduce-scatter in forward pass and all-gather
in backward pass.

quence parallelism requires four all-gathers and four reduce-
scatters in a single forward and backward pass. At the
first look, it seems that tensor with sequence parallelism
requires more communications compared to tensor paral-
lelism. However, we note that a ring all-reduce is composed
of two steps: a reduce-scatter followed by an all-gather. As
a result, the communication bandwidth used for tensor paral-
lelism and tensor together with sequence parallelism are the
same. Therefore, sequence parallelism does not introduce
any communication overhead.

From Equation 3, sequence parallelism along with tensor

parallelism divides all the activations required for the back-
ward pass along the parallel dimension except for the tensor
Y that is required for the first linear operation. To alleviate
this issue, we do not store the full tensor Y for the back-
ward pass. Instead, we store only the Y s

i part on the ith
tensor parallel rank and perform an extra all-gather in the
backward pass. To eliminate the latency introduced by this
extra all-gather, we overlap this communication with the
computation required to calculate gradients with respect to
Y , and as a result, we reduce the overhead.

Using sequence parallelism along with tensor parallelism,
the memory required to store the activations per transformer
layer reduces from Equation 2 to:

Activations memory per layer = sbh

(
10

t
+

24

t
+ 5

as

ht

)
=

sbh

t

(
34 + 5

as

h

)
(4)

The above equation is now Equation 1 divided by the tensor
parallel size. This means that using tensor and sequence
parallelism, we can distribute activations among the tensor
parallel group and reduce the required memory by tensor
parallel size t.

Reducing Activation Recomputation

4.2.3 Pipeline Parallelism

Pipeline parallelism simply divides the L layers of the trans-
former into L/p groups of layers where p is the pipeline
parallel size. However, pipeline parallelism does not uni-
formly divide the total memory required for activations by
p. This is due to the overlapping that pipeline parallel sched-
ules introduce to reduce the pipeline bubble (Narayanan
et al., 2021).

To quantify this, we consider the 1F1B pipeline schedule
developed in PipeDream (Narayanan et al., 2020). Sched-
ules that have a minimized pipeline bubble put the most
memory pressure on the first stage of the pipeline (first stage
of the pipeline refers to first group of L/p layers which
also includes the input embeddings). A visualization of
activation memory as a function of pipeline stage is shown
in Appendix B. To keep the pipeline pressurized and avoid
extra idle time, the first stage must store activations for p mi-
crobatches (for more details see Figure 4-top of (Narayanan
et al., 2021)). Each stage contains L/p layers so the first
stage must store p × L/p = L layers worth of activations
regardless of the pipeline parallel size p. Therefore, the total
memory required to store activations in the first stage is:

Total activations memory =
sbhL

t

(
34 + 5

as

h

)
(5)

For other pipeline schedules, the total memory required
would be slightly different. For example, the interleav-
ing schedule developed in Megatron-LM (Narayanan et al.,
2021) requires storing activations for L(1 + p−1

pm) layers
where m is the number of interleaving stages. As a result,
if the interleaving schedule is used, then the total activation
memory should be scaled by (1 + p−1

pm).

4.3 Total Activations Memory

The majority of the required activation memory is captured
by Equation 5. However, this equation does not capture
activation memory required for the input embeddings, the
last layer-norm, and the output layer as shown in Figure 2.

Position and word embeddings do not require any consider-
able activations to be stored for the backward pass. However,
the dropout requires storage. The dropout in the embeddings
layer is also parallelized along the sequence dimension. As
a result, it will require sbhp/t storage. Note that the factor
p comes from the pipeline parallelism and the fact that we
need to store p microbatches (see Section 4.2.3).

The layer-norm before the output layer also uses sequence
parallelism and as a result requires 2sbh/t storage. The out-
put layer projection into vocabulary dimension will require
its input with size 2sbh/t to be stored. Finally, the cross
entropy loss requires storing the logits which are calculated
in 32-bit floating point and as a result will require 4sbv/t

of storage. Note that since we only consider activations
in the first stage of the pipeline, the above activations, i.e.,
4sbh/t(1+ v/h) in total, are only included for the case that
there is no pipeline parallelism (p = 1).

