
EFFICIENT GPU KERNELS FOR N:M-SPARSE WEIGHTS IN DEEP LEARNING

Bin Lin 1 2 * Ningxin Zheng 1 * Lei Wang 1 * Shijie Cao 1 Lingxiao Ma 1 Quanlu Zhang 1 Yi Zhu 1 Ting Cao 1

Jilong Xue 1 Yuqing Yang 1 Fan Yang 1

ABSTRACT
N:M sparsity is becoming increasingly popular for its potential to deliver high model accuracy and computational
efficiency for deep learning. However, the real-world benefit of N:M sparsity is limited as there is a lack of
dedicated GPU kernel implementations for general N:M sparsity with various sparsity ratios. In this work, we
introduce nmSPARSE, a library of efficient GPU kernels for two fundamental operations in neural networks
with N:M sparse weights: sparse matrix-vector multiplication (SpMV) and sparse matrix-matrix multiplication
(SpMM). By exploiting the intrinsic balance characteristic of N:M sparsity, nmSPARSE kernels rearrange irregular
computation and scattered memory accesses in sparse matrix multiplication into hardware-aligned regular compu-
tation and conflict-free memory accesses at runtime. When evaluated on NVIDIA A100 GPU, nmSPARSE kernels
achieve up to 5.2× speedup on SpMV and 6.0× speedup on SpMM over the fastest baseline. End-to-end studies
on transformer models demonstrate that using nmSPARSE outperforms other baselines.

1 INTRODUCTION

To reduce the model size of Deep Neural Networks (DNN)
and accelerate model inference, weight pruning has been ex-
tensively studied in academia and industry (Han et al., 2015;
Gale et al., 2020a; Zheng et al., 2022). The sparsity pattern
in model weights plays a critical role as it fundamentally
affects the trade-off between model accuracy and inference
efficiency of a compressed model. Element-wise (EW) spar-
sity, which prunes weights individually, minimally impacts
model accuracy but struggles to take advantage of commod-
ity GPU due to irregular computation and scattered memory
accesses (Mao et al., 2017; Gale et al., 2020a; Mishra et al.,
2021). Vector-wise (VW) or block-wise (BW) sparsity,
which prunes groups of weights with a coarser granularity,
leads to efficient execution on GPU but suffers from deterio-
rated model accuracy. Such an accuracy-efficiency trade-off
remains a longstanding challenge for sparse DNNs.

Recently, N:M sparsity has emerged as a promising alterna-
tive to achieve both high model accuracy and high inference
efficiency (Cao et al., 2019; Mishra et al., 2021). N:M
sparsity essentially imposes a balanced distribution on non-
zero weights, e.g., element-wisely enforcing N non-zero
elements in every M elements (EW-N:M sparsity). Previous
works demonstrate such an N:M distribution has minimal

*Equal contribution 1Microsoft Research Asia
2Tsinghua University. Correspondence to: Shijie Cao
<shijiecao@microsoft.com>, Lingxiao Ma <lingx-
iao.ma@microsoft.com>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

or imperceptible impact on model accuracy on a wide range
of common tasks and model architectures, and many al-
gorithmic studies are striving to enhance the accuracy of
N:M sparsity (Zhou et al., 2021; Sun et al., 2021; Pool &
Yu, 2021; Oh et al., 2022; Holmes et al., 2022). Addition-
ally, N:M sparsity allows for efficient implementation with
customized hardware due to its more regular computation
and memory access patterns (Cao et al., 2019). Commodity
hardware like NVIDIA Ampere architecture even supports
EW-2:4 sparsity, a special case of the more general N:M
sparsity, in its Sparse Tensor Core (Mishra et al., 2021). The
N:M sparsity concept can also be extended to VW and BW
sparsity, where N non-zero vectors exist in every M vectors
(VW-N:M sparsity) and N non-zero blocks exist in every M
blocks (BW-N:M sparsity), respectively.

