
PYTORCH RPC: DISTRIBUTED DEEP LEARNING BUILT ON
TENSOR-OPTIMIZED REMOTE PROCEDURE CALLS

Shen Li 1 Pritam Damania 1 Luca Wehrstedt 1 Rohan Varma 1 Omkar Salpekar 1 Pavel Belevich 1

Howard Huang 1 Yanli Zhao 1 Lucas Hosseini 1 Wanchao Liang 1 Hongyi Jia 1 Shihao Xu 1 Satendra Gera 1

Alisson Azzolini 1 Guoqiang Jerry Chen 1 Zachary DeVito 1 Chaoyang He 2 Amir Ziashahabi 2

Alban Desmaison 1 Edward Yang 1 Gregory Chanan 1 Brian Vaughan 1 Manoj Krishnan 1 Joe Spisak 1

Salman Avestimehr 2 Soumith Chintala 1

ABSTRACT
Distributed training technologies have advanced rapidly in the past few years and have unlocked unprecedented
scalability with increasingly complex solutions. These technologies have made distributed training much more
efficient and accessible, though they impose specific constraints on the training paradigm or the model structure.
As a result, applications that fail to meet these constraints must rely on general-purpose distributed computing
frameworks to scale out. However, without access to the internal components of deep learning frameworks, these
distributed computing frameworks usually significantly fall short in terms of efficiency and usability. To address
these problems, we propose PyTorch RPC as a generic and high-performance solution for distributed deep learning.
Compared to generic distributed computing frameworks, PyTorch RPC natively provides essential features for
implementing training applications in a distributed environment, including optimized tensor communications,
remote memory management, and distributed autograd. Evaluations show that PyTorch RPC attains up to two
orders of magnitude faster tensor communication compared to gRPC with one-tenth of the user code. Case
studies further demonstrate that users can easily employ PyTorch RPC to build efficient reinforcement learning
applications (video game solver), implement large language models (GPT3), train recommendation models
(DLRM), and scale federated learning tasks (FedML).

1 INTRODUCTION

Innovations in distributed deep learning have powered un-
precedented growth in data and model sizes. Natural lan-
guage processing (NLP) and computer vision (CV) experts
have recently explored multi-trillion parameter Transformer
models (Brown et al., 2020; Fedus et al., 2021). To deal with
such gigantic models, distributed training frameworks have
advanced from vanilla data parallelism (Sergeev & Balso,
2018) and parameter servers (Li et al., 2014; Thangakrish-
nan et al., 2020) to pipeline parallelism (Huang et al., 2019;
Narayanan et al., 2019; Yang et al., 2021a) and operator-
sharding-based parallelism (Chen et al., 2021; Jia et al.,
2019; Rajbhandari et al., 2019; Shazeer et al., 2018; Shoeybi
et al., 2019). Unfortunately, these distributed training so-
lutions usually make assumptions on model structures and
training paradigms, forcing developers to tailor algorithms
to fit the existing tools. Applications that fail to meet

1Meta AI 2University of Southern California. Correspon-
dence to: Shen Li <shenli@meta.com>, Pritam Damania <pri-
tam.damania@gmail.com>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

these assumptions must build distributed training solutions
from scratch, repeatedly reinventing lower-level compo-
nents such as tensor-aware communication and distributed
back-propagation. For example, libraries in reinforcement
learning (Küttler et al., 2019), federated learning (He et al.,
2020b), and graph learning (Lerer et al., 2019) have inde-
pendently implemented communications on top of generic
RPC frameworks, such as gRPC (gRPC, 2021), which are
known to be inefficient for ML applications (Xue et al.,
2019; Biswas et al., 2018) due to slow tensor transmissions
and major feature gaps such as cross-process autograd. It
is important to acknowledge that solutions with specific as-
sumptions can usually explore more system optimization
opportunities and certainly deserve investment, especially
for widely adopted model structures and training paradigms.
Nevertheless, rather than always dictating model training
methodologies, we believe it is equally important to build
generic distributed training tools and empower the commu-
nity to innovate and thrive on new models and new domains.

This paper proposes PyTorch RPC, a framework with es-
sential tools for generic distributed deep learning. Despite
disparities across different training solutions, they all share

PyTorch RPC: Distributed Deep Learning Built on Tensor-Optimized Remote Procedure Calls

similar basic phases, namely, loss computation (forward())
and back-propagation (backward()). PyTorch RPC offers
succinct programming interfaces to implement both phases
in a distributed environment. For loss computation, ap-
plications can run arbitrary user functions remotely with
highly efficient tensor communications. In addition, Re-
mote Reference helps manage the life cycle of intermediate
remote activations, hiding the complexity of distributed
memory management. For back-propagation, Distributed
Autograd stitches together cross-process autograd graphs
and addresses graph discovery and termination detection.
Therefore, as long as applications comply with similar loss
computation and back-propagation phases, PyTorch RPC
can serve as a powerful tool to help scale beyond machine
boundaries. Compared to existing solutions that use third-
party distributed computing libraries to scale deep learning
applications, PyTorch RPC can uniquely take advantage of
PyTorch non-user-facing components such as tensor storage
allocations, CUDA stream pools, and the local autograd
engine, and hence can deliver greater efficiencies.

We evaluated both the efficiency and the usability of Py-
Torch RPC. Results show that PyTorch RPC achieves up to
12x faster tensor communication than gRPC on the same
communication media. When more communication chan-
nels (e.g., InfiniBand) are available, the lead of PyTorch
RPC reaches 100x. Moreover, in case studies, we used Py-
Torch RPC to implement a distributed video game solver, a
175B parameter GPT3-like (Brown et al., 2020) model, a
DLRM (Naumov et al., 2019)-like model, and a cross-silo
FedML (He et al., 2020b) task to verify the feasibility of
supporting reinforcement learning, large natural language
model training, recommendation system applications, and
federated learning use cases.

2 BACKGROUND AND CHALLENGES

With the rapid growth in data and model sizes, distributed
training techniques such as data parallelism and model par-
allelism have naturally emerged. Data parallel training repli-
cates the model on all processes, with each process consum-
ing a different split of the input. Its straightforward single-
program multi-data scheme has led to its widespread adop-
tion across various applications. Many existing solutions
have been consolidated to use collective communications
(e.g., AllReduce) to synchronize model replicas in every it-
eration (Li et al., 2020; Sergeev & Balso, 2018). When the
device memory capacity falls short to host one full model
replica, using model parallelism can help reduce per-device
memory footprint by dividing the model into shards and
placing them on multiple devices. Compared to data paral-
lelism, model parallelism has evolved into multiple forms,
including pipeline parallelism (He et al., 2021; Huang et al.,
2019), sharded parameter servers (Li et al., 2014), and

operator-sharding based parallelism (Rajbhandari et al.,
2019). Although existing solutions have successfully helped
scale some applications and domains, they apply rigor-
ous constraints on model structures or training paradigms.
For example, PyTorch Pipeline only accepts nn.Sequential

as the input model, while DistributedDataParallel and
ZeRO (Rajbhandari et al., 2019) require a single-program
multi-data paradigm, where all processes need to run the
same set of operations in the same order. Applications that
fail to meet these constraints have to resort to generic dis-
tributed computing tools such as gRPC to glue together the
training algorithm. However, without access to PyTorch in-
ternal components such as tensor allocation, CUDA stream
pool, and autograd engine, generic distributed libraries can
hardly deliver competitive training efficiency.

