
SAFE OPTIMIZED STATIC MEMORY ALLOCATION
FOR PARALLEL DEEP LEARNING

Ioannis Lamprou 1 Zhen Zhang 1 Javier de Juan 1 Hang Yang 1 Yongqiang Lai 2 Etienne Filhol 1

Cedric Bastoul 1

ABSTRACT
Parallel training is mandatory in order to maintain performance efficiency and tackle memory constraints for deep
neural network (DNN) models. For this purpose, a critical optimization in order to tune a parallelism strategy is to
schedule tensors onto device memory in compilation time. In this paper, we present a safe and optimized solver
for this problem capturing a general parallel scenario to enable execution in open-source MindSpore framework.
The input is a computational graph and a partition of its operators into streams of execution, which may run in
parallel. First, we design algorithms to efficiently and provably decide if it is safe, for any two tensors, to reuse
memory. Second, given such a set of reuse constraints, as well as a set of contiguous constraints to enable bulk
communication among processing elements, we design algorithms to assign an offset to each tensor, such that all
constraints are satisfied and total memory is minimized. Our experiments in parallel training of a variety of DNNs
demonstrate nearly optimal, improved in some cases, memory consumption compared to state-of-the-art (adapted
for our setting) and a sequential execution lower bound. Our algorithms show compilation time gains of up to
44% in determining safety and up to 70% in tensor offset assignment.

1 INTRODUCTION

Modern deep learning frameworks are used to execute Deep
Neural Networks (DNNs) of a multi-layered structure with
each layer consisting of neural operators and tensors, that
is, data sent among operators. A significant development
is the emergence of more and more DNNs of very large
size both in depth and width of layers. Salient examples
include T5 (Raffel et al., 2020), GPT-3 (Brown et al., 2020),
and PanGu-α (Zeng et al., 2021). Training in parallel is
mandatory in order to maintain performance efficiency and
tackle memory constraints (Narayanan et al., 2021).

Modern AI accelerator devices are equipped with multiple
intensive parallel Processing Elements (PEs), but limited
memory size (Chen et al., 2020). To enable big model
training in such environments, two sets of classic memory
variables, parameters and intermediate tensors, have to be
mapped onto different devices. Parameters are kept for-
ever in memory in order to avoid communication overhead.
The memory footprint of parameters is computed during
compilation as the sum of their sizes. Intermediate tensors
are produced and consumed among layers during training.

1Huawei Technologies France, Paris, France 2Huawei Tech-
nologies Co., Ltd., Shenzhen, China. Correspondence to: Ioannis
Lamprou <ioannis.lamprou@huawei.com>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

There is no need to allocate exclusive memory per tensor.
Tensors may overlap in memory if not needed concurrently.

Figure 1: Static Allocation: given a DNN, the compiler
decides a memory plan, then maps it onto physical device
memory shared by multiple processing elements (PEs).

Traditional dynamic allocators may be used to manage
allocation and release of intermediate tensors in runtime
(Google, 2022). Handling fragmentation and runtime out-
of-memory (OOM) via reallocation or garbage collection
are necessary in order to avoid training interruption and re-
launching, which are often very expensive. To escape these
issues and the overhead they incur, an alternative method is
static allocation. In this setting, it is a prerequisite that the
shape of each intermediate tensor is inferred in compilation
time, as shown in Figure 1.

Safe Optimized Static Memory Allocation for Parallel Deep Learning

With static allocation, the DNN is compiled on host, then
it is loaded and executed on the hardware until termination.
Most control communication and bidirectional data move-
ment between host and device is avoided; only input data
sets and output results are communicated. Moreover, as
parameters and intermediate tensors memory footprints are
computed in compilation time, we can tune the parallelism
strategy in order to reduce the number of devices to the
benefit of the final user (Zheng et al., 2022).

We present a safe optimized memory allocation system to
enable parallel deep learning in the static execution model.
The scarcity of static memory allocators for optimized mem-
ory management in such contexts creates a big challenge.
Optimizing quality and solving performance to catch up
with DNNs of growing size is a strong motivation.

Optimizing memory usage for sequential execution is well
studied, for example in Chainer (Sekiyama et al., 2018) and
TFLite (Lee et al., 2019; Pisarchyk & Lee, 2020). In these
works, the proposed algorithms allocate tensors into a single
buffer in some greedy order. To do so, every tensor already
in memory is examined for lifetime overlap with the tensor
to be inserted. In total, this yields quadratic time complexity.
Yet, related work fails to address generalized parallel exe-
cution. For the latter, the graph is partitioned into multiple
execution streams, which bring about a superset of con-
straints. Many additional communications are brought in to
aggregate the distributed results. Communication tensors
are concatenated to use maximal I/O bandwidth, thus also
giving rise to contiguous constraints (see also tensor fusion
in (Sergeev & Del Balso, 2018)). Overall, we tackle two
limitations of the state of the art:

1. Global lifetime comparison used to determine safety of
memory reuse among tensors in sequential execution
is not enough to enable safe parallel deep learning.

2. As DNNs grow large, quadratic time complexity will
be a significant burden with respect to parallel strategy
tuning during compilation.

In this paper, we make the following contributions:

1. Compute a provably safe minimal set of tensor memory
reuse (no-overlap) constraints to enable parallel deep
learning. We propose two approaches: a standard and
an optimized one yielding compilation time benefits of
up to 44%.

2. Design novel tensor offset calculation algorithms given
safe-reuse and contiguous constraints. We tackle the
time complexity wall in practice (up to 70%), while
maintaining nearly optimal or improved footprint.

3. Implement our solution in an open-source production
framework and provide experimental validation.

Outline. In Section 2, we define Offset Calculation for
Parallel. In Section 3, we design efficient algorithms to
determine memory reuse safety. In Section 4, we design
efficient constraints-respecting algorithms to assign tensor
offsets such that footprint is minimized. In Section 5, we
validate our methods in an open-source framework. We
discuss related works in Section 6 and conclude in Section 7.

2 PROBLEM DESCRIPTION

We represent a DNN as a Directed Acyclic Graph (DAG),
also called a computational graph, with nodes representing
operators and arcs representing tensors between operators.
A tensor t generated at node v is shipped via arcs whose
origin is v. If u receives tensor t from v, then arc (v, u) is as-
signed label t. There may be multiple arcs (tensors shipped)
between two operators. Operator “workspace” memory for
node v may be modeled by adding a self-loop tensor (v, v).

Our goal is to efficiently store all tensors required during
execution, that is, to minimize the size of the logical memory
buffer. To do so, we must determine dependency relations
among tensors. Two tensors not needed at the same time
may be stored in overlapping memory. Specifically, the
memory occupied by a tensor t may be reused by other
tensors (i) before the producer operator of t executes and
(ii) after all operators consuming t execute. Each tensor is
assigned a start offset. Its end offset is given by start offset
+ tensor size - 1. Once fixed, tensor offsets do not change.

Before defining the problem we tackle, let us consider the
special case of sequential execution of operators. The global
sequence in which operators execute directly dictates data
dependencies. The sequence can be viewed as a traversal
of nodes. Example traversals include breadth-first-search,
depth-first-search, etc. A traversal of nodes in some order
gives us a topological sorting: each node is assigned a
natural number corresponding to its execution order in the
sequence. Such a topological sorting helps us determine the
lifetime of each tensor: the time interval during which the
tensor needs to be stored. Let ts(v) stand for the order of
node v in the topological sorting. We define the lifetime
of a tensor t generated at node v and sent to u1, u2, . . . , uk

as Lt = [ts(v),maxi=1,2,...,k ts(ui)]. Two tensors have a
no-overlap constraint, if their lifetime intervals overlap.

Definition 1 (Offset Calculation). Given a topologically
sorted DNN, return a start offset for each tensor, such that
no two tensors t1, t2 ∈ T , where Lt1 ∩ Lt2 ̸= ∅, overlap in
memory and the total storage used is minimized.

In this paper, we consider generalized Offset Calculation,
where nodes execute in parallel and multiple processing
elements share the device memory. Each node is assigned to
a stream of execution handled by a processing element. No
assumption is made about the execution of nodes assigned

Safe Optimized Static Memory Allocation for Parallel Deep Learning

to different streams. In order to ensure safety, the set of no-
overlap constraints may be larger than in the sequential case.
It suffices that two tensors are needed simultaneously in one
execution scenario for them to be a no-overlap. However,
this execution path may not be realized in practice!

For an introductory example, see Figure 2. The nodes of the
DAG are assigned a global topological order {1, 2, . . . , 8},
which we use to identify them, whereas tensors are identified
by small letter labels {a, b, . . . , i}. There are three streams
defined: stream 0 containing vertices 1 and 3, stream 1 with
vertices 2, 4, 5, 6, and stream 2 with vertices 7 and 8. Note
that a local topological order per stream can be extracted by
the sequence in the global topological order: for instance,
in stream 0, node 1 will execute before node 3.

According to the global sorting, in the single-stream case, it
would be safe to reuse tensors a and f , since the lifetime of
a, namely [1, 3], does not overlap the one of f , namely [4, 6].
Nonetheless, this is not a safe reuse in the multi-stream case:
operator 4 might actually execute before, or in parallel to,
operator 3, since there is no preguaranteed execution order
between streams 0 and 1. In other words, overwriting tensor
a by tensor f could result in operator 3 lacking proper input
when selected for execution, hence causing a runtime error.

Figure 2: Example DNN DAG partitioned into three streams

Definition 2 (Offset Calculation for Parallel). Given a multi-
stream DNN, return a start offset for each tensor, so that
no two tensors overlap in memory, if they might be needed
simultaneously in memory during parallel execution, and
the total storage used is minimized.

In the following two sections, we define both subproblems
of Offset Calculation for Parallel and design algorithms to
solve them. First, for any two tensors, we determine whether
it is safe to reuse their offset intervals. Second, we assign
an offset to each tensor, such that the computed set of no-
overlap constraints is respected and footprint is minimized.
We also support additional constraints on tensors, which
require related tensors to be in spatially contiguous storage.

3 MULTI-STREAM SAFETY

In sequential execution, a tensor’s lifetime is associated to
two nodes: the one producing it and the last one consuming
it. To determine a no-overlap constraint between two tensors,
it suffices to examine their corresponding lifetimes.

In this section, our interest lies in the safe parallel execution
of nodes, in other words, a multi-stream model. The set of
nodes is partitioned into streams of execution. Each node
is assigned to a single stream. Each stream is assigned its
own topological sorting, which dictates the sequential order
{1, 2, . . .} in which nodes are executed within the stream.
To transform a local topological sorting into graph-theoretic
dependency, for each i ∈ {1, 2, . . .}, if originally there is no
arc (i, i+1), we add such an arc with a fresh label associated
with a new tensor of size 0. No predefined assumptions
are made on the relative execution order among streams.
Given two operators in different streams, a global lifetime
comparison is no longer pertinent in order to determine their
potential runtime dependency. The introductory example,
see Figure 2, acutely reveals the need for a more general set
of rules to capture the increased number of conflicts arising
during a parallel execution of streams. We are now ready to
define the modeling problem by introducing the notion of
safe pairs. Below, for some finite set X , let

(
X
2

)
denote the

set of unordered pairs of elements of X . More formally, we
define

(
X
2

)
:= {{x1, x2} |x1, x2 ∈ X and x1 ̸= x2}.