Adding the above memory, the extra memory due to the
input embeddings, the last layer-norm, and the output layer
is:

sbhL

t

(
p

L
+ δp=1

4

L

(
1 +

v

h

))
where δp=1 is 1 for p = 1 and 0 otherwise. We note that
compared to term 34 + 5as

h from Equation 5, both p/L and
4/L(1 + v/h) are negligible. For example, for a model
with 22B parameters, these extra terms account for less than
0.01% of the total activation memory requirements. As
a result, Equation 5 is a good approximation to the total
required activations memory and we will use it in the rest
of this paper.

5 SELECTIVE ACTIVATION
RECOMPUTATION

The total required activation memory from Equation 5 can
still be considerable for large models. Activation recompu-
tation (Chen et al., 2016) overcomes this memory limitation
by storing (or ”checkpointing”) the input activations to a
group of layers and recomputing other required activations
using an extra forward pass during back-propagation (this
is referred to in this paper as full activation recomputation).
Assuming the groups contain only a single layer, and ignor-
ing activations outside of the transformer layers, this method
reduces the total required memory for activations to 2sbhL.
We note that this required memory can be further reduced to
2sbhL/t if we only store a portion of activations in each ten-
sor parallel rank. However, this approach requires an extra
all-gather per layer and will add communication overhead
and, as a result, we do not consider this approach.

Compared to storing all activations (Equation 5), checkpoint-
ing all transformer layers significantly reduces the amount
of memory required to train a model. This reduction does
come at the cost of the recomputation (an extra forward
pass) which can introduce as much as 30 − 40% compu-
tational time overhead. To balance the memory savings
and computational overhead, it is ideal to only checkpoint
enough activations to allow a given model-parallel configu-
ration to train given the constraints of device memory. The
memory savings provided by sequence parallelism allows
many more configurations to train without recomputation
than before, but the optimal model parallel configurations
of large models still generally require some saving and re-
computing of activations. A simple approach to choose the
amount of activations that are stored vs recomputed is to
only checkpoint some of the transformer layers and store
all the activations of other layers. This approach does not

Reducing Activation Recomputation

scale very well to large models; for example, when training
MT-NLG there are only three layers per device, limiting the
granularity at which you can balance memory vs compute.
Additionally, we note that not all activations require the
same amount of operations to recompute so it is beneficial
to be smarter in selecting which activations to store and
which to recompute.

Instead of checkpointing and recomputing full transformer
layers, we propose to checkpoint and recompute only parts
of each transformer layer that take up a considerable amount
of memory but are not computationally expensive to recom-
pute, or selective activation recomputation. To this end, we
note that the term 5as/h in Equation 5 is due to the attention
operations after the width of the network is increased by the
linear layer calculating the Q, K, and V values; i.e., QKT

matrix multiply, softmax, softmax dropout, and attention
over V as shown in Figure 3. These operations generally
have large input sizes and thus large activations, however,
the number of floating-point operations (FLOPs) per input
element is very low. The rest of the transformer layer ac-
counts for the 34 term in Equation 5. Thus, for large models
where 5as/h > 34, if we checkpoint and recompute this
part of the transformer layer, we store less than half of the
activations and only have a modest cost to recompute those
that aren’t stored.

To quantify this, let’s consider GPT-3 (Brown et al., 2020)
and MT-NLG (Smith et al., 2022) models, some of the
largest models that have been trained so far. For GPT-
3, a = 96, s = 2048, and h = 12288 and as a result
5as/h = 80. For MT-NLG, a = 128, s = 2048, and
h = 20480 so 5as/h = 64. Comparing these numbers
to 34, which is the factor for the rest of the layer, we can
see these activations account for a large portion of the total
activations. Thus, by using selective activation recompu-
tation we can save 70% and 65% of the required memory
for activations for the GPT-3 and MT-NLG models, respec-
tively. The recomputation of these activations introduces
only 2.7% and 1.6% FLOPs overhead for these two models.
For more details on the FLOPs calculations see Appendix A.
As sequence length increases the ratio of sequence length
to hidden size (s/h) will increase and the relative cost of
performing the recomputation in the selective part increases,
thus making selective activation recompute more expensive.
We hold that for any practical s/h ratio, selective activa-
tion recompute will still be the best recompute strategy to
balance memory savings and compute.