PyTorch RPC aims to offer both high usability and high effi-
ciency for a wide spectrum of ML applications and training
paradigms. Challenges are four-fold.

• Programming Interface has to maintain a balance
between frontend usability and backend flexibility such
that ML practitioners can easily adopt it while platform
developers can introduce system optimizations.

• Tensor Communication efficiency serves as the
bedrock for the entire system, which needs to mini-
mize the number of copies and maximize the overlap
between communication and computation.

• Memory Management must free obsolete tensors as
soon as possible in a distributed environment, given
that device memory space is usually a scarce resource.

• Distributed Autograd must extend the local autograd
engine beyond process boundaries to discover graph
and detect termination in a distributed manner.

PyTorch RPC is carefully designed to address these chal-
lenges to simplify and scale distributed training.

3 DESIGN

As a generic distributed training library, PyTorch RPC ex-
poses APIs to directly scale fundamental training phases,
namely, forward(), backward(), and optimizer.step(). To
speed up tensor transmissions, the communication stack
introduces multiple optimizations to overlap computation,
tensor allocation, device-host communication, and cross-
machine communication. For distributed memory manage-
ment, PyTorch RPC offers a Remote Reference tool to track
remote objects and automatically handle the object lifetime
with negligible overhead. Finally, Distributed Autograd
seamlessly stitches together local autograd engines across
processes and machines.

PyTorch RPC: Distributed Deep Learning Built on Tensor-Optimized Remote Procedure Calls

1 from torch.distributed import autograd , optim , rpc
2
3 # Prepare model sub -layer
4 class Layer(torch.nn.Module):
5 def __init__(self):
6 super().__init__ ()
7 self.net = nn.Sequential(
8 nn.Linear (20, 20),
9 nn.ReLU()

10)
11
12 def forward(self , rx):
13 return self.net(rx.to_here ())
14
15 # Assemble model
16 class Model(torch.nn.Module):
17 def __init__(self):
18 super().__init__ ()
19 self.rl1 = rpc.remote("p1", Layer)
20 self.rl2 = rpc.remote("p2", Layer)

21 def forward(self , ri):
22 rx = rpc.remote(self.rl1.owner(),

Layer.forward , args=(ri ,))
23 ry = rpc.remote(self.rl2.owner(),

Layer.forward , args=(rx ,))
24 return ry
25
26 # Code below run on p0
27 m = Model()
28 opt = optim.DistributedOptimizer(
29 torch.option.SGD ,
30 param_rrefs(m) # Collect RRefs of parameters.
31)
32
33 for batch in next_batch ():
34 with autograd.context () as ctx:
35 ri = rpc.RRef(batch)
36 loss = m(ri).to_here ().sum()
37 autograd.backward(ctx , [loss])
38 opt.step(ctx)

Listing 1: A Simple Model Parallel Example

3.1 Programming Interface

The goal of PyTorch RPC is to provide a programming
model for machine learning system or middleware devel-
opers to easily create high performance solutions, such as
parameter server paradigms, reinforcement learning sys-
tems, pipeline parallelism etc. The RPC package contains
a rich set of features. For simplicity, this section uses the
minimum number of APIs to demonstrate the concepts of
Remote Execution, Remote Reference, and Distributed Au-
tograd. The code snippet in Listing 1 uses a simple model
parallel example to showcase the usage. It first defines a
Layer Sequential module that contains a Linear and a ReLU

as sub-modules. Its forward() function takes a Remote Ref-
erence (RRef) of the input and calls to_here() to fetch the
data referenced by the RRef. Next, it defines the Model to as-
semble two Layer instances that are placed on processes p1

and p2 respectively. The rpc.remote() function leaves the
result object on the callee and immediately returns an RRef

pointing to the result. Model’s forward() function also takes
an RRef of the input and passes it to the first Layer module.
Line 23 uses Remote Execution to run the forward() func-
tion of the first Layer module on its owner process p1 and
returns an RRef of the intermediate output. After that, the
returned RRef rx is passed to rl2. In this way, the intermedi-
ate output can be directly transmitted from p1 to p2 without
going through the coordinator process p0 where the Model

instance resides. Finally, the forward and the backward
passes are similar in local training, except that they live in a
distributed autograd context which uses exclusive storage
to hold gradients. This example shows how the RPC pack-
age simplifies the implementation of distributed training.
We skip DistributedOptimizer in this paper as it is simple
helper implemented using Remote Execution and Remote
Reference. Next, we will dive into designs under the hood
and revisit this example repeatedly to explain all details.

3.2 Tensor-Aware Communication

Compared to generic distributed computing systems (gRPC,
2021; Ray, 2023; Dask, 2023), PyTorch RPC understands
tensors and comes with advanced tensor communication op-
timizations. As Tensors can be significantly larger than the
rest of the message, they require extra consideration. When
the caller serializes a request, PyTorch RPC extracts Tensor

objects and keeps them intact. Non-Tensor items will be
packed into a binary payload and sent over the most per-
formant CPU channel (e.g., TCP, SHM, etc.). This design
allows PyTorch RPC to conduct two sets of optimizations,
1) leverage out-of-band fabrics (NVLink, IB, etc.) for accel-
erated Tensor transfers, and 2) pipeline and overlap multiple
computation and communication stages.

py::object

Message

payload

CPU Tensor

GPU Tensor

GPU Tensor

py::object

Message

payload

CPU Tensor

GPU Tensor

GPU Tensor

TCP/SHM

NVLink/IB/TCP

Sender Receiver

Figure 1: Tensor-Aware Communication
PyTorch RPC supports multiple types of channels and can
automatically detect the optimal channel between the sender
and receiver based on the storage device type and network
interface availability. Figure 1 depicts the high-level idea.
For each pair of sender and receiver, the sender passes the
binary payload and a list of Tensor objects to the communi-
cation layer. Then, based on the device type of each Tensor,
the communication layer detects the optimal channel by
matching the available channels on both ends and picks the
one with the highest priority (e.g., RDMA, SHM, or TCP).

PyTorch RPC: Distributed Deep Learning Built on Tensor-Optimized Remote Procedure Calls

After exchanging the meta information, the receiver learns
the size and the device type of the Tensor, allocates Tensor

storage accordingly, and transmits Tensor values through
the chosen channel. Since it is closely coupled with Py-
Torch internal components, the communication stack can
avoid creating unnecessary Tensor copies and use the op-
timal communication channel for each individual Tensor.

