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ABSTRACT
N:M sparsity is becoming increasingly popular for its potential to deliver high model accuracy and computational
efficiency for deep learning. However, the real-world benefit of N:M sparsity is limited as there is a lack of
dedicated GPU kernel implementations for general N:M sparsity with various sparsity ratios. In this work, we
introduce nmSPARSE, a library of efficient GPU kernels for two fundamental operations in neural networks
with N:M sparse weights: sparse matrix-vector multiplication (SpMV) and sparse matrix-matrix multiplication
(SpMM). By exploiting the intrinsic balance characteristic of N:M sparsity, nmSPARSE kernels rearrange irregular
computation and scattered memory accesses in sparse matrix multiplication into hardware-aligned regular compu-
tation and conflict-free memory accesses at runtime. When evaluated on NVIDIA A100 GPU, nmSPARSE kernels
achieve up to 5.2× speedup on SpMV and 6.0× speedup on SpMM over the fastest baseline. End-to-end studies
on transformer models demonstrate that using nmSPARSE outperforms other baselines.

1 INTRODUCTION

To reduce the model size of Deep Neural Networks (DNN)
and accelerate model inference, weight pruning has been ex-
tensively studied in academia and industry (Han et al., 2015;
Gale et al., 2020a; Zheng et al., 2022). The sparsity pattern
in model weights plays a critical role as it fundamentally
affects the trade-off between model accuracy and inference
efficiency of a compressed model. Element-wise (EW) spar-
sity, which prunes weights individually, minimally impacts
model accuracy but struggles to take advantage of commod-
ity GPU due to irregular computation and scattered memory
accesses (Mao et al., 2017; Gale et al., 2020a; Mishra et al.,
2021). Vector-wise (VW) or block-wise (BW) sparsity,
which prunes groups of weights with a coarser granularity,
leads to efficient execution on GPU but suffers from deterio-
rated model accuracy. Such an accuracy-efficiency trade-off
remains a longstanding challenge for sparse DNNs.

Recently, N:M sparsity has emerged as a promising alterna-
tive to achieve both high model accuracy and high inference
efficiency (Cao et al., 2019; Mishra et al., 2021). N:M
sparsity essentially imposes a balanced distribution on non-
zero weights, e.g., element-wisely enforcing N non-zero
elements in every M elements (EW-N:M sparsity). Previous
works demonstrate such an N:M distribution has minimal
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or imperceptible impact on model accuracy on a wide range
of common tasks and model architectures, and many al-
gorithmic studies are striving to enhance the accuracy of
N:M sparsity (Zhou et al., 2021; Sun et al., 2021; Pool &
Yu, 2021; Oh et al., 2022; Holmes et al., 2022). Addition-
ally, N:M sparsity allows for efficient implementation with
customized hardware due to its more regular computation
and memory access patterns (Cao et al., 2019). Commodity
hardware like NVIDIA Ampere architecture even supports
EW-2:4 sparsity, a special case of the more general N:M
sparsity, in its Sparse Tensor Core (Mishra et al., 2021). The
N:M sparsity concept can also be extended to VW and BW
sparsity, where N non-zero vectors exist in every M vectors
(VW-N:M sparsity) and N non-zero blocks exist in every M
blocks (BW-N:M sparsity), respectively.

Despite the promising results, the real-world benefit of gen-
eral N:M sparsity is limited. There is a lack of GPU kernels
dedicated to general N:M sparsity with various sparsity
ratios. cuSPARSELt leverages the Sparse Tensor Core in
NVIDIA Ampere architecture (Mishra et al., 2021), but
only supports EW-2:4 weight sparsity which restricts the
balance window M to 4 and the sparsity ratio to 50%. De-
spite the excellent performance on 2:4 sparsity for SpMM,
cuSPARSELt does not support the SpMV operation, which
is critical for auto-regressive generative model inference.
While various models or even layers usually have differ-
ent levels of redundancy, thus favoring different sparsity
ratios which are typically ranging from 50% to 90%. More-
over, although VW-N:M and BW-N:M can further boost
inference efficiency, currently there is no dedicated GPU
implementation to leverage them.
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Figure 1. A unified representation of sparsity patterns with granularity and distribution. nmSPARSE implements GPU kernels for sparse
weights with the N:M balanced distribution.

In this work, we present nmSPARSE, a highly-optimized
GPU library of SpMV and SpMM kernels for general N:M
sparsity. To the best of our knowledge, nmSPARSE is
the first GPU library that supports general N:M sparse
weights in DNN with various sparsity ratios. The key in-
sight of nmSPARSE is to rearrange irregular computation
and scattered memory accesses in sparse matrix multiplica-
tion into hardware-aligned regular computation and conflict-
free memory accesses at runtime by leveraging the intrinsic
balance distribution of N:M sparsity.

Specifically, nmSPARSE first proposes a condensed repre-
sentation for general N:M sparsity to reduce the memory
footprint and decoding overhead. Such a condensed rep-
resentation encodes seemingly irregular and sparse non-
zeros into a regular and dense matrix for efficient data load-
ing and explicitly indicates the indexes to load demanded
elements in the multiplied dense matrix. To address the
challenge of irregular and scattered memory accesses to
the multiplied dense matrix, nmSPARSE kernels leverage
the banked shared memory to service concurrent memory
requests from parallel threads and schedule memory re-
quests to perfectly match the conflict-free access pattern and
conflict-free broadcast access pattern to the shared mem-
ory. By extending the N:M distribution to VW/BW sparsity,
nmSPARSE takes the advantage of both balanced distribu-
tion and larger granularity to offer superior performance
with aligned memory accesses and Tensor Core support.

