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ABSTRACT
Edge Impulse is a cloud-based machine learning operations (MLOps) platform for developing embedded and edge
ML (TinyML) systems that can be deployed to a wide range of hardware targets. Current TinyML workflows are
plagued by fragmented software stacks and heterogeneous deployment hardware, making ML model optimizations
difficult and unportable. We present Edge Impulse, a practical MLOps platform for developing TinyML systems
at scale. Edge Impulse addresses these challenges and streamlines the TinyML design cycle by supporting
various software and hardware optimizations to create an extensible and portable software stack for a multitude of
embedded systems. As of Oct. 2022, Edge Impulse hosts 118,185 projects from 50,953 developers.

1 INTRODUCTION

Machine learning (ML) has become an increasingly impor-
tant tool in embedded systems for solving difficult problems,
enhancing existing Internet of Things (IoT) infrastructure,
and offering unique ways to save power and bandwidth in
sensor networks. ML inference on TinyML systems has
facilitated the development of technologies in low-power de-
vices such as wakeword detection (Gruenstein et al., 2017),
predictive maintenance (Susto et al., 2015), anomaly detec-
tion (Koizumi et al., 2019), visual object detection (Chowd-
hery et al., 2019), and human activity recognition (Chavar-
riaga et al., 2013). According to ABI Resarch, a global
technology intelligence firm, the “installed base of devices
with edge AI chipset will exceed 5 billion by 2025.” Ad-
ditionally, the embedded ML market is expected to reach
US$44.3 billion by 2027 (abi, 2021).

Despite the promising advances, the embedded ML devel-
opment ecosystem has lagged behind the demand for appli-
cations. The embedded ML development workflow often
requires specific expertise. For instance, embedded ML de-
velopers often have to learn a new set of tools for training
new models and porting them to an embedded framework
written in C or C++, while managing conflicting library de-
pendencies. Additionally, hardware vendor specific frame-
works often lock a developer into a particular ecosystem,
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which limits the flexibility and scalability of an application.

While popular frameworks such as TensorFlow Lite for Mi-
crocontrollers (TFLM) (David et al., 2021) help address
optimization and compression of neural networks for em-
bedded devices, adoption has been slow due to challenges
that are unique to the embedded machine learning ecosys-
tem. Broadly, these include the following:

1. Data collection challenge. There is no large-scale, cu-
rated, public sensor data set for the embedded ecosys-
tem. Currently, it is difficult to efficiently collect, and
analyze such datasets from a rich variety of sensors.
Additionally, data cleaning and labeling are essential
to ML development but are expensive, labor intensive
processes without tooling or automation.

2. Data preprocessing challenge. Digital signal process-
ing (DSP) is a critical stage of the ML stack and has
strong interactions with the ML model, that are some-
times hard to quantify. Yet there are a lack of auto-
mated machine learning tools for the embedded ecosys-
tem that include the DSP component, which hinders
the development of efficient preprocessing methods for
these systems by non-domain experts.

3. Development challenge. Matching TensorFlow and
TFLM dependency versions across training and de-
ployment infrastructure is challenging. To ensure func-
tional reliability, it is often necessary for developers to
have extensive knowledge in multiple domains, such
as Python, machine learning, TensorFlow, C/C++, and
embedded systems.

4. Deployment challenge. Scaling ML deployment is
hampered by the rich heterogeneity of embedded archi-
tectures and development frameworks, which restricts
code portability, particularly as a result of architecture-
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Figure 1. The challenges associated with the ML Workflow and features of Edge Impulse that solve those challenges.

specific optimization strategies. In addition, the ab-
sence of automated machine learning (AutoML) tools
to assist non-domain experts in developing model archi-
tectures for embedded systems restricts accessibility.

5. Monitoring challenge. In contrast to traditional cloud-
based machine learning systems that rely on mature
software and hardware stacks, there is no unified
MLOps framework for programmatically updating
datasets, training models, and deploying them to em-
bedded devices. Additionally, few benchmarking tools
exist to quantify model performance on diverse embed-
ded architectures that are highly heterogeneous.

Edge Impulse, an online platform designed to simplify the
process of collecting data, train deep learning models, and
deploy them to embedded and edge computing devices,
allows us to address these aforementioned issues. Edge
Impulse targets customers in the business sector who want to
develop edge machine learning (ML) solutions for a variety
of problems. However, the Edge Impulse platform also
facilitates a research- and classroom-friendly environment.

Figure 1 illustrates the end-to-end ML workflow of Edge
Impulse. Edge Impulse simplifies the process of data collec-
tion and curation for users and streamlines the training and
evaluation of models. Users can interact with the training
and deployment process via a combination of a web-based
graphical user interface (GUI) and an API. Edge Impulse
also provides an extensible and portable C/C++ library that
encapsulates the preprocessing code and trained model to
make inferencing simple across a wide range of target de-
vices as well as a number of target-specific optimizations to
reduce inference time and model memory consumption.

Edge Impulse offers several key technical contributions that
are unique. The first contribution is a data collection sys-
tem that helps users collect and store training and test data

alongside their model and deployment code. Rather than
relying on prebuilt datasets or requiring users to construct
their own data gathering technology, Edge Impulse offers
a variety of methods to gather data in real-world environ-
ments. The second contribution is pairing preprocessing
feature extraction with deep learning, which allows users
to explore a range of possible solutions to their individual
problem or task. The Edge Optimized Neural (EON) Tuner
assists in this task by automatically exploring a user-defined
search space of both preprocessors and ML models. The
third contribution is an extensible and portable inferencing
library that can be deployed across a wide range of edge and
embedded systems. The EON Compiler removes the over-
head required by the TFLM interpreter, thereby reducing
usage of the limited RAM and flash space.

In this paper, we outline the challenges of developing and
deploying ML models to embedded devices from an indus-
try practice perspective. Next, we describe the architec-
ture and use cases for a platform designed specifically to
address these obstacles. We provide several examples to
illustrate how this platform has been utilized successfully
in industry, academia, and research institutions to develop
novel machine learning-based solutions. Finally, we pro-
vide an evaluation of the performance and portability of the
platform-generated inference code.