Definition 3 (Safe Pair). Assume we are given a multi-
stream DNN with tensor set T . An unordered pair of tensors
{t1, t2} ∈

(
T
2

)
is called a safe pair if we do not need to

store t1 and t2 concurrently in memory for any potentially
realized parallel execution of the DNN.

Definition 4 (Multi-Stream Safety). Given a multi-stream
DNN with tensor set T , for each pair {t1, t2} ∈

(
T
2

)
decide

whether {t1, t2} is a safe pair.

If an unordered pair of tensors is not a safe pair, we refer
to it as an unsafe pair, which corresponds to the notion of
no-overlap constraint we discussed. Note that a decision for
each pair in

(
T
2

)
is necessary, since they are all considered

in Single Object algorithms (to be defined later in Section 4).
Thus, we make all decisions required in Definition 4 a priori
and later use them to make decisions on offset assignments.

3.1 Computational Graph Based Approach

A first idea to solve Multi-Stream Safety, independently of
stream definitions, is to use tensor ancestor relationships in
the DAG to decide on safety of reuse. Intuitively, a tensor
t1 may reuse memory with a tensor t2, if t1 is consumed
before t2 is produced or vice versa. In other words, if due to
graph topology, all consumers of a tensor execute before the
producer of another tensor, then the two tensors may reuse
memory regardless of stream definitions.

Safe Optimized Static Memory Allocation for Parallel Deep Learning

For each tensor, let us define the set of ancestor tensors. To
do so, we start by nodes: for each node n, let AncNodes[n]
contain all nodes n′ such that there is a directed path of
length at least 1 from n′ to n; we use notation n′ ; n to
refer to this. Also, n ̸∈ AncNodes[n], that is, we ignore
self-arcs in this definition. For a tensor t, let DestNodes[t]
be the set containing all nodes consuming t. For a tensor t
produced at node n, let AncTensors[t] contain all tensors t′

for which it holds DestNodes[t′] ⊆ AncNodes[n]. Tensors
t1 and t2 may reuse memory if either t1 ∈ AncTensors[t2]
or t2 ∈ AncTensors[t1], see Algorithm 1.

Algorithm 1: Ancestor Tensors
Input :A DNN with node set N and tensor set T .
Output :A set U ⊆

(
T
2

)
of unsafe pairs.

1 U ←
(
T
2

)
;

2 foreach {t1, t2} ∈
(
T
2

)
do

3 if t1 ∈ AncTensors[t2] OR t2 ∈ AncTensors[t1] then
4 U ← U \ {{t1, t2}};
5 return U ;

Theorem 1. Algorithm 1 solves Multi-Stream Safety.

There is one way to optimize the runtime of Algorithm 1
by taking advantage of stream definitions. For a tensor t,
we substitute DestNodes[t] by a (potentially much smaller
depending on DAG topology) subset MaxNodes[t], which
contains a single node per destination stream of t, that is,
the one with the maximum local topological order among
the destination nodes of t in this stream. Let Ns ⊆ N de-
note the set of nodes within stream s, s(n) denote the stream
within which lies node n and StartTime[n] denote the topo-
logical order of node n within s(n). Formally, we have
MaxNodes[t] := {n ∈ DestNodes[t] | ∀n′ ∈ Ns(n) it holds

StartTime[n] ≥ StartTime[n′]}.

Consider a destination stream of a tensor t, namely stream s,
and let n∗ ∈ MaxNodes[t] denote the destination node of
t in stream s with maximum local order. Recall all within-
stream arcs (i, i + 1) exist as discussed above. Then, for
every n′ ∈ DestNodes[t] ∩Ns it holds n′ ; n∗ by within-
stream arcs. For any node n ∈ N it follows, if n∗ ; n,
then n′ ; n. By applying this idea to each destination
stream of t, we get that if MaxNodes[t] ⊆ AncNodes[n],
then DestNodes[t] ⊆ AncNodes[n]. On the other hand,
since by definition of MaxNodes it holds MaxNodes[t] ⊆
DestNodes[t], then DestNodes[t] ⊆ AncNodes[n] implies
MaxNodes[t] ⊆ AncNodes[n].

Overall, the above imply DestNodes[t] ⊆ AncNodes[n]
if and only if MaxNodes[t] ⊆ AncNodes[n], therefore
we can substitute DestNodes by MaxNodes within the
AncTensors check and obtain equivalent result. We refer
to this optimized version of Algorithm 1 as 1opt.

Corollary 1. Algorithm 1opt solves Multi-Stream Safety.

3.2 Stream Graph Based Approach

Here, we present a set of algorithms to decide Multi-Stream
Safety by considering ancestor relationships among streams.
The idea is to employ information from the stream graph,
that is, the implied graph of streams, in order to simplify
decisions on safe pairs. Let GD = (N(GD), A(GD)) stand
for the stream graph corresponding to computational graph
D = (N,A). We define the node set N(GD) := S, where
S is the set of streams used in D. We define the arc set as
A(GD) := {(s, s′) | ∃ n ∈ Ns, n

′ ∈ Ns′ such that (n, n′) ∈ A}.
We design an algorithm for tensor pairs generated in streams
with ancestor relationship (Algorithm 3) and another for
tensor pairs generated within the same stream (Algorithm 5).

Let us describe preliminary notions used in the algorithms to
follow. A tensor belongs to the stream of the node producing
it. The set of tensors produced in stream s is denoted by
Ts ⊆ T . Respectively, let Ns ⊆ N denote the set of
nodes in stream s. A tensor is called between-streams, if
there is at least one node consuming it which does not
belong to the same stream as the node producing it. For
any tensor t, and stream s, let EndTime[t][s] denote the
maximum order of a node in stream s receiving tensor t.
If t is not between-streams, we may simplify this notation
to EndTime[t]. Respectively, let StartTime[t] denote the
lifetime start of tensor t: the order of the node producing
t. For example, in Figure 2, we have StartTime[a] = 1,
EndTime[a][0] = 3, and EndTime[a][1] = 2.

Regarding streams, we say s2 is an ancestor of s1, if there
exist nodes n2 in stream s2 and n1 in stream s1 such that
n2 ; n1. Let AncStreams[s] stand for the set of ancestor
streams of s. In Figure 2, we get AncStreams[0] = {},
AncStreams[1] = {0} and AncStreams[2] = {0, 1}.

For a tensor t1 produced at node n1 in stream s1, and a
stream s2 ancestor of s1, let MaxAncId [t1][s2] denote the
maximum topological order among all nodes in s2 from
which there is a directed path to n1. If there is no such
node, MaxAncId is set to 0. Intuitively, t1 may reuse the
memory of any tensor in s2 that ends not later than its
ancestor tensor ending most late in s2. In Figure 2, we
get MaxAncId [g][0] = 1 and MaxAncId [h][0] = 3, but
MaxAncId [h][1] = 0. Finally, let DestStreams[t] stand for
the set of streams containing at least one node consuming
tensor t. In Figure 2, we get DestStreams[a] = {0, 1},
DestStreams[c] = {1}, and DestStreams[e] = {1, 2}.

Before proceeding with detailed algorithm descriptions, in
Algorithm 2, we show how they are used together to solve
Multi-Stream Safety. Initially, we assume any {t1, t2} ∈(
T
2

)
is an unsafe pair (line 1) and we denote them as set U .

We run Algorithm 3 with all unsafe pairs as input to allow
reuse for some tensor pairs in ancestor streams (line 2). The
set of remaining unsafe pairs U ′ ⊆ U is returned. Then,

Safe Optimized Static Memory Allocation for Parallel Deep Learning

Algorithm 5 is called with U ′ as input in order to allow
reuse for some tensor pairs generated in the same stream
(line 3). If two tensors are in different streams without any
ancestor relationship, they are not considered as a pair by
either algorithm, so by default they are deemed unsafe.

Algorithm 2: Stream Graph Safety
Input :A DNN with stream set S and tensor set T .
Output :A set U ′′ ⊆

(
T
2

)
of unsafe pairs.

1 U ←
(
T
2

)
;

2 U ′ ← AncestorStreamsReuse(S, T, U);
3 U ′′ ← SameStreamReuse(S, T, U ′);
4 return U ′′;

Let us describe Algorithm 3. For each stream we consider all
tensors in its ancestor streams (lines 1 to 3). Our safety rule
depends on whether an ancestor tensor is between streams.

Algorithm 3: Ancestor Streams Reuse
Input :A set of streams S, tensors T , unsafe pairs U .
Output :A subset of U after removing safe pairs of tensors

in streams with ancestor relationship.
1 foreach s1 ∈ S do
2 foreach s2 ∈ AncStreams[s1] do
3 foreach t2 ∈ Ts2 do
4 if t2 is not between streams then
5 foreach t1 ∈ Ts1 do
6 if EndTime[t2] ≤ MaxAncId [t1][s2]

then
7 U ← U \ {{t1, t2}};
8 else // t2 is between streams
9 foreach t1 ∈ Ts1 do

10 if ValidAncestor(t2, t1) then
11 U ← U \ {{t1, t2}};
12 return U ;

If ancestor tensor t2 is not between streams (lines 4 to 7),
for each tensor t1 in current stream s1, it suffices to check
whether EndTime[t2] within ancestor stream s2 does not
exceed MaxAncId [t1][s2]. Intuitively, if t1 is to overwrite
t2 in memory, then t2 must not be needed any longer than
the execution of the last ancestor node in s2 needed by
t1. In case it holds MaxAncId [t1][s2] equal 0, then there
is no safe ancestor node in s2 for t1. Therefore, reuse is
disallowed since EndTime[t2] > 0 by the local topological
order. In Figure 2, tensor h is not allowed to reuse any
tensor generated in stream 1, since MaxAncId [h][1] = 0.

Contrarily, if ancestor tensor t2 is between streams (lines 8
to 11), we generalize the rule and request t2 to be a valid
ancestor of t1, see Algorithm 4. In other words, the set of
destination streams of t2 needs to be a valid subset of the set
containing the ancestor streams of s1 and s1 itself, where s1
is the source stream of t1. It must hold DestStreams[t2] ⊆
AncStreams[s1] ∪ {s1} and, for any s ∈ DestStreams[t2],
the following rule must apply: if s ∈ AncStreams[s1], then

EndTime[t2][s] ≤ MaxAncId [t1][s], otherwise, if s = s1,
then EndTime[t2][s1] < StartTime[t1]. Intuitively, in
case a destination stream of t2 is an ancestor stream of
t1, the same rule as in line 6 in Algorithm 3 needs to be
respected. Otherwise, in case the destination is the current
stream (s = s1), then all t2 consumers in s1 must execute
strictly before t1 is produced in order to ensure safety with
certainty. If at least one destination stream of t2 does not
conform to the rule, we cannot ensure safety: t1 and t2 may
be needed simultaneously in storage during execution.

Algorithm 4: Valid Ancestor (t2, t1)
Input :A tensor t1 produced in stream s1 and a tensor t2

produced in (ancestor) stream s2.
Output :True if t2 is a valid ancestor of t1, else False.

