
ADAPTIVE MESSAGE QUANTIZATION AND PARALLELIZATION FOR
DISTRIBUTED FULL-GRAPH GNN TRAINING

Borui Wan 1 Juntao Zhao 1 Chuan Wu 1

ABSTRACT
Distributed full-graph training of Graph Neural Networks (GNNs) over large graphs is bandwidth-demanding
and time-consuming. Frequent exchanges of node features, embeddings and embedding gradients (all referred
to as messages) across devices bring significant communication overhead for nodes with remote neighbors on
other devices (marginal nodes) and unnecessary waiting time for nodes without remote neighbors (central nodes)
in the graph. This paper proposes an efficient GNN training system, AdaQP, to expedite distributed full-graph
GNN training. We stochastically quantize messages transferred across devices to lower-precision integers for
communication traffic reduction and advocate communication-computation parallelization between marginal
nodes and central nodes. We provide theoretical analysis to prove fast training convergence (at the rate of O(T�1)
with T being the total number of training epochs) and design an adaptive quantization bit-width assignment scheme
for each message based on the analysis, targeting a good trade-off between training convergence and efficiency.
Extensive experiments on mainstream graph datasets show that AdaQP substantially improves distributed full-
graph training’s throughput (up to 3.01⇥) with negligible accuracy drop (at most 0.30%) or even accuracy
improvement (up to 0.19%) in most cases, showing significant advantages over the state-of-the-art works. The
code is available at https://github.com/raywan-110/AdaQP.

1 INTRODUCTION

Graph Neural Networks (GNNs) have received increased
attention from the AI community for their superior per-
formance on graph-based tasks such as node classifica-
tion (Kipf & Welling, 2017), link prediction (Zhang & Chen,
2018) and graph classification (Xu et al., 2019). For each
node of a graph, a GNN typically aggregates features or
embeddings of the node’s neighbors iteratively and then
uses them to create the node’s own embedding. This pro-
cess is referred to as message-passing (Gilmer et al., 2017),
which enables GNNs to learn better representative embed-
dings from graph structures than traditional graph learning
methods (Wu et al., 2020; Zhang et al., 2020).

For a k-layer GNN, the message-passing paradigm requires
features and embeddings in the k-hop neighborhood of the
training nodes to be retrieved and stored on a device (e.g.,
GPU) for computation, leading to high memory overhead.
When training on large graphs, the memory consumption
may easily exceed the memory capacity of a single device,
and GNN training with graph sampling has hence been

1Department of Computer Science, University of Hong Kong,
Hong Kong, China. Correspondence to: Borui Wan <wan-
borui@connect.hku.hk>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

widely studied (Hamilton et al., 2017b; Chen et al., 2018;
Chiang et al., 2019; Zeng et al., 2020; Wan et al., 2022a): the
large input graphs are partitioned among multiple devices
and machines; each worker (device) samples partial neigh-
borhood of its training nodes and fetches features of sam-
pled neighbors from other devices/machines if they are not
in the local graph partition. Such graph sampling reduces
memory, computation and communication overheads during
distributed GNN training, at the cost of indispensable infor-
mation loss for graph learning, as compared to full-graph
training. Besides, sampling introduces extra time overhead
due to running (sophisticated) sampling algorithms (Liu
et al., 2021a; Kaler et al., 2022).

Unlike sampling-based GNN training, distributed full-graph
training allows learning over the complete input graphs,
retaining whole graph structure information. Each device
requires messages of all 1-hop neighbors of nodes in its
graph partition during iterative training, fetching the respec-
tive data from devices where they are stored/computed. The
need for frequent message exchanges across devices renders
the major performance bottleneck for training. Besides, dif-
ferent devices require different numbers of messages from
others, which generates irregular all2all communications,
leading to communication stragglers in each communica-
tion round. Such overheads of distributed full-graph training
have also been echoed in recent literature (Wan et al., 2022b;

https://github.com/raywan-110/AdaQP

Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training

Peng et al., 2022; Cai et al., 2021).

A few studies have investigated different perspectives to
improve distributed full-graph training, including graph
partition algorithms and memory management (Ma et al.,
2019; Jia et al., 2020), communication planing (Cai et al.,
2021) and communication-avoiding training with stale-
ness (Thorpe et al., 2021; Wan et al., 2022b; Peng et al.,
2022). Nevertheless, none of them considers compress-
ing remote messages to reduce communication traffic for
training expedition.1 Unlike the above methods, message
compression can reduce data volumes for both communi-
cations between remote devices and data movement from
device to host. The latter occurs when messages need to be
moved from device memory to host memory first and then
transferred to remote devices. (when GPUDirect RDMA is
not available in the cluster).