2 EMBEDDED ECOSYSTEM CHALLENGES

In Section 1, we highlight the challenges faced by an em-
bedded ML developer. In this section, we highlight the
challenges posed by the Embedded ecosystem which make
platform and framework development difficult.
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2.1 Device Resource Constraints

TinyML systems often have very limited computational ca-
pabilities, due to their small size, cost, and energy budget.
Microcontrollers, which are the most common and general
purpose processors in the TinyML space, often have much
lower clock speeds and fewer architectural features (Ban-
bury et al., 2021b) than their mobile or server-class counter-
parts. This becomes a challenge when trying to keep pace
with the flow of data from a sensor or hit latency constraints.

ML workloads often require gigabytes of working mem-
ory and storage to store activations and model weights, but
TinyML systems are often equipped with only a few hun-
dred kilobytes of SRAM and a few megabytes of eFlash.
This enforces a strict constrain on the models. TinyML sys-
tems often have very flat memory hierarchies, due to small
or non-existent caches and often no off-chip memory (Ban-
bury et al., 2021b). This means the typical data access
patterns that neural networks have been designed around
no longer apply, which has forced the design of new model
architectures (Banbury et al., 2021b; Lin et al., 2020b).

Finally, many TinyML applications operate on battery
power, and the battery life of the system directly impacts
the usefulness of the application. Due to the small size
and cost of TinyML systems, these batteries are often small
and low capacity (e.g. a coin cell). Due to the limited en-
ergy budget, any wireless transmission can quickly deplete
the battery (Siekkinen et al., 2012). Since data is often
only transmitted once a specific prediction is made (e.g.
“OK Google”, “Alexa”, “Hey Siri”, etc.), false positives
contribute to battery drain with no benefit. Therefore, the
accuracy of a model can directly impact the energy con-
sumption of the system. These device constraints force
TinyML application developers to leverage every compres-
sion and optimization technique at their disposal, which, as
described in the next sections, poses it’s own challenges.

2.2 Hardware Heterogeneity

Despite resource limitations being fairly constant across
TinyML hardware, the embedded computing systems them-
selves are quite diverse. TinyML devices range from mi-
crocontrollers (Eggimann et al., 2019) and digital signal
processors (Gruenstein et al., 2017), to application specific
accelerators (Prakash et al., 2022; ARM, 2022) and neur-
morphic processors (Qiao et al., 2015). The STM32 32-bit
Arm Cortex MCU family alone, for example, includes 17
series of microcontrollers. Each STM32 microcontroller
series is based on an ARM processor core that is either
Cortex-M7, Cortex-M4, Cortex-M33, Cortex-M3, Cortex-
M0+, or Cortex-M0 (STM). Their capabilities can also vary
at the instruction set architecture level. The same is true of
other vendors. Each hardware platform supports different
deployment processes, model types, numerical formats, and

memory access patterns, which often makes TinyML appli-
cations difficult to port across devices. This complexity is
exacerbated when a creating an application at scale, which
must be deployed to a wide variety of devices, each with
their own libraries and deployment method.

2.3 Software Fragmentation

Due to TinyML’s infancy, the software stack has not yet
reached a state of stability concerning particular formats
and best practices. Occasionally, TinyML applications are
deployed with a full operating system (OS) like Linux, a
real-time OS like Zephyr (Zep), an inference framework like
TFLM (David et al., 2021), or even a bare-metal implemen-
tation as a C++ library with no external dependencies. This
diversity restricts the interoperability of new optimizations
and tools A standard TinyML training pipeline incorporates
tools and techniques from multiple sources, resulting in a
tangled web of software versions and ports that can hinder
collaboration, portability, robustness, and reproducibility.

2.4 Co-Optimization and Cross-Stack Collaboration

Each software and hardware optimization depends on the
other layers of the development and deployment stack to be
effective. This necessitates a complex optimization problem
with many interconnected knobs to tune for optimal perfor-
mance, as TinyML applications have stringent constraints.

Even without the addition of model hyper-parameters and
optimizations such as quantization, applying consistent pre-
processing across projects is a complicated jumble of hy-
perparameters that often requires deep, domain-specific in-
sights into a signal. Due to this inherent complexity, TinyML
development is a time consuming process that requires a
wide range of specific technical expertise that is often not
readily available in the industry. In addition, the cross-
product of options and versions at each layer complicates
collaboration and the reproducibility of ML applications.

Additionally, data consistency poses it’s own challenges, es-
pecially when using an internal or collected dataset. Signifi-
cant operational challenges are posed by maintaining train,
validation, and test splits, adding or removing individual
samples, and preserving metadata. To facilitate large-scale
collaborative projects and aid in the resolution of the ML
reproducibility crisis (Hutson, 2018), one must version con-
trol the data, preprocessing, model, and deployment code
while tracking a complex web of external dependencies.

3 OVERVIEW AND DESIGN OBJECTIVES

Edge Impulse is a combination of software-as-a-service,
developer tooling, embedded software, and documentation
to help embedded development teams create software that
makes use of embedded machine learning at scale. At the
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time of writing, Edge Impulse is being used by 50,953 devel-
opers in 118,185 projects, of which, 3,219 have been made
public; it is in use at over 5500 enterprise organizations,
excluding universities and other educational institutions.

Edge Impulse is designed and engineered according to the
following seven guiding principles, based on the developer
challenges as well as the embedded ecosystem challenges
that we described in Section 1 and Section 2, respectively.

1. Accessible. Edge Impulse’s primary objective is to make
embedded machine learning simpler and more accessible
while focusing on producing Tiny ML solutions for resource-
constrained devices (Section 2.1). This effectively broadens
the pool of potential embedded ML developers by helping
the embedded engineers with ML and the ML engineers
with embedded systems (Section 2.4).