Despite the promising results, the real-world benefit of gen-
eral N:M sparsity is limited. There is a lack of GPU kernels
dedicated to general N:M sparsity with various sparsity
ratios. cuSPARSELt leverages the Sparse Tensor Core in
NVIDIA Ampere architecture (Mishra et al., 2021), but
only supports EW-2:4 weight sparsity which restricts the
balance window M to 4 and the sparsity ratio to 50%. De-
spite the excellent performance on 2:4 sparsity for SpMM,
cuSPARSELt does not support the SpMV operation, which
is critical for auto-regressive generative model inference.
While various models or even layers usually have differ-
ent levels of redundancy, thus favoring different sparsity
ratios which are typically ranging from 50% to 90%. More-
over, although VW-N:M and BW-N:M can further boost
inference efficiency, currently there is no dedicated GPU
implementation to leverage them.



Efficient GPU Kernels for N:M-Sparse Weights in Deep Learning

Granularity

Distribution

Unconstrained

(Imbalance)

N:M

(Balance)

Element-Wise(EW) Vector-Wise(VW) Block-Wise(BW)

Figure 1. A unified representation of sparsity patterns with granularity and distribution. nmSPARSE implements GPU kernels for sparse
weights with the N:M balanced distribution.

In this work, we present nmSPARSE, a highly-optimized
GPU library of SpMV and SpMM kernels for general N:M
sparsity. To the best of our knowledge, nmSPARSE is
the first GPU library that supports general N:M sparse
weights in DNN with various sparsity ratios. The key in-
sight of nmSPARSE is to rearrange irregular computation
and scattered memory accesses in sparse matrix multiplica-
tion into hardware-aligned regular computation and conflict-
free memory accesses at runtime by leveraging the intrinsic
balance distribution of N:M sparsity.

Specifically, nmSPARSE first proposes a condensed repre-
sentation for general N:M sparsity to reduce the memory
footprint and decoding overhead. Such a condensed rep-
resentation encodes seemingly irregular and sparse non-
zeros into a regular and dense matrix for efficient data load-
ing and explicitly indicates the indexes to load demanded
elements in the multiplied dense matrix. To address the
challenge of irregular and scattered memory accesses to
the multiplied dense matrix, nmSPARSE kernels leverage
the banked shared memory to service concurrent memory
requests from parallel threads and schedule memory re-
quests to perfectly match the conflict-free access pattern and
conflict-free broadcast access pattern to the shared mem-
ory. By extending the N:M distribution to VW/BW sparsity,
nmSPARSE takes the advantage of both balanced distribu-
tion and larger granularity to offer superior performance
with aligned memory accesses and Tensor Core support.

We evaluate the performance of nmSPARSE kernels on
sparse matrices with a large set of synthetic sizes and typ-
ical sizes from real models. Results on NVIDIA A100
GPU show that nmSPARSE achieves up to 5.2× speedup
on SpMV and 6.0× speedup on SpMM. We have also in-
tegrated nmSPARSE to SparTA (Zheng et al., 2022), an

end-to-end framework that supports DNN inference with
sparsity. Our evaluation shows using nmSPARSE outper-
forms other baselines. By open sourcing nmSPARSE1, we
hope it can benefit efficient sparse model inference and mo-
tivate new innovations on N:M sparsity in both machine
learning and system communities.

2 BACKGROUND AND MOTIVATION

2.1 Weight Pruning and Sparsity Patterns

Weight pruning aims to find and remove redundant weights
that have little impact on model accuracy. Pruning directly
reduces the model memory footprint, while the ultimate
goal is to achieve practical inference speedup on commodity
hardware which is highly influenced by the sparsity pattern
and sparsity ratio.

In this work, we provide a unified representation of spar-
sity patterns with two abstractions: granularity and dis-
tribution, as shown in Figure 1. Blue entries correspond
to non-zero values, while white entries indicate zero val-
ues. In terms of granularity, we classify sparsity patterns
into three categories: element-wise(EW), vector-wise(VW)
and block-wise(BW), as shown in three columns respec-
tively. As the granularity increases, the sparse model is
easier to achieve speedup, but maintaining the same sparsity
ratio while preserving model accuracy becomes increasingly
challenging (Wen et al., 2016; Mao et al., 2017; Gray et al.,
2017; Liu et al., 2022). In terms of distribution, we classify
sparsity patterns into two types: Unconstrained(imbalance)-
distributed and N:M(balance)-distributed, as shown in two
rows. Each pattern in the second row can be seen as being