1 if DestStreams[t2] ̸⊆ AncStreams[s1] ∪ {s1} then
2 return False;
3 foreach s in DestStreams[t2] do
4 if s ∈ AncStreams[s1] then
5 if EndTime[t2][s] > MaxAncId [t1][s] then
6 return False;
7 if s = s1 then
8 if EndTime[t2][s1] ≥ StartTime[t1] then
9 return False;

10 return True;

To showcase the valid ancestor rule, consider two examples
in Figure 2. Tensor h does not form a safe pair with tensor a.
Although it holds DestStreams[a] = {0, 1} ⊆ {0, 1, 2} =
AncStreams[2] ∪ {2} and EndTime[a][0] = 3 ≤ 3 =
MaxAncId [h][0], we notice EndTime[a][1] = 2 > 0 =
MaxAncId [h][1]. Indeed, node 7 may execute before node
2 is done consuming a, so it is unsafe to have h overwrite
a in storage. In another case, consider tensor i in stream
1 and a in stream 0. It holds DestStreams[a] = {0, 1} ⊆
{0, 1} = AncStreams[1] ∪ {1}. For any stream where a is
consumed, there is no violation to the valid ancestor rule.
We get EndTime[a][0] = 3 ≤ 3 = MaxAncId [i][0], and
EndTime[a][1] = 2 < 6 = StartTime[i], so {a, i} is safe.

Lemma 1. Algorithm 4, ValidAncestor(t2, t1), returns
True if and only if for all n′ ∈ DestNodes[t2] it holds
n′ ; n1, where n1 ∈ Ns1 is the node producing t1.

Let us now describe Algorithm 5. For any pair of tensors
generated in the same stream, where both of them are not
between-streams, it suffices to employ the standard lifetime
comparison, as in the single-stream case (lines 14 to 16).
Formally, in this case, a pair {t1, t2} is safe if and only if
[StartTime[t1],EndTime[t1]] ∩ [StartTime[t2],EndTime[t2]] = ∅.
Two between-stream tensors generated in the same stream
are allowed to reuse memory if one is a valid ancestor of the
other (lines 5 to 7) using the same check as in Algorithm 3.
If only one of them is between-streams, they are deemed a
safe pair only if the between-streams tensor starts strictly
after the lifetime end of the within-stream tensor, or before,

Safe Optimized Static Memory Allocation for Parallel Deep Learning

but also satisfying valid ancestor in this case (lines 8 to 13).
In Figure 2, tensors b and e, both generated in stream 0,
are an unsafe pair. Neither b is a valid ancestor of e, since
DestStreams[b] = {2} ̸⊆ {0} = AncStreams[0] ∪ {0},
nor e is a valid ancestor of b, since DestStreams[e] =
{1, 2} ̸⊆ {0} = AncStreams[0] ∪ {0}. On the other hand,
in stream 1, tensor i may reuse tensors c and d, since
StartTime[i] = 6 > 5 = EndTime[d], but it may not
reuse f , since StartTime[i] = 6 ̸> 6 = EndTime[f].

Algorithm 5: Same Stream Reuse
Input :A set of streams S, tensors T , unsafe pairs U .
Output :A subset of U after removing safe pairs of tensors

generated in the same stream.
1 foreach s ∈ S do
2 foreach {t1, t2} ∈

(
Ts
2

)
do

3 if StartTime[t1] == StartTime[t2] then
4 continue;
5 if t1, t2 are between streams then
6 if ValidAncestor(t1, t2) OR

ValidAncestor(t2, t1) then
7 U ← U \ {{t1, t2}};
8 else if t1 is between streams then
9 if StartTime[t1] > EndTime[t2] OR

(StartTime[t1] < StartTime[t2] AND
ValidAncestor(t1, t2)) then

10 U ← U \ {{t1, t2}};
11 else if t2 is between streams then
12 if StartTime[t2] > EndTime[t1] OR

(StartTime[t2] < StartTime[t1] AND
ValidAncestor(t2, t1)) then

13 U ← U \ {{t1, t2}};
14 else // t1, t2 are not between streams
15 if Lt1 ∩ Lt2 = ∅ then
16 U ← U \ {{t1, t2}};
17 return U ;

Theorem 2. Algorithm 2 solves Multi-Stream Safety.

4 OFFSET ASSIGNMENT

In the preceding section, we saw how safety of memory
reuse among tensors is decided by introducing the notion
of safe pairs in the multi-stream model. We now examine
the problem of assigning a start offset for each tensor in
the logical buffer given a set of unsafe pairs and a set of
contiguous constraints, thus capturing a general parallel
deep learning scenario of static execution.

Parallel deep learning systems may have requirements to
allocate certain tensor sequences in contiguous memory
space (Zeng et al., 2021) in order to enable bulk I/O, e.g.,
reading/writing in one call for communication operators
in multi-core execution. Contiguous allocation is similar
to the tensor fusion problem (Sergeev & Del Balso, 2018)
needed to avoid tiny all-reduce operations. Concatenation
operators provided by frameworks have certain restrictions,
e.g., they require matching tensor shapes (except in the

concatenating dimension), and might not cover the general
case we present. Indeed, there are test cases in MindSpore
(Chen, 2021) where some tensors in a contiguous list do
not make up safe pairs with the exact same set of tensors.
Concatenating such a contiguous list into one tensor having
the union of their reuse (no-overlap) constraints will yield a
worse result than the one attained by our algorithms: in an
example test, ResNet50 training peak memory is worsened
by 5%.

Formally, for some natural number k, we say tensors
t1, t2, . . . , tk are bound by a contiguous constraint, if the
start offset of ti must be equal to the end offset of ti−1

plus one for 2 ≤ i ≤ k. Multiple sets of tensors may be
bound by contiguous constraints of arbitrary length. To
avoid infeasible cases, we assume a tensor participates
in at most one contiguous constraint. Below, for tensor
t ∈ T , let offset(t) denote its start offset in the logi-
cal buffer (to be decided) and size(t) its size (given as
input). Both values are non-negative integers. We let
It = [offset(t), offset(t) + size(t) − 1] denote the offset
interval t occupies in the buffer. We now define the problem
this section tackles.

Definition 5 (Offset Assignment for Parallel). Given a set
of tensors T , a set of unsafe pairs U ⊆

(
T
2

)
and an arbitrary

set of contiguous constraints {C1, C2, . . . , , Cl}, return a
value offset(t) for every t ∈ T such that

• for all {t1, t2} ∈ U , it holds It1 ∩ It2 = ∅,
• for any contiguous constraint Ci with ki ≥ 2 tensors
ti,1, ti,2, . . . , ti,ki

, for all j = 2, 3, . . . , ki, it holds
offset(ti,j) = offset(ti,j−1) + size(ti,j−1), and

• maxt∈T (offset(t) + size(t)) is minimized.

In its essence, Offset Assignment for Parallel, shortly OAP,
is a scheduling or allocation problem. Hardness can be
inferred by its relationship to traditional problems in this
setting. To demonstrate this, we use the classic NP-hard
Dynamic Storage Allocation problem (DSA), see Problem
SR2 in (Garey & Johnson, 1979) for reference.

Theorem 3. Offset Assignment for Parallel is NP-hard.

Let Gc = (N(Gc), E(Gc)) be the undirected conflict
graph whose node set corresponds to the set of tensors,
that is, N(Gc) = T , where there is an edge connecting
any unsafe pair of tensors, that is, E(Gc) = {{t1, t2} ∈(
T
2

)
| {t1, t2} is unsafe }. The conflict graph constructed in

the proof of Theorem 3 is an interval graph. Considering
our definition of streams, this would be the case when the
input DNN is to be executed in a single stream. In that case,
unsafe pairs correspond to lifetime intersections derived by
the global topological sorting. At this point, we make no
assumption on the topology of Gc for OAP and prepare
general-use algorithms. Whether some stream definitions
imply specific conflict graph topology is left for future work.

Safe Optimized Static Memory Allocation for Parallel Deep Learning

4.1 Algorithm Design

We implement two (families of) algorithms solving OAP.
In Single Object, a single buffer, that is, memory object, is
maintained like in state of the art Offset Calculation. In
Many Objects, the logical buffer is partitioned into many
objects. Their number is not known a priori, but decided on
the fly by the algorithm. Each object is defined by the size
of its largest, spanning, tensor. Each tensor is allocated such
that its interval spans offsets within one object.

The intuition behind introducing Many Objects is that it
runs faster than Single Object in practice, since searching
for feasible gaps to place the next tensor is executed at each
(small) object until a suitable one is found. For many tensors
we need not examine the whole (large) memory space. Also,
we are able to avoid many iterations in case a tensor forms
an unsafe pair with the object-spanning tensor. Contrarily,
Single Object comes with more freedom on scheduling, and,
in some cases, this yields slightly better solutions.

Either algorithm takes as input a set of blocks of tensors and
unsafe pairs. A block of tensors is either a single tensor or a
sequence of tensors bound by a contiguous constraint. The
algorithms are parameterized by sorting strategy, that is, the
order in which tensors are considered by the algorithm, and
fitting strategy, that is, the way to decide the start offset of a
tensor among all available offsets. Algorithmic behavior is
deterministic in the sense that ties in sorting and fitting are
resolved based on unique order indices.

We employ essential routines in the algorithm descriptions
to follow. Sort returns the blocks given as input ordered in
some way, e.g., by decreasing size. Avoid takes as input
a block to allocate, an object, and the set of unsafe pairs,
and returns the set of offsets where we must not assign the
new block to ensure safety. Merge receives a list of offset
intervals and returns a minimal stack of intervals, where
no two intervals overlap, yet the intervals span the same
offsets. Fit receives a block, the set of forbidden start offsets
for it, and an object, and returns the start offset decided
for this tensor (or none if an offset cannot be assigned in
the Many Objects case). Fitting is either Best-Fit (place
tensor at smallest-size gap possible) or First-Fit (place at
first available gap possible). SetOffsets takes a block and
its assigned offset and assigns accordingly the offsets of
tensors within the block. offset , respectively size, returns
the start offset, respectively size, for a tensor, block or object.
Objects and blocks are presented as linked lists of blocks
and tensors, respectively. We use head to denote the first
element and length for the number of elements in a list.

In Algorithm 6, we define Single Object. There is a single
object, initially empty (line 2).We iterate over input blocks
given by Sort (lines 3 to 8). For each block, we determine
the set avoid intervals ′, where it cannot be placed due to

Algorithm 6: The Single Object algorithm
Input :A set of blocks of tensors and unsafe pairs.

A sorting and fitting function Sort , Fit .
Output :A mapping from blocks to start memory offsets,

and the size of total memory used.
1 offset ← ∅;
2 object ← [];
3 foreach block ∈ Sort(blocks) do
4 avoid intervals ← Avoid(block , object , unsafe);
5 avoid intervals ′ ← Merge(avoid intervals);
6 offset(block)← Fit(block , avoid intervals ′, object);
7 object .push back(block);
8 SetOffsets(block , offset(block));
9 return (offset ,maxb∈blocks(offset(b) + size(b)− 1));

unsafe pair constraints with a block already in object (lines
4 to 5). The block is assigned an offset according to fitting
and is added to the object (lines 6 to 7). Within-block tensor
offsets are set (line 8). For an example, see Figure 3.

In Algorithm 7, we define Many Objects. In this case, we
maintain a list of objects, initially empty (line 2), which
partition the logical buffer. Like in Single Object, we iterate
over blocks in some sorted sequence (lines 4 to 26). For
each block, we examine the objects currently present in
the object list (lines 6 to 18). As before, we extract the
set of offset intervals, where it is prohibited to place this
tensor (lines 11 to 12). Note this might not be necessary
for all objects. If there is an unsafe pair constraint with the
object-spanning block, then avoid intervals contains the
whole object. Since a fit is not possible, there is no need to
examine any other block in it. We include this optimization
in lines 7 to 10. If there is at least one available offset for
the tensor in this object, we fit the tensor there according to
the fitting strategy and complete the object iteration (lines
13 to 18). If there exists no object where the tensor can be
placed, then a new object is created with this tensor defining
its offset interval, and it is placed at the end of the object
list (lines 19 to 26). For an example, see Figure 4.