2. End-to-end. Edge Impulse provides users the ability to
easily experiment with the end-to-end ML workflow holisti-
cally (Figure 1). Using Edge Impulse, one (or a team) could
collect a dataset, train a efficient, optimized model, evaluate
its performance, and deploy embedded firmware.

3. Data-centric. Edge Impulse prioritizes a data-centric
approach because data collection and analysis has been his-
torically slowed down in the ML pipeline. Given the scarcity
of sensor datasets in the embedded ecosystem (Challenge
#1, Section 1), Edge Impulse enables users to ingest data
from various sources. Therefore, Edge Impulse encourages
a data-centric approach to ML development, rather than
(over) emphasizing a model-centric approach.

4. Iterative. Since cross-stack optimization is critical (Sec-
tion 2.4), Edge Impulse promotes short developer feedback
loops that allows developers to quickly experiment and iter-
ate over different design space optimizations. To this end,
Edge Impulse strives to provide a rich set of AutoML tools.
Short design cycles and AutoML tools removes some of the
burden of expertise (Section 2.4).

5. Easy integration and extensible. Edge Impulse priori-
tizes integration and extensibility to address the challenge of
software fragmentation (Section 2.3) and cross-stack collab-
oration (Section 2.4). Experts should be able to connect the
technology with their preferred downstream stacks, ideally
using open standards where possible, and deploy to a wide
variety of embedded and edge platforms (Section 2.2).

6. Team Oriented. To scale well (Challenge #5, Section 1),
Edge Impulse facilitates the teamwork and communication
required for many embedded machine learning projects by
supporting multiple users on projects, versioning of projects,
and sharing of projects. In addition, it is well-documented
with accessible content that serves every user type.

7. Community supported. Finally, the technology should
promote a strong commitment to the community and exist

within an ecosystem of community users, tools, and content.

When a user creates a project, they are guided through
the process of gathering data, analyzing that data, creat-
ing a DSP preprocessing block, training a machine learning
model, evaluating that model, and ultimately deploying it to
a hardware platform of their choice. These steps are shown
in the ML workflow in Figure 1. Figure 2 shows a user’s
view inside an Edge Impulse Studio project with the ML
workflow steps shown on the left side of the page. Projects
in Edge Impulse are divided into a series of blocks that rep-
resent the dataflow. For this keyword spotting example, data
arrives (i.e. from a microphone) in the left block labeled
“Time series data” is preprocessed into Mel-frequency cep-
stral coefficients (MFCCs) in the middle block, and then
sent to a NN for inference in the block labeled “Classifica-
tion (Keras).” In the rest of the project design, users can
modify block parameters to adjust functionality or create
their own blocks to transform the data. s

With the design objectives established, a few things are
beyond the scope of Edge Impulse. Edge Impulse is not
intended to eliminate the need for a design process informed
by domain expertise, stakeholder consultation, and machine
learning workflow insight. For instance, a team of engineers
utilizing Edge Impulse must still assess the suitability of
machine learning as a solution to the problem they are at-
tempting to solve. The team must have the necessary domain
expertise to comprehend the problem and develop a responsi-
ble solution. They must still comprehend the general nature
of the machine learning (ML) workflow, including iterative
development and adopt appropriate evaluation metrics.

4 IMPLEMENTATION

In this section, we describe all the different aspects of the
end-to-end flow that Edge Impulse supports, as illustrated
in Figure 1. For each stage, we present the rationale for the
stage and describe its implementation specifics.

4.1 Data Collection and Analysis

Since every ML project begins with data that is often hard to
gather easily, Edge Impulse provides a number of features
designed to help users collect data, manage their dataset,
and perform feature extraction through digital signal pro-
cessing (DSP). Edge Impulse projects can accept data stored
in a several file formats: CSV, CBOR, JSON, WAV, JPG,
or PNG. The platform also offers several methods to help
users gather data for their project, including command line
interface (CLI) tools that interface with device firmware to
ingest data in real time and web-based API to upload data
directly or from an existing cloud-based store (e.g. AWS
S3 bucket). A GUI allows users to visualize training and
test set split as well as class allocation grouped into buckets.
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Figure 2. Screenshot showing the user’s view inside an Edge Impulse project where the blocks are connected depicting the dataflow.

Users can also examine raw data in each sample through
time series plots or images, depending on the data type.

4.2 DSP Pipeline

Many of the embedded machine learning applications or use
cases rely on sensor data preprocessing. Edge Impulse offers
the ability to perform various preprocessing of raw signal
data automatically prior to use in training or inference. This
preprocessing step is known as digital signal processing
(DSP) in the Edge Impulse workflow. By preprocessing raw
data, model size can often be reduced, and preprocessing
can incorporate more efficient algorithms than can be real-
ized with typical neural net architectures. For example, an
FFT is an O(n ⋅ log(n)) algorithm for extracting frequency
information, whereas using 1D convolutional layers to ac-
complish the same thing would require O(n2

) operations.

Edge Impulse simplifies the preprocessing workflow by pro-
viding a rich array of continuum blocks that trade off model
size and complexity (edg), a visual explorer for tuning DSP
block hyperparameters (frame length, stride, window size,
number of coefficients, etc.), and estimates of memory and
latency requirements for a given choice of hyperparameters.

Edge Impulse offers sensible defaults for a variety of tasks
to ensure minimal knowledge is required by users, though
domain experts can choose preprocessing steps and hyperpa-
rameters that reduce the amount of training noise. Addition-
ally, users can automatically select these hyperparameters
via the DSP autotune feature, or optimize them via the Eon
Tuner (Sec. 4.7)

4.3 ML Design and Training

Traditionally, a user would need to write code to train a
neural network on their data. But to make machine learning
more accessible to everyone, Edge Impulse employs a vi-
sual editor that allows a user to train on their data without
entering any code. There are preset neural network architec-
tures that are suggested based on the type of data coming
into the machine learning block. However, the layers or the
network can be customized by the user. Advanced users
can download the containerized code for the block to train
locally or use expert mode to customize further using the
Keras framework (Chollet, 2015) and Python.