CPU

CUDA

Se
nd

er

CPU

CUDA

Re
ce

ive
r

op1 op2 HS

D2H1 D2H2

TCP1 TCP2

HS

Alloc

TCP1 TCP2

H2D1 H2D2

PyTorch RPC

CPU

CUDA

Se
nd

er

CPU

CUDA

Re
ce

ive
r

op1 op2 pickle

D2H

HS TCP

HS TCP

H2D

time
op1 op2

op1 op2

Computation

Communication

CUDA Memory
AllocationAlloc

HandshakeHS

(a)

pickle

O1

O2

O3
O4 Optimizations

3rd-Party RPC(b)

pickle

pickle

Alloc

Figure 2: Comparison with Third-Party RPC

Decoupling the payload and Tensor objects also further ex-
poses opportunities to overlap CPU computations, CUDA
computations, CUDA memory allocations, TCP communi-
cations, and host-device communications, leading to highly
efficient CUDA RPC. Figure 2 (a) uses an example to illus-
trate the performance optimizations, assuming the Tensor

objects travel through TCP instead of RDMA channels. The
example contains two CUDA operations followed by a sin-
gle Tensor communication. Each solid block represents
a computation or communication, and each dashed block
denotes one type of optimization. First (O1), since the pick-
ling algorithm no longer needs to read Tensor values, it
can take advantage of the asynchronous behavior of CUDA
computations and start without waiting for pending CUDA
operations, which overlaps CPU computations with CUDA
computations, as shown by the blue dashed block. Second
(O2), the handshake and the payload communication can also
run concurrently with CUDA computations as they only re-
quire the shape and the device information of the Tensor

which are available as soon as the CPU thread appends the
CUDA operation to the stream. Third (O3), upon receiving
the shape and the device information, the receiver can allo-
cate Tensors on the destination device, further overlapping
memory allocation with sender CUDA computation and
communication. Finally (O4), the communication layer of
PyTorch RPC uses persistent pinned staging buffers to en-
able non-blocking device-to-host (D2H) and host-to-device

(H2D) communications. With this design, tensor data is
copied into the staging buffer in chunks and can start send-
ing the first chunk over TCP while running the D2H copy
on the second chunk concurrently. This enables overlapping
D2H communication with TCP communication. In con-
trast, Figure 2 (b) demonstrates the behavior when using a
generic distributed computing library. The pickling step has
to wait for all pending CUDA operations since it needs to
read Tensor values. Additionally, the handshake is blocked
by the D2H copy in the pickling step because it must know
the pickled message size. Without understanding CUDA
tensors, the user application has to explicitly move Tensor

objects from CPU to CUDA, forfeiting the opportunity to
overlap TCP communication with H2D communication. As
a result, these large bubbles in the critical path force generic
distributed computing frameworks to suffer from longer
communication delays.

3.3 Memory Management

Deep learning applications require tracking the lifetime of
activations to make sure they are garbage collected neither
too early before usage in the forward() and the backward()

passes nor too late to avoid out-of-memory errors. Local
training can easily meet these requirements as all contexts
stay within a single process and regular reference count-
ing and garbage collection should suffice. In a distributed
environment, global context becomes a luxury. However,
the requirements on tracking lifetime, referencing remote
data, and managing memory spaces remain the same. Py-
Torch RPC addresses the problem by introducing Remote
Reference with a dedicated protocol to conduct distributed
reference counting and garbage collection. Each RRef has
a single owner and an arbitrary number of users, forming a
star topology. The owner lives on the same process holding
the data of the RRef and performs bookkeeping for all users.
When sharing an RRef across processes, the RPC frame-
work automatically generates control messages to update
the reference count on the owner. The RRef reference count
protocol can handle all {owner, user} × {caller, callee}
combinations. In general, the sender that shares an RRef is
responsible for keeping its local RRef alive until the receiver
confirms the readiness of the new RRef instance, and the
receiver with the new RRef is responsible for notifying the
RRef owner. When the reference count drops to zero, the
owner will delete the RRef.

The example in Listing 1 created multiple RRef instances.
Figure 3 shows the ownership graph. Process p0 serves as
a coordinator in this example and runs the training loop. It
holds user RRefs to the two sub-modules (i.e., rl1 and rl2)
and grabs RRefs of inputs and outputs (i.e., ri, rx, and ry) to
drive the forward pass. The data of the intermediate output
rx is directly transmitted to p2 from p1, while p0 can stay
out of that heavy-weight data path.

PyTorch RPC: Distributed Deep Learning Built on Tensor-Optimized Remote Procedure Calls

rb1

p1 p2

p0

rb2

ri

rx ry

Owner RRef

User RRef

RRef
Forwarding

Materialized
User RRef p1

relu

w

b

p2

relu

w

b

p0

sum

loss

addmm addmm

send

recv recv

send

Autograd
Function

Model
Parameter

Backward
Edge

Forward Pass

Figure 3: RRef Ownerships

rb1

p1 p2

p0

rb2

ri

rx ry

Owner RRef

User RRef

RRef
Forwarding

Materialized
User RRef p1

relu

w

b

p2

relu

w

b

p0

sum

loss

addmm addmm

send

recv recv

send

Autograd
Function

Model
Parameter

Backward
Edge

Figure 4: Distributed Autograd Graph

Creating and sharing RRef instances heavily rely on com-
munications. Therefore, apart from lifetime tracking and
referencing remote objects, RRef also needs to minimize the
additional delay introduced to the forward and the backward
passes. To address this problem, RRef is designed to be
immediately available for using and sharing after creation
(i.e., rpc.remote()) returns without waiting for any control
messages, while data access (i.e., to_here()) always blocks
till the completion of preceding computations that fill RRef
value. This design excludes the RRef control communication
delay from the main computation path, and can overlap with
pending CUDA computations.

3.4 Distributed Autograd

The existing autograd engine in PyTorch only works within
the context of a single process, and it requires global in-
formation to conduct graph discovery and termination de-
tection. In the distributed environment, global knowledge
becomes a luxury. However, PyTorch RPC should hold
the same usability standard as local training. PyTorch RPC
offers a similar .backward() API to launch automatic dif-
ferentiation on a distributed autograd graph. In order to
propagate the backward pass to all participating processes
and remote autograd graphs, the distributed autograd engine
inserts a pair of send and recv autograd functions for each
Tensor communication during the forward pass and tracks
them in a dedicated distributed context. The backward pass
then uses those send and recv functions to stitch together
the distributed autograd graph.

The distributed autograd graph of Listing 1 is depicted in
Figure 4. The first Layer module (i.e., rl1) lives in p1 and
contains an addmm function and a relu function. In the for-
ward pass, the intermediate output from rl1 is fed to rl2 as
the input. Therefore, there is a pair of send and recv func-
tions connecting local autograd graphs on p1 and p2 when
calling to_here(). The autograd edge in between points
from recv to send denotes the direction of gradient commu-
nications during the backward pass. The second pair of send
and recv functions connect p2 and p0, which are installed
when p0 calls to_here() on Model’s output RRef. With this
distributed autograd graph, the backward pass can automat-
ically reach out to addmm functions and calculate gradients
for all participating parameters.

Under the hood, PyTorch RPC introduces a layer on top
of the local autograd engine to handle incoming and out-
going communications and conducts local autograd graph
discovery. Compared to the local .backward() where the
root node is usually the loss tensor and leaf nodes are usually
AccumulateGrad functions, the distributed autograd engine
must recognize local send autograd functions as additional
roots and local recv functions as additional leaves. To prop-
agate autograd to remote participating processes, each recv

autograd function sends an RPC message to the process host-
ing its peer send autograd function, which triggers the same
graph discovery and autograd propagation algorithm on that
process. The distributed autograd engine recursively applies
this procedure until reaching all involved processes. To
remain consistent with the local autograd .backward() func-
tion, the distributed autograd engine also recursively waits
for all remote distributed autograd executions triggered by
its local recv functions. In this way, the .backward() invoca-
tion on the root process only returns when gradient Tensors
are ready on all participating processes. However, due to
the asynchronous behavior of CUDA RPC, some local or
remote CUDA operations producing the gradients might
still wait in the stream, meaning that gradient Tensor values
cannot be consumed yet. Hence, the distributed autograd en-
gine applies proper synchronization by recording a CUDA
event after accumulating gradients and uses that event to
block all read operations on the gradient Tensors.