1https://github.com/microsoft/SparTA/
tree/nmsparse

https://github.com/microsoft/SparTA/tree/nmsparse
https://github.com/microsoft/SparTA/tree/nmsparse


Ef�cient GPU Kernels for N:M-Sparse Weights in Deep Learning

added an N:M constraint (N non-zero elements/groups in
every M elements/groups) to its corresponding pattern in
the �rst row, noted as EW-N:M, VW-N:M and BW-N:M
sparsity patterns. Note that the N:M distribution is along the
reduction dimension k in matrix multiplication as each out-
put is calculated by multiplying and accumulating elements
along the k dimension.

Intuitively, N:M sparsity is promising in maintaining model
accuracy because it only slightly restricts the locality distri-
bution of non-zero elements/groups while the distribution of
non-zeros inside each window of size M is still unrestricted.
Numerous algorithmic studies are actively recovering and
enhancing the accuracy of N:M sparsity (Mishra et al., 2021;
Zhou et al., 2021; Oh et al., 2022; Holmes et al., 2022;
Zhang et al., 2022b). Meanwhile, N:M sparsity has shown
great potential in achieving ef�cient parallel executions on
customized hardware and GPU (Cao et al., 2019; Mishra
et al., 2021). In summary, N:M distribution is a promising
way to mitigate the trade-off between accuracy and speedup
in sparse DNN.

2.2 Sparse Matrix Computation

As weights are pruned to be sparse, the most frequent and
time-consuming operation of DNN inference changes from
dense general matrix-matrix multiplication (GEMM) to
sparse GEMM: SpMV and SpMM, the two most funda-
mental operations to support DNN inference with sparse
weights.

Figure 2.SpMV and SpMM denoted asCm � n = Am � k � B k � n .

In the rest of this paper, we denote sparse matrix multipli-
cation asC = A � B , where B is the sparse weight matrix,
A and C are the input and output dense matrix (as shown
in Figure 2), following the conventional representation of
GEMM in DNNs. The size of the sparse weight matrix
B is k � n, which transforms k-dimensional features into
n-dimensional features. In SpMV, A is an input dense vec-

tor of size1 � k, and C is an output dense vector of size
1 � n, each of which is a k-element dot product of A and its
corresponding sparse column in B. In SpMM, A becomes a
matrix of m � k and C becomes a matrix ofm � n. Each
element in C with location (i,j) is the dot product of the
i-th dense row in A and the j-th sparse column in B. To
avoid ambiguity, we refer to lowercase n and m as the ma-
trix dimensions, and uppercase N and M as the distribution
con�guration in N:M sparsity.

Challengs of sparse matrix multiplication on GPU.
Though requiring less data loading and computation theoret-
ically, sparse GEMM poses new challenges to ef�cient GPU
execution compared to dense GEMM. First, sparse matrix
formats encode the indexes of non-zero values, which neces-
sitate decoding prior to computation. Decoding overheads
could easily overshadow the bene�t of reduced computation.
Second, the unbalanced distribution of non-zeros might
cause workload skew among parallel threads if kernels are
not carefully designed. Last but not least, the irregularity
in sparsity patterns leads to irregular computation and scat-
tered memory accesses, which could decrease bandwidth
utilization and eventually stall the parallel execution. In-
creasing the granularity is a straightforward way to address
the aforementioned challenges, but sacri�ces model accu-
racy.

New opportunities of N:M sparsity. Besides the almost
negligible impact on model accuracy, N:M sparsity also
provides fresh possibilities for ef�cient and highly parallel
sparse GEMM implementations on GPUs. The intrinsic bal-
ance property of N:M sparsity ensures automatic and com-
plete workload balance of matrix partitioning for parallel
computation. Furthermore, the N:M distribution constraint
on the sparse matrix B also limits the locality of memory
accesses to the dense vector/matrix A for parallel threads
during SpMV/SpMM on GPUs. This property allows ker-
nels to take advantage of locality and attain more ef�cient
data loading. Such a minor alteration in the sparsity pattern
can result in a signi�cant improvement in ef�cient kernel
design, which will be explicated in the following section.