Arbitrary combinations of building blocks (as shown in the
Figure 2 screenshot) allows for rich flexibility in model ar-
chitecture, but it is important that the model is trainable.
Edge Impulse provides a number of subtle, but important,
optimisation pieces to ensure stable training including, but
not limited to, learning rate finding, classifier bias initial-
isation, best model checkpoint restoration. Such building
blocks and optimizations make the training process accessi-
ble to machine learning novices while the extinsibility of the
expert mode allow domain experts to develop more complex
ML models on Edge Impulse.

Edge Impulse provides a transfer learning (Pan & Yang,
2009) block for audio keyword detection. This allows the
users to quickly develop a robust keyword spotting applica-
tion, even when working with a relatively small dataset.

Edge Impulse maintains partnerships with silicon vendors
who have developed specific neural network accelerator



Edge Impulse: An MLOps Platform for Tiny Machine Learning

hardware, such as the Syntiant NDP101. In addition to
generating models for general purpose processors, Edge
Impulse supports a variety of architecture-specific devices
and optimizations, such as CMSIS-NN (Lai et al., 2018) to
maximize the performance and minimize the memory foot-
print of neural networks on Cortex-M processor cores, thus
alleviating many issues found with hardware heterogeneity.

Edge Impulse also supports several unsupervised learning
algorithms to tackle anomaly detection problems. At the
moment, Edge Impulse uses K-means clustering and will
support Gaussian mixture models (GMM) in the near future.

4.4 Estimation and Evaluation

Since embedded systems are resource-constrained, develop-
ers can benefit from having estimations of model inference
latency time, RAM usage, and flash memory usage during
the early-stage design space exploration. Edge Impulse uses
Renode (Hołenko, 2017) and device-specific benchmarking
to produce estimates of preprocessing and model inference
times. Models are also compiled with varying options (non-
quantized vs. quantized, TFLM vs. EON Compiler) to
produce initial insights into RAM and flash memory usage.

Edge Impulse offers a number of tools to assist in evaluating
the effectiveness of model performance. A confusion matrix
can be generated from the holdout set to provide overall
or per-class accuracy and F1 scores. For supported hard-
ware, new data can be collected to perform live inference.
Such evaluation options assist users in identifying trade-offs
between model performance and model size and latency.

In addition to model evaluation, Edge Impulse enables post-
processing evaluation and tuning using a tool known as
performance calibration (Situnayake, 2022) for projects that
identify events in streaming data. The tool accepts an input
of user-supplied raw data or synthetically generated data
along with the trained model. Using a genetic algorithm, it
suggests a number of optimal post-processing configurations
that trade off false acceptance rate (FAR) and false rejection
rage (FRR). Suggesting optimal post-processing methods
significantly reduces the engineering risk associated with a
project and increases the quality of its performance.

4.5 Compression and Optimization

Many different optimization types can be used to improve
the performance of ML and DSP algorithms when deployed
to edge devices. Several types of optimization are supported
by Edge Impulse, either out-of-the-box or via extensibility.
The optimization areas are model compression and optimiza-
tion, code optimization, and device-specific optimization.

Model compression and optimization techniques are applied
either during or after training and result in models with a re-
duced size or computational burden when deployed to edge

devices. Compression techniques available out-of-the-box
in Edge Impulse include fully int-8, weight and activation
quantization (Jacob et al., 2017) and operator fusion (goo,
2022). Quantization-aware training is supported when con-
verting a model to Brainchip’s Neuromorphic format (bus,
2022).

Code optimization involves optimizations to run an algo-
rithm or set of algorithms on a given target. This includes
model-specific code generation (via EON Compiler (Jong-
boom, 2022)), ML kernels optimized for particular proces-
sor architectures (e.g. ARM CMSIS-NN (Lai et al., 2018)),
and quantization optimized DSP algorithms. The software
development kit (SDK) is designed to make use of available
optimizations depending on the compiler flags that are set.

Device-specific optimizations are those that apply to specific
targets due to the requirement of hardware support. Exam-
ples include the training and conversion of spiking neural
networks (supported for specific targets via integration) and
sparse neural networks. Additional targets and optimiza-
tions can be added using the platform’s extensibility via
custom processing, learning, and deployment blocks.

Edge Impulse’s EON compiler (Jongboom, 2022) compiles
TFLM neural networks to C++ source code. The EON
Compiler eliminates the need for the TFLM interpreter by
generating code that directly calls the underlying kernels
and enables the linker to eliminate unused instructions. This
effort reduces the RAM and ROM usage for neural network
implementations, as we show in Section 5.3.

4.6 Conversion and Compilation

Edge Impulse offers several possibilities for DSP and model
deployment to target embedded and edge devices, such as
standalone C++ library, Arduino library, process runner for
Linux, WebAssembly library (Web), and precompiled bina-
ries for a variety of supported boards. A deployed project
includes both DSP preprocessing and trained machine learn-
ing model that have been optimized for a given architecture.

Edge Impulse provides a firmware SDK for collecting data
directly on a device that will be used at inference time. This
SDK can be built by a user or is available in binary format
for a variety of popular microcontrollers, such as Arduino,
Raspberry Pi Pico, etc. As a library, the SDK contains
several public-facing functions for performing inference
(Hymel, 2022). The precompiled binary presents a simple
set of AT commands for usage over a serial port.

The SDK provides a pathway to out-of-the-box operation
that uses a combination of code generation, macros, and
runtime checks to include more efficient algorithms and
optimizations where possible, but it falls back on pure C++
where needed to run on a wide range of processor architec-
tures. Porting to a new processor requires an allocator for
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the desired memory pool to service the SDK (typically a
wrapper to malloc). printf and timing functions help
with debug and profiling, but these are not strictly necessary.

In addition to microcontrollers, the Edge Impulse inference
SDK can be built and run on any Linux board utilizing
x86 or ARM architectures (ei2, 2022b). The DSP block
and trained model is downloaded from the user’s project in
EIM format, which is a compiled, native binary application
that exposes the I/O interface for use by any number of
programming languages (Python, Go, C++, Node.js, etc.).