Using this form of selective activation recomputation, the
memory needed to store activation decreases from Equation
5 to:

Total required memory = 34
sbhL

t
. (6)

The above equation shows that using selective activation

recomputation allows the required activation memory to
scale linearly with sequence length and be independent of
the number of attention heads. As was discussed in Section
4.2.3, in the case of an interleaved pipeline schedule, the
above equation needs to be multiplied by (1 + p−1

pm).

When using pipeline parallelism, as discussed in Sec-
tion 4.2.3, even though a given device only has L/p layers,
the first stage must still store an equivalent of L layers of
activations since it must store activations for p microbatches
to keep the pipeline pressurized. An additional technique
that can be employed to reduce the recomputation cost in
this case is to store all the activations for as many micro-
batches as possible given available device memory, and
do full or selective recomputation of the rest. In practice
we find that after applying sequence parallelism and selec-
tive activation recomputation the recomputation overhead
is small enough that this additional technique provides very
modest improvement. This technique is described in more
detail and analyzed in Appendix C.

6 EVALUATIONS

In this section, we evaluate the impact of our proposed
approach on both memory usage as well as execution speed
of training. Table 3 lists the model configurations used
in the evaluations. We consider models up to one trillion
parameters and for all these models, the tenor parallel size
is set to 8. We use the interleaving schedule with three
interleaving stages (m = 3) for the 175B and 530B models.
For all the cases, sequence length is set to s = 2048 and
vocabulary size is set to v = 51200. We also note that no
data parallelism is considered in these evaluations since our
approach is independent of data parallelism. As a result, the
batch sizes used in our analysis are much lower than the
ones used for the end-to-end training. All of our results are
run with mixed precision on the Selene supercomputer (sel).
Each cluster node has 8 NVIDIA 80GB A100 GPUs (a10)
connected to each other by NVLink and NVSwitch (nvl).
Each node has eight NVIDIA Mellanox 200Gbps HDR
Infiniband HCAs for application communication.

6.1 Memory Usage

We validated the memory consumption model by tracking
GPU active memory and GPU total memory (available in
PyTorch) at different points in the run with the help of
forward and backward hooks. We verified that the measured
memory usage closely matches our analytical model.

Table 2, first column summarizes the required memory for
different techniques discussed in this paper. To quantify
this, Figure 7 shows the activation memory used by differ-
ent techniques as a percentage of the memory needed to
keep all activations split across the tensor parallel ranks, i.e.,

Reducing Activation Recomputation

Configuration Activations Memory FLOPs Bytes Communicated(bytes)

no parallelism sbh
(
34 + 5as

h

)
72sbh2

(
1 + s

6h

)
0

tensor parallel (baseline) sbh
(
10 + 24

t + 5as
ht

)
72sbh2

t

(
1 + s

6h

)
16 t−1

t sbh
tensor + sequence parallel sbh

(
34
t + 5as

ht

)
tensor parallel +

sbh
(
10 + 24

t

)
72sbh2

t

(
1 + 2s

9h

)selective activation recomputation
tensor parallel + sequence parallel +

sbh(34t)selective activation recomputation

full activation recomputation sbh(2) 96sbh2

t

(
1 + s

6h

)
24 t−1

t sbh

Table 2. Activations memory, FLOPs, and communication bytes per transformer layer for different techniques.

Model Attention Hidden
Layers

Tensor Pipeline Number Global Micro
Size Heads Size Parallel Parallel of Batch Batch

Size Size GPUs Size Size
22B 64 6144 48 8 1 8 4 4

175B (GPT-3) 96 12288 96 8 8 64 64 1
530B (MT-NLG) 128 20480 105 8 35 280 280 1

1T 160 25600 128 8 64 512 512 1

Table 3. Model configurations used during evaluation. Note that no data parallelism is used in our evaluations and as a result, the batch
sizes as well as total number of GPUs are set to a value much lower than the ones in the end-to-end training.