We evaluate the performance of nmSPARSE kernels on
sparse matrices with a large set of synthetic sizes and typ-
ical sizes from real models. Results on NVIDIA A100
GPU show that nmSPARSE achieves up to 5.2× speedup
on SpMV and 6.0× speedup on SpMM. We have also in-
tegrated nmSPARSE to SparTA (Zheng et al., 2022), an

end-to-end framework that supports DNN inference with
sparsity. Our evaluation shows using nmSPARSE outper-
forms other baselines. By open sourcing nmSPARSE1, we
hope it can benefit efficient sparse model inference and mo-
tivate new innovations on N:M sparsity in both machine
learning and system communities.

2 BACKGROUND AND MOTIVATION

2.1 Weight Pruning and Sparsity Patterns

Weight pruning aims to find and remove redundant weights
that have little impact on model accuracy. Pruning directly
reduces the model memory footprint, while the ultimate
goal is to achieve practical inference speedup on commodity
hardware which is highly influenced by the sparsity pattern
and sparsity ratio.

In this work, we provide a unified representation of spar-
sity patterns with two abstractions: granularity and dis-
tribution, as shown in Figure 1. Blue entries correspond
to non-zero values, while white entries indicate zero val-
ues. In terms of granularity, we classify sparsity patterns
into three categories: element-wise(EW), vector-wise(VW)
and block-wise(BW), as shown in three columns respec-
tively. As the granularity increases, the sparse model is
easier to achieve speedup, but maintaining the same sparsity
ratio while preserving model accuracy becomes increasingly
challenging (Wen et al., 2016; Mao et al., 2017; Gray et al.,
2017; Liu et al., 2022). In terms of distribution, we classify
sparsity patterns into two types: Unconstrained(imbalance)-
distributed and N:M(balance)-distributed, as shown in two
rows. Each pattern in the second row can be seen as being

1https://github.com/microsoft/SparTA/
tree/nmsparse

https://github.com/microsoft/SparTA/tree/nmsparse
https://github.com/microsoft/SparTA/tree/nmsparse
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added an N:M constraint (N non-zero elements/groups in
every M elements/groups) to its corresponding pattern in
the first row, noted as EW-N:M, VW-N:M and BW-N:M
sparsity patterns. Note that the N:M distribution is along the
reduction dimension k in matrix multiplication as each out-
put is calculated by multiplying and accumulating elements
along the k dimension.

Intuitively, N:M sparsity is promising in maintaining model
accuracy because it only slightly restricts the locality distri-
bution of non-zero elements/groups while the distribution of
non-zeros inside each window of size M is still unrestricted.
Numerous algorithmic studies are actively recovering and
enhancing the accuracy of N:M sparsity (Mishra et al., 2021;
Zhou et al., 2021; Oh et al., 2022; Holmes et al., 2022;
Zhang et al., 2022b). Meanwhile, N:M sparsity has shown
great potential in achieving efficient parallel executions on
customized hardware and GPU (Cao et al., 2019; Mishra
et al., 2021). In summary, N:M distribution is a promising
way to mitigate the trade-off between accuracy and speedup
in sparse DNN.

2.2 Sparse Matrix Computation

As weights are pruned to be sparse, the most frequent and
time-consuming operation of DNN inference changes from
dense general matrix-matrix multiplication (GEMM) to
sparse GEMM: SpMV and SpMM, the two most funda-
mental operations to support DNN inference with sparse
weights.
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Figure 2. SpMV and SpMM denoted as Cm×n = Am×k ×Bk×n.

In the rest of this paper, we denote sparse matrix multipli-
cation as C = A×B, where B is the sparse weight matrix,
A and C are the input and output dense matrix (as shown
in Figure 2), following the conventional representation of
GEMM in DNNs. The size of the sparse weight matrix
B is k × n, which transforms k-dimensional features into
n-dimensional features. In SpMV, A is an input dense vec-

tor of size 1 × k, and C is an output dense vector of size
1× n, each of which is a k-element dot product of A and its
corresponding sparse column in B. In SpMM, A becomes a
matrix of m× k and C becomes a matrix of m× n. Each
element in C with location (i,j) is the dot product of the
i-th dense row in A and the j-th sparse column in B. To
avoid ambiguity, we refer to lowercase n and m as the ma-
trix dimensions, and uppercase N and M as the distribution
configuration in N:M sparsity.

Challengs of sparse matrix multiplication on GPU.
Though requiring less data loading and computation theoret-
ically, sparse GEMM poses new challenges to efficient GPU
execution compared to dense GEMM. First, sparse matrix
formats encode the indexes of non-zero values, which neces-
sitate decoding prior to computation. Decoding overheads
could easily overshadow the benefit of reduced computation.
Second, the unbalanced distribution of non-zeros might
cause workload skew among parallel threads if kernels are
not carefully designed. Last but not least, the irregularity
in sparsity patterns leads to irregular computation and scat-
tered memory accesses, which could decrease bandwidth
utilization and eventually stall the parallel execution. In-
creasing the granularity is a straightforward way to address
the aforementioned challenges, but sacrifices model accu-
racy.

New opportunities of N:M sparsity. Besides the almost
negligible impact on model accuracy, N:M sparsity also
provides fresh possibilities for efficient and highly parallel
sparse GEMM implementations on GPUs. The intrinsic bal-
ance property of N:M sparsity ensures automatic and com-
plete workload balance of matrix partitioning for parallel
computation. Furthermore, the N:M distribution constraint
on the sparse matrix B also limits the locality of memory
accesses to the dense vector/matrix A for parallel threads
during SpMV/SpMM on GPUs. This property allows ker-
nels to take advantage of locality and attain more efficient
data loading. Such a minor alteration in the sparsity pattern
can result in a significant improvement in efficient kernel
design, which will be explicated in the following section.