While messages are being exchanged, embedding computa-
tion of nodes with all neighbors located locally often waits
for the completion of message transfers in synchronous full-
graph training (Ma et al., 2019; Jia et al., 2020; Cai et al.,
2021), which is not needed. Although existing staleness-
based methods eliminate part of the waiting time by pipelin-
ing communication with computation (Wan et al., 2022b)
or skipping node broadcast and using historical embeddings
for computation (Peng et al., 2022), they may lead to slower
training convergence (Wan et al., 2022b; Peng et al., 2022),
increasing the wall-clock time to achieve the same model
accuracy as compared to their synchronous counterparts.
Disparate handling of local nodes with and without remote
neighbors has not been found in both synchronous and asyn-
chronous full-graph training works in the literature.

We propose AdaQP, an efficient distributed full-graph GNN
training system that accelerates GNN training from two
perspectives: adaptive quantization of messages and par-
allelization of computation of central nodes and message
transfers of marginal nodes on each device. Our main con-
tributions are summarized as follows:

. We apply adaptive stochastic integer quantization to mes-
sages dispatched from each device to others, which reduces
the numerical precision of messages and hence the size
of transferred data. To our best knowledge, we are the
first to apply stochastic integer quantization to expedite
distributed full-graph training. We provide a theoretical
convergence guarantee and show that the convergence rate

1Model gradient compression has been extensively studied to
accelerate distributed DNN training (Alistarh et al., 2017; Yu et al.,
2019; Wu et al., 2018). However, for GNNs, the size of model
gradients is typically much smaller than those of node features
and embeddings (e.g., for the ogbn-products dataset, a three-layer
GCN with a hidden size of 256 has 0.55MB model gradients, but
1.17GB features and 3.00GB embeddings), making the transferring
of messages much more costly than that of gradients.

is still O(T�1), identical to that of no-compression train-
ing and better than sampling-based (Cong et al., 2020) and
staleness-based (Wan et al., 2022b; Peng et al., 2022) GNN
training. Using insights from the convergence analysis, an
adaptive bit-width assignment scheme is proposed based on
a bi-objective optimization, that assigns suitable quantiza-
tion bit-width to the transferred messages to alleviate unbal-
anced data volumes from/to different devices and achieve a
good trade-off between training convergence and efficiency.

. We further decompose the graph partition on each device
into a central graph and a marginal graph, and overlap
the computation time of the former with the message com-
munication time of the latter, to maximize training speed
and resource utilization. Since the communication overhead
always dominates the training process (Sec. 2.2), the compu-
tation time of the central graph can be easily hidden within
the communication time without introducing any staleness
that influences training convergence.

. We implement AdaQP on DGL (Wang, 2019) and Py-
Torch (Paszke et al., 2019), and conduct extensive evalua-
tion. Experimental results show that AdaQP significantly
reduces the communication time by 80.94% maximum
and 79.98% on average, improves the training throughput
by 2.19 ⇠ 3.01⇥ with acceptable accuracy fluctuations (-
0.30% ⇠ + 0.19%), and outperforms state-of-the-art (SOTA)
works on distributed full-graph training on most of the main-
stream graph datasets.

2 BACKGROUND AND MOTIVATION

2.1 GNN Message Passing

The message passing paradigm of GNN training can be
described by two stages, aggregation and update (Gilmer
et al., 2017):

hl
N(v) = �l(hl�1

u |u 2 N(v)) (1)

hl
v = l(hl�1

v , hl
N(v)) (2)

Here N(v) denotes the neighbor set of node v. h
l
v is the

learned embedding of node v at layer l. �l is the aggregation
function of layer l, which aggregates intermediate node
embeddings from N(v) to derive the aggregated neighbor
embedding h

l
N(v).

l is the update function that combines
h
l
N(v) and h

l�1
v to produce h

l
v .

The two-stage embedding generation can be combined into
a weighted summation form, representing the cases in most
mainstream GNNs (e.g., GCN (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017a)):

hl
v = �(W l · (

{v}[N(v)X

u

↵u,vh
l�1
u)) (3)

where ↵u,v is the coefficient of embedding h
l�1
u , W l is the

weight matrix of layer l and � is the activation function. We
will use this form in our theoretical analysis in Sec. 4.

Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training

2.2 Inefficient Vanilla Distributed Full-graph Training

0

2
3

6

1
4

5
8

7

0

3

6

1
4

5

2

8

7

0

3

6

1
4

5

2

8

7

Original Graph
Inter-device

Communication

Intra-device

Computation
1

2

5

8

0 2

6

0

1

6

device 0 device 1 device 2

intra-device edge inter-device edge messages exchange messages passing

Partition via

METIS

Figure 1. An illustration of vanilla distributed full-graph train-
ing. The original graph is partitioned into 3 partitions by
METIS (Karypis & Kumar, 1997) and deployed on 3 devices.
Inter-device communication and intra-device computation are re-
peated in the forward (backward) pass of each GNN layer.

Table 1. Communication overhead in Vanilla. xM-yD means the
whole graph is partitioned into x ⇥ y parts and dispatched to x
servers, each using y available training devices (GPUs).

Dataset Partition Setting Communication Cost Remote Neighbor Ratio

Reddit (Hamilton et al., 2017a) 2M-1D 66.78% 41.54%
2M-2D 75.20% 62.60%

ogbn-products (Hu et al., 2020) 2M-2D 75.59% 31.09%
2M-4D 76.67% 40.52%

AmazonProducts (Zeng et al., 2020) 2M-2D 75.58% 39.75%
2M-4D 78.22% 53.00%

In vanilla distributed full-graph training (Fig. 1, referred to
as Vanilla), interleaving communication-computation stages
exist in each GNN layer during both forward pass and
backward pass for generating embeddings or embedding
gradients. Therefore, multiple transfers of 1-hop remote
neighbors’ messages (specifically, transferring features and
embeddings in the forward pass and embedding gradients,
also denoted as errors (Goodfellow et al., 2016), in the
backward pass) lead to large communication overhead. To
illustrate it, we train a three-layer GCN on representative
datasets (all experiments in this section use this GCN, de-
tailed in Sec. 5) and show the communication cost, which
is computed by dividing the average communication time
by the average per-epoch training time among all devices,
in Table 1. We observe that communication time dominates
training time. Further, with the increase of partition number,
the communication cost becomes larger due to the growth of
the remote neighbor ratio (computed by dividing the average
number of remote 1-hop neighbors by the average number
of nodes among partitions).

Besides, with the mainstream graph partition algorithms
(e.g., METIS (Karypis & Kumar, 1997)), the number of
nodes whose messages are transferred varies among differ-
ent device pairs, creating unbalanced all2all communica-
tions. This unique communication pattern exists through-
out the GNN training process, which does not occur in
distributed DNN training (where devices exchange same-
size model gradients). Fig. 2 shows the data size trans-
ferred across different device pairs in GCN’s first layer

Figure 2. Comparison of data size transferred across each device
pair when training the GCN on AmazonProducts with 4 partitions.

Table 2. Computation time of central nodes and transfer time of
2-bit quantized messages of marginal nodes on ogbn-products with
8 partitions.

Device comm. (s) Comp. (s) Device comm. (s) Comp. (s)
Device0 0.08 0.04 Device4 0.08 0.06
Device1 0.09 0.05 Device5 0.13 0.06
Device2 0.10 0.05 Device6 0.09 0.06
Device3 0.08 0.05 Device7 0.12 0.05

when training on AmazonProducts, partitioned among 4
devices. There is a significant imbalance among data sizes
transferred across different device pairs, which leads to un-
balanced communication time across the devices in each
communication round, affecting the overall training speed.

Further, Vanilla and previous works (Wan et al., 2022b;
Peng et al., 2022; Cai et al., 2021) do not consider that in the
forward (backward) pass of each training iteration, the com-
putation of central nodes can directly start without waiting
for message exchanges. Overlapping the computation time
of central nodes with the communication time of marginal
nodes can help further improve the training throughput. As
communication renders the major bottleneck in GNN train-
ing, we observed that central nodes’ computation time can
be well hidden within marginal nodes’ communication time.
In Table 2, we show central nodes’ computation time and
marginal nodes’ communication time when the transferred
messages are quantized with a bit-width of 2 (i.e., the numer-
ical precision is 2-bit), rendering the lowest communication
volumes. Even under this extremely low communication,
communication time is still longer than the central nodes’
computation time. When central node computation is hidden
within communication, Fig. 3 shows the reduction of model
computation time on each device, by 23.20% to 55.44%.