Experiment Forward (ms) Backward (ms) Combined (ms) Overhead (%)
Baseline no recompute 7.7 11.9 19.6 –

Sequence Parallelism 7.2 11.8 19.0 −3%
Baseline with recompute 7.7 19.5 27.2 39%

Selective Recompute 7.7 13.2 20.9 7%
Selective + Sequence 7.2 13.1 20.3 4%

Table 4. Time to complete the forward and backward pass of a single transformer layer of the 22B model.

Equation 2. Individually, both techniques cut the memory
requirement nearly in half, and combined provide a 5x reduc-
tion bringing the memory requirements to under 20%. This
is only ∼ 2× of the full activation recomputation which is at
10% of the baseline. Without the memory savings provided
by sequence parallelism and selective recompute together,
none of the these models will fit into memory. Note that all
of these results include the memory optimization described
in Appendiex B.

6.2 Execution Time per Layer

Table 2, second and third columns summarize the compute
(FLOPs) and communication bytes per transformer layer for
different techniques discussed in this paper2. To quantify
this, Table 4 shows the time to execute the forward and

2refer to Appendix A for FLOPs derivation per layer

backward passes of one transformer layer of the 22B model
for various experiments3. The first two rows show that
sequence parallelism provides a modest improvement to the
time it takes to complete one transformer layer, reducing
the forward time from 7.7ms to 7.2ms, a 6% speedup. This
improvement comes from the layer-norm and dropout layers
being performed on 1/t of the data. We also found that even
though the amount of data moved is the same, the execution
of reduce-scatter and all-gather combined is slower than an
all-reduce alone, reducing the improvement from sequence
parallelism. Note that this speedup is an additional benefit to
the primary advantage of using sequence parallelism, which
is the memory savings that allow for less recomputation of
activations.

3These experiments were done on the 22B model with just
one layer so that they would fit into device memory without any
recomputation to obtain a baseline.

Reducing Activation Recomputation

Figure 7. Percentage of required memory compared to the tensor-level parallel baseline. As the model size increases, both sequence
parallelism and selective activation recomputation have similar memory savings and together they reduce the memory required by ∼ 5×.

The next two rows in Table 4 show that if we are selective
in what operations are recomputed, which we can be in
more configurations thanks to sequence parallelism, we can
significantly reduce the overhead of recomputation in the
backward pass. The overhead of selective recomputation
is 1.3ms, or 11% of the 11.9ms baseline, vs 7.6ms or 64%
overhead for recomputing the full layer. For the combined
forward and backward time, the overhead is 7% vs 39%.
Note that the overhead of 39% for recomputing the full layer
(as opposed to the expected 33%) is due to an optimization
in the backward pass where we overlap all-reduce commu-
nication with the linear weight’s gradient computation. As
we see later, this benefit increases with model size. The
bottom row in Table 4 shows the combined benefit of selec-
tive recomputation and sequence parallelism. When the two
techniques are used together, the overhead drops to just 4%.

Figure 8 shows this same break down for all of our test
cases. We see that as the model size grows, the reduction
in overhead also increases. For the 530B and 1T cases, the
overhead is just 2%, compared to 36% overhead for full
recompute.

6.3 End-to-End Iteration Time

Table 5 lists full end-to-end iteration time for each of the
four configurations listed in Table 3. We find that for all
of the tested configurations, the techniques presented in the
paper provide between 29.0% and 32.1% improvement in
the throughput over performing full recomputation with-
out sequence parallelism. These savings will be directly
translated into shorter training times.

We define the model FLOPs utilization (MFU) and hard-
ware FLOPs utilization (HFU) similar to Chowdhery, et
al. (Chowdhery et al., 2022). Model FLOPs are the float-
ing point operations required to perform a single forward
and backward pass (single iteration) regardless of the im-

Figure 8. Per layer breakdown of forward, backward, and recom-
pute times. Baseline is the case with no recomputation and no
sequence parallelism. Present work includes both sequence paral-
lelism and selective activation recomputation.

plementations and hardware limitations. As a result, model
FLOPs are hardware and implementation independent and
only depend on the underlying model. On the other hand,
the hardware FLOPs represent the floating point operations
that are actually performed on the hardware per iteration.
Therefore, if an implementation requires activation recom-
putation (for example ours), then the hardware FLOPs are
going to be larger than model FLOPs. We provide a tight
lower bound formula for the model and hardware FLOPs in
Appendix A. For our method, the hardware to model FLOPs
ratio is approximately 1 + s/18h.