Compared to the local .backward() function, which always
stores the gradients in the .grad Tensor, Distributed auto-
grad uses a per-iteration context to wrap all send / recv

autograd functions created in the forward pass and gradi-
ents generated in the backward pass. There are two main
reasons for this design decision. First, unlike local training,
no single process has a global picture of the distributed au-
tograd graph and therefore cannot independently detect the
completion of the autograd and parameter updates to trigger
garbage collection. It is possible to handle this problem by
carrying additional information in the forward pass or rely-
ing on additional communications to detect the distributed
autograd graph before launching the backward pass. How-
ever, it would inevitably introduce additional overhead to
the already mission-critical backward pass. Having a con-
text allows for more efficient and straightforward cleanups.
Second, in distributed training, there can be multiple concur-

PyTorch RPC: Distributed Deep Learning Built on Tensor-Optimized Remote Procedure Calls

rent backward passes accessing the same parameters (Recht
et al., 2011). Each backward pass requires a dedicated
context to store gradients to avoid read and write conflicts
before the gradients are consumed. Applications can create
a context using autograd.context() as shown on line 36 in
Listing 1 and pass the context to the backward pass on line
39. The context contains an identifier used by all participat-
ing processes to look up gradients and autograd functions.
For each individual Distributed Autograd Graph, the back-
ward pass needs to wait for every process involved in the
computation to complete the backward pass. As a result,
any stragglers could slow down the entire backward pass.
However, this issue can be mitigated by leveraging asyn-
chronous training paradigms (e.g., with parameter servers)
which have multiple concurrent and independent Distributed
Autograd Graphs.

4 EVALUATION

This section demonstrates how PyTorch RPC can help fa-
cilitate efficient distributed training. Section 4.1 measures
individual RPC latency on various hardware interconnects.
Section 4.3, 4.4, and 4.5 present three case studies on re-
inforcement learning, large language model training, and
recommendation systems. Experiments focus on training
speeds of different implementations, including:

• gRPC uses PyTorch for computations and relies on
gRPC (gRPC, 2021) for communications. The gRPC
framework is a popular solution for distributed comput-
ing which has been used in conjunction with PyTorch
in various machine learning applications (He et al.,
2020b; Küttler et al., 2019).

• CPU uses PyTorch RPC for communications, but only
CPU RPC channels are enabled.

• CUDA employs full-fledged PyTorch where GPU-
direct communication is enabled.

Individual case studies compare a slightly different set of
experiments, which will be explained subsequently. Please
note that these experiments aim to show the flexibility and
efficiency of PyTorch RPC rather than developing the best
models or most performant training paradigms.

Experiments are run on two different clusters. A small in-
house cluster contains two servers connected by InfiniBand,
where each server has 8 16GB Tesla V100 GPUs. A larger
AWS cluster contains 15 servers connected by 4X100Gb
Ethernet, where each server has 8 32GB Tesla V100 GPUs.

4.1 RPC Latency

To measure the raw RPC latency, each experiment makes 10
asynchronous RPC from the same caller to the same callee.
The RPC function takes one Tensor and returns one Tensor

CPU GPU
0

25
50
75

100
125
150
175
200

D
el
ay
 (m

s)

intra
gRPC

CPU GPU

cross
PT

CPU GPU
0

50
100
150
200
250
300
350

D
el
ay
 (m

s)

intra

CPU GPU

cross
PT IB 4M

B

CPU GPU
10−1
100
101
102
103
104

D
el
ay
 (S

ec
on

d)

intra

CPU GPU

cross

Identity Function

CPU GPU
10−1
100
101
102
103
104

D
el
ay
 (S

ec
on

d)

intra

CPU GPU

cross

200-Ops Function

400M
B

Figure 5: RPC Latency: All figures share the same legends.
PT IB means PyTorch RPC over InfiniBand. The texts intra
and cross refer to intra-machine and cross-machine.

of the same size. Figure 5 shows the results. The eight fig-
ures are grouped into 4 pairs, and the 4 pairs are organized
into 2 rows and 2 columns. Within the same row, all exper-
iments use the same Tensor size, which is marked on the
right. Within the same column, all experiments use the same
user function. The Identity function returns the argument
Tensor as-is. The 200-Ops function runs 200 point-wise
arithmetic Tensor operations on the argument Tensor and
returns the result. Each pair of figures conducts the same ex-
periments on one machine (intra) and across two machines
(cross) respectively. In cross-machine GPU Tensor experi-
ments, we measure two sub-scenarios where PyTorch RPC
uses 4X100Gb Ethernet and InfiniBand respectively. Infini-
Band experiments are marked as PT IB. Each individual
figure compares CPU and GPU Tensors. PyTorch RPC out-
performs gRPC in all scenarios. The largest gap reaches two
orders of magnitude which occurs in cross-machine experi-
ments that use 400MB GPU Tensor and Identity function.
The speedups came from multiple optimizations. Firstly, Py-
Torch RPC has been intricately incorporated with PyTorch
internals to prevent redundant copying, whereas type conver-
sions are inevitable when passing Tensor objects from Py-
Torch to gRPC. Second, as illustrated in Figure 2, PyTorch
RPC aggressively overlaps communication with computa-
tion. In contrast, gRPC mandates stream synchronization
before pickling and data transmission, thereby relinquishing
the prospect of overlapping. Furthermore, PyTorch RPC
employs diverse hardware-related optimizations when feasi-
ble, such as pinned memory staging buffers, cross-memory
attachment, NVLink, etc.

Beyond the experiments, using PyTorch RPC can imple-
ment communication with less than 10 LoC by simply call-
ing init_rpc, rpc_async, and shutdown. In contrast, when
using gRPC, we must specify the message structure in the
.proto file, build it, and implement the client and the server
separately, which takes around 100 LoC and will become
increasingly complicated for more advanced use cases. One

PyTorch RPC: Distributed Deep Learning Built on Tensor-Optimized Remote Procedure Calls

interesting observation is that switching to more expensive
user functions leads to a larger regression in delay for gRPC
than in PyTorch RPC, although the amount of computation
is the same for both experiments. We believe this is because
when using gRPC the application needs to convert Tensors
into gRPC messages, which elongates the Global Interpreter
Lock (GIL) occupation time on each thread. When com-
bined with more expensive user functions, it would result in
worse GIL contentions and longer GIL queuing delays.

4.2 Control Overhead

Experiments in this section measure the control overhead of
Remote Reference and Distributed Autograd and quantify
its impact to the training critical path.

Tensor Size CPU Tensor CPU RRef CUDA Tensor CUDA RRef

4MB 4.4±0.6ms 2.8±0.7ms 0.5±0.07ms 0.8±0.1ms
40MB 52±5ms 46±1.3ms 2.0±0.07ms 2.3±0.05ms
400MB 513±19ms 541±31ms 18.6±0.07ms 19.1±0.2ms

Table 1: Remote Reference Overhead

We first measure the overhead of Remote Reference by pass-
ing an identity function to rpc_sync, where the function
either takes a Tensor and returns it as is or takes an RRef of
a Tensor and returns rref.to_here(). Results are shown in
Table 1, where each experiment is repeated 100 times across
two processes on the same machine. CPU communications
suffer from large noise that overshadows the overhead of
Remote Reference. We believe this is because PyTorch does
not cache storage for CPU Tensors, which contributes to a
considerable portion of the total delay. CUDA experiments
benefit from a much smaller noise after warm up and demon-
strate that using RRef incurs around a 0.3ms-0.5ms delay,
which meets expectations as it pays an additional round-trip.