5 EMPIRICAL EVALUATION

Setup. We implemented the proposed algorithms within
MindSpore (Chen, 2021) backend and ran training tests on
an Atlas 800 (model 9010) server featuring 8 Ascend 910
AI accelerators (Liang, 2020; Liao et al., 2021), 32 GB high
bandwidth memory and 2.24 pflops fp16 computing power.

Workload. We experimented with ten large-size DNNs
available in MindSpore Model Zoo (MindSpore, 2023) .
We ran MindSpore training process on instances of BERT
(Devlin et al., 2019) with roughly 4,400 (base), 8,200
(large), and 9,400 tensors (nezha), a Transformer (Vaswani
et al., 2017) (3,500 tensors), and a Tiny-BERT (Jiao et al.,
2019) (1,800). We also tested ResNet (He et al., 2016)

Safe Optimized Static Memory Allocation for Parallel Deep Learning

(a) Tensors 1, 2, 3 (sizes 512, 312, 256) are allocated at offsets 0,
0, 512, respectively. Tensor 4 (size 356) is next to be assigned.

(b) If {4, 1} and {4, 2} are not unsafe, then tensor 4 is assigned at
offset 0 as well.

(c) If {4, 2} is unsafe, but {4, 1} and {4, 3} are safe, then tensor 4
is assigned at offset 312.

(d) If either {4, 1} or {4, 2} is unsafe, and {4, 3} is unsafe, tensor
4 is assigned at offset 768 and object end moves from 767 to 1123.

Figure 3: Example Single Object (First-Fit) allocation

(1,500), a ResNet-based Face Recognition net (8,500), a
YOLOv3-based (Redmon & Farhadi, 2018) Face Detection
net (4,200), PanGu-α with 2.6 billion parameters (Zeng
et al., 2021) (20,000), and MobileNetv2-quantitative (San-
dler et al., 2018) (3,900).

5.1 Multi-Stream Safety

For each DNN, we receive a multi-stream computational
graph as produced by another MindSpore component, which
runs before memory allocation to define multi-streaming.
Roughly speaking, nodes are assigned to a few categories,
for example, common, communication and other. A stream
only contains nodes of a single category. Based on hardware
constraints, there is an upper limit on the number of nodes
to fit within a stream. The graph is traversed, per category,
and a new stream is created when the current one fills up.

In Table 1, we demonstrate the performance, execution time,
of the algorithms designed in Section 3. The ideas proposed
in Algorithm 2 outperform the original idea proposed even
in the optimized version of Algorithm 1. The solving time

Algorithm 7: The Many Objects algorithm
Input :A set of blocks of tensors and unsafe pairs.

A sorting and fitting function Sort , Fit .
Output :A mapping from blocks to start memory offsets,

and the size of total memory used.
1 offset ← ∅;
2 object list ← [];
3 mem end ← −1;
4 foreach block b ∈ Sort(blocks) do
5 allocated ← False;
6 foreach object ∈ object list do
7 b′ ← object .head();
8 if length(b) == 1 AND length(b′) == 1 then
9 if {b.head(), b′.head()} ∈ unsafe then

10 continue;
11 avoid intervals ← Avoid(b, object , unsafe);
12 avoid intervals ′ ← Merge(avoid intervals);
13 offset(b)← Fit(b, avoid intervals ′, object);
14 if offset(b) ̸= ∅ then
15 allocated ← True;
16 object .push back(b);
17 SetOffsets(b, offset(b));
18 break;
19 if not allocated then
20 object ← new Object ;
21 offset(object)← mem end + 1;
22 offset(b)← mem end + 1;
23 object .push back(b);
24 SetOffsets(b, offset(b));
25 object list .push back(object);
26 mem end ← mem end + size(b);
27 return (offset ,maxb∈blocks offset(b) + size(b)− 1);

required for this component is significantly reduced for all
DNNs tested by at least 21% and up to 44%.

5.2 Offset Assignment

We implemented, then executed, a variety of Single Object
instances based on ideas described in state-of-the-art. Note
that pure state-of-the-art algorithms do not support general
unsafe pairs and contiguous constraints. We adapt the ideas
presented in previous works to run in our general parallel
deep learning scenario. We incorporate these ideas within
Single Object by performing necessary preprocessing and
modifying the order in which tensors are considered. The
results for Offset Assignment are given in Tables 2 and 3.

In Greedy Breadth (Pisarchyk & Lee, 2020), tensors are
sorted in decreasing order of breadth of their source node,
i.e., the sum of sizes of tensors whose global lifetimes in-
clude the execution order of the node. In Greedy Size (Pis-
archyk & Lee, 2020), tensors are sorted by decreasing size.
In Greedy Source (Lee et al., 2019), tensors are sorted by
increasing execution order of their source node.

The heuristic in (Sekiyama et al., 2018) is not implementable
(at least in a obvious way) in the multi-stream setting, since

Safe Optimized Static Memory Allocation for Parallel Deep Learning

(a) If tensor 8 forms an unsafe pair with at least one tensor,
then it cannot be allocated in object 1 due to lack of safe space.

(b) Object 2 is created. Tensor 8 defines its interval of offsets.

Figure 4: Creation of new object by Many Objects

Table 1: Experimental results for Multi-Stream Safety on
popular DNNs (solving time in milliseconds)

Network Algorithm 1opt Algorithm 2 Speedup

BERT-base 957 620 35.21%
BERT-large 4043 2289 43.38%
BERT-nezha 5275 2959 43.91%
FaceRecognition 1376 845 38.59%
PanGu-α (2.6B) 13845 10359 25.18%
ResNet-50 32 20 37.50%
Tiny-BERT 143 96 32.87%
FaceDetection 693 546 21.21%
Transformer 720 568 21.11%
MobileNetv2 57 42 26.32%

it is based on maintaining a two-dimensional strip packing
with lifetime and offset axes, and global lifetime can no
longer capture the superset of unsafe pairs generated by
multi-streaming. Instead, we tested Greedy Unsafe, with
tensors sorted by decreasing number of unsafe pairs in which
they participate. Intuitively, the decision for a tensor with
many constraints should be made early, whereas few con-
straints imply a lot of freedom for offset assignment.

With regard to fitting, state-of-the-art methods fall under
the paradigm of Best-Fit. (place tensor in smallest-size
available gap). Besides that, we chose to experiment with
traditional First-Fit, as an alternative (place tensor in first
available gap). Other fitting methods we have tested did not
yield improved results, therefore we omit them.

We experimented with the Many Objects algorithm with
Greedy Size sorting and both fitting strategies. Note that
all other sortings tested with Single Object were also tested
with Many Objects, but they yielded significantly inferior
memory footprint solutions, thus they are not of practical
interest and we do not include them in our results. The
intuition is that Many Objects is efficient when tensors are
sorted in decreasing order of size, since this results into

a sequence of footprints also of decreasing size. Due to
tensors being ordered by size, each new object created will
be at most as large as the one before it. This is not the case
for other sortings, which yield a size-wise unbalanced object
sequence, which does not perform well experimentally.

Up to our knowledge, there is no relevant literature in
scheduling capturing contiguous constraints, so it is not
possible to provide any baseline other than a theoretical
lower bound and adapted Offset Calculation state of the art.
All algorithms receive the same set of constraints as input.
We provide memory footprint solutions in gigabytes and
solving time in milliseconds. We compute the memory rela-
tive error of Many Objects compared to Single Object, and
of the overall best solution compared to the global lifetime
lower bound corresponding to a single stream execution of
the DNN (the maximum total size of tensors alive at any
time step of sequential execution). For solving time, we
compute the improvement we get with Many Objects.

Many Objects provides nearly optimal solutions consistently
deviating by less than 0.3% from the best Single Object.
This translates to a loss of only a few megabytes compared
to the state-of-the-art, thus no real practical overhead in net-
works of large size. In some cases, for example, Tiny-BERT
and ResNet, Many Objects even discovers better solutions
of up to 0.7%. Due to its design, Many Objects runs in
practice in much less time than Single Object. Indeed, if we
consider the solving time gains presented in the tables, these
are roughly at least 30% and up to 70%. In addition, Many
Objects Greedy Size does not require any preprocessing
time to compute breadth or number of conflicts.

PanGu-α is a network designed to test the limitations of
parallel deep learning. The graph includes 678 contigu-
ous constraints, whereas all other graphs include roughly
up to 20. In this extreme case, the time to handle con-
tiguous constraints dominates the solving time (within the
Avoid() subroutine), so it is expected Many Objects and
Single Object solving times converge. Even so, we still
manage to get about 20% average solving time gain. Also,
the rigorous handling of contiguous constraints in our de-
signed algorithms is necessary to fit large models in memory
(MindSpore, 2021), see details in Table 4. For 13 billion
parameters, memory usage is decreased from 31.72 GB
(causing an out-of-memory in device) to 25.08 GB.

Besides Many Objects, we observe how the introduction
of First-Fit and Greedy Unsafe provides us with significant
gains for certain neural networks. First-Fit finds the best
solution for 9 out of 10 DNNs in Single Object and 8 out of
10 in Many Objects. Greedy Unsafe provides an improved
solution over other Single Object algorithms for 2 DNNs.

Finally, in the context of overall training performance, there
is evidence on our optimized memory management enabling

Safe Optimized Static Memory Allocation for Parallel Deep Learning

Table 2: Training experiments: peak memory in GB, solving time (milliseconds) in italic – First Part

BERT-base BERT-large BERT-nezha FaceRecognition PanGu-α (2.6B)
Naı̈ve Allocation 42.7816 83.3553 61.5739 77.6916 1349.1400

Single Object (SO)
Greedy Breadth (Best-Fit) 13.5119 (597) 24.9171 (3587) 14.8293 (4309) 16.1210 (3029) 18.4541 (16318)
Greedy Breadth (First-Fit) 13.5119 (603) 24.9171 (3555) 14.8293 (4273) 16.1210 (2841) 18.4541 (16320)
Greedy Size (Best-Fit) 13.5121 (637) 25.0130 (3716) 14.8232 (4520) 15.8100 (2409) 18.4541 (16017)
Greedy Size (First-Fit) 13.5121 (616) 25.0040 (3790) 14.7778 (4443) 15.7867 (2936) 18.4541 (13451)
Greedy Source (Best-Fit) 13.5148 (612) 24.9320 (3565) 14.9117 (4013) 15.8746 (2927) 19.5846 (14928)
Greedy Source (First-Fit) 13.5148 (571) 24.9320 (3482) 14.9117 (4132) 16.0055 (2975) 20.2817 (15564)
Greedy Unsafe (Best-Fit) 13.6894 (584) 25.1032 (3499) 14.8282 (3559) 15.7456 (3220) 21.4649 (15298)
Greedy Unsafe (First-Fit) 13.6894 (581) 25.1016 (3571) 14.8426 (4037) 15.7815 (3063) 21.6111 (15931)

Many Objects (MO)
Greedy Size (Best-Fit) 13.5121 (316) 24.9172 (1953) 14.7854 (2060) 15.7797 (862) 18.4541 (12781)
Greedy Size (First-Fit) 13.5121 (315) 24.9172 (2226) 14.7854 (2310) 15.7797 (875) 18.4541 (12390)
Lower Bound 13.5119 24.9171 14.6860 15.7456 18.4541

Memory Error
Best MO to Best SO 0.00148% 0.00040% 0.05143% 0.21656% 0.00000%
Best to Lower Bound 0.00000% 0.00000% 0.62509% 0.00000% 0.00000%

Solving Time Gain
Best MO to Best SO 44.83% 43.91% 48.67% 69.66% 7.89%
Avg. MO to Avg. SO 47.43% 41.89% 47.49% 70.31% 18.69%

MindSpore to train a model with larger batch size 1.