4.7 AutoML

The accuracy of any deep learning system depends critically
on identifying a proper choice of hyperparameters. The in-
herent resource constraints on embedded targets also limits
the selection of hyperparameters. For example, a trade-off
has to be made between allocating resources for the DSP
and deep learning algorithms. For a novice user, the relation-
ship between hyperparameters can often be difficult to grasp.
Therefore, Edge Impulse provides a suite of automated ma-
chine learning (AutoML) techniques to assist non-experts
in creating usable models and tune hyperparameters.

To ensure low burden on the user, Edge Impulse’s EON
Tuner (Jenny Plunkett, 2021) assists in the hyperparameter
selection process while taking into account available RAM,
ROM, and CPU clock speed of the target device. The EON
Tuner helps select a number of hyperparameter configura-
tions, including DSP preprocessing settings. It then trains
the associated models to determine their accuracy. From
these results, the user can select a preferred configuration
(e.g. based on accuracy/F1 score or resource usage) and
update the associated project to this configuration.

Figure 3 shows the user’s perspective after EON Tuner has
been successfully run. Note the stacked bar plots showing
the estimated latency, RAM, and flash usage (Sec. 4.4)
for each combination of preprocessing (DSP) and model
blocks based on the selected target (e.g. Arduino Nano
33 BLE Sense). Model details, including the specific DSP
and NN configuration, are shown, which allows user to
select the best combination of blocks to meet their accuracy
requirements within the desired hardware constraints.

To select hyperparameter configurations, the EON Tuner
combines a random search algorithm (Bergstra et al., 2011)
with a heuristic to quickly estimate the performance of the
configurations. Future work includes optimizing search
methods using a combination of a Bayesian (Eggensperger
et al., 2013) and Hyperband (Li et al., 2017) search algo-
rithms. Users have the option of overriding the default
search algorithm with their own search methods.

Figure 3. Screenshot of the EON Tuner. Features are annotated
with color coded dotted boxes that correspond to the challenges
in Figure 1. Purple (top right): The tuner allows users to select
the target hardware, which will then inform the constraints set on
the search. Blue (top left): The tuner computes the configuration’s
accuracy and predicts the resource consumption of the DSP and
NN components. Pink (bottom): The tuner searches for optimal
DSP and NN combinations and displays their configuration.

4.8 Active Learning

Datasets can be iteratively improved by leveraging a par-
tially trained model to aid in labeling and data cleaning
in a process called active learning (Moreau, 2022). Edge
Impulse employs an active learning loop for the embed-
ded sensor ecosystem where you can: (1) train a model
on a small, labeled subset of your data, (2) generate se-
mantically meaningful embeddings using an intermediate
layer of the trained model, (3) visualize the embeddings
(non-labeled and labeled samples) in 2D space using a di-
mensionality reduction algorithm (Umap (McInnes et al.,
2018) or t-SNE (Van der Maaten & Hinton, 2008)), and (4)
manually or automatically label or remove samples based on
their proximity to existing class clusters. This process can
drastically speed up the labeling and data cleaning processes,
which can lead to major gains in model performance.

4.9 Extensibility

Edge Impulse supports the majority of the workflow shown
in Figure 1, with the exception of IoT device management
and production monitoring. However, all Edge Impulse
functionality is exposed via publicly accessible REST APIs
(ei2, 2020), which allows users to automate the data collec-
tion, model training, and deployment processes. This API
can be integrated into custom workflows and third party so-
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Platform Processor Clock Flash RAM
Nano 33 BLE Sense Arm Cortex-M4 64 MHz 1 MB 256 kB
ESP-EYE (ESP32) Tensilica LX6 160 MHz 4 MB 8 MB

Ras. Pi Pico (RP2040) Arm Cortex-M0+ 133 MHz 16 MB 264 kB

Table 1. Embedded platforms used for evaluation.
lutions to augment IoT device management and production
monitoring, such as Microsoft Azure IoT (Azu).

In addition, users are able to create their own blocks via
Docker images to transform raw data taken from an exist-
ing store (e.g. AWS S3), perform feature extraction via
DSP, train a custom ML model, or deploy a model. Finally,
the Edge Impulse inferencing SDK library allows users to
develop complete embedded ML solutions that include a
variety of model compression and optimization techniques.

Futhermore, Edge Impulse can integrate with existing
ML development pipelines via the Edge Impulse Python
SDK (Situnayake, 2023). This allows users to use specific
features, such as profiling or deployment (Sec. 4.4 & 4.6),
without needing to use the graphical interface.

4.10 Scalable Infrastructure

Edge Impulse employs AWS Elastic Kubernetes Ser-
vice (Man) to dynamically scale compute resources based
on workload requirements. All workloads are containerised,
which has proven vital for efficient dependency manage-
ment. Often, ML software infrastructure requires a wide-
range of dependencies and versions of dependencies that are
not always mutually compatible. The choice of Kubernetes
over a vendor-specific tool, such as AWS Elastic Container
Service (ama), is to enable migration of the Edge Impulse
infrastructure to a different cloud provider or on-premise
with a reasonable (1-6 months) amount of effort.

5 PERFORMANCE EVALUATION

ML development often narrowly focuses on the model per-
formance in isolation (Richins et al., 2021) due to the com-
plexity of co-optimization (Sec. 2.4). However, the DSP
stage can be a dominant factor in the overall latency and
memory consumption of a TinyML application. Edge Im-
pulse is designed to quantify the DSP overhead and allow
users to explore the rich DSP and NN co-design space.

In this section, we characterize the latency, SRAM, and flash
consumption of TinyML workloads across multiple devices,
optimizations, and AutoML defined configurations, thereby
showing Edge Impulse’s ability to address the challenges of
hardware heterogeneity (Sec. 2.2), software fragmentation
(Sec. 2.3), and cross-stack optimization (Sec. 2.4).