3 nmSPARSE KERNEL DESIGN

This section describes the critical design of nmSPARSE ker-
nels to unleash the potential of N:M sparsity. nmSPARSE im-
plements highly-optimized SpMV and SpMM GPU kernels
for sparse weights that are pruned to satisfy N:M sparsity
patterns. nmSPARSE aims to leverage the balance charac-
teristic that N:M sparsity patterns inherently offer to tackle
the irregularity challenges in sparse matrix multiplication,
and ultimately maximize the utilization of GPU memory
bandwidth and computing resources.
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To reduce the memory footprint and decoding overhead,
nmSPARSE first compresses N:M-sparse weight matrices
to a condensed representation(§ 3.1). nmSPARSE leverages
the banked shared memory in GPU architecture to rear-
range irregular computation and scattered memory accesses
into hardware-aligned regular computation and conflict-free
memory accesses(§ 3.2). Especially for VW/BW-N:M spar-
sity, nmSPARSE takes the advantages of both balanced
distribution and larger granularity to offer superior per-
formance with aligned memory accesses and Tensor Core
support(§ 3.3).

3.1 Condensed Representation of N:M sparsity

Various sparse matrix representations (or formats, e.g., CSC,
CSR, COO, etc.) are adopted to reduce the memory foot-
print in sparse matrix computation by only storing non-zero
values and their indices. However, existing sparse formats
may not be the best option for storing sparse weights with
N:M patterns and performing SpMV and SpMM operations
on them. The main reason for this is that previous sparse
matrix representations and the GPU kernels running on
them are customized and optimized for applications with
extremely sparse matrices (e.g. with sparsity ratio more than
95% or even 99%). In contrast, the sparsity ratios in DNNs
are normally moderate (e.g., from 50% to 90%). Therefore,
directly applying previous sparse matrix representations to
N:M sparse weights will introduce storage and decoding
overheads for efficient and parallel kernel implementations,
resulting in low GPU resource utilization.

In Figure 3, we present the condensed representation ded-
icated to N:M sparsity patterns in nmSPARSE, similar to
formats in (Cao et al., 2019) and (Mishra et al., 2021). The
top three are the dense represented EW-, VW- and BW-N:M
sparse matrices, and the bottom three show their condensed
representations accordingly. As the N:M distribution is
vertical (along the k dimension), we condense non-zeros
vertically, as shown by the blue arrow. Once the non-zero
values are condensed, the resulting data array is guaranteed
to be a standard 2D array with the same number of entries in
each row and column. The index array records the positions
of non-zero elements or groups inside the balance window
of size M that they belong to. Furthermore, the metadata of
granularity and distribution (abbreviated as Gran. and Dist.
in Figure 3) is stored separately.
The condensed sparsity representation offers three benefits.
First, loading non-zeros of a tile or an entire column of the
sparse matrix is efficient, which is important to parallel com-
puting across tiles (for SpMM) and columns (for SpMV).
Second, storage for indices is reduced. As the index ar-
ray only records non-zeros’ positions inside each balance
window of size M, each index occupies up to a maximum
log2 M bits. Third, the index is decoding-friendly. Indices
of non-zeros in sparse matrix B correspond to the addresses
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Figure 3. Condensed representation of weight matrices with EW-
/VW-/BW-N:M sparsity patterns.

of elements that need to be loaded in dense matrix A. These
read addresses can be generated through an element-wise
operation on the index array.

3.2 EW-N:M Sparsity

EW sparsity has the most irregular pattern, resulting in
irregular and scattered memory accesses as the biggest chal-
lenge. In dense matrix multiplication, loading two input
matrices (both A and B) is aligned and sequential. While in
sparse matrix multiplication, though requiring fewer loads
and computations as many elements are zeros in the sparse
matrix, how to efficiently load demanded elements and skip
unnecessary elements in both A and B matrices is essential
to truly unleash the potential afforded by sparsity. Thanks
to the balance intrinsic of N:M sparsity and the condensed
representation shown in Figure 3, loading tiles or entire
rows of sparse matrix B is aligned and sequential. However,
the locations of demanded elements of dense matrix A are
irregular. Frequent irregular memory accesses will signifi-
cantly reduce the memory bandwidth utilization, eventually
stalling parallel execution.

In nmSPARSE, we leverage the shared memory in GPU
architecture to achieve efficient memory access to demanded
elements in vector/matrix A for SpMV/SpMM operations
on EW-N:M sparsity. Shared memory is divided into equally
sized memory banks that can be accessed simultaneously,
in order to achieve high memory bandwidth for concurrent
memory requests from parallel threads. In NVIDIA GPUs,
as parallel threads are scheduled and executed in warps
consisting of 32 concurrent threads, the number of banks in
shared memory is also 32. Therefore, efficiently leveraging
shared memory is critical to the bandwidth utilization and
final performance of SpMV and SpMM kernels.
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The only performance issue with shared memory is the bank
conflict. When multiple threads in a warp request addresses
that map to the same memory bank, a bank conflict occurs.
The hardware can only respond to conflicting requests se-
quentially, decreasing the effective bandwidth. In contrast,
if the memory access addresses of 32 threads in a warp
map to 32 distinct memory banks, then they can be served
simultaneously, yielding no bank conflicts and maximum
bandwidth utilization (noted as conflict-free access). A spe-
cial case is when multiple threads in a warp access the same
bank but with exactly the same address, this can be served
with a broadcast mechanism supported in hardware, which
is not regarded as a bank conflict (noted as conflict-free
broadcast access).

Combining the advantage of both the banked shared mem-
ory of GPU and the balanced distribution of N:M sparsity,
we design and implement SpMV and SpMM GPU kernels
for EW-N:M sparsity with scheduled memory requests to
eliminate bank conflicts in shared memory. Notably, our
SpMV and SpMM kernels perfectly match the conflict-free
access pattern and conflict-free broadcast access pattern to
the shared memory respectively.

3.2.1 SpMV: Conflict-Free Access

A straightforward approach to parallelizing SpMV is that
each thread is assigned to compute one output element
which is the dot product of the dense input vector and a
sparse column. However, this limits the degree of paral-
lelism to the number of columns in the sparse matrix, which
can potentially lead to an under-utilization of the GPU due
to fewer threads executing in parallel. Furthermore, as the
non-zeros’ locations of different sparse columns are random
and unrestricted, concurrent accesses to random locations of
the dense vector will cause conflicts and reduce bandwidth
utilization.