6 RELATED WORK

There are online mentions about unsafe pair computation for
parallel deep learning platforms, e.g., in MXNet’s website.
However, we are unaware of any general offline model de-
termining all unsafe pairs in the context of multi-streaming.

For sequential offset assignment, MXNet (Chen et al., 2015)
use two simple greedy static allocation algorithms: one
simulating the graph traversal and one based on parallel exe-
cution dependencies. In (Sekiyama et al., 2018), the authors
propose a Best-Fit approach on the basis of a heuristic for
two-dimensional strip packing (Burke et al., 2004). The
algorithm chooses an offset and determines the tensor to
be allocated there. Experiments in Chainer showed signifi-
cant memory consumption reductions. In (Lee et al., 2019),
the authors propose heuristics to preplan a shared objects
memory allocation for efficient use in GPU hardware. They
propose a variation of greedy Best-Fit. Their algorithm is
shown to provide good results for various DNNs. Also,
they propose to reduce the given DAG to another (auxiliary)
graph and run a minimum-cost flow algorithm on it, then
translate to a memory plan in the original DAG. This ap-
proach performs better for a limited number of DNNs tested
in Tensorflow Lite (Shuangfeng, 2020). Pisarchyk and Lee

1“Support Safe Optimized Memory Allocation Solver on As-
cend to improve the memory-reuse, the batch size of Bert large
model (128 sequence length) is increased from 160 to 208.”
at https://github.com/mindspore-ai/mindspore/
blob/master/RELEASE.md

(Pisarchyk & Lee, 2020) propose new allocation algorithms
in the single-stream case. The algorithms use Best-Fit with
greedy tensor order, either by size or by operator breadth,
Inference on six popular DNNs shows up to 11% benefit
over past approaches. In (Fang et al., 2021), an idea related
to Many Objects is proposed, as a component in a trans-
former serving system, to balance memory footprint and
malloc/free efficiency. The motivation is to release small
objects not used in a current inference. In contrast to us,
they use default or scaled object sizes. They identify best-fit
gaps in memory by a slight modification of the algorithm
proposed in (Pisarchyk & Lee, 2020) and showcase their
algorithm’s performance during BERT inferences.

We mention few other lines of research relevant to DNN
memory management. In DNN compression (Han et al.,
2015) the goal is to prune arcs, in order to slightly modify
network behavior and gain memory reduction. In memory
swapping (Huang et al., 2020; Le et al., 2019) the idea is to
swap tensors from fast small-capacity memory to slow high-
capacity memory in order to maintain the fast memory’s
footprint under control. Recent works (Jain et al., 2020;
Kirisame et al., 2021; Peng et al., 2020) consider tensor
recomputation. Such approaches could be used as prepro-
cessing to our module, as we may receive the recomputation-
aware modified static training graph as input.

7 CONCLUSION

We implement a safe optimized memory allocation solver
to enable parallel deep learning under the static execution
model in an open-source production framework. We define

https://github.com/mindspore-ai/mindspore/blob/master/RELEASE.md
https://github.com/mindspore-ai/mindspore/blob/master/RELEASE.md

Safe Optimized Static Memory Allocation for Parallel Deep Learning

Table 3: Training experiments: peak memory in GB, solving time (milliseconds) in italic – Second Part

ResNet-50 Tiny-BERT FaceDetection Transformer MobileNetv2
Naı̈ve Allocation 3.3598 5.17475 13.5162 34.2267 64.1832

Single Object (SO)
Greedy Breadth (Best-Fit) 1.4909 (41) 0.71281 (105) 3.21740 (763) 7.54506 (302) 17.6506 (544)
Greedy Breadth (First-Fit) 1.4909 (73) 0.75969 (99) 3.19949 (773) 7.54506 (362) 17.6506 (551)
Greedy Size (Best-Fit) 1.4211 (49) 0.70469 (100) 3.20868 (841) 7.54506 (323) 17.6682 (592)
Greedy Size (First-Fit) 1.4133 (49) 0.70708 (97) 3.20813 (869) 7.54506 (322) 17.6637 (625)
Greedy Source (Best-Fit) 1.4917 (43) 0.74554 (107) 3.20907 (791) 7.78331 (301) 17.6881 (595)
Greedy Source (First-Fit) 1.4917 (42) 0.74581 (106) 3.21292 (773) 7.78526 (300) 17.6887 (594)
Greedy Unsafe (Best-Fit) 1.4207 (45) 0.70400 (97) 3.19961 (805) 7.57963 (314) 17.6613 (692)
Greedy Unsafe (First-Fit) 1.4286 (46) 0.70180 (100) 3.19961 (851) 7.57963 (311) 17.6613 (695)

Many Objects (MO)
Greedy Size (Best-Fit) 1.4251 (29) 0.69726 (43) 3.20942 (406) 7.54506 (169) 17.6662 (162)
Greedy Size (First-Fit) 1.4132 (28) 0.69698 (44) 3.21070 (441) 7.54506 (136) 17.6662 (154)
Lower Bound 1.4056 0.68938 3.19949 7.54506 17.6423

Memory Error
Best MO to Best SO -0.00708% -0.64690% 0.31036% 0.00000% 0.08838%
Best to Lower Bound 0.54069% 1.14306% 0.00000% 0.00000% 0.04705%

Solving Time Gain
Best MO to Best SO 31.71% 55.67% 46.79% 54.67% 71.69%
Avg. MO to Avg. SO 41.24% 57.09% 47.60% 51.87% 74.14%

Table 4: Training experiment: PanGu-α large model

PanGu-α (8B) PanGu-α (13B)

Baseline (without our solution) 27.36 31.72
Our Best Result 14.76 25.08
Lower Bound 14.68 24.95

Memory Error
Our result to Baseline -46.05% -20.92%
Our result to Lower Bound 0.54% 0.55%

a general problem also capturing contiguous constraints.
We design efficient algorithms to decide provably safety
reuse based on the stream graph: we show up to 44% time
gains compared to an optimized conventional approach. We
design offset assignment algorithms to optimize memory
consumption for large DNNs: Many Objects yields time
gains up to 70% compared to adapted state of the art.

Future directions include improving compilation time and
solution quality, but also relevant static execution aspects.
The choice of multi-streaming and the defined global/local
topological ordering, affects the global memory allocation
assignment and it is a reasonable future question to consider.

Safe Optimized Static Memory Allocation for Parallel Deep Learning

REFERENCES

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020.

Burke, E. K., Kendall, G., and Whitwell, G. A new place-
ment heuristic for the orthogonal stock-cutting problem.
Operations Research, 52(4):655–671, 2004.

Chen, L. Deep Learning and Practice with MindSpore.
Springer Nature, 2021.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z. Mxnet: A flexible
and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274,
2015.

Chen, Y., Xie, Y., Song, L., Chen, F., and Tang, T.
A survey of accelerator architectures for deep neural
networks. Engineering, 6(3):264–274, 2020. ISSN
2095-8099. doi: https://doi.org/10.1016/j.eng.2020.01.
007. URL https://www.sciencedirect.com/
science/article/pii/S2095809919306356.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171–4186,
Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

Escoffier, B., Monnot, J., and Paschos, V. T. Weighted
coloring: further complexity and approximability results.
Information Processing Letters, 97(3):98–103, 2006.

Even, G., Halldórsson, M. M., Kaplan, L., and Ron, D.
Scheduling with conflicts: online and offline algorithms.
Journal of scheduling, 12(2):199–224, 2009.

Fang, J., Yu, Y., Zhao, C., and Zhou, J. Turbotransformers:
an efficient gpu serving system for transformer models.
In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp.
389–402, 2021.

Garey, M. R. and Johnson, D. S. Computers and intractabil-
ity, volume 174. Freeman San Francisco, 1979.

Google. Tcmalloc, 2022. URL https://github.com/
google/tcmalloc.

Hà, M. H., Ta, D. Q., and Nguyen, T. T. Exact algorithms for
scheduling problems on parallel identical machines with
conflict jobs. arXiv preprint arXiv:2102.06043, 2021.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, C.-C., Jin, G., and Li, J. Swapadvisor: Pushing deep
learning beyond the gpu memory limit via smart swap-
ping. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 1341–1355, 2020.

Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P.,
Gonzalez, J., Keutzer, K., and Stoica, I. Checkmate:
Breaking the memory wall with optimal tensor remate-
rialization. In Dhillon, I., Papailiopoulos, D., and Sze,
V. (eds.), Proceedings of Machine Learning and Systems,
volume 2, pp. 497–511, 2020.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li,
L., Wang, F., and Liu, Q. Tinybert: Distilling bert
for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019.

Kirisame, M., Lyubomirsky, S., Haan, A., Brennan, J., He,
M., Roesch, J., Chen, T., and Tatlock, Z. Dynamic ten-
sor rematerialization. In International Conference on
Learning Representations, 2021.

Kowalczyk, D. and Leus, R. An exact algorithm for parallel
machine scheduling with conflicts. Journal of Scheduling,
20(4):355–372, 2017.

Le, T. D., Imai, H., Negishi, Y., and Kawachiya, K. Auto-
matic gpu memory management for large neural models
in tensorflow. In Proceedings of the 2019 ACM SIG-
PLAN International Symposium on Memory Management,
ISMM 2019, pp. 1–13, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery. ISBN 9781450367226.
doi: 10.1145/3315573.3329984. URL https://doi.
org/10.1145/3315573.3329984.

Lee, J., Chirkov, N., Ignasheva, E., Pisarchyk, Y., Shieh, M.,
Riccardi, F., Sarokin, R., Kulik, A., and Grundmann, M.

https://www.sciencedirect.com/science/article/pii/S2095809919306356
https://www.sciencedirect.com/science/article/pii/S2095809919306356
https://aclanthology.org/N19-1423
https://github.com/google/tcmalloc
https://github.com/google/tcmalloc
https://doi.org/10.1145/3315573.3329984
https://doi.org/10.1145/3315573.3329984

Safe Optimized Static Memory Allocation for Parallel Deep Learning

On-device neural net inference with mobile gpus. arXiv
preprint arXiv:1907.01989, 2019.

Liang, X. Chapter 3 - hardware architecture. In Liang,
X. (ed.), Ascend AI Processor Architecture and
Programming, pp. 75–100. Elsevier, 2020. ISBN
978-0-12-823488-4. doi: https://doi.org/10.1016/
B978-0-12-823488-4.00003-5. URL https:
//www.sciencedirect.com/science/
article/pii/B9780128234884000035.

Liao, H., Tu, J., Xia, J., Liu, H., Zhou, X., Yuan, H., and
Hu, Y. Ascend: a scalable and unified architecture for
ubiquitous deep neural network computing : Industry
track paper. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pp.
789–801, 2021. doi: 10.1109/HPCA51647.2021.00071.

Lin, L. and Lin, Y. Machine scheduling with con-
tiguous processing constraints. Information Process-
ing Letters, 113(8):280–284, 2013. ISSN 0020-
0190. doi: https://doi.org/10.1016/j.ipl.2013.02.
004. URL https://www.sciencedirect.com/
science/article/pii/S0020019013000495.