5.1 Experimental Setup

We evaluated three representative hardware designs. The
details for the platforms are shown in Table 1. We chose

Nano 33 BLE Sense ESP-EYE Ras. Pi Pico
Float Int8 Float Int8 Float Int8
Keyword Spotting (KWS) inference times

Preprocessing 141.65 138.76 305.53 304.11 590.74 590.87
Inference 2866.11 322.71 648.42 314.14 5700.03 1117.65

Total 3007.91 461.62 954.02 618.35 6290.95 1708.71
Visual Wake Words (VWW) inference times

Preprocessing - 9.98 24.25 9.07 - 56.44
Inference - 754.74 2309.15 662.85 - 2205.76

Total - 816.56 2346.03 702.63 - 2286.68
Image Classification (IC) inference times

Preprocessing 1.36 1.14 1.09 1.03 4.57 6.46
Inference 1518.64 229.54 340.45 191.15 3048.05 554.04

Total 1520.25 232.56 341.62 197.36 3048.05 561.86

Table 2. Preprocessing and inference times (in milliseconds). ‘-’
indicates the model did not fit due to flash or RAM constraints.

these platforms for their differences in clock speeds, flash
storage and RAM capacity. We chose several models to eval-
uate the platforms to demonstrate the capabilities of each.
These models were created to solve three tasks outlined
in the MLPerf Tiny Benchmark (Banbury et al., 2021a):
keyword spotting (KWS), visual wake words (VWW), and
image classification. KWS is a common task in embedded
devices that require wake word detection, such as “Alexa”
or “OK Google.” We chose a DS-CNN model (Sørensen
et al., 2020) that achieved at least 78% on a test set from
the Google Speech Commands dataset (Warden, 2018). For
the VWW task, MobileNetV1 was trained using the visual
wake words dataset (Chowdhery et al., 2019), which was
derived from the Microsoft COCO dataset (Lin et al., 2014).
This dataset is a balanced set of “person” and “non-person”
images used to train an image classification model. We
achieved at least 72% accuracy on a hold-out set. Finally,
we trained a simple convolutional neural network (CNN) on
CIFAR-10 (Krizhevsky et al., 2009).

5.2 Cross-Hardware Inference Latency Comparison

Table 2 displays three sets of end-to-end timing results using
provided hardware timers. The table shows the latency of
the KWS, VWW, and image classification tasks for both
floating point and quantized integer (8-bit) models across
the three platforms. The preprocessing and classification
tasks are timed from within the Edge Impulse SDK, and
the total time is taken by measuring the difference between
timestamps taken around the call to run classification, which
is a combination of preprocessing and inference plus some
overhead not measured in either preprocessing or inference.

On some tasks, such as keyword spotting, the preprocessing
time can easily equal or exceed the inference time of the
unoptimized model. Therefore, optimizing the network
inference via quantization, etc. will not yield the typical
magnitude of latency reduction. Edge Impulse allows users
to look at the end-to-end performance of a task, rather than
focus only on isolated network performance.

Edge Impulse helps users experiment with preprocessing
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Preprocessing Model ↓ Acc. Latency (ms) RAM (kB) Flash (kB)
DSP Infer. Total DSP Infer. Total DSP Infer. Total

MFE (0.02, 0.01, 40) MobileNetV2 0.35 85% 332 2420 2752 25 468 493 - 2242 2242
MFCC (0.02, 0.01, 40) 4x conv1d (32 to 256) 75% 770 437 1207 30 35 65 - 645 645
MFCC (0.02, 0.01, 32) 4x conv1d (16 to 128) 73% 579 197 776 26 20 46 - 221 221
MFE (0.02, 0.01, 32) 3x conv1d (32 to 128) 72% 319 174 493 21 31 52 - 231 231
MFE (0.02, 0.02, 32) 2x conv1d (32 to 64) 70% 163 109 272 14 17 31 - 125 125

MFCC (0.05, 0.025, 40) 3x conv1d (16 to 64) 69% 327 48 375 19 10 29 - 98 98
MFE (0.05, 0.025, 32) 2x conv1d (32 to 64) 69% 161 67 228 15 14 29 - 56 56

MFE (0.032, 0.016, 32) 2x conv1d (16 to 32) 66% 217 91 308 16 19 35 - 56 56

Table 3. Preprocessing blocks and models explored with EON Tuner for the keyword spotting task. Latency, RAM, and flash estimates
from EON Tuner for the keyword spotting task on the Arduino Nano 33 BLE Sense (float32 inference, using TFLM).

and models to quickly iterate on designs to find acceptable
solutions to such problems. Table 3 shows how users can
choose to use different preprocessing blocks, Mel-filterbank
energy (MFE) or MFCCs, and sweep different model archi-
tectures with the EON Tuner for optimizing latency, accu-
racy, RAM, and Flash storage. There is no ideal solution;
the ultimate choice is up to the user as they know their de-
ployment constraints. Edge Impulse simply automates the
possibilities and displays suggested configurations.

5.3 Memory Optimization with EON Compiler

Embedded systems are constrained by their memory and
storage capacity (Section 2.1), Table 4 details the estimated
memory usage, RAM and flash, for all three tasks. The Edge
Impulse EON Compiler removes the need for the TFLM in-
terpreter for on-device inference, thus reducing the required
RAM and flash in most cases. A consistent decrease in
memory utilization is seen when enabling the EON Com-
piler as well as quantizing to an INT8 model. Quantization
can decrease the accuracy of the model due to the lower pre-
cision, but in some instances (e.g. the image classification
task) it improves the accuracy due to regularization. These
optimizations do not impact the preprocessing stage.

Keyword Spotting Visual Wake Words Image Classification
RAM Flash Acc. RAM Flash Acc. RAM Flash Acc.