B0 B1 B2 B3

T0 T1 T2 T3

m=1

n

k

Conflict-Free! 
Dense Vector A

Sparse Matrix B

Figure 4. Conflict-free access pattern to the shared memory in
SpMV kernels. T: threads in a warp and B: banks in the shared
memory.

The SpMV design in nmSPARSE further partitions each
sparse column into smaller sub-columns to exploit more
parallelism as the column size (k) is sufficiently large in
model weights and naturally partitioned into balanced re-
gions of size M in N:M sparsity patterns. Our SpMV kernel
achieves such inter-column and intra-column parallelism

with conflict-free access to shared memory through subtly
organizing vector data and mapping parallel threads. A sim-
ple example of parallel threads accessing to distinct memory
banks is diagrammed in Figure 4. Note that the sparse ma-
trix is transposed for a better illustration. Each thread (T)
is assigned to compute the dot product of a sub-column.
The workload across threads is naturally balanced given the
intrinsic balance characteristic of EW-N:M sparsity. When
the dense vector A is loaded from global memory to shared
memory, vector A is partitioned according to the partition-
ing of sparse columns and stored in distinct memory banks
(B), as shown by green chunks in the figure. By such a data
organization and thread mapping, memory requests from
different threads in a warp are guaranteed to access differ-
ent memory banks, therefore bank conflicts are eliminated.
Figure 5 shows the pseudo-code for our SpMV kernel.

——————————————————————————————————— 

__global__ void SpMV(float *A, float *B, int *B_IDX, float *C) { 1 
    __shared__ float A_shared[SHARE_TILE_A_LEN]; 2 
    float A_reg; 3 
    float B_reg; 4 
    float C_reg[MINIBATCH] = 0; 5 
    // Load A_tile from global memory to shared memory.  6 
    LoadTile(A_shared, A); 7 
    // Main loop. 8 
    for(int i = 0; i < BANK_NUM * (1-SPARSITY); i++){ 9 
        LoadReg(B_reg, B); 10 
        // Get indices for loading scattered elements in A_tile 11 
        access_idx = GetIndex(B_IDX); 12 
        for(j = 0; j < MINIBATCH; j++){ 13 
            LoadRegWithIdx(A_reg, A_shared, access_idx); 14 
            CalculOnReg(A_reg, B_reg, C_reg); 15 
        } 16 
    } 17 
    Store(C, C_reg); 18 
} 19 
——————————————————————————————————— 

 

Figure 5. CUDA pseudo-code for SpMV.

3.2.2 SpMM: Conflict-Free Broadcast Access

Tiling is a widely-adopted approach for efficient GEMM
implementation on GPU to reduce global memory accesses
by taking advantage of the shared memory. Tiling-based
kernels implement GEMM by partitioning the output matrix
into tiles, which are then assigned to thread blocks. Each
thread block computes the output tile (C tile) by stepping
through the k dimension in tiles, loading the input tile of A
and B matrices (A tile, B tile), and multiplying and accu-
mulating them into the output.

When applying tiling to SpMM, the challenge arises in how
to efficiently load the demanded elements in A tiles and
B tiles. Loading non-zeros in the B tile is straightforward,
thanks to the balance distribution of N:M sparsity and its
condensed representation. The SpMM kernel in nmSPARSE
achieves efficient accesses to demanded elements in A tile
by storing A tile in shared memory and mapping threads
to columns in B tile. Coupled with the N:M balance dis-
tribution in EW-N:M sparsity, our kernel design matches
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the conflict-free broadcast access pattern to shared memory.
While removing such an N:M constraint will cause bank
conflicts. Figure 6 illustrates these two cases with examples
and Figure 7 shows the pseudo-code for our SpMM kernel.
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Figure 6. Conflict-free access pattern to the shared memory in
SpMM kernels.T: threads in a warp and B: banks in the shared
memory.

The left of Figure 6 shows an example of computing an
SpMM tile of EW-N:M sparsity in nmSPARSE. In this ex-
ample, the dense A tile is with the shape of 32x64, and the
sparse B tile is with the shape of 64x32. The N:M configura-
tion in B tile is 1:32 meaning 1 non-zero element in every 32
elements vertically. Elements in A tile are directly stored in
shared memory in a row-major manner. B tile is illustrated
in dense form, but non-zeros are stored in the condensed
format. As parallel threads are mapped to columns in B tile,
we list the column indices of the non-zeros in each column,
as shown in the middle. The column indexes also indicate
the read addresses of parallel threads to the shared memory.
When executing 32 threads in a warp, the read addresses of
32 threads are guaranteed to be restricted in a range of 32,
for example [0,32). That is to say, although multiple concur-
rent threads may access the same bank, their addresses are
guaranteed to be the same. In this example, 2 threads access
exactly the same address (0) inside the same bank (Bank0).
The broadcast mechanism can perfectly solve this conflict.

In contrast, the right of Figure 6 shows a corresponding
example of EW-unconstrained sparsity. Because of the lack
of the N:M balance constraint, the read addresses and their
ranges inside a warp are not restricted. For example, 2
threads access different entries (0 and 32) inside the same
bank (Bank 0). This is where a bank conflict occurs and can
not be solved by broadcast.