Subsequently, we define the model and hardware FLOPs per
second as the model and hardware FLOPs divided by the it-
eration time, respectively. Using these definitions, the MFU
and HFU are defined as model and hardware FLOPs per
second divided by the accelerator theoretical peak FLOPs

Reducing Activation Recomputation

Model Size Iteration Time (seconds) Throughput Model FLOPs Hardware FLOPs
Full Recompute Present Work Increase Utilization Utilization

22B 1.42 1.10 29.0% 41.5% 42.2%
175B 18.13 13.75 31.8% 51.4% 51.8%
530B 49.05 37.83 29.7% 56.0% 56.4%

1T 94.42 71.49 32.1% 56.3% 56.5%

Table 5. End-to-end iteration time. Our approach results in throughput increase of around 30%.

per second4. Both the MFU and HFU are provided in Ta-
ble 5 for all four configurations. As the model size increases,
we achieve better GPU utilization and for the one trillion
parameter model, we reach a MFU and HFU of 56.3% and
57.0%, respectively.

While we don’t consider initialization, evaluation, check-
pointing, etc. times in our analysis, these times are negligi-
ble compared to iteration time times the number of iterations,
which dominates the end-to-end training time. The number
of iterations used to train a large language model varies dras-
tically depending on the goals of the training. We thus hold
that the iteration time (i.e. throughput) we report, which
includes all of the needed operations such as data loading
and the optimizer step, is a good proxy for end-to-end train-
ing time for large language models. We have also found
iteration time to be consistent throughout training and thus
sampling the throughput is an accurate measure of what can
be expected.

We should note that the results in Table 5 do not use any
data parallelism. Data parallelism introduces some overhead
due to the gradient all-reduce required between the data
parallel groups. However, for large transformer models,
this overhead is not large. For example, if we scale the
530B model to 8-way data parallellism (2240 GPUs) while
keeping batch size per model instance constant – i.e., the
batch size is also multiplied by the data parallel size – the
time per iteration increases slightly from 37.83 seconds to
39.15 seconds. This results in an MFU drop from 56.0%
to 54.2% which is not substantial. We note that we do
not use any overlapping of gradient all-reduces with back-
propagation and an efficient overlap can almost entirely
eliminate this increase in the iteration time.

7 CONCLUSIONS AND FUTURE WORK

In this work, we presented two novel and straightforward
techniques that reduce memory pressure from storing acti-
vations and thus reduce the need to recompute activations.
We showed that using sequence parallelism with tensor par-
allelism can substantially reduce the required activation
memory. In conjunction with selective activation recompu-

4For NVIDIA A100 GPUs, the peak theoretical FLOPs per
second is 312 teraFLOPs/sec.

tation, we showed that we can achieve a 5× reduction in
memory and recover over 90% of the compute overhead
introduced using full activation recomputation.

In the future, we plan to further reduce the activation mem-
ory by resolving the issues arising from memory fragmen-
tation for large microbatches and non-uniform memory al-
location due to pipeline parallelism. Moreover, we plan to
work on methods that can reduce the memory pressure on
the first stage of the pipeline.

REFERENCES

NVIDIA A100 Tensor Core GPU. https://www.
nvidia.com/en-us/data-center/a100/.

NVLink and nVSwitch. https://www.nvidia.com/
en-us/data-center/nvlink/.

Selene. https://www.top500.org/system/
179842/.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.
html.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Train-
ing deep nets with sublinear memory cost. CoRR,
abs/1604.06174, 2016. URL http://arxiv.org/
abs/1604.06174.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,

https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.top500.org/system/179842/
https://www.top500.org/system/179842/
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174

Reducing Activation Recomputation

S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari,
G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev,
S., Michalewski, H., Garcia, X., Misra, V., Robinson,
K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim,
H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D.,
Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S.,
Pellat, M., Lewkowycz, A., Moreira, E., Child, R., Polo-
zov, O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz,
M., Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K.,
Eck, D., Dean, J., Petrov, S., and Fiedel, N. Palm:
Scaling language modeling with pathways, 2022. URL
https://arxiv.org/abs/2204.02311.