Mallek, A. and Boudhar, M. A branch-and-bound algorithm
for the problem of scheduling with a conflict graph. In
2020 International Conference on Decision Aid Sciences
and Application (DASA), pp. 778–782. IEEE, 2020.

MindSpore. Official news - 07, 2021. URL https://
mindspore.cn/news/newschildren?id=367.

MindSpore. Models, 2023. URL https://gitee.
com/mindspore/models.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V. A., Vainbrand, D., Kashinkunti,
P., Bernauer, J., Catanzaro, B., et al. Efficient large-scale
language model training on gpu clusters. arXiv preprint
arXiv:2104.04473, 2021.

Pemmaraju, S. V., Raman, R., and Varadarajan, K. R. Buffer
minimization using max-coloring. In SODA, volume 4,
pp. 562–571. Citeseer, 2004.

Peng, X., Shi, X., Dai, H., Jin, H., Ma, W., Xiong, Q., Yang,
F., and Qian, X. Capuchin: Tensor-based gpu memory
management for deep learning. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, pp. 891–905, 2020.

Pisarchyk, Y. and Lee, J. Efficient memory manage-
ment for deep neural net inference. arXiv preprint
arXiv:2001.03288, 2020.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Ex-
ploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020. URL http://jmlr.
org/papers/v21/20-074.html.

Redmon, J. and Farhadi, A. Yolov3: An incremental im-
provement. arXiv preprint arXiv:1804.02767, 2018.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520,
2018.

Sekiyama, T., Imamichi, T., Imai, H., and Raymond, R.
Profile-guided memory optimization for deep neural net-
works. arXiv preprint arXiv:1804.10001, 2018.

Sergeev, A. and Del Balso, M. Horovod: fast and easy
distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

Sethi, R. Complete register allocation problems. SIAM
journal on Computing, 4(3):226–248, 1975.

Shuangfeng, L. Tensorflow lite: On-device machine learn-
ing framework. Journal of Computer Research and De-
velopment, 57(9):1839–1853, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Zeng, W., Ren, X., Su, T., Wang, H., Liao, Y., Wang, Z.,
Jiang, X., Yang, Z., Wang, K., Zhang, X., Li, C., Gong,
Z., Yao, Y., Huang, X., Wang, J., Yu, J., Guo, Q., Yu, Y.,
Zhang, Y., Wang, J., Tao, H., Yan, D., Yi, Z., Peng, F.,
Jiang, F., Zhang, H., Deng, L., Zhang, Y., Lin, Z., Zhang,
C., Zhang, S., Guo, M., Gu, S., Fan, G., Wang, Y., Jin, X.,
Liu, Q., and Tian, Y. Pangu-α: Large-scale autoregressive
pretrained chinese language models with auto-parallel
computation. arXiv preprint arXiv:2104.12369, 2021.

Zheng, L., Li, Z., Zhang, H., Zhuang, Y., Chen, Z., Huang,
Y., Wang, Y., Xu, Y., Zhuo, D., Xing, E. P., et al. Alpa:
Automating inter-and intra-operator parallelism for dis-
tributed deep learning. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
22), pp. 559–578, 2022.

Zuckerman, D. Linear degree extractors and the inapprox-
imability of max clique and chromatic number. In Pro-
ceedings of the thirty-eighth annual ACM symposium on
Theory of computing, pp. 681–690, 2006.

https://www.sciencedirect.com/science/article/pii/B9780128234884000035
https://www.sciencedirect.com/science/article/pii/B9780128234884000035
https://www.sciencedirect.com/science/article/pii/B9780128234884000035
https://www.sciencedirect.com/science/article/pii/S0020019013000495
https://www.sciencedirect.com/science/article/pii/S0020019013000495
https://mindspore.cn/news/newschildren?id=367
https://mindspore.cn/news/newschildren?id=367
https://gitee.com/mindspore/models
https://gitee.com/mindspore/models
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Safe Optimized Static Memory Allocation for Parallel Deep Learning

A SECTION 3: MISSING PROOFS

Proof of Theorem 1. We prove {t1, t2} ∈
(
T
2

)
is a safe

pair if and only if either t1 ∈ AncTensors[t2] or t2 ∈
AncTensors[t1]. Below, let n1, n2 ∈ N denote the nodes
producing t1, t2, respectively.

Without loss of generality, assume t1 ∈ AncTensors[t2].
By definition it holds DestNodes[t1] ⊆ AncNodes[n2].
There exists a directed path of length at least 1 from
any node consuming t1 to the node producing t2. That
is, regardless of multi-streaming, t1 is needed in storage
only strictly before t2 is produced, so they form a safe
pair. The same argument works for the symmetrical case
t2 ∈ AncTensors[t1]. Note it cannot be the case both t1 ∈
AncTensors[t2] and t2 ∈ AncTensors[t1], since it implies
there exist n′ ∈ DestNodes[t1] and n′′ ∈ DestNodes[t2],
such that n1 ; n′ ; n2 ; n′′ ; n1, a contradiction
since the graph is acyclic.

If instead t1 ̸∈ AncTensors[t2] and t2 ̸∈ AncTensors[t1],
then by definition it holds DestNodes[t1] ̸⊆ AncNodes[n2]
and DestNodes[t2] ̸⊆ AncNodes[n1]. By definition of
AncNodes , there exists a node n′ ∈ DestNodes[t1], such
that n′ ̸; n2, and a node n′′ ∈ DestNodes[t2], such that
n′′ ̸; n1. We consider the possible cases:

• If n′ = n2 or n′′ = n1, a consumer of one tensor is
the producer of the other, so {t1, t2} is an unsafe pair.

• If n2 ̸; n′ or n1 ̸; n′′, then without loss of generality
let us consider the case n2 ̸; n′. Since it holds both
n′ ̸; n2 and n2 ̸; n′ (and n′ ̸= n2), it follows there
is no dependency between n′ and n2 and they might
execute in parallel. Thus, {t1, t2} is unsafe.

• If n2 ; n′ and n1 ; n′′, we consider two subcases.

If n1 ; n2, then t1 is produced before t2 is produced.
But, since n2 ; n′ and n′ ∈ DestNodes[t1], t1 must
remain stored until the execution of n′, which is after
the execution of n2 producing t2. As a result, t1 and t2
must be saved in storage at the same time, which makes
them an unsafe pair. The case n2 ; n1 is symmetrical
by considering n1 ; n′′ and n′′ ∈ DestNodes[t2].

If n1 ̸; n2 and n2 ̸; n1, the nodes are independent
and might execute in parallel, so {t1, t2} is unsafe.

Proof of Lemma 1. In case it holds DestStreams[t2] ̸⊆
AncStreams[s1]∪{s1}, the call returns False (Algorithm 4,
lines 1 to 2). In this case, there is a stream s∗ receiv-
ing t2 such that it holds s∗ ̸∈ AncStreams[s1] ∪ {s1}.
Let n∗ ∈ DestNodes[t2] stand for a destination node of
t2 within s∗. By definition of AncStreams , it follows
n∗ ̸; n1.

If instead DestStreams[t2] ⊆ AncStreams[s1] ∪ {s1}, to
return True, we consider all streams s ∈ DestStreams[t2]
(Algorithm 4, lines 3 to 9).

Assume s ∈ AncStreams[s1] (Algorithm 4, lines 4 to 6).
Let EndTime[t2][s] = n3 and MaxAncId [t1][s] = n4. We
get n4 ; n1, since n4 is an ancestor of n1 and s ̸= s1. For
any n′ ∈ DestNodes[t2] ∩Ns, it holds n′ ; n3 by within-
stream arcs. The algorithm does not return False if and only
if n3 ; n4 (case EndTime[t2][s] < MaxAncId [t1][s])
or n3 = n4 (case EndTime[t2][s] = MaxAncId [t1][s]).
Either case implies n′ ; n.

In the case s = s1, let EndTime[t2][s1] = n∗. We do
not return False if and only if n∗ ; n1, equivalent to
EndTime[t2][s1] < StartTime[t1], which implies n′ ;

n1 for any n′ ∈ DestNodes[t2] ∩ Ns, since n′ ; n∗ by
within-stream arcs (Algorithm 4, lines 7 to 9).

Proof of Theorem 2. We consider all possible cases for any
{t1, t2} ∈

(
T
2

)
. Below, let t1 be produced by node n1 ∈ Ns1

and t2 by n2 ∈ Ns2 . Recall in Theorem 1 we have proved
{t1, t2} is safe if and only if t1 ∈ AncTensors[t2] or t2 ∈
AncTensors[t1]. Also, by definition, t1 ∈ AncTensors[t2]
is equivalent to DestNodes[t1] ⊆ AncNodes[n2], which is
equivalent to n∗ ; n2 for all n∗ ∈ DestNodes[t1].

• In case it holds s1 ̸= s2, s1 ̸∈ AncStreams[s2] and
s2 ̸∈ AncStreams[s1], by definition it follows neither
t1 ∈ AncTensors[t2] nor t2 ∈ AncTensors[t1], thus
{t1, t2} is an unsafe pair. In Algorithms 3, 5, the pair
is not considered in any loop, thus eventually it holds
{t1, t2} ∈ U ′′ (Algorithm 2, line 4).

• Assume s1 ̸= s2 and, without loss of generality, the
case s2 ∈ AncStreams[s1]. The tensor pair {t1, t2} is
considered in Algorithm 3.

If t2 is not between streams, let n′ = EndTime[t2]
and n′′ = MaxAncId [t1][s2]. By within-stream arcs,
for any n∗ ∈ DestNodes[t2], where n∗ ̸= n′, we get
n∗ ; n′. By assumption, it holds n′′ ; n1. By the
algorithm, the pair is deemed safe if and only if it holds
n′ ; n′′ or n′ = n′′ (Algorithm 3, line 6). Either way,
we infer n∗ ; n1 for all n∗ ∈ DestNodes[t2].

If t2 is between streams, ValidAncestor(t2, t1) is
called (Algorithm 3, line 10). By Lemma 1, {t1, t2}
is deemed safe if and only if it holds n∗ ; n1 for all
n∗ ∈ DestNodes[t2].

• Assume s1 = s2 = s. If t1, t2 are both between
streams, by Lemma 1, they are deemed safe if and
only if there is a valid ancestor relationship in either
way (Algorithm 5, lines 5 to 7). That is, the algorithm
decides safety if and only if it holds either n∗ ; n1

for all n∗ ∈ DestNodes[t2] or n∗∗ ; n2 for all n∗∗ ∈

Safe Optimized Static Memory Allocation for Parallel Deep Learning

DestNodes[t1]. As a side note, observe in this case
ValidAncestor(t1, t2) or ValidAncestor(t2, t1) may
only be true when the stream graph is not a DAG. This
case could emerge depending on stream definitions.
ValidAncestor(t2, t1) cannot return true, unless it
holds DestStreams[t2]\{s} ⊆ AncStreams[s]. As t2
is between streams, it holds DestStreams[t2]\{s} ≠ ∅.
Since t2 is generated within s, t2 is sent from s to s′ ⊆
AncStreams[s], which means s ∈ AncStreams[s′],
so there is a cycle in the stream graph.