2.3 Stochastic Integer Quantization

As a lossy compression method, stochastic integer quanti-
zation (Chen et al., 2021) has been applied to quantize the
DNN model for efficient integer arithmetic inference (Zhu
et al., 2020; Tailor et al., 2021; Feng et al., 2020), or com-
press activations to reduce memory footprint during the

Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training

Figure 3. Comparison between computation time of all nodes
and computation time of marginal nodes when training on ogbn-
products with 8 partitions.

forward pass (Chen et al., 2021; Liu et al., 2021b). Differ-
ently, we apply it to reduce communication data volumes in
distributed full-graph training. For a given message vector
h
l
v of node v in layer l, the bv-bit quantized version of hl

v

is:
h̃l
vb = q̃b(h

l
v) = roundst(

hl
v � Zl

v

Sl
vb

) (4)

where q̃b denotes stochastic integer quantization operation,
roundst(·) is the stochastic rounding operation (Chen et al.,
2020), Z

l
v = min(hl

v) is referred to as the zero-point
(the minimum value among elements in vector h

l
v) and

S
l
vb = max(hl

v)�min(hl
v)

2bv�1 is a scaling factor that maps the
original floating-point vector into the integer domain, where
bv is typically chosen among {2, 4, 8}. A larger quantization
bit-width bv introduces less numerical precision loss, but
not as much data size reduction as a smaller value. Received
quantized messages are de-quantized into floating-point val-
ues for subsequent computation:

ĥl
v = dqb(h̃

l
vb) = h̃l

vbS
l
vb + Zl

v (5)

where ĥ
l
v represents the de-quantized message vector and

dqb denotes de-quantization operation. Following (Chen
et al., 2021), ĥl

v is unbiased and variance bounded:

Theorem 1. With stochastic integer quantization and determin-
istic de-quantization operations q̃b(·) and dqb(·) in Eqn. (4) and
Eqn. (5), ĥl

v is an unbiased and variance bounded estimate of the
original input hl

v , that E[ĥl
v] = E[dqb(h̃l

vb)] = hl
v,Var[ĥl

v] =
Dl

v(S
l
vb

)2

6 . Dl
v is the dimension of vector hl

v .

The good mathematical properties of the quantization
method serve as the basis for us to derive a theoretical
guarantee of GNN training convergence (Sec. 4).

We propose an efficient system AdaQP, incorporating adap-
tive message quantization and computation-communication
parallelization design, to improve distributed full-graph
training efficiency. Fig. 4 gives a high-level illustration
of the benefits of AdaQP, as compared to Vanilla.

comm.

comm.

comm.

comp.

comp.

comp.

comm.

comm.

comm.

comm.

comm.

comm.

comp.

comp.

comp.

comm.

comm.

comm.

Forward Pass Backward Pass
...

...

...

...

...

...

(a) Vanilla

comm.

comm.

comm.

comp.

comp.

comp.

comm.

comm.

comm.

Forward Pass Backward Pass
...

...

...

q.

q.

q.

dq. q.

dq.

dq.

comp. comp.

comp.

comp.comp.

communication

computation on marginal graph

computation on central graph

quantization or de-quantization

comm.

comm.

comm.

comp.

comp.

comp.

comm.

comm.

comm.

...

...

...

q.

q.

q.

dq. q.

dq.

dq.

comp. comp.

comp.

comp.comp.

(b) AdaQP

Figure 4. Comparison of Vanilla and AdaQP.

2
3 4

Marginal Graph

0

1

3

Central Graph
2

5

6

7

2
3 4

Marginal Graph
5

6
7

0

1

3

Central Graph
2

Adaptive Bit-width
Assigner

Trace Input

Periodically Assign
Bit-width

2

3 4

5

6

7

0

1

Local Graph

Layer Input Layer Output

Marginal Graph Communication &
Central graph Computation

Marginal graph Computation

Central Node Marginal Node Remote Node

Central Message Marginal Message Full-precision
Remote Message

Quantized
Remote Message

Figure 5. Workflow of AdaQP on each device: a per-layer view of
GNN training. Only the messages receiving process is illustrated
for clarity of the figure.