3.3 VW/BW-N:M sparsity

Applying the N:M distribution to VW/BW sparsity con-
structs VW/BW-N:M sparsity, which is endowed with the ef-
ficiency advantages of both balanced distribution and larger

——————————————————————————————————— 

__global__ void SpMM(float *A, float *B, int *B_IDX, float *C) { 1 
    __shared__ float A_shared[SHARE_TILE_A_LEN]; 2 
    __shared__ float B_shared[SHARE_TILE_B_LEN]; 3 
    float A_reg[REG_TILE_A_LEN]; 4 
    float B_reg[REG_TILE_B_LEN]; 5 
    float C_reg[REG_TILE_A_LEN][REG_TILE_B_LEN] = 0; 6 
    // ThreadBlock loop. 7 
    for(; nnz > 0; nnz -= kBlockItemsK) { 8 
        // Load tile from global memory to shared memory. 9 
        LoadTile(A_shared, A); 10 
        LoadTile(B_shared, B); 11 
        // Register loop. 12 
        for(int i = 0; i < K_BLOCK_TILE_LEN * (1-SPARSITY); i++){ 13 
            LoadReg(B_reg, B_shared); 14 
            // Get indices for loading scattered elements in A_tile 15 
            access_idx = GetIndex(B_IDX); 16 
            LoadRegWithIdx(A_reg, A_shared, access_idx); 17 
            CalculOnReg(A_reg, B_reg, C_reg); 18 
        } 19 
    } 20 
    Store(C, C_reg); 21 
} 22 
——————————————————————————————————— 

Figure 7. CUDA pseudo-code for SpMM.

granularity. nmSPARSE also implements SpMM kernels
for VW- and BW-N:M sparsity by leveraging the above-
mentioned advantages to offer superior performance.
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Figure 8. VW/BW-N:M sparsity reduces data loads of A matrix
and enables leveraging Tensor Cores.

More regular computation and more continuous memory
accesses make GPU kernels more capable of saturating the
memory bandwidth and computing resources. Taking VW-
N:M sparsity as an example shown in Figure 8, it further
improves the tiling friendliness of SpMM. First, as the non-
zeros are aligned to vectors (in blue) in B tile, the demanded
elements in A tile are corresponding vectors (in green) as
well. Compared to the tiling scheme in EW-N:M sparsity,
memory accesses to A tile are aligned, and not the entire
A tile needs to be loaded. Second, because of the balance
distribution in the sparse matrix B, the size of condensed
B tile/A tile remains the same for each output C tile. Fur-
thermore, the regular tiling scheme can be easily mapped to
the dedicated matrix unit in hardware. (e.g. TensorCore in
Nvidia GPU) to maximize the speed of matrix multiplica-
tion.
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4 IMPLEMENTATION

Pruning. The implementation of our pruning algorithm is
based on ASP (Nvidia; Pool & Yu, 2021), an open-source
pruning library to generate sparse networks developed by
Nvidia. In order to support generating general N:M sparse
weights, we made 3 major extensions to ASP. 1) The origi-
nal ASP only implements pruning with 2:4 sparsity and fails
to set M larger than 10, we extend it to support arbitrary
N:M settings. M = 32 is a good setting in practice because
it can easily align with the hardware banks to achieve good
performance and cover a wide range of sparsity ratios from
3% to 97%. When M > 32, it becomes difficult to avoid
bank conflicts, so the performance will be impacted neg-
atively. 2) We extend ASP to support VW- and BW-N:M
sparsity for nmSPARSE to achieve higher speedup. 3) We
further enable layer-wise sparsity ratio configuration for
ASP because various DNN layers favor different sparsity
ratios.

GPU kernels. We implement our SpMV and SpMM ker-
nels for N:M sparsity with different granularities respec-
tively. For VW-N:M sparsity with the granularity 64 and
BW-N:M sparsity with the granularity 64x64, we imple-
ment their kernels based on cutlass by leveraging the high-
performance MMA building block. In cases where the m
dimension of SpMM is very small, as seen in low batch
size and auto-regressive scenarios, its characteristics are
more similar to that of SpMV, with low arithmetic intensity
and high memory intensity. Therefore, we have observed
that selecting the SpMV implementation leads to faster re-
sults. Our best practice is to use SpMV kernels directly to
implement SpMM if m ≤ 8.

End-to-end model inference. In order to support end-
to-end model inference with N:M sparsity, we integrate
nmSPARSE to SparTA (Zheng et al., 2022), an end-to-end
framework to support DNN inference with sparsity. We
also integrate cuSPARSELt and other baseline libraries into
SparTA to make a direct and fair comparison.

5 EVALUATION

We evaluate nmSPARSE kernels on both operator bench-
marks and end-to-end models by comparing them with
state-of-the-art dense and sparse libraries and DNN compil-
ers. Our findings are as follows: 1) The EW-N:M kernels
of nmSPARSE achieve up to 5.2× and 2.1× speedup for
SpMV and SpMM operators respectively over the fastest
baselines. 2) With the increase of granularity, nmSPARSE
kernels can further achieve up to 6.0× speedup for SpMM
operators over the fastest baselines. 3) End-to-end studies
on Transformer demonstrate that nmSPARSE outperforms
other baselines.

Evaluation Setup. Our evaluation is on an Azure
NC24ads A100 v4 VM equipped with 24 AMD EPYC
7V13 CPU cores and an NVIDIA Tesla A100-PCIE-80GB
GPU, installed with Ubuntu 20.04 LTS and CUDA 11.3.

For operator benchmarks, we compare nmSPARSE with
state-of-the-art dense and sparse libraries, including
cuBLAS and cuBLASLt, two vendor-specific libraries for
dense matrix computation from NVIDIA; cuSPARSE and
cuSPARSELt, two vendor-specific sparse matrix libraries
from NVIDIA; and Sputnik (Gale et al., 2020b), a state-
of-the-art library of sparse linear algebra kernels for deep
learning. Note that cuSPARSELt is implemented with the
Sparse Tensor Core in Ampere architecture. For baseline li-
braries, we opt for the CSR format for the element-wise and
vector-wise sparse matrices, and the Block-ell format for the
block-wise sparse matrices. We further add SparTA (Zheng
et al., 2022), a state-of-the-art end-to-end DNN compiler for
model sparsity; Rammer (Ma et al., 2020), a state-of-the-art
open-source DNN compiler that nmSPARSE and SparTA
are integrated with; and TensorRT (v8.5), a vendor-specific
inference engine from NVIDIA, in the end-to-end compari-
son.