Preprocessing 13.0 - - 4.0 - - 4.0 - -
FP (TFLM) 115.8 148.0 78.5 398.4 904.4 81.1 195.8 107.5 70.9FP (EON) 96.8 106.7 327.7 861.4 162.7 78.7
Int8 (TFLM) 38.5 98.1 78.5 124.8 361.2 79.9 51.9 63.1 71.1Int8 (EON) 36.4 65.3 131.0 309.5 44.0 42.1

Table 4. Memory estimation (all memory estimates given in kilo-
bytes, accuracy in percentage based on the holdout set). Flash
utilization estimation not provided for DSP preprocessing.

5.4 Design Space Exploration with EON Tuner

Table 3 shows a number of configurations that are searched
by the EON Tuner in order to find an optimal keyword
spotting model. A user can find a model that balances the
resources allocated to the DSP and NN stages in order to
meet the hardware constraints of the application while max-
imizing accuracy. For example, the configurations on the
3rd and 4th lines from the bottom balance the DSP and NN

differently, leading to a slightly higher accuracy and lower
latency (more NN) compared to less RAM and Flash con-
sumption (more DSP). This process accelerates the initial
exploratory phase of ML development and makes cross-
stack optimizations accessible for novice ML developers.

6 ECOSYSTEM ENABLEMENT

Since its launch in late 2019, Edge Impulse has seen ex-
citement around embedded ML deployments in a variety of
domains. We highlight a few exemplar use cases here.

6.1 Education and Learning

Edge Impulse provides both a graphical user interface
through Studio as well as an extensible web-based API.
Consequently, it is well suited for classroom activities, as
it provides a series of parameters, plots, and visualizations
within the Studio to assist newcomers in building end-to-end
embedded/edge machine learning systems.

We saw a large interest in embedded machine learning
courses upon the delivery of two separate massively open
online courses (MOOCs). Between September 2020 and
June 2021, over 43,000 students enrolled in three of the
Tiny Machine Learning courses on EdX (Tin). In less than
two years, over 75,000 students have benefited from these
courses alone (Janapa Reddi et al., 2022). Additionally,
over 30,000 students enrolled in the two Embedded Ma-
chine Learning courses between February 2021 and October
2022 that use Edge Impulse (Int). In addition, throughout
2021 and 2022, the TinyML4D Academic Network (tin,
2022), which focuses on improving access to edge ML edu-
cation and technology in developing countries by running
a series of workshops for Africa, Asia, and Latin Amer-
ica regions, used Edge Impulse to teach embedded ML to
professors, lecturers, and students. These 2022 workshops
had 216 attendees from 48 different countries. The high
attendance in the MOOCs along with the apparent growing
desire for various schools to teach ML demonstrates the
need for approachable tools for education.
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6.2 Industry Use Cases, Research and Dissemination

Edge Impulse (and indeed, edge ML) is being used by a
number of companies to solve unique problems. For exam-
ple, Oura Ring, which uses ML models to identify sleep
patterns (Sec. 8.1), relies on Edge Impulse. Edge Impulse
is also being adopted by academic researchers as a tool for
enabling scientific research and rapid problem-solving using
ML. Since Edge Impulse simplifies the machine learning
training and deployment process, it allows researchers to
focus on solving the problem within their domain expertise
rather than setting up an end-to-end system using another
framework and dealing with low-level details. For example,
recent work shows how to easily develop an “intelligent
chemical sniffer, capable of detecting hazardous volatile or-
ganic compounds” (Shamim, 2022b). Another recent work
identifies cancerous growths on oral tongue lesions using an
embedded device (Shamim, 2022a). Other areas of research
include creating low-power solutions to classify mosquito
wingbeat sounds in order to identify mosquito species (Al-
tayeb et al., 2022). There are several other such examples
that are enabling non-ML scientists to easily adopt Edge
Impulse to realize edge ML deployments.

6.3 Open Source, Community Development

Developing the open source embedded ML community is
a must for the success of the TinyML industry. To this
end, Edge Impulse maintains many open source repositories
on GitHub (ei2, 2022a), including repositories related to
machine learning, device firmware, and sample use-cases.
As a result, there is a community of users who contribute
code, issues, and bug-fixes beyond the Edge Impulse team.

This emphasis on community and open-source principles
carry beyond the GitHub repositories. For example, one
feature intended to share knowledge is the concept of public
projects, where developers can make their work inside the
Edge Impulse Studio public for other developers to review
and clone, thus helping share applied techniques and best
practices in Edge Impulse projects. When a project is set to
public, it is also aggregated and searchable via the Projects
page (ei2, 2022c) on the Edge Impulse website. This search-
able index allows developers to sort, filter, and search for
relevant examples and public work. At the time of writing,
there are 3,219 public Edge Impulse projects available.

In addition to public projects, preprocessing and model
inference libraries (along with the trained model) may be
downloaded from Edge Impulse and shared via open source
licenses (Apache 2.0, BSD 3-Clause, MIT). The ability to
share projects and code allows researchers and developers
to disseminate their trained ML systems for reproducibility.

Collaboration can also occur inside of an Edge Impulse
project. Through the use of Organizations, more than one

Data
Collection
& Analysis

DSP &
Model
Design

Embedded
Deployment

AutoML
& Active
Learning

IoT
Management
& Monitoring

Edge Impulse ✓ ✓ ✓ ✓ ∼

Amazon SageMaker ✓ ∼ ∼ ✓ ∼

Google VertexAI ✓ ∼ ✗ ✓ ∼

Azure ML & IoT ✓ ∼ ∼ ✓ ✓

Neuton AI ✗ ∼ ✓ ∼ ✗

Latent AI ✗ ✓ ✓ ✗ ✗

NanoEdge ∼ ✓ ✓ ∼ ✗

Imagimob ✓ ✓ ✓ ∼ ✗

Table 5. Comparison of supported features of MLOps platforms.
✓:Fully Supported, ∼:Partially Supported, ✗:Not Supported.

developer can access or participate in the data upload, anal-
ysis, learning block, model creation and testing, or other
aspects of the platform or project. Having multiple users
can speed up project delivery of course, but the ability to
spread knowledge and share best practices can positively
impact users who might be starting out with edge ML.