norpc-fwd nograd-fwd grad-fwd norpc-bwd grad-bwd

1.2±0.08ms 1.6±0.12ms 2.0±0.10ms 0.7±0.09ms 1.6±0.13ms

Table 2: Distributed Autograd Overhead

To isolate the delay introduced by Distributed Autograd, we
can measure the end-to-end forward and backward delays
and then subtract the time spent on RPC, RRef, and local
autograd. We use a simple model with two 1k x 1k CUDA
Linear layers in the experiments. Table 2 shows the results.
We first measure the forward pass latency with (nograd-fwd)
and without (norpc-fwd) RPC and RRef. The difference be-
tween these two is the RPC and RRef delay of the forward
pass activation communication, which should be close to
the backward pass gradient communication (1.6ms - 1.2ms
= 0.4ms). We then measure the forward (grad-fwd) and
backward (grad-bwd) latency when enabling Distributed Au-
tograd and the backward latency without RPC (norpc-bwd).
With these numbers, we can infer the Distributed Auto-

grad forward overhead as grad-fwd - nograd-fwd = 2.0ms
- 1.6ms = 0.4ms, and the backward overhead as grad-bwd -
norpc-bwd - inferred RPC&RRef overhead = 1.6ms - 0.7ms
- 0.4ms = 0.5ms.

In real applications, RPC target functions are usually much
more expensive than a fraction of a millisecond. More-
over, as described in Section 3.2, these additional control
communication overhead can overlap with pending CUDA
operations and avoid the critical path, making the control
overhead negligible

4.3 Scaling Reinforcement Learning Applications

gRPC CPU CUDA

LoC Comm 52 (+270 gen) 10 12
LoC Comp 258 258 258

Rewards 654.3 676.3 674.0
Max=700 ± 104.0 ± 52.03 ± 83.83

Table 3: Line of Code and Rewards

This case study shows how RPC and RRef assist in scal-
ing out reinforcement learning tasks performed on an Ope-
nAI Gym (Gym, 2021) environment. The application im-
plements a well-known policy-based algorithm called the
Asynchronous Advantage Actor Critic (A3C) (Mnih et al.,
2016). In A3C, the worker agents are trained independently
and update a global network that holds shared parameters.
Agents each have their own network parameters and a copy
of the environment. The agent independently interacts with
a local environment and performs the loss calculation and
backward pass. Rather than updating its own weights, each
agent applies the gradients to a global network and then
pulls the global network for the next training episode. More
specifically, each training process independently performs
the following four steps: 1) fetches the global network; 2)
uses the latest network to interact with the environment and
collect observations; 3) calculates losses with the observa-
tions and computes gradients; 4) applies gradients to the
global network. We use gRPC and PyTorch RPC to carry out
communications in steps 1 and 4 and compare the latency.
Figure 6 shows the communication delays for fetching and

1 3 5 7
Number of Actors

0

50

100

150

200

D
el
ay
 (m

s)

gRPC CPU CUDA

9 11 13 15
Number of Actors

0

500

1000

1500

2000

D
el
ay
 (m

s) 20.10

20.25

21.20

20.52

Fetch Update

Figure 6: Video Game Solver Communication Delay

updating models. When there are at most 7 actors, the 8
processes (including the model parameter server) all reside
on the same server where each process exclusively occu-

PyTorch RPC: Distributed Deep Learning Built on Tensor-Optimized Remote Procedure Calls

pies a GPU. With more than 7 actors, processes are split
across two different servers. CPU RPC outperforms gRPC
when all processes reside on the same machine. However,
when the actors span two machines, both gRPC and CPU
RPC perform poorly and suffer from significant slowdowns.
CUDA RPC, on the other hand, maintains a stable delay at
around 20ms which is over 50x faster than gRPC with 15
actors.

4.4 Training Large Language Models

This section demonstrates the feasibility of training large
language models using RPC. Experiments in this section
skip gRPC since numbers presented in Section 4.1 and Sec-
tion 4.3 already confirm that PyTorch RPC significantly
outperforms gRPC in efficiency and simplicity for Tensor
communications. Moreover, distributed autograd is much
more complicated than sheer communication. Even if we
build gRPC-based distributed autograd, it is still difficult
to justify whether the implementation is equally optimized
compared to the PyTorch distributed autograd engine. There-
fore, this section focuses more on the efficiency of PyTorch
RPC and RPC-based pipeline parallel on 1.3B- and 175B-
parameter language models.

The first set of experiments employ a 1.3B parameter
BERT model (Devlin et al., 2019) with WikiText (Mer-
ity et al., 2016) dataset to compare PyTorch RPC against
single-process multi-device model parallelism (SPMD). The
SPMD solution places model shards on different GPUs and
relies on Tensor.to(device) to move activations to target de-
vices. Under the hood, Tensor.to(device) uses the optimal
channel (NVLink or PCIe) for device-to-device communi-
cations. Since all states live in the same process, SPMD
represents the optimal speed that RPC can achieve with-
out pipeline parallelism. In PyTorch RPC experiments, we
spawn one process exclusively for each GPU. Cross-GPU
communications always travel through RPC. Figure 7 (a)-
(c) show the results. In Figure 7 (a), all experiments are
conducted on the same machine (i.e., communications for
SPMD and CUDA RPC use NVLink if available). CPU
RPC is significantly slower, which is expected as it intro-
duces an additional D2H (Device-to-Host) copy on the caller,
misses the faster NVLink channel, and introduces another
H2D copy on the callee. CUDA RPC attains similar com-
munication delay as SPMD with 1, 2, and 4 GPUs, but
the delay jumps nearly 10x when using 8 GPUs, which is
caused by absence of an NVLink between the 4th and 5th
GPU. SPMD suffers less, as it only requires one D2H and
one H2D copy within the same process, while CUDA RPC
has to launch an additional H2H communication across the
sender and the receiver processes. Transferring data across
RPC process boundaries inevitably introduces higher over-
head, but the benefit is that it does not require GIL and can
easily scale to multiple machines to support larger models

and different training paradigms. In Figure 7 (b) and (c) all
experiments employ 8 GPUs. For an n-machine experiment,
each machine contributes its first 8/n GPUs. In these ex-
periments, cross-machine communication delay becomes
more dominant, especially as this cluster is not equipped
with InfiniBand. There is no CPU bar in Figure 7 (c) on one
machine because it hits the out-of-memory (OOM) error.

We then evaluate the feasibility of training a 175B-parameter
model with RPC using a GPT3-like (Brown et al., 2020)
architecture and show the impact of enabling pipeline par-
allelism. Naive model parallelism (RPC or SPMD) suffers
from low device utilization, since only one device is busy
at any given time instance. With pipeline parallelism, each
mini-batch is split into multiple micro-batches which are
then fed into the model in a pipeline (Huang et al., 2019;
Kim et al., 2020). The backward path is handled by dis-
tributed autograd. Figure 7 (d) shows the result where the
batch global size equals 128. Compared to the naive RPC
solution, pipeline parallelism significantly speeds up train-
ing by 9x. The optimal speed is 146.3 Seconds per iteration
when the micro-batch size is set to 4.

4.5 Supporting Recommendation Models

Recommendation models (Gupta et al., 2019; Naumov et al.,
2019; Zha et al., 2023; Zhang et al., 2022) usually mix
dense and sparse parameters. To train such models in a
distributed environment, a naive solution is to wrap the en-
tire model with DistributedDataParallel (DDP) and use
collective communications to synchronize both dense and
sparse gradients. However, replicating the entire model
on every process does not scale to large embedding tables.
Moreover, the collectives are known to be slow for sparse
tensors, as they must perform one communication to gather
the number of non-zero elements on all peers, then pad and
allocate a buffer, and finally launch another communication
to gather sparse tensor indices and values. A more efficient
solution would put the embedding table on (sharded) param-
eter servers and rely on DDP to synchronize dense layers
and RPC to update sparse layers.