5.1 Operator Benchmarks

Operator shapes and sparsity ratios. The operator con-
figurations of the benchmarks are from both real-world mod-
els and synthetic ones. Specifically, we extract the matrices
in the widely-used BERT-Large model (Devlin et al., 2018)
and the state-of-the-art open-source pre-trained language
model OPT (Zhang et al., 2022a). In the synthetic config-
uration set, we sample some square shapes ranging from
1024 to 8192. To satisfy the requirements in various deep
learning scenarios (i.e., online inference, offline inference,
and training), we evaluate nmSPARSE with different batch
sizes (i.e., m = 1, 256, 1024, and 4096). Detailed shape
configurations are shown in Appendix A. We use shapes
with m = 1 to evaluate SpMV kernels and other shapes
with larger m to evaluate SpMM kernels. To be consistent
with the relatively moderate sparsity ratios found in deep
learning models, we pick three typical sparsity ratios for all
benchmark evaluations: 50%, 75%, and 90%.

5.1.1 SpMV

Figure 9 shows the performance comparisons for the 8
SpMV operators in our benchmark. Comparing to the dense
matrix computation library cuBLAS, nmSPARSE achieves
speedup in all cases. Specifically, nmSPARSE achieves a
1.4× speedup on average (up to 1.9×) in 50% sparsity ratio,
a 2.1× speedup on average (up to 2.3×) in 75% sparsity
ratio, and a 3.5× speedup on average (up to 5.1×) in 90%
sparsity ratio. Comparing with cuSPARSE, nmSPARSE
achieves 21.2×, 16.3× and 11.3× on average (up to 42.4×,
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Figure 9. Speedup of nmSPARSE on CUDA Cores for SpMV operators with different sizes.
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Figure 10. Speedup of nmSPARSE on CUDA Cores for SpMM operators with different sizes at 50%, 75%, and 90% sparsity ratio.

28.0× and 16.8×) when the sparsity ratio is 50%, 75% and
90%, respectively. Comparing with Sputnik, nmSPARSE
achieves 4.0×, 3.3× and 2.5× on average (up to 5.2×,
4.1× and 3.3×) when the sparsity ratio is 50%, 75% and
90%, respectively. Because SpMV is primarily a memory-
bound operation due to its nature of low arithmetic inten-
sity, we did not see significant kernel speedup with coarse-
grained sparse matrices.

5.1.2 SpMM

We evaluated nmSPARSE on both FP32 precision which uses
the CUDA Cores and INT8 precision which can leverage
the Tensor Cores.

CUDA Core Figure 10 shows the performance compar-
isons for the 24 SpMM operators in our benchmark on
FP32 CUDA Cores. For cuSPARSE, we evaluated both the
fine-grained sparsity (marked as cuSPARSE) and the 4x4
block-wise sparsity (cuSPARSE-BW4x4). For nmSPARSE,
we evaluated the EW-sparsity (nmSPARSE-EW), the VW-
sparsity with a granularity of 4 (nmSPARSE-VW4) and 32
(nmSPARSE-VW32), and the BW-sparsity with a granularity
of 4x4 (nmSPARSE-BW4x4).

Compared to cuBLAS, nmSPARSE can achieve speedups

in most cases of each sparse ratio. When comparing with
the state-of-the-art baselines (i.e., cuSPARSE, cuSPARSE-
BW4x4 and Sputnik), nmSPARSE-EW can achieve 1.2×,
1.4× and 1.3× on average (up to 1.7×, 1.9× and 2.1×)
over the fastest one of these baselines when the sparsity
ratio is 50%, 75% and 90%, respectively. With the increase
of the granularity, nmSPARSE can achieve higher speedups.
Specifically, nmSPARSE-VW4 can achieve 2.4×, 2.7× and
2.7× on average (up to 3.3×, 3.8× and 3.8×) over the
fastest one of these baselines when the sparsity ratio is
50%, 75% and 90%, while nmSPARSE-VW32 can further
achieve 2.9×, 3.4× and 4.0× on average (up to 3.9×, 4.7×
and 6.0×) over the fastest baseline when the sparsity ratio
is 50%, 75% and 90%. Besides, nmSPARSE-BW4x4 can
achieve 2.5×, 2.8× and 2.8× on average (up to 3.5×, 4.0×
and 4.0×) over the fastest baseline when the sparsity ratio
is 50%, 75% and 90%.

Tensor Core Figure 11 shows the performance compar-
isons for the 24 SpMM operators in our benchmark on INT8
Tensor Cores. All the baselines and nmSPARSE leverages
the hardware-specialized Tensor Cores in GPU. Moreover,
cuSPARSELt leverages the Sparse Tensor Core in Ampere
architecture.

With 50% sparsity ratio, cuSPARSELt performs the best
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Figure 11. Speedup of nmSPARSE on Tensor Cores for SpMM operators with different sizes at 50%, 75%, and 90% sparsity ratio.

Kernels cuSPARSE cuSPARSE-BW4x4 Sputnik nmSPARSE-EW nmSPARSE-VW4 nmSPARSE-VW32 nmSPARSE-BW4x4
latency(ms) 6.79 0.26 0.31 0.24 0.12 0.08 0.11

dram utilization(%) 0.15 0.64 3.26 3.19 7.58 9.39 7.81
shared utilization(%) 0.71 33.88 10.45 45.88 52.05 47.83 46.82
fp unit utilization(%) 2.87 23.77 18.72 21.79 43.13 66.2 44.59

Table 1. Kernel profiling results of operator shape M25 at a sparsity ratio of 90%.

on average because it executes on the hardware-customized
Sparse Tensor Core in Ampere architecture. But its limi-
tation is also only supporting the 2:4 sparsity with a 50%
sparsity ratio. nmSPARSE can outperform cuSPARSELt
with larger sparsity ratios. Comparing with cuSPARSE-
BW64x64, nmSPARSE-BW64x64 can achieve 1.8×, 1.7×
and 2.0× on average (up to 2.2×, 2.3× and 2.8×) when the
sparsity ratio is 50%, 75% and 90%.