Consider the case only one of t1, t2 is between streams
(Algorithm 5, lines 8 to 13), say t2 without loss of
generality. {t1, t2} is deemed safe if t2 is generated
strictly after t1 is last consumed within s by some node
n′ = EndTime[t1], that is, if n1 ; n∗ ; n′ ; n2

for any n∗ ∈ DestNodes[t1]. If StartTime[t1] ≤
StartTime[t2] ≤ EndTime[t1], then n2 ; n′ or
n2 = n′ and therefore n′ ̸; n2, so {t1, t2} is correctly
deemed unsafe. If StartTime[t1] > StartTime[t2],
similarly to before, by Lemma 1, {t1, t2} is safe if and
only if ValidAncestor(t2, t1) is True.

If t1 and t2 are not between streams, then all nodes
consuming them are within s. Let n′ = EndTime[t1]
and n∗ ∈ DestNodes[t1], where n∗ ̸= n′ if such an
n∗ exists. Similarly, let n′′ = EndTime[t2] and n∗∗ ∈
DestNodes[t2], where n∗∗ ̸= n′′ if such an n∗∗ exists.
In Algorithm 5, lines 14 to 16, the pair is deemed safe
if and only if [n1, n

′] ∩ [n2, n
′′] = ∅. Equivalently, by

within-stream arcs, we get either n1 ; n∗ ; n′ ;

n2 ; n′′ or n2 ; n∗∗ ; n′′ ; n1 ; n′.

B SECTION 3: MISSING DISCUSSION

Multi-Stream Safety is polynomial-time solvable by using
either of Algorithms 1, 2. This is an offline problem. For
each pair of tensors, we decide a priori whether or not they
are a safe pair. Given |T | tensors, there are

(|T |
2

)
⊆ O(|T |2)

pairs to consider. We allocate one bit for each such decision.
All such information is required for some offset assignment
methods, see Section 4. This approach differs to other,
online, scenarios where memory reuse is decided on the fly.

In Algorithm 1, also in 1opt, we need to compute the set
AncNodes[n] for each node n ∈ N , in order to perform
our ancestor tensor tests. We do so by performing a top to
bottom graph traversal. Let parents(v) denote the set of
nodes which produce a tensor arriving at v. Then, for every
node n ∈ N , it holds n ∈ AncNodes[v] if and only if either
n ∈ parents(v) or

∨
n′∈parents(v)(n ∈ AncNodes[n′]) is

true. We use a bitset-based implementation to perform the
logical operations during the graph traversal efficiently.

In Algorithm 2, we perform more specific checks by consid-
ering the stream graph. We simplify our comparisons by the
use of precomputed values StartTime,EndTime . There is
no need to maintain the ancestor nodes of each node, since
we use MaxAncId instead. Also, tensors neither with the
same source stream nor with source streams in ancestor
relationship are not handled by Algorithms 3, 5; they are an
unsafe pair by default. Thus, we get a (possibly significant)
reduced number of iterations compared to the Algorithm 1.
All comparisons require local topological sortings, not a
global one, since we compare nodes within the same stream.
Preprocessing is done in linear time by graph traversal.

C SECTION 4: MISSING PROOF

Definition 6 (Dynamic Storage Allocation). Given a set of
items A to be stored, each a ∈ A having a size s(a) ∈ N,
an arrival time r(a) ∈ N and a departure time d(a) ∈ N,
where d(a) > r(a), find an allocation σ : A → N such
that the maximum right endpoint among allocated storage
intervals I(a) = [σ(a), σ(a) + s(a)) is minimized and for
every a, a′ ∈ A if it holds I(a) ∩ I(a′) ̸= ∅, then either
d(a) ≤ r(a′) or d(a′) ≤ r(a).

Proof of Theorem 3. Given an instance of DSA, that is, an
item set A and values s(a), r(a), d(a) for each a ∈ A, we
construct an instance of OAP with the items being ten-
sors, where any two tensors a, a′ form an unsafe pair if
[r(a), d(a))∩ [r(a′), d(a′)) ̸= ∅. The set of contiguous con-
straints is left empty. By construction, an allocation function
for DSA uses storage D if and only if the same allocation
function uses storage D in OAP.

Let us discuss how Offset Assignment for Parallel relates
to traditional coloring and scheduling problems, if we as-
sume the set of contiguous constraints is empty. In case
all sizes are equal, OAP reduces to Graph Coloring, that
is, minimizing the number of colors assigned to vertices
such that no two neighboring vertices are assigned the same
color. This reduction implies hardness of approximation
within n1−ϵ ratio with ϵ > 0 (Zuckerman, 2006). Also, we
may reduce OAP to Scheduling with Conflicts (Even et al.,
2009) for an unbounded number of machines: given a set
J of n jobs with processing times {pj}j∈J and a conflict
graph Gc = (J,E) over the jobs, assign time intervals on
the machines such that (i) each job j ∈ J is assigned an
interval of length pj on a single machine, (ii) intervals on
the same machine do not overlap, (iii) for any (j, j′) ∈ E,
the intervals assigned to j and j′ do not overlap, and (iv)
the largest endpoint of an assigned time interval (makespan)
is minimized. With regard to OAP, a tensor corresponds
to a job and its size to a processing time. The number of
machines is unbounded, since there is no restriction on the
number of tensors whose assigned offset intervals may over-

Safe Optimized Static Memory Allocation for Parallel Deep Learning

lap. To visualize the connection, consider OAP items to
be rectangles of width 1 and length equal to their size. A
solution to OAP stacks rectangles on top of each other when
sharing offsets. A horizontal strip of width 1 is matched to
a distinct machine for the Scheduling with Conflicts defi-
nition. In Figure 5, we visualize the connection of OAP to
Scheduling with Conflicts.

Figure 5: From OAP to Scheduling with Conflicts: The
bottom two jobs are assigned to machine p, while the top
three jobs are assigned to p′.

D SECTION 4: MISSING SUBROUTINES

Avoid. In Algorithm 8, we present Avoid , the subroutine
responsible for generating the set of offset intervals, which
cannot be selected as a start offset for a new block of tensors.

If the block to be allocated contains a single tensor (lines
2 to 9), then it suffices to ensure safety between this new
tensor and all tensors already allocated. For every block in
object, we consider all its tensors sequentially (lines 6 to 9).
If there is an unsafe pair with the new tensor, the interval
occupied by the allocated tensor is pushed back in the list.

On the other hand, in case the new block forms a contigu-
ous list and contains multiple tensors, the check we need
becomes more complex. Again, we iterate over all blocks
already in object (lines 11 to 27). We loop sequentially over
all tensors within an allocated block (lines 13 to 27). For
each allocated tensor, we loop over all tensors within the
new block in order to compute forbidden offset intervals
for the new block’s first tensor (lines 16 to 26). Variable
acc accumulates the total size of tensors in the new block
that have already been examined in this loop. If the al-
located tensor and the new tensor are an unsafe pair, we
need to determine the proper offset interval, which must
be forbidden for placement of the new block’s first ten-
sor. To do so, we use auxiliary variables start and end
(lines 18 to 19). If new tensor and tensor are an un-
safe pair, then new tensor cannot overlap with interval
[offset(tensor)− size(new tensor)+1, offset(tensor)+
size(tensor)) in order for no part of new tensor to oc-
cupy the same space as tensor . Since new tensor is a
member of a contiguous block, the corresponding offset
interval we forbid for new block is displaced by an acc
distance to the left. Note we use open right endpoint for
the intervals we push to match the functionality of our Fit

Algorithm 8: Avoid
Input :The block of tensors new block to be allocated, the

object , and the unsafe pairs.
Output :A list of offset intervals forbidden for the head

tensor of new block due to unsafe pairs.
1 avoid intervals ← [];
2 if length(new block) == 1 then
3 new tensor ← new block .head();
4 foreach block ∈ object do
5 tensor ← block .head();
6 while tensor ̸= NULL do
7 if {new tensor , tensor} ∈ unsafe then
8 avoid intervals.push back(

[offset(tensor),
offset(tensor) + size(tensor)));

9 tensor ← tensor .next();
10 else // length(new block) > 1
11 foreach block ∈ object do
12 tensor ← block .head();
13 while tensor ̸= NULL do
14 acc ← 0;
15 new tensor ← new block .head();
16 while new tensor ̸= NULL do
17 if {new tensor , tensor} ∈ unsafe then
18 start ← offset(tensor)

− size(new tensor) + 1− acc;
19 end ← offset(tensor)

+ size(tensor)− acc;
20 if start ≥ offset(object) then
21 avoid intervals.push back(

[start , end));
22 else
23 if end > offset(object) then
24 avoid intervals.push back(

[offset(object), end));
25 acc ← acc + size(new tensor);
26 new tensor ← new tensor .next();
27 tensor ← tensor .next();
28 return avoid intervals;

subroutine to be detailed later. The only thing left to make
sure is that the forbidden interval is within the limits of
the current object we examine. If (part of) the interval
is outside the object, we need not declare it forbidden as
such space will not be examined anyway for the current
object. Note that end ≤ offset(tensor) + size(tensor) ≤
offset(object) + size(object), since an allocated tensor is
always within object limits. It suffices to check how start
and end compare with respect to the leftmost limit of the
object, namely offset(object). If start ≥ offset(object),
then the whole interval is within the object and so we push
it in the avoid list (lines 20 to 21). Otherwise, if it partially
intersects with the object, when end > offset(object), then
we push back the corresponding part (lines 22 to 24).

For an example of the above, see Figure 6. Block ABC
is already allocated in the object with tensors A, B, C, at
offsets 0, 10, 15, respectively. Tensor sizes are 10, 5, and 3,

Safe Optimized Static Memory Allocation for Parallel Deep Learning

respectively. A new block DEF is considered by Avoid : D
of size 8, followed by E of size 6, followed by F of size 6.
Assume {E,B} is unsafe. This means E cannot be placed
on offset interval [offset(B) − size(E) + 1, offset(B) +
size(B)) = [10 − 6 + 1, 10 + 5) = [5, 15), since it will
overlap with B. For the head tensor D, we displace to the
left by 8 (the size of D is the accumulator value at this
point). Thus, the forbidden interval becomes [−3, 7), which
finally becomes [0, 7) to stay within object limits.

Figure 6: Avoid in case of many-tensors new block .

Merge. Subroutine Merge , see Algorithm 9, is essentially
a preprocessing step for Fit to avoid iterating over the same
(parts of) intervals multiple times. It takes as input the inter-
val list generated by Avoid and outputs a stack of merged
intervals, sorted by decreasing order of right endpoint.

Initially, the interval list avoid intervals is sorted by in-
creasing left endpoint (line 2). Note that this step is nec-
essary due to the functionality of Avoid discussed above
for the case of new block with multiple tensors. The first
interval is pushed onto the stack (line 5). Then we iterate
over all remaining intervals in the list in the sorted order
(lines 6 to 14). We compare the right endpoint of the inter-
val at the top of the stack with the left endpoint of the new
interval. If the latter is larger, then there is no overlap, hence
we simply push the new interval at the top of the stack (lines
9 to 10). Otherwise, there is an overlap, and we update the
right endpoint of the interval at the top of the stack, if the
new interval partially intersects it to the right and is not fully
contained in it (lines 11 to 13). Note the sorted order in
which intervals are considered guarantees correctness as we
scan offsets from left to right.

Fit. We provide details about the implementation of Fit
called in our algorithms, that is, in Algorithm 6, line 6,
for Single Object, and in Algorithm 7, line 13, for Many
Objects. In Algorithm 10, we give the pseudocode. Given a
block b to be assigned into an object and the set of forbidden
offsets for the head tensor of b, we choose an offset for b,
according to a fitter policy, such that safety is respected.