3 SYSTEM DESIGN

We study distributed full-graph GNN training using devices
(aka workers) on multiple physical machines. The large in-
put graph is partitioned among the devices. Fig. 5 shows the
workflow of distributed full-graph training on each device
using AdaQP.

3.1 Overview

The graph partition at each device is decomposed into a
central graph, which contains central nodes and their neigh-
bors, and a marginal graph, which includes marginal nodes
and their local neighbors. Messages from other devices
only need to be passed to the marginal graph for compu-
tation. In the forward pass (backward pass) of each GNN
layer, for nodes in the marginal graph, quantization is ap-
plied to all outgoing messages to other devices, using a
bit-width assigned by the Adaptive Bit-Width Assigner, and
de-quantization is done on all received messages before the
computation stage begins. For central nodes in the central

Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training

graph, they can enter their computation stage in parallel with
the communication for the marginal graph. The Adaptive
Bit-width Assigner traces the input data to each GNN layer,
and periodically adjusts the bit-width for each message by
solving a bi-objective problem with the latest traced data.

3.2 Naive Message Quantization

We perform stochastic integer quantization on the messages
transferred across devices during the forward (backward)
pass. Consider the aggregation step of GNN layer l for
computing embedding of a node v, as given in Eqn. 1 in
Sec. 2.1. Let NL(v) and NR(v) denote the local and remote
neighbor sets of node v. We rewrite the aggregation step as:

hl
N(v) = �l(hl�1

u |u 2 {NL(v) [NR(v)}) (6)

Quantization is only performed on messages in NR(v) to
reduce the communication data size. The benefit brought by
naive message quantization is obvious; however, it requires
frequently performing quantization and de-quantization op-
erations before and after each device-to-device communica-
tion, which adds extra overheads to the training workflow.
We notice that quantization (Eqn. 4) and de-quantization
(Eqn. 5) themselves are particularly suitable for parallel
computing since they just perform the same linear mapping
operations to all elements in a message vector. Therefore,
we implement the two operations with efficient CUDA ker-
nels. Sec 5.4 demonstrates that compared to training expedi-
tion brought by quantization, the extra overheads are almost
negligible.

3.3 Dynamic Adaptive Bit-width Assignment

Simply assigning the same bit-width to all messages cannot
achieve a good tradeoff between training convergence and
training efficiency (Sec. 4); adaptively assigning different
bit-widths to different messages is necessary. To support
transferring messages quantized with multiple bit-widths be-
tween devices, each device first establishes multiple sending
buffers for messages of different bit-widths, whose sizes are
determined by the Adaptive Bit-width Assigner, and then
broadcasts the sizes of the buffers to other devices. Each
device also uses received sending buffer sizes from others to
set up multiple receiving buffers. The adaptive bit-width as-
signing process is shown in Fig. 6. Given a bit-width update
period, each training device launches an Adaptive Bit-width
Assigner which keeps tracing all GNN layers’ inputs. The
assigner periodically sends traced data from the last period
to the master assigner (residing in the device with rank 0)
and then blocks the current training worker, waiting for the
generation of new bit-width assignment results (step2). At
the same time, the master assigner uses gathered data to
build a variance-time bi-objective problem, whose variables
are bit-widths of the message groups. Since the bit-width
assignment results for each GNN layer have no dependence

Step2:
Master Assigner gathers all
traced data and formulates

the variance-time bi-objective
problem

Step1:
Each assigner traces the

dynamic changes in the input
data of GNN layers during

training

Step3:
Master Assigner solves the

bi-objective problem to obtain
bit-width assignment

solutions

Step4:
Master assigner scatters

assignment results to each
device, each assigner

updates the buffers

Figure 6. Adaptive bit-width assignment process.

quantization
kernel

computation
kernel

de-quantization
kernel

 communication

CPU

GPU

kernel
function

kernel
function

kernel
function

Marginal Graph
Quantization

Marginal Graph Communication
& Central Graph Computation

Marginal Graph
De-quantization

CUDA Kernel Launch Data Movement

Figure 7. Our GPU resources isolation strategy.

on each other, we create a thread pool in the master device
to compute each layer’s solution in parallel (step 3). After
that, the master assigner scatters the bit-width solutions to
corresponding devices, and then each device uses the lat-
est assignment results to update its sending and receiving
buffers (step 4).