Feng, J. and Huang, D. Optimal gradient check-
point search for arbitrary computation graphs. In
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021,
pp. 11433–11442. Computer Vision Foundation /
IEEE, 2021. doi: 10.1109/CVPR46437.2021.01127.
URL https://openaccess.thecvf.com/
content/CVPR2021/html/Feng_Optimal_
Gradient_Checkpoint_Search_for_
Arbitrary_Computation_Graphs_CVPR_
2021_paper.html.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M. X., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and Chen,
Z. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. In Wallach, H. M., Larochelle,
H., Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp.
103–112, 2019. URL https://proceedings.
neurips.cc/paper/2019/hash/
093f65e080a295f8076b1c5722a46aa2-Abstract.
html.

Jia, Z., Zaharia, M., and Aiken, A. Beyond data and model
parallelism for deep neural networks. In Talwalkar, A.,
Smith, V., and Zaharia, M. (eds.), Proceedings of Ma-
chine Learning and Systems 2019, MLSys 2019, Stan-
ford, CA, USA, March 31 - April 2, 2019. mlsys.org,
2019. URL https://proceedings.mlsys.org/
book/265.pdf.

Karakus, C., Huilgol, R., Wu, F., Subramanian, A., Daniel,
C., Cavdar, D., Xu, T., Chen, H., Rahnama, A., and Quin-
tela, L. Amazon sagemaker model parallelism: A general
and flexible framework for large model training, 2021.
URL https://arxiv.org/abs/2111.05972.

Li, S., Xue, F., Li, Y., and You, Y. Sequence parallelism:

Long sequence training from system perspective, 2021a.
URL https://arxiv.org/abs/2105.13120.

Li, Z., Zhuang, S., Guo, S., Zhuo, D., Zhang, H., Song, D.,
and Stoica, I. Terapipe: Token-level pipeline parallelism
for training large-scale language models. In Meila, M. and
Zhang, T. (eds.), Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pp. 6543–6552. PMLR,
2021b. URL http://proceedings.mlr.press/
v139/li21y.html.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. Pipedream: generalized pipeline parallelism
for DNN training. In Brecht, T. and Williamson, C.
(eds.), Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP 2019, Huntsville,
ON, Canada, October 27-30, 2019, pp. 1–15. ACM,
2019. doi: 10.1145/3341301.3359646. URL https:
//doi.org/10.1145/3341301.3359646.

Narayanan, D., Phanishayee, A., Shi, K., Chen, X., and
Zaharia, M. Memory-Efficient Pipeline-Parallel DNN
Training. arXiv preprint arXiv:2006.09503, 2020.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V. A., Vainbrand, D., Kashinkunti,
P., Bernauer, J., Phanishayee, B. C. A., and Zaharia, M.
Efficient large-scale language model training on gpu clus-
ters using megatron-lm. ArXiv, abs/2104.04473, 2021.
URL https://arxiv.org/abs/2104.04473.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
memory optimizations toward training trillion parameter
models. In Cuicchi, C., Qualters, I., and Kramer, W. T.
(eds.), Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA,
November 9-19, 2020, pp. 20. IEEE/ACM, 2020. doi:
10.1109/SC41405.2020.00024. URL https://doi.
org/10.1109/SC41405.2020.00024.

Rajbhandari, S., Ruwase, O., Rasley, J., Smith, S., and
He, Y. Zero-infinity: breaking the GPU memory wall
for extreme scale deep learning. In de Supinski, B. R.,
Hall, M. W., and Gamblin, T. (eds.), SC ’21: The Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, St. Louis, Missouri,
USA, November 14 - 19, 2021, pp. 59:1–59:14. ACM,
2021. doi: 10.1145/3458817.3476205. URL https:
//doi.org/10.1145/3458817.3476205.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
speed: System optimizations enable training deep learn-
ing models with over 100 billion parameters. In Gupta,