In this section, we implement a DLRM-like model that con-
sists of one embedding table and multiple MLP layers that
contain 5 Linear (sizes: 2000, 1024, 1024, 512, 256, 64)
with ReLU layers in between and one Sigmoid at the last layer.
The number of embeddings for all experiments is 20 mil-
lion. The DDP solution replicates the entire model on all
processes and uses NCCL for dense gradients and Gloo for
sparse gradients (NCCL does not support sparse tensors).
The RPC solution still wraps the dense layers with DDP,
but the embedding table with sparse features resides on a
remote parameter server. Results are presented in Figure 8.
Experiments skip CPU RPC, as previous sections have al-
ready confirmed that CUDA RPC significantly outperforms

PyTorch RPC: Distributed Deep Learning Built on Tensor-Optimized Remote Procedure Calls

1 2 4 8
Number of GPUs

0

2

4

6

8

10
D
el
ay
 (S

ec
on
d) SPMD CPU

(a) Single-Node, BS=32

1 2 4 8
Number of Machines

0
2
4
6
8
10
12
14

D
el
ay
 (S

ec
on
d) CUDA FWD

(b) Multi-Node, BS=32

1 2 4 8
Number of Machines

0

20

40

60

80

100

D
el
ay
 (S

ec
on

d) COMM BWD

(c) Multi-Node, BS=256

1 2 4 8 128
Micro-Batch Size

0
200
400
600
800

1000
1200
1400
1600

D
el
ay

 (S
ec
on

d) RPC
Pipeline
FWD
BWD

(d) 175B Pipeline

Figure 7: Language Model Training Iteration Delay: Figures (a)-(c) share legends. Computation always resides on GPU.
Communications are handled differently with 1) Single-Process Multi-Device model parallel (SPMD), 2) Data travel
through host memory (CPU), 3) GPU-to-GPU direct (CUDA), 4) RPC-based pipeline parallelism (Pipeline). Figure (d)
uses the same global batch size of 128 for RPC and pipeline parallelism, however for pipeline parallelism specifically we
plot multiple results for micro-batch sizes 1, 2, 4 and 8.

4 16
Number of GPUs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ite
ra
tio

n
D
el
ay
 (S

ec
on
d) FWD

BWD
DDP
CUDA

(a) Dim = 64

128 256 512 1K
Per Embedding Size

10−3

10−2

10−1

100

Ite
ra
tio

n
D
el
a
 (S

ec
on

d) DDP
CUDA

(b) Varying Dim

Figure 8: Recommendation Model Delays

CPU RPC. Figure 8(a) shows that with sparse gradients
CUDA RPC beats collective communication-based DDP
with a large lead. The forward pass of CUDA RPC is slower
because it needs to perform a remote lookup, while DDP’s
embedding table is local. Figure 8(b) evaluates the limit of
the embedding size of the two solutions. DDP hits the OOM
error when per-element embedding size reaches 512, while
RPC-based solution can scale to larger embedding tables.

4.6 Strengthening Federated Learning Framework

PyTorch RPC is also particularly suitable for improving
the flexibility and communication performance of federated
learning (FL) (Kairouz et al., 2021; Wang et al., 2021), a
disruptive and promising distributed learning paradigm that
aims to protect user privacy in a decentralized training man-
ner. Compared to the three use cases mentioned above, FL
typically has more complex communication patterns, and
the communication bottleneck is more prominent because
FL involves edge servers (e.g., servers belonging to a medi-
cal institute or a bank) that do not have the high bandwidth
network adapter, such as InfiniBand or EFA.

We have successfully integrated PyTorch RPC into FedML
(He et al., 2020b), a PyTorch-based federated learning frame-
work widely used in academia. Using PyTorch RPC-enabled
FedML, we evaluate the communication performance for
a real use case in a cross-silo cross-account FL where the

private datasets of FL clients are located at multiple AWS
accounts but share the same AWS region. In this setting, we
use AWS EC2 p3.2xlarge (8 CPU Cores, 1 Tesla V100 GPU)
as the edge server (FL client) and configure two bandwidths
(10Gb/s and 1Gb/s) to better understand the performance
in different real use cases. We record the communication
latency of gRPC and PyTorch RPC (tRPC) when running
conventional FL algorithms (FedAvg and FedSGD) to train
a model with 25M parameters on both a CPU Tensor and
a CUDA Tensor. The results, shown in Figure 9, demon-
strate that tRPC can achieve significant improvement even
in the distributed training scenarios where GPU clusters
do not have access to high bandwidth interconnects (e.g.,
AWS EFA that has 400Gb/s bandwidth or InfiniBand that
normally has a bandwidth larger than 100Gb/s). Especially,
tRPC can reduce the latency time from a few seconds (> 3)
in gRPC to less than 1 second. This improvement can accel-
erate the training speed to a large degree because the training
typically requires many communication rounds (Konečnỳ
et al., 2016). tRPC even provides more end-to-end training
time acceleration when researchers prefer FedSGD, which
synchronizes the weights after only one mini-batch for faster
convergence, rather than FedAvg, which does weight aggre-
gation after one local epoch.

(a) Bandwidth (10Gb/s) (b) Bandwidth (1Gb/s)

Figure 9: Federated Learning Experimental Results

PyTorch RPC can also offer simplicity for diverse algorith-
mic scenarios in FL. There are especially three algorithmic
use cases in FedML that involves complex communica-
tion protocols but their implementations have been substan-
tially simplified: LightSecAgg (Yang et al., 2021b) shows

PyTorch RPC: Distributed Deep Learning Built on Tensor-Optimized Remote Procedure Calls

the case that the federated averaging algorithm (Konečnỳ
et al., 2016) is empowered by secure aggregation, which
requires multiple rounds of transmitting high frequent se-
curity protocol-related messages in between the training
loop; vertical federated learning (Hardy et al., 2017; Yang
et al., 2019) enables the collaborative learning when the
entire feature space is isolated to multiple organizations so
that complex security and training protocols are applied;
FedGKT (He et al., 2020a) further demonstrates an ad-
vanced algorithm that requires exchanging activation maps
and distilled logits (the hidden vector that feeds into the
softmax function for probabilistic prediction), beyond gra-
dients/weights. FedML offers the flexibility of these im-
plementations by wrapping PyTorch RPC API as a design
pattern called “worker-oriented programming interface” (He
et al., 2020b). Specifically, developers no longer need to
maintain communications and distributed contexts and only
focus on message definition for algorithms but enjoy the
underlying communication optimization introduced in Sec-
tion 3. From the comparison of the gRPC and PyTorch
RPC implementation in FedML, we see that the three use
cases can be supported by the same communication back-
end with a unified but flexible message definition: PyTorch
RPC can automatically take care of FedML Message class
to distinguish the communication between the tensor and
other protocol messages, but the gRPC implementation has
to handle PB protocol, which requires many more LoC.