5.1.3 Microbenchmark

To validate the speedup of nmSPARSE, we conducted a mi-
crobenchmark using M25 as a representative operator shape
with a sparsity ratio of 90%. We profiled different kernels us-
ing Nsight Compute and analyzed DRAM utilization, shared
memory utilization, and single precision floating point unit
utilization to demonstrate the speedup. As shown in Table 1,
nmSPARSE kernels achieve higher memory throughput uti-
lization and floating point unit utilization.

5.2 Application Study on Transformer

We choose the Transformer as our application study of end-
to-end accuracy and latency because Transformer-based
models (Vaswani et al., 2017) have achieved state-of-the-art
results on language (Devlin et al., 2018), image (Liu et al.,
2021), and speech tasks (Chen et al., 2022).

Experimental setup. We prune a pre-trained bert-large
model on the SQuAD-1.1 dataset with various N:M sparsity
patterns and sparsity ratios, to verify the pruning effective-
ness of N:M sparsity and evaluate the end-to-end latency
speedup of our nmSPARSE kernels under different settings.
As the first layers are sensitive to model accuracy, we set
the first 4 out of 24 layers to be dense. To make a direct
comparison, we prune the weight matrices of the rest layers
with all sparsity patterns represented in Figure 1 (EW v.s.
EW-N:M, VW v.s. VW-N:M, BW v.s. BW-N:M). For each
sparsity pattern, we prune the model with a sparsity ratio of
50%, 75%, and 90% respectively. We finetune for 3 epochs
for all settings.

Pruning effectiveness of N:M sparsity. Unlike the 2:4
sparsity supported by Nvidia Ampere architecture, general
N:M sparsity does not restrict the configuration of N and M.
Thus we first assess the pruning effectiveness of different N
and M under the same sparsity ratio. Taking EW-N:M as an
example, results in Table 2 demonstrate that varying N:M
settings has no obvious impact on model accuracy as long
as the sparsity ratio remains constant. Intuitively, increasing
the window size M will relax the locality constraint of non-
zeros, indicating better model accuracy. But this needs
rigorous theoretical analysis by machine learning experts.
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Previous studies demonstrate that adding N:M distribu-
tion to EW sparsity has a minimal impact on model ac-
curacy (Zhou et al., 2021; Sun et al., 2021; Zhang et al.,
2022b). As we extend EW-N:M sparsity to VW-N:M and
BW-N:M sparsity, we evaluate the F1 scores of EW-, VW-
and BW-N:M sparsity and compare with their original spar-
sity patterns without N:M distribution under 3 sparsity ratios.
In this experiment, we set M = 32. As Table 3 shows, results
of VW and BW sparsity are consistent with that of EW
sparsity: no obvious or deterministic impact of adding N:M
distribution on model accuracy is observed.

N:M 2:4 4:8 8:16 16:32
F1 90.59 90.81 90.76 90.95

N:M 1:4 2:8 4:16 8:32
F1 88.80 89.57 89.79 90.09

Table 2. F1 scores under different N:M settings. Under a fixed
sparsity ratio, different N:M settings have no obvious impact on
model accuracy.

Sparsity Ratio 50% 75% 90%
EW 90.72 90.10 86.23
EW-N:M 90.95 90.09 82.02
VW4 89.26 83.61 79.88
VW4-N:M 90.432 87.26 79.91
VW32 88.57 80.28 79.53
VW32-N:M 89.52 81.48 79.66
VW64 88.56 80.07 79.49
VW64-N:M 89.09 81.22 78.18
BW4x4 87.77 79.91 79.76
BW4x4-N:M 89.58 81.80 79.72
BW64x64 87.46 80.06 79.85
BW64x64-N:M 87.75 79.82 79.96

Table 3. Comparing F1 scores between with and without N:M dis-
tribution for EW, VW, and BW sparsity. Adding N:M distribution
has no obvious or deterministic impact on model accuracy.

End-to-end speedup. Figure 12 shows the end-to-end
comparison results on FP32 precision where all the sys-
tems except SparTA+cuSPARSELt use CUDA Cores for
execution. TensorRT and Rammer achieved the same perfor-
mance over each sparsity ratio because they treat these mod-
els as dense models for execution. nmSPARSE can achieve
speedups over TensorRT and Rammer in each sparsity ratio.
With the 50% sparsity ratio, SparTA+cuSPARSELt achieved
the best performance due to the Sparse Tensor Core. How-
ever, it cannot support the 75% and the 90% sparsity ra-
tio. nmSPARSE can outperform SparTA+cuSPARSELt with
higher sparsity ratio. SparTA achieved the same perfor-
mance as Rammer because its policy falls back to the dense
execution. Thanks to the N:M sparsity, nmSPARSE can out-
perform SparTA and SparTA+Sputnik in each sparsity ratio.

With the increase of the granularity, nmSPARSE can achieve
higher speedups.

50% 75% 90%
0

50

100

150

200

250

300

La
te

nc
y:

 m
s

No
t S

up
po

rt

No
t S

up
po

rt

TensorRT
Rammer
SparTA
SparTA+Sputnik

SparTA+cuSPARSELt
nmSPARSE-EW
nmSPARSE-VW4
nmSPARSE-VW32

Figure 12. End-to-end speedup of nmSPARSE on Transformer at
50%, 75%, and 90% sparsity ratio.

6 RELATED WORK

Pruning algorithm for N:M sparsity. Recently, N:M
sparsity has received increased attention for its advantage
in both high model accuracy and computational efficiency.
(Mishra et al., 2021) follows the basic train, prune and fine-
tune approach to generate 2:4 sparse models, and maintains
accuracy over a wide range of models and tasks. Later,
many pruning algorithms in the ML community have been
proposed to enhance model accuracy for more general N:M
sparsity. (Pool & Yu, 2021) introduce channel permutations
to maximize the accuracy of N:M sparsity. (Sun et al., 2021)
propose a layer-wise scheme for N:M sparsity to achieve
higher accuracy than the uniform-sparsity scheme. (Oh
et al., 2022) apply N:M sparisty to image restoration tasks
and outperform previous pruning methods significantly. Al-
though pruning algorithms for N:M sparsity are not the
focus of our work, better pruning algorithms can achieve
higher sparsity ratios, thereby amplifying the speedup of
nmSPARSE kernels.