7 RELATED WORK

MLOps platforms like Amazon SageMaker (Rauschmayr
et al., 2021) and Google VertexAI (Ver) exist, but they cater
to cloud-scale environments that are vastly different from the
TinyML ecosystem. Microsoft’s Azure IoT (Klein, 2017)
is a platform specifically designed to connect, analyze, and
automate data analytics from the edge to the cloud. Edge
Impulse uniquely encompasses a large slice of the embedded
ecosystem. The platform operates as a dataset analysis and
preprocessing tool, a training framework, an optimizer, and
an inference engine. Additionally, it readily integrates with
other cloud services.

TinyMLOps frameworks focus on the ML training and com-
pression stages of the ML pipeline (Leroux et al., 2022),
while Edge Impulse spans data collection to deployment.
Neuton AI (Neu) allows users to train a TinyML model
from CSV data, but it does not include features for data
collection and limits the customization of the preprocessing
and model architecture. Latent AI (Lat) provides a platform
to compress and compile a model for efficient deployment
but does not support data collection and training workflows.
NanoEdge AI Studio (Nan) is a TinyML development tool
primarily focusing on time series data exclusively for STM
devices. Imagimob (ima, 2022) offers end-to-end TinyML
development with various preprocessing options, AutoML
for model selection, and model training, evaluation, and
deployment to optimized C code. However, it does not offer
a web-based API that allows for full MLOps automation.
Table 5 illustrates the level of support the related MLOps
platforms have for each set of relevant features.

TFLM (David et al., 2021) is the standard inference en-
gine for TinyML use cases because it is flexible, open-
source, and associated with the TensorFlow ecosystem.
Edge Impulse’s EON Compiler uses less memory and
storage compared to TFLM (Section 5.3). Arm’s uTen-
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sor (uTe) and Microsoft’s ELL (The) are both TinyML in-
ference engines that cross-compile to specific target embed-
ded hardware, but both projects are no longer supported.
TinyEngine (Lin et al., 2020a) and uTVM (mic) compile
the network graph and perform inter-layer optimizations.
TinyEngine is a research project and therefore it is not de-
signed for production scale and uTVM currently supports
very few boards. Vendor-specific inference engines, such
as STM32Cube.AI (XCU), provides optimized inference
but only support vendor-specific hardware, thus limiting
application portability. All of these engines, however, can
be adopted and integrated into Edge Impulse.

8 INDUSTRY CASE STUDIES

This section focuses on real-world insights from two in-
dustry case studies: sleep tracking with the Oura Ring and
detecting heat exhaustion with SlateSafety Band V2.

8.1 Oura Ring

The Oura Ring is designed to track the user’s sleep patterns
using an ML model that predicts the stages of sleep based
on measured physiological signals. In order to improve
their model, Oura conducted a large-scale sleep study (∼100
participants) and collected a large dataset for model training.

8.1.1 Challenge

Incomplete, noisy, and inconsistent data is unavoidable
when collecting real-world datasets and, given the scale
of the study, it would be an arduous process to aggregate,
scrub, and analyze the data before using it to train the next
generation sleep tracking model. Many current platforms
provide little assistance for the critical stages before training,
and stand-alone data analysis and visualization tools require
significant additional effort to set up ad hoc ML pipelines.

8.1.2 Edge Impulse Solution

Edge Impulse is able to ingest and align data from multiple
sources and sensors by comparing sensor signatures, which
simplifies and speeds up a typically manual and error-prone
process. EI integrates analysis tools that enable domain
experts to make design decisions on which sensors and fea-
tures are meaningful for sleep prediction. Through this
process, Oura created a model focusing only on heart rate,
motion, and body temperature and achieves a best-in-class
79% correlation accuracy when compared to polysomnogra-
phy and human scorers, which use expensive measurements,
such as brain waves (de Zambotti et al., 2019).

8.1.3 Focus Areas for Future ML Systems Research

Current ML Systems researchers too often ignore data-
centric techniques and instead focus on stages, like model

design, with easier-to-quantify metrics such as accuracy and
latency (Mazumder et al., 2022). Areas for high-impact
systems research include: (1) Aggregating and aligning data
from unstructured sources and multiple sensors. (2) Visu-
alizing statistically meaningful correlations of data from
multiple sensors without hallucinations. (3) Leveraging non-
technical domain experts for data cleaning and selection.

8.2 SlateSafety

The SlateSafety BAND V2 is a wearable device that moni-
tors physiological signals of first responders and industrial
workers. Due to the lack of reliable wireless connection
in the deployment environment, SlateSafety required on-
device inference to predict heat exhaustion in users.

8.2.1 Challenge

SlateSafety aimed to leverage existing hardware that was
already in the field instead of going through the expensive
process of developing an entirely new, ML-capable platform.
Therefore, the resulting model had to run in real-time on an
existing microcontroller with limited memory capacity.

8.2.2 Edge Impulse Solutions

Edge Impulse’s EON Tuner and Compiler were able to au-
tomatically design a custom model and deploy it efficiently
to the existing microcontroller via an automatic over-the-air
update. This means that SlateSafety could deploy a new fea-
ture to its users seamlessly and without a long development
cycle around new hardware.

8.2.3 Focus Areas for Future ML Systems Research

Much of existing ML research target state-of-the-art hard-
ware that has been designed with ML deployment in mind.
However, in practice, ML-based features are deployed to
existing systems. In order to enable broader adoption of
AI and prevent existing hardware from being replaced and
thrown out (Prakash et al., 2023), ML researchers need
to develop optimization techniques that can be backward
compatible with past generations of hardware.

9 CONCLUSION

Edge Impulse is a framework focused on building machine
learning systems for resource-constrained devices. The
framework is built around the principles of accessibility,
data-centric co-optimization, and cross-stack collaboration.
As a result, Edge Impulse has put AI in the hands of the indi-
viduals it impacts by reducing the expertise and computing
resources required to participate. Edge Impulse has already
been used in various industrial, research, and educational ap-
plications, and the lessons learned from these deployments
can focus future systems research on high-impact problems.
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