5 RELATED WORK

Distributed training solutions can be categorized into data
parallel, model parallel, and hybrid parallel paradigms.
Horovod (Sergeev & Balso, 2018) is a typical data par-
allel solution. Model parallelism partitions the model and
places different shards on different processes, which helps
to scale large models to multiple GPUs and machines.
GPipe (Huang et al., 2019) partitions a sequence of lay-
ers at operator boundaries, and feeds micro-batches into
those layers as a pipeline. PipeDream (Narayanan et al.,
2019) and PipeMare (Yang et al., 2021a) speed up pipeline
parallelism by removing synchronization barriers at the cost
of allowing gradient staleness. Hybrid parallelism combines
data and model parallel solutions. PipeTransformer (He
et al., 2021) employs synchronous pipeline parallel within
one machine and data parallel across machines. It gradually
freezes the stack of layers in order to reduce the number of
active parameters and spawns more processes on freed re-
sources to increase data parallel width. Besides partitioning
at operator boundaries, Megatron-LM (Shoeybi et al., 2019),
Mesh-TensorFlow (Shazeer et al., 2018), GShard (Chen
et al., 2021), and ToFu (Wang et al., 2019) explored sharding
individual layers across processes when applicable, which
usually requires either custom implementation for sharded
layers or compiler support to decompose layers into unit

operators and insert communications for activations and
gradients. ZeRO (Rajbhandari et al., 2019) circumvents the
requirements by sharding only model parameters instead of
computation, where every process fetches parameters of a
layer from its owner before computation and discards the
layer afterward. These technologies push the limit of dis-
tributed training for different domains in different directions
but impose constraints on aspects like model structure and
training paradigm. Moreover, although they share many
common components, such as tensor communication, re-
mote data manipulation, and distributed autograd, those
components are implemented independently, differently,
and repeatedly. The next distributed training innovation
will likely still need to start from scratch.

Despite the limitations, many existing training tasks in nat-
ural language processing and computer vision can fit very
well into the aforementioned paradigms. However, no one
can anticipate what requirements might emerge in the fu-
ture in these two domains. Moreover, other domains such
as federated learning, reinforcement learning, and graph
learning already suffer from the lack of flexibility. As
a result, developers in such domains have started to con-
struct their own distributed training solutions. FedML (He
et al., 2020b) supports generic federated learning typologies
which cannot comply with existing data and model parallel
frameworks. Therefore, it creates its own message-passing
protocol on top of gRPC to power higher-level features.
TorchBeast (Küttler et al., 2019) is a reinforcement learn-
ing library that aims at training agents in both local and
distributed environments, which also relies on gRPC for
communications. BigGraph (Lerer et al., 2019) helps to
learn graph embeddings for large graphs with up to billions
of entities and trillions of edges. It wraps PyTorch send

and recv APIs into its own RPC services. General-purpose
distributed computing frameworks, such as Ray (Ray, 2023;
Moritz et al., 2018) and Dask (Dask, 2023), can help to
set up distributed applications but still lacks supports for
efficient tensor communication and distributed autograd.
Evaluations presented in Section 4 show that building train-
ing applications using universal RPC frameworks can be
slow and verbose.

6 CONCLUSION

In this paper, we introduce PyTorch RPC, a generic solu-
tion for distributed deep learning. The RPC package offers
greater flexibility compared to specialized distributed train-
ing tools and superior simplicity and efficiency compared to
generalized distributed computing frameworks. Evaluations
show that PyTorch RPC outperforms gRPC by up to two
orders of magnitude in tensor communication. Case studies
confirm that it helps to simplify the implementation of rein-
forcement learning, large language model, recommendation
model, and federated learning applications.

PyTorch RPC: Distributed Deep Learning Built on Tensor-Optimized Remote Procedure Calls

REFERENCES

Biswas, R., Lu, X., and Panda, D. K. Accelerating ten-
sorflow with adaptive rdma-based grpc. In 2018 IEEE
25th International Conference on High Performance
Computing (HiPC), pp. 2–11. IEEE, 2018.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P.,
Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A.,
Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M.,
Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J.,
Berner, C., McCandlish, S., Radford, A., Sutskever,
I., and Amodei, D. Language models are few-shot
learners. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M. F., and Lin, H. (eds.), Advances in
Neural Information Processing Systems, volume 33, pp.
1877–1901. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper/2020/file/145
7c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Chen, D., Lepikhin, D. D., Lee, H., Krikun, M., Shazeer,
N., Firat, O., Huang, Y., Xu, Y., and Chen, Z. Gshard:
Scaling giant models with conditional computation and
automatic sharding. In Tenth International Conference
on Learning Representations, 2021.

Dask. Dask: Scalable analytics in Python. https://dask
.org/, 2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
BERT: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), Minneapolis, Minnesota, June 2019. Associa-
tion for Computational Linguistics.

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers:
Scaling to trillion parameter models with simple and effi-
cient sparsity. arXiv preprint arXiv:2101.03961, 2021.

gRPC. gRPC: A high performance, open source universal
RPC framework. https://grpc.io/, 2021.

Gupta, U., Wang, X., Naumov, M., Wu, C., Reagen, B.,
Brooks, D., Cottel, B., Hazelwood, K. M., Jia, B., Lee,
H. S., Malevich, A., Mudigere, D., Smelyanskiy, M.,
Xiong, L., and Zhang, X. The architectural implications
of facebook’s dnn-based personalized recommendation.
CoRR, abs/1906.03109, 2019. URL https://arxiv.or
g/abs/1906.03109.

Gym. OpenAI Gym. https://gym.openai.com/, 2021.

Hardy, S., Henecka, W., Ivey-Law, H., Nock, R., Patrini,
G., Smith, G., and Thorne, B. Private federated learn-
ing on vertically partitioned data via entity resolution
and additively homomorphic encryption. arXiv preprint
arXiv:1711.10677, 2017.

He, C., Annavaram, M., and Avestimehr, S. Group knowl-
edge transfer: Federated learning of large cnns at the
edge. arXiv: Learning, 2020a.

He, C., Li, S., So, J., Zeng, X., Zhang, M., Wang, H., Wang,
X., Vepakomma, P., Singh, A., Qiu, H., et al. FedML: A
Research Library and Benchmark for Federated Machine
Learning. In NeurIPS Workshop on Scalability, Privacy,
and Security in Federated Learning, 2020b.

He, C., Li, S., Soltanolkotabi, M., and Avestimehr, S.
Pipetransformer: Automated elastic pipelining for dis-
tributed training of transformers. In Thirty-eighth
International Conference on Machine Learning, 2021.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D.,
Chen, M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al.
Gpipe: Efficient training of giant neural networks using
pipeline parallelism. In Advances in Neural Information
Processing Systems, pp. 103–112, 2019.

Jia, Z., Zaharia, M., and Aiken, A. Beyond data and model
parallelism for deep neural networks. Proceedings of
Machine Learning and Systems, 2019.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A., Bonawitz, K., Charles, Z. B., Cormode,
G., Cummings, R., D’Oliveira, R. G. L., Rouayheb, S.,
Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B.,
Gibbons, P. B., Gruteser, M., Harchaoui, Z., He, C., He,
L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi,
T., Joshi, G., Khodak, M., Konecný, J., Korolova, A.,
Koushanfar, F., Koyejo, O., Lepoint, T., Liu, Y., Mittal, P.,
Mohri, M., Nock, R., Özgür, A., Pagh, R., Raykova, M.,
Qi, H., Ramage, D., Raskar, R., Song, D., Song, W., Stich,
S. U., Sun, Z., Suresh, A. T., Tramèr, F., Vepakomma,
P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F., Yu, H.,
and Zhao, S. Advances and open problems in federated
learning. Found. Trends Mach. Learn., 14:1–210, 2021.