3 nmSPARSEK ERNEL DESIGN

This section describes the critical design ofnmSPARSEker-
nels to unleash the potential of N:M sparsity.nmSPARSEim-
plements highly-optimized SpMV and SpMM GPU kernels
for sparse weights that are pruned to satisfy N:M sparsity
patterns.nmSPARSEaims to leverage the balance charac-
teristic that N:M sparsity patterns inherently offer to tackle
the irregularity challenges in sparse matrix multiplication,
and ultimately maximize the utilization of GPU memory
bandwidth and computing resources.



Ef�cient GPU Kernels for N:M-Sparse Weights in Deep Learning

To reduce the memory footprint and decoding overhead,
nmSPARSE�rst compresses N:M-sparse weight matrices
to a condensed representation(x 3.1). nmSPARSEleverages
the banked shared memory in GPU architecture to rear-
range irregular computation and scattered memory accesses
into hardware-aligned regular computation and con�ict-free
memory accesses(x 3.2). Especially for VW/BW-N:M spar-
sity, nmSPARSEtakes the advantages of both balanced
distribution and larger granularity to offer superior per-
formance with aligned memory accesses and Tensor Core
support(x 3.3).

3.1 Condensed Representation of N:M sparsity

Various sparse matrix representations (or formats, e.g., CSC,
CSR, COO, etc.) are adopted to reduce the memory foot-
print in sparse matrix computation by only storing non-zero
values and their indices. However, existing sparse formats
may not be the best option for storing sparse weights with
N:M patterns and performing SpMV and SpMM operations
on them. The main reason for this is that previous sparse
matrix representations and the GPU kernels running on
them are customized and optimized for applications with
extremely sparse matrices (e.g. with sparsity ratio more than
95% or even 99%). In contrast, the sparsity ratios in DNNs
are normally moderate (e.g., from 50% to 90%). Therefore,
directly applying previous sparse matrix representations to
N:M sparse weights will introduce storage and decoding
overheads for ef�cient and parallel kernel implementations,
resulting in low GPU resource utilization.

In Figure 3, we present the condensed representation ded-
icated to N:M sparsity patterns innmSPARSE, similar to
formats in (Cao et al., 2019) and (Mishra et al., 2021). The
top three are the dense represented EW-, VW- and BW-N:M
sparse matrices, and the bottom three show their condensed
representations accordingly. As the N:M distribution is
vertical (along the k dimension), we condense non-zeros
vertically, as shown by the blue arrow. Once the non-zero
values are condensed, the resulting data array is guaranteed
to be a standard 2D array with the same number of entries in
each row and column. The index array records the positions
of non-zero elements or groups inside the balance window
of size M that they belong to. Furthermore, the metadata of
granularity and distribution (abbreviated as Gran. and Dist.
in Figure 3) is stored separately.
The condensed sparsity representation offers three bene�ts.
First, loading non-zeros of a tile or an entire column of the
sparse matrix is ef�cient, which is important to parallel com-
puting across tiles (for SpMM) and columns (for SpMV).
Second, storage for indices is reduced. As the index ar-
ray only records non-zeros' positions inside each balance
window of size M, each index occupies up to a maximum
log2 M bits. Third, the index is decoding-friendly. Indices
of non-zeros in sparse matrix B correspond to the addresses

Figure 3.Condensed representation of weight matrices with EW-
/VW-/BW-N:M sparsity patterns.

of elements that need to be loaded in dense matrix A. These
read addresses can be generated through an element-wise
operation on the index array.

3.2 EW-N:M Sparsity

EW sparsity has the most irregular pattern, resulting in
irregular and scattered memory accesses as the biggest chal-
lenge. In dense matrix multiplication, loading two input
matrices (both A and B) is aligned and sequential. While in
sparse matrix multiplication, though requiring fewer loads
and computations as many elements are zeros in the sparse
matrix, how to ef�ciently load demanded elements and skip
unnecessary elements in both A and B matrices is essential
to truly unleash the potential afforded by sparsity. Thanks
to the balance intrinsic of N:M sparsity and the condensed
representation shown in Figure 3, loading tiles or entire
rows of sparse matrix B is aligned and sequential. However,
the locations of demanded elements of dense matrix A are
irregular. Frequent irregular memory accesses will signi�-
cantly reduce the memory bandwidth utilization, eventually
stalling parallel execution.