Execution hardware for N:M sparsity. To our best
knowledge, hardware support for general N:M sparsity is
limited. Nvidia Ampere architecture introduces Sparse Ten-
sor Core (Mishra et al., 2021) to support 2:4 sparsity which
is a particular form of general N:M sparsity. (Cao et al.,
2019) propose a customized FPGA accelerator for N:M spar-
sity. (Yao et al., 2019) attempt to accelerate EW-N:M spar-
sity on GPU, but only achieve speedup on limited shapes.

7 CONCLUSION
This work presents nmSPARSE, a GPU library of SpMV and
SpMM kernels for sparse DNN inference with general N:M
sparsity patterns and various sparsity ratios. nmSPARSE ad-
dresses the longstanding challenges of irregular computation
and scattered memory accesses in sparse matrix multipli-
cations by leveraging the intrinsic balance characteristic of
N:M sparsity. We hope nmSPARSE can not only benefit
efficient DNN inference in the system community but also
stimulate more research on enhancing the accuracy of N:M
sparsity in the machine learning community.
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A OPERATOR SHAPES IN OUR BENCHMARK

M1 M2 M3 M4 M5 M6 M7 M8
m 1 1 1 1 1 1 1 1
k 1024 2048 4096 8192 1024 4096 5120 20480
n 1024 2048 4096 8192 4096 1024 20480 5120

M9 M10 M11 M12 M13 M14 M15 M16
m 256 1024 4096 256 1024 4096 256 1024
k 1024 1024 1024 2048 2048 2048 4096 4096
n 1024 1024 1024 2048 2048 2048 4096 4096

M17 M18 M19 M20 M21 M22 M23 M24
m 4096 256 1024 4096 256 1024 4096 256
k 4096 8192 8192 8192 1024 1024 1024 4096
n 4096 8192 8192 8192 4096 4096 4096 1024

M25 M26 M27 M28 M29 M30 M31 M32
m 1024 4096 256 1024 4096 256 1024 4096
k 4096 4096 5120 5120 5120 20480 20480 20480
n 1024 1024 20480 20480 20480 5120 5120 5120

Table 4. Operator shapes in our benchmark.
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B ARTIFACT APPENDIX

B.1 Abstract

This artifact contains the source code of nmSPARSE, a
library of efficient GPU kernels for N:M sparse weights in
deep learning, along with the docker file and running scripts
to reproduce the main evaluation results presented in Figure
9, Figure 10, Figure 11 and Figure 12.

B.2 Artifact check-list (meta-information)
• Algorithm: Sparse matrix-vector multiplication (SpMV)

and sparse matrix-matrix multiplication (SpMM)

• Compilation: NVCC

• Hardware: We use Azure NC24ads A100 v4 VM
equipped with an NVIDIA A100-PCIE-80GB GPU

• Execution: Linux shell scripts

• Metrics: Latency

• Output: Execution latency

• How much time is needed to prepare workflow (approxi-
mately)?: About 1 hour to build the docker image

• How much time is needed to complete experiments (ap-
proximately)?: About 10 hours to finish experiments

• Publicly available?: Yes

• Code licenses?: MIT license

• Workflow framework used?: nnfusion(https:
//github.com/microsoft/nnfusion),
SparTA(https://github.com/microsoft/
SparTA)

B.3 Description

B.3.1 How delivered

The artifact is hosted at https://github.com/
microsoft/SparTA/tree/nmsparse_artifact.
To get the code, please git clone the SparTA repository and
checkout to the nmsparse artifact branch.

B.3.2 Hardware dependencies

All experiments are performed on a single NVIDIA A100 GPU.

B.3.3 Software dependencies

Please use docker to build image/Dockefile and run a docker con-
tainer to set up the required environment.

B.4 Installation

To set up the environment, please first clone the code and build
the docker image based on the Dockerfile we provided. Listing 1
shows the commands to set up the experiment environment.

Listing 1. Commands to set up the environment
1 # get the Dockerfile
2 git clone -b nmsparse_artifact https://github.

com/microsoft/SparTA.git
3 # build the docker image and start a container
4 cd SparTA/image
5 sudo docker build . -t artifact
6 sudo docker run -it --gpus all --shm-size 16G

artifact

B.5 Experiment workflow

We provide scripts to run experiments in Figure 9, 10, 11 and 12
respectively. Listing 2 shows the commands to run experiments.

Listing 2. Commands to run experiments
1 # get source codes and scripts in the docker

container
2 mkdir workspace && cd workspace
3 git clone -b nmsparse_artifact https://github.

com/microsoft/SparTA.git
4 conda activate artifact
5 # navigate to src directory
6 cd ./SparTA/src
7 # run SpMV experiment in Figure9
8 cd Figure9
9 bash run_baseline.sh

10 bash run_nmsparse.sh
11 # run SpMM on CudaCore experiment in Figure10
12 cd Figure10
13 bash run_baseline.sh
14 bash run_nmsparse.sh
15 # run SpMM on TensorCore experiment in Figure11
16 cd Figure11
17 bash run_baseline.sh
18 bash run_nmsparse.sh
19 # run end2end experiment in Figure12
20 cd Figure12
21 bash run.sh

B.6 Evaluation and expected result

Once all scrips finished running, results will be exported to
xxx results.txt in each folder. Execution latency of various kernels
with different shapes and sparsity ratios can be obtained.

https://github.com/microsoft/nnfusion
https://github.com/microsoft/nnfusion
https://github.com/microsoft/SparTA
https://github.com/microsoft/SparTA
https://github.com/microsoft/SparTA/tree/nmsparse_artifact
https://github.com/microsoft/SparTA/tree/nmsparse_artifact