Recall that the offset intervals to be avoided, namely
avoid intervals , is returned by Merge called just before.

Algorithm 9: Merge
Input :A list of offset intervals avoid intervals .
Output :A minimal size stack of offset intervals in

decreasing order of right endpoint, spanning the
same offsets as avoid intervals .

1 if length(avoid intervals) == 0 then
2 return [];
3 Sort avoid by order of increasing left endpoint;
4 interval ← avoid intervals.head();
5 stack .push(interval);
6 interval ← interval .next();
7 while interval ̸= NULL do
8 top ← stack .top();
9 if top.right < interval .left then

10 stack .push(interval);
11 else
12 if top.right < interval .right then
13 top.right ← interval .right ;
14 interval ← interval .next();
15 return stack ;

Merge(·) returns a stack of intervals in decreasing order
of their right endpoint. Due to merging there is no over-
lap among any intervals within avoid intervals . The top
of the stack contains the maximum-right-endpoint interval
among the ones to be avoided. Before we proceed, note
we introduce variable compare size (lines 2 to 5), since the
forbidden intervals refer to the first tensor in a block.

During fitting, we iterate avoid intervals to find feasible
gaps between consecutive forbidden intervals, where the
block may be assigned (Algorithm 10, lines 7 to 14). The
upper limit of a gap is the left endpoint of the interval to
the right, whereas the lower limit is the right endpoint of
the next-in-stack interval to the left. The initial upper limit
is the end of object (line 6), which is the system infinity
value for Single Object. If the tensor fits between lower and
upper limits (line 10), and the block fits within the object
(line 11) if it were to be placed there (a check necessary for
Many Objects footprints), then this a candidate to place the
block, and we maintain in offset candidates the start offset
of this gap and its size (line 13). The final lower limit is
the beginning of the object (line 15). We repeat the same
check (lines 16 to 19) for this last offset candidate. Finally,
if non-empty, offset candidates are sorted according to a
fitter call (line 22). The first start offset given by the sorting
is selected as the start offset of block b (lines 23 to 24).

The fitters we test in the scope of this paper are First-Fit
(Algorithm 11), and the most commonly used Best-Fit (Al-
gorithm 12). In First-Fit, we choose the candidate with the
lowest start offset, whereas in Best-Fit we choose the one
with smallest gap size. Determinism is ensured by maintain-
ing unique gap indices and using it as third sorting criterion.

One might correctly identify that the generalized Fit scheme

Safe Optimized Static Memory Allocation for Parallel Deep Learning

Algorithm 10: Fit
Input :A block of tensors b. A stack of non-overlapping

offset intervals, in decreasing order of right
endpoint, with which b’s first tensor must not
overlap (avoid intervals). An object and a fitter.

Output :A value for offset(b).
1 offset candidates ← ∅;
2 if length(b) == 1 then
3 compare size ← size(b);
4 else
5 compare size ← size(b.head());
6 upper ← object .right ;
7 while avoid intervals is not empty do
8 interval ← avoid intervals.pop();
9 lower ← interval .right ;

10 if lower + compare size ≤ upper then
11 if lower + size(b) ≤ object .right then
12 gap ← upper − lower ;
13 offset candidates.insert((lower , gap));
14 upper ← interval .left ;
15 lower ← offset(object);
16 if lower + compare size ≤ upper then
17 if lower + size(b) ≤ object .right then
18 gap ← upper − lower ;
19 offset candidates.insert((lower , gap));
20 if offset candidates == ∅ then
21 return ∅;
22 offset candidates ← Sort(offset candidates,fitter);
23 (lower ′, gap′)← offset candidates[0];
24 return lower ′;

Algorithm 11: First-Fit
Input :Two start offset and gap pairs, namely

(lower ′, gap′) and (lower ′′, gap′′).
Output :True if (lower ′, gap′) is sorted before

(lower ′′, gap′′) in First-Fit, otherwise False.
1 return lower ′ < lower ′′ OR
2 (lower ′ = lower ′′ AND gap′ < gap′′);

we implement in Algorithm 10 does a lot of extra work in
the case of First-Fit. Indeed, in this case, it suffices to order
avoid intervals by increasing left endpoint, and break the
loop once the first feasible offset candidate is identified, thus
saving on the number of iterations and the need for sorting.
Regardless, we choose to stick with the generalized design
in Algorithm 10, since it allows us to parameterize it by
any conceivable fitter function even besides First-Fit and
Best-Fit. So, it provides a basis for future experimentation
with respect to fitting. Also, we implemented the simplified
design for First-Fit and the observed solving time gains were
insignificant for most DNNs.

Set Offsets. This subroutine, Algorithm 13, performs a
sequential assignment of tensor offset values within a block,
once the start offset for the whole block is determined.
The offset value for each tensor is calculated by displacing

Algorithm 12: Best-Fit
Input :Two start offset and gap pairs, namely

(lower ′, gap′) and (lower ′′, gap′′).
Output :True if (lower ′, gap′) is sorted before

(lower ′′, gap′′) in Best-Fit, otherwise False.
1 return gap′ < gap′′ OR
2 (gap′ = gap′′ AND lower ′ < lower ′′);

start offset by the total size of tensors already considered.

Algorithm 13: SetOffsets
Input :A block of tensors and its start offset.
Output :Assign tensor offsets within the block.

1 current offset ← start offset ;
2 tensor ← block .head();
3 while tensor ̸= NULL do
4 offset(tensor)← current offset ;
5 current offset ← current offset + size(tensor);
6 tensor ← tensor .next();

E SECTION 4: EXAMPLE OF MANY
OBJECTS VS SINGLE OBJECT

In Section 5 experiments, Many Objects returned a better
solution than Single Object for two popular DNNs, namely
Tiny-BERT and ResNet-50. Here, we present a toy example
to demonstrate how this may be possible depending on
DNN topology and the corresponding set of unsafe pairs.
In Figure 7, we consider a toy DNN in the single-stream
case, where operators execute in increasing order of their
assigned (global) topological sorting.

Figure 7: Toy example for algorithms’ comparison.

There are five tensors produced, labeled by alphabet letters.
The labeling is made based on on the decreasing order of

Safe Optimized Static Memory Allocation for Parallel Deep Learning

sizes we assign them, and corresponds to the order in which
the tensors are sorted in the heuristics. There is tensor A of
size 1024, B of size 768, C of size 640, D of size 512 and
E of size 256. From the given DNN, we extract the lifetimes
as follows: A → [0, 1], B → [3, 4], C → [1, 2], D → [4, 5],
E → [2, 4]. Given these lifetimes, the set of unsafe pairs
arising is {{A,C}, {B,D}, {B,E}, {C,E}, {D,E}}.

In Figure 8, we run Single Object (Algorithm 1), whereas in
Figure 9, we run Many Objects (Algorithm 2). In both cases,
tensors are sorted by decreasing size to be considered by
the algorithms and First-Fit is used as fitter within Fit . Es-
sentially, the two algorithms diverge at the fourth step. Due
to lack of space in the first object, Many Objects allocated
tensor D in the second object. This leaves a gap between B
and D, which has just enough size for E to be placed in it
in the next step. On the other hand, Single Object has to use
extra memory equal to the size of E. Given the placement
after step 4, and the set of unsafe pairs, E is placed at the
end of memory space.

(a) Step 1: A assigned at offset 0.

(b) Step 2: B assigned on top of A, since no unsafe pair.

(c) Step 3: C assigned after A, due to unsafe pair.

(d) Step 4: D assigned after B as no unsafe pair with A and C.

(e) Step 5: E assigned after D due to unsafe pairs with B,D,C.

Figure 8: Single Object for toy DNN uses size 1920.

F SECTION 5: FOOTPRINT LOWER BOUND

Assume we execute either Algorithm 1 or 2 to obtain the set
of unsafe pairs. In a graph-theoretic perspective, consider
an auxiliary undirected graph, where each node corresponds
to a tensor and has a weight equal to the tensor size, and two
nodes have an edge connecting them if they form an unsafe
pair. Consider a clique, that is, a complete subgraph, in

(a) Step 1: A defines a new object of size 1024.

(b) Step 2: B fitted inside object of A, since no unsafe pair.

(c) Step 3: C defines a new object (640), since {A,C} is unsafe.

(d) Step 4: D does not fit in first object since {B,D} is unsafe.

(e) Step 5: E fits in first object.

Figure 9: Many Objects for toy DNN uses size 1664.

this auxiliary graph: no two tensors participating in a clique
may reuse memory. Hence, a natural lower bound we might
consider is the maximum weight of a clique. However, not
only is this a notorious NP-hard problem (Garey & Johnson,
1979), it also might be far from the optimal solution of
memory allocation. Depending on the set of unsafe pairs,
tensors outside the max-weight clique may not reuse the
memory of tensors forming that clique.

Given the above, a more “trustworthy”, and tractable, lower
bound is the lifetime based lower bound. Consider a
single-stream execution with a global topological sorting
{1, 2, . . . , n}, where n is the number of nodes. Each tensor
is associated with a single lifetime start and end. For each
“time step” i ∈ {1, 2, . . . , n}, let sumi denote the sum of
sizes of tensors whose lifetime includes i. A lower bound
for the single-stream model is given by maxi sumi, and
it captures the maximum memory needed over all steps of
execution. In this paper, we assume all local topological
sortings are extracted by the same global sorting of the DAG.
In other words, the multi-stream graph is derived from the
single-stream one. The unsafe pairs set of the multi-stream
case is always a superset of the single-stream case. This
lifetime lower bound serves as a natural comparison for our

Safe Optimized Static Memory Allocation for Parallel Deep Learning

computed memory plans in the multi-stream setting and we
use it as a baseline to evaluate our footprint size quality in
Section 5. Note this lower bound disregards the set of (many
for some networks) contiguous constraints. Therefore, it
might underestimate the solution quality. Nonetheless, it is
experimentally proven valuable as shown in Tables 2, 3.

G SECTION 6: OTHER RELATED WORK

We discuss a related model in literature, where tensors are
required to be grouped into shared objects of memory. Each
tensor is assigned to a single shared object and a shared
object holds at most one tensor at each point in time. In
this case, the problem becomes equivalent to the NP-hard
Max-Coloring problem in interval graphs (Escoffier et al.,
2006; Pemmaraju et al., 2004) and it is a generalization of
the seminal register allocation problem (Sethi, 1975).

While multiple works investigate Scheduling with Conflicts,
see Section 4, they focus on exact solutions (Kowalczyk
& Leus, 2017; Hà et al., 2021) and branching approaches
(Mallek & Boudhar, 2020), which take a significant amount
of time even for instances of very small size (a few tens
or hundreds of jobs) and cannot be used to compare with
the speed we achieve in our experiments (few seconds even
for huge graphs with tens of thousands tensors). Besides,
constraints dealing with contiguity have not been thoroughly
investigated in scheduling literature. We are only familiar
with the work in (Lin & Lin, 2013), where jobs partaking in
a contiguous constraint must be processed successively, but
unlike our case, there is no restriction on their desired order.

In this paper, our focus is to optimize memory management
for large training workloads, hence we present the relevant
results. We know there exist other experts within the Mind-
Spore community who have experimented with our solution
on inference workloads for applications, for example in
MEGA-Fold inference to increase sequence length2.

2https://cloud.tencent.com/developer/
article/2095936

https://cloud.tencent.com/developer/article/2095936
https://cloud.tencent.com/developer/article/2095936