In nmSPARSE, we leverage theshared memoryin GPU
architecture to achieve ef�cient memory access to demanded
elements in vector/matrix A for SpMV/SpMM operations
on EW-N:M sparsity. Shared memory is divided into equally
sized memory banks that can be accessed simultaneously,
in order to achieve high memory bandwidth for concurrent
memory requests from parallel threads. In NVIDIA GPUs,
as parallel threads are scheduled and executed in warps
consisting of 32 concurrent threads, the number of banks in
shared memory is also 32. Therefore, ef�ciently leveraging
shared memory is critical to the bandwidth utilization and
�nal performance of SpMV and SpMM kernels.



Ef�cient GPU Kernels for N:M-Sparse Weights in Deep Learning

The only performance issue with shared memory is thebank
con�ict. When multiple threads in a warp request addresses
that map to the same memory bank, a bank con�ict occurs.
The hardware can only respond to con�icting requests se-
quentially, decreasing the effective bandwidth. In contrast,
if the memory access addresses of 32 threads in a warp
map to 32 distinct memory banks, then they can be served
simultaneously, yielding no bank con�icts and maximum
bandwidth utilization (noted as con�ict-free access). A spe-
cial case is when multiple threads in a warp access the same
bank but with exactly the same address, this can be served
with a broadcast mechanism supported in hardware, which
is not regarded as a bank con�ict (noted as con�ict-free
broadcast access).

Combining the advantage of both the banked shared mem-
ory of GPU and the balanced distribution of N:M sparsity,
we design and implement SpMV and SpMM GPU kernels
for EW-N:M sparsity with scheduled memory requests to
eliminate bank con�icts in shared memory. Notably, our
SpMV and SpMM kernels perfectly match the con�ict-free
access pattern and con�ict-free broadcast access pattern to
the shared memory respectively.

3.2.1 SpMV: Con�ict-Free Access

A straightforward approach to parallelizing SpMV is that
each thread is assigned to compute one output element
which is the dot product of the dense input vector and a
sparse column. However, this limits the degree of paral-
lelism to the number of columns in the sparse matrix, which
can potentially lead to an under-utilization of the GPU due
to fewer threads executing in parallel. Furthermore, as the
non-zeros' locations of different sparse columns are random
and unrestricted, concurrent accesses to random locations of
the dense vector will cause con�icts and reduce bandwidth
utilization.

Figure 4.Con�ict-free access pattern to the shared memory in
SpMV kernels.T: threads in a warp andB: banks in the shared
memory.

The SpMV design innmSPARSEfurther partitions each
sparse column into smaller sub-columns to exploit more
parallelism as the column size (k) is suf�ciently large in
model weights and naturally partitioned into balanced re-
gions of size M in N:M sparsity patterns. Our SpMV kernel
achieves such inter-column and intra-column parallelism

with con�ict-free access to shared memory through subtly
organizing vector data and mapping parallel threads. A sim-
ple example of parallel threads accessing to distinct memory
banks is diagrammed in Figure 4. Note that the sparse ma-
trix is transposed for a better illustration. Each thread (T)
is assigned to compute the dot product of a sub-column.
The workload across threads is naturally balanced given the
intrinsic balance characteristic of EW-N:M sparsity. When
the dense vector A is loaded from global memory to shared
memory, vector A is partitioned according to the partition-
ing of sparse columns and stored in distinct memory banks
(B), as shown by green chunks in the �gure. By such a data
organization and thread mapping, memory requests from
different threads in a warp are guaranteed to access differ-
ent memory banks, therefore bank con�icts are eliminated.
Figure 5 shows the pseudo-code for our SpMV kernel.

Figure 5.CUDA pseudo-code for SpMV.