Kim, C., Lee, H., Jeong, M., Baek, W., Yoon, B., Kim, I.,
Lim, S., and Kim, S. torchgpipe: On-the-fly pipeline
parallelism for training giant models. arXiv preprint
arXiv:2004.09910, 2020.

Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P.,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://dask.org/
https://dask.org/
https://grpc.io/
https://arxiv.org/abs/1906.03109
https://arxiv.org/abs/1906.03109
https://gym.openai.com/

PyTorch RPC: Distributed Deep Learning Built on Tensor-Optimized Remote Procedure Calls

Küttler, H., Nardelli, N., Lavril, T., Selvatici, M., Sivaku-
mar, V., Rocktäschel, T., and Grefenstette, E. Torchbeast:
A pytorch platform for distributed rl. arXiv preprint
arXiv:1910.03552, 2019.

Lerer, A., Wu, L., Shen, J., Lacroix, T., Wehrstedt, L., Bose,
A., and Peysakhovich, A. PyTorch-BigGraph: A Large-
scale Graph Embedding System. In Proceedings of the
2nd SysML Conference, Palo Alto, CA, USA, 2019.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In 11th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 14), pp.
583–598, 2014.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li,
T., Paszke, A., Smith, J., Vaughan, B., Damania, P., et al.
Pytorch Distributed: Experiences on accelerating data
parallel training. In VLDB, 2020.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016. under the Creative Commons
Attribution-ShareAlike License.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T. P., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning, 2016.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R.,
Liang, E., Elibol, M., Yang, Z., Paul, W., Jordan, M. I.,
et al. Ray: A distributed framework for emerging {AI} ap-
plications. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pp.
561–577, 2018.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and
Zaharia, M. Pipedream: generalized pipeline paral-
lelism for dnn training. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pp. 1–15,
2019.

Naumov, M., Mudigere, D., Shi, H. M., Huang, J., Sun-
daraman, N., Park, J., Wang, X., Gupta, U., Wu, C.,
Azzolini, A. G., Dzhulgakov, D., Mallevich, A., Cher-
niavskii, I., Lu, Y., Krishnamoorthi, R., Yu, A., Kon-
dratenko, V., Pereira, S., Chen, X., Chen, W., Rao, V.,
Jia, B., Xiong, L., and Smelyanskiy, M. Deep learning
recommendation model for personalization and recom-
mendation systems. CoRR, abs/1906.00091, 2019. URL
https://arxiv.org/abs/1906.00091.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
Memory optimization towards training a trillion parame-
ter models. arXiv preprint arXiv:1910.02054, 2019.

Ray. Ray: Fast and Simple Distributed Computing. https:
//ray.io/, 2023.

Recht, B., Re, C., Wright, S., and Niu, F. Hogwild!: A
lock-free approach to parallelizing stochastic gradient
descent. In Shawe-Taylor, J., Zemel, R., Bartlett, P.,
Pereira, F., and Weinberger, K. Q. (eds.), Advances in
Neural Information Processing Systems, volume 24, pp.
693–701. Curran Associates, Inc., 2011. URL https:
//proceedings.neurips.cc/paper/2011/file/218
a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf.

Sergeev, A. and Balso, M. D. Horovod: fast and easy
distributed deep learning in TensorFlow. arXiv preprint
arXiv:1802.05799, 2018.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A.,
Koanantakool, P., Hawkins, P., Lee, H., Hong, M., Young,
C., et al. Mesh-tensorflow: Deep learning for supercom-
puters. In Advances in Neural Information Processing
Systems, pp. 10414–10423, 2018.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Thangakrishnan, I., Cavdar, D., Karakus, C., Ghai, P., Se-
livonchyk, Y., and Pruce, C. Herring: rethinking the
parameter server at scale for the cloud. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, Atlanta,
GA, USA, pp. 1–13, 2020.

Wang, J., Charles, Z. B., Xu, Z., Joshi, G., McMahan, H. B.,
Arcas, B. A. Y., Al-Shedivat, M., Andrew, G., Avestimehr,
S., Daly, K., Data, D., Diggavi, S., Eichner, H., Gadhikar,
A., Garrett, Z., Girgis, A. M., Hanzely, F., Hard, A., He,
C., Horvath, S., Huo, Z., Ingerman, A., Jaggi, M., Javidi,
T., Kairouz, P., Kale, S., Karimireddy, S. P. R., Konecný,
J., Koyejo, S., Li, T., Liu, L., Mohri, M., Qi, H., Reddi,
S. J., Richtárik, P., Singhal, K., Smith, V., Soltanolkotabi,
M., Song, W., Suresh, A. T., Stich, S. U., Talwalkar, A. S.,
Wang, H., Woodworth, B. E., Wu, S., Yu, F. X., Yuan,
H., Zaheer, M., Zhang, M., Zhang, T., Zheng, C., Zhu,
C., and Zhu, W. A field guide to federated optimization.
ArXiv, abs/2107.06917, 2021.

Wang, M., Huang, C.-c., and Li, J. Supporting very
large models using automatic dataflow graph partitioning.
In Proceedings of the Fourteenth EuroSys Conference
2019, pp. 1–17, 2019.

Xue, J., Miao, Y., Chen, C., Wu, M., Zhang, L., and Zhou, L.
Fast distributed deep learning over rdma. In Proceedings
of the Fourteenth EuroSys Conference 2019, pp. 1–14,
2019.

https://arxiv.org/abs/1906.00091
https://ray.io/
https://ray.io/
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf

PyTorch RPC: Distributed Deep Learning Built on Tensor-Optimized Remote Procedure Calls

Yang, B., Zhang, J., Li, J., Ré, C., Aberger, C., and De Sa,
C. Pipemare: Asynchronous pipeline parallel dnn train-
ing. In Proceedings of Machine Learning and Systems,
volume 3, 2021a.

Yang, C.-S., So, J., He, C., Li, S., Yu, Q., and Avestimehr, S.
Lightsecagg: Rethinking secure aggregation in federated
learning. arXiv preprint arXiv:2109.14236, 2021b.

Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine
learning: Concept and applications. ACM Trans. Intell.
Syst. Technol., 10(2), January 2019. ISSN 2157-6904.
doi: 10.1145/3298981. URL https://doi.org/10.114
5/3298981.

Zha, D., Feng, L., Luo, L., Bhushanam, B., Liu, Z., Hu, Y.,
Nie, J., Huang, Y., Tian, Y., Kejariwal, A., and Hu, X.
Pre-trained neural cost models for efficient embedding
table sharding in deep learning recommendation mod-
els. In Proceedings of Machine Learning and Systems,
volume 6, 2023.

Zhang, B., Luo, L., Liu, X., Li, J., Chen, Z., Zhang,
W., Wei, X., Hao, Y., Tsang, M., Wang, W., et al.
Dhen: A deep and hierarchical ensemble network for
large-scale click-through rate prediction. arXiv preprint
arXiv:2203.11014, 2022.

https://doi.org/10.1145/3298981
https://doi.org/10.1145/3298981

	Introduction
	Background and Challenges
	Design
	Programming Interface
	Tensor-Aware Communication
	Memory Management
	Distributed Autograd

	Evaluation
	RPC Latency
	Control Overhead
	Scaling Reinforcement Learning Applications
	Training Large Language Models
	Supporting Recommendation Models
	Strengthening Federated Learning Framework

	Related Work
	Conclusion