https://arxiv.org/abs/2204.02311
https://openaccess.thecvf.com/content/CVPR2021/html/Feng_Optimal_Gradient_Checkpoint_Search_for_Arbitrary_Computation_Graphs_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Feng_Optimal_Gradient_Checkpoint_Search_for_Arbitrary_Computation_Graphs_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Feng_Optimal_Gradient_Checkpoint_Search_for_Arbitrary_Computation_Graphs_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Feng_Optimal_Gradient_Checkpoint_Search_for_Arbitrary_Computation_Graphs_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Feng_Optimal_Gradient_Checkpoint_Search_for_Arbitrary_Computation_Graphs_CVPR_2021_paper.html
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://proceedings.mlsys.org/book/265.pdf
https://proceedings.mlsys.org/book/265.pdf
https://arxiv.org/abs/2111.05972
https://arxiv.org/abs/2105.13120
http://proceedings.mlr.press/v139/li21y.html
http://proceedings.mlr.press/v139/li21y.html
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://arxiv.org/abs/2104.04473
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205

Reducing Activation Recomputation

R., Liu, Y., Tang, J., and Prakash, B. A. (eds.), KDD
’20: The 26th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, Virtual Event, CA,
USA, August 23-27, 2020, pp. 3505–3506. ACM, 2020.
doi: 10.1145/3394486.3406703. URL https://doi.
org/10.1145/3394486.3406703.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. Zero-offload:
Democratizing billion-scale model training. In Cal-
ciu, I. and Kuenning, G. (eds.), 2021 USENIX An-
nual Technical Conference, USENIX ATC 2021, July
14-16, 2021, pp. 551–564. USENIX Association, 2021.
URL https://www.usenix.org/conference/
atc21/presentation/ren-jie.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A.,
Koanantakool, P., Hawkins, P., Lee, H., Hong, M., Young,
C., Sepassi, R., and Hechtman, B. A. Mesh-tensorflow:
Deep learning for supercomputers. In Bengio, S., Wal-
lach, H. M., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., and Garnett, R. (eds.), Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, pp.
10435–10444, 2018. URL https://proceedings.
neurips.cc/paper/2018/hash/
3a37abdeefe1dab1b30f7c5c7e581b93-Abstract.
html.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. CoRR, abs/1909.08053, 2019. URL http:
//arxiv.org/abs/1909.08053.

Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhan-
dari, S., Casper, J., Liu, Z., Prabhumoye, S., Zerveas, G.,
Korthikanti, V., Zhang, E., Child, R., Aminabadi, R. Y.,
Bernauer, J., Song, X., Shoeybi, M., He, Y., Houston,
M., Tiwary, S., and Catanzaro, B. Using deepspeed and
megatron to train megatron-turing nlg 530b, a large-scale
generative language model. arXiv, 2022.

Wang, M., Huang, C., and Li, J. Supporting very large mod-
els using automatic dataflow graph partitioning. In Can-
dea, G., van Renesse, R., and Fetzer, C. (eds.), Proceed-
ings of the Fourteenth EuroSys Conference 2019, Dresden,
Germany, March 25-28, 2019, pp. 26:1–26:17. ACM,
2019. doi: 10.1145/3302424.3303953. URL https:
//doi.org/10.1145/3302424.3303953.

Xu, Y., Lee, H., Chen, D., Hechtman, B. A., Huang, Y.,
Joshi, R., Krikun, M., Lepikhin, D., Ly, A., Maggioni, M.,
Pang, R., Shazeer, N., Wang, S., Wang, T., Wu, Y., and
Chen, Z. GSPMD: general and scalable parallelization for

ML computation graphs. CoRR, abs/2105.04663, 2021.
URL https://arxiv.org/abs/2105.04663.

https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://proceedings.neurips.cc/paper/2018/hash/3a37abdeefe1dab1b30f7c5c7e581b93-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3a37abdeefe1dab1b30f7c5c7e581b93-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3a37abdeefe1dab1b30f7c5c7e581b93-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3a37abdeefe1dab1b30f7c5c7e581b93-Abstract.html
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
https://doi.org/10.1145/3302424.3303953
https://doi.org/10.1145/3302424.3303953
https://arxiv.org/abs/2105.04663