3.2.2 SpMM: Con�ict-Free Broadcast Access

Tiling is a widely-adopted approach for ef�cient GEMM
implementation on GPU to reduce global memory accesses
by taking advantage of the shared memory. Tiling-based
kernels implement GEMM by partitioning the output matrix
into tiles, which are then assigned to thread blocks. Each
thread block computes the output tile (Ctile) by stepping
through the k dimension in tiles, loading the input tile of A
and B matrices (Atile, B tile), and multiplying and accu-
mulating them into the output.

When applying tiling to SpMM, the challenge arises in how
to ef�ciently load the demanded elements in Atiles and
B tiles. Loading non-zeros in the Btile is straightforward,
thanks to the balance distribution of N:M sparsity and its
condensed representation. The SpMM kernel innmSPARSE
achieves ef�cient accesses to demanded elements in Atile
by storing A tile in shared memory and mapping threads
to columns in Btile. Coupled with the N:M balance dis-
tribution in EW-N:M sparsity, our kernel design matches



Ef�cient GPU Kernels for N:M-Sparse Weights in Deep Learning

the con�ict-free broadcast access pattern to shared memory.
While removing such an N:M constraint will cause bank
con�icts. Figure 6 illustrates these two cases with examples
and Figure 7 shows the pseudo-code for our SpMM kernel.

Figure 6.Con�ict-free access pattern to the shared memory in
SpMM kernels.T: threads in a warp andB: banks in the shared
memory.

The left of Figure 6 shows an example of computing an
SpMM tile of EW-N:M sparsity innmSPARSE. In this ex-
ample, the dense Atile is with the shape of 32x64, and the
sparse Btile is with the shape of 64x32. The N:M con�gura-
tion in B tile is 1:32 meaning 1 non-zero element in every 32
elements vertically. Elements in Atile are directly stored in
shared memory in a row-major manner. Btile is illustrated
in dense form, but non-zeros are stored in the condensed
format. As parallel threads are mapped to columns in Btile,
we list the column indices of the non-zeros in each column,
as shown in the middle. The column indexes also indicate
the read addresses of parallel threads to the shared memory.
When executing 32 threads in a warp, the read addresses of
32 threads are guaranteed to be restricted in a range of 32,
for example [0,32). That is to say, although multiple concur-
rent threads may access the same bank, their addresses are
guaranteed to be the same. In this example, 2 threads access
exactly the same address (0) inside the same bank (Bank0).
The broadcast mechanism can perfectly solve this con�ict.

In contrast, the right of Figure 6 shows a corresponding
example of EW-unconstrained sparsity. Because of the lack
of the N:M balance constraint, the read addresses and their
ranges inside a warp are not restricted. For example, 2
threads access different entries (0 and 32) inside the same
bank (Bank 0). This is where a bank con�ict occurs and can
not be solved by broadcast.

3.3 VW/BW-N:M sparsity

Applying the N:M distribution to VW/BW sparsity con-
structs VW/BW-N:M sparsity, which is endowed with the ef-
�ciency advantages of both balanced distribution and larger

Figure 7.CUDA pseudo-code for SpMM.

granularity. nmSPARSEalso implements SpMM kernels
for VW- and BW-N:M sparsity by leveraging the above-
mentioned advantages to offer superior performance.

Figure 8.VW/BW-N:M sparsity reduces data loads of A matrix
and enables leveraging Tensor Cores.

More regular computation and more continuous memory
accesses make GPU kernels more capable of saturating the
memory bandwidth and computing resources. Taking VW-
N:M sparsity as an example shown in Figure 8, it further
improves the tiling friendliness of SpMM. First, as the non-
zeros are aligned to vectors (in blue) in Btile, the demanded
elements in Atile are corresponding vectors (in green) as
well. Compared to the tiling scheme in EW-N:M sparsity,
memory accesses to Atile are aligned, and not the entire
A tile needs to be loaded. Second, because of the balance
distribution in the sparse matrix B, the size of condensed
B tile/A tile remains the same for each output Ctile. Fur-
thermore, the regular tiling scheme can be easily mapped to
the dedicated matrix unit in hardware. (e.g. TensorCore in
Nvidia GPU) to maximize the speed of matrix multiplica-
tion.