3.4 Computation-Communication Parallelization

Model computation and message quantization are both
compute-intensive. Therefore overlapping computation on
the central graph with the quantized message transfers on
the marginal graph can lead to an overall slow-down due to
the contention for GPU compute resources, which is indi-
cated in previous works (Agarwal et al., 2022). To tackle
this issue, we apply a simple yet useful resource isolation
strategy based on the observations in Sec. 2.2, that is, the
time for transferring extremely quantized messages is still
large enough to hide the computation time of the central
graph. We control CUDA kernel launching time instead of
letting GPUs schedule different CUDA streams freely.

As shown in Fig. 7, we further divide the computation-
communication overlapping stage in Fig. 5 into three fine-
grained stages, ensuring that in each stage the GPU com-
pute resources are only used by one among quantization,
de-quantization and central graph computation. Since com-
munication on the marginal graph only requires the GPU
bandwidth, we force the computation CUDA kernel launch-
ing and execution on the central graph to be in the second
stage with marginal-graph communication, isolating the
GPU resource usage between central and marginal graphs.
We wrap different types of kernels in GPU with different

Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training

CUDA streams and consider the situation that CUDA ker-
nel’s launching and execution are asynchronous. We use
both CPU and GPU events for synchronization.

4 CONVERGENCE GUARANTEE AND
BI-OBJECTIVE BIT-WIDTH ASSIGNMENT

We next show the convergence bound and rate of AdaQP
and then formulate a variance-time bi-objective optimization
problem for adaptive bit-width assignment.

4.1 Impact of Message Quantization on Training
Convergence

We consider widely adopted gradient descent (GD) algo-
rithm (Avriel, 2003) in full-graph GNN training. Similar to
previous studies (Fu et al., 2020; Chen et al., 2020), the full-
graph training can be modeled as the following non-convex
empirical risk minimization problem:

min
wt2RD

E[L(wt)] =
1
N

NX

i

Li(wt) wt+1 = wt � ↵g̃t (7)

where wt denotes the parameters at the t-th epoch, D is the
dimension of wt, N denotes the total number of samples
(nodes) in the full-graph, and Li(·) is the loss on sample
i. g̃t = rL(w̃t) denotes the stochastic gradient and ↵

is the learning step size. Since each training epoch uses
full-batch samples, variance in g̃t is only brought by per-
forming stochastic integer quantization on messages. We
have Theorem 2 based on standard assumptions for conver-
gence analysis (Fu et al., 2020; Allen-Zhu, 2017).
Assumption 1. for 8wt,w

0
t 2 RD in the t-th epoch:

A.1 (L2�Lipschitz) ||rL(wt)�rL(w0
t)|| L2||wt�w0

t||;

A.2 (existence of global minimum) 9 L⇤ s.t. L(wt) � L⇤;

A.3 (unbiased stochastic gradient) E[g̃t] = gt;

A.4 (bounded variance) E[||gt � g̃t||] Q.

Theorem 2. Suppose our distributed full-graph GNN training
runs for T epochs using a fixed step size ↵ < 2

L2
. Select t ran-

domly from {1, · · · , T}. Under Assumption 1, we have

E[||rL(w̄t)||2]
2(L(w1)� L⇤)
T (2↵� ↵2L2)

+
↵L2Q

2

2� ↵L2
. (8)

All the detailed proofs can be found in Appendix A. Similar
to the convergence result of a standard SGD algorithm (Rob-
bins & Monro, 1951), the bound in Theorem 2 includes two
terms, while the second term is totally different from its
SGD counterpart, where variance is not introduced due to
sampling variance but message quantization. The first term
in the bound goes to 0 as T ! 1, which shows an O(T�1)
convergence rate. AdaQP’s convergence rate is the same as
that with Vanilla, and faster than those of sampling-based
methods (O(T� 1

2) (Cong et al., 2020)) and staleness-based
methods (O(T� 2

3) (Wan et al., 2022b) or O(T� 1
2) (Peng

et al., 2022)).

During training, the gradient variance exists in the weight
matrix in each layer l of an L-layer GNN. Let w =
{wl}Ll=1 denotes the set of weight matrices of GNN, we
then show the gradient variance upper bound Q

l for each
wl. Let h̄

l�1
v =

P{v}[N(v)
u ↵u,vh

l�1
u in Eqn. 3, and

@L̄
@hl

v
=

P{v}[N(v)
u ↵u,v

@L
@hl

u
in its backward pass counter-

part. Based on Theorem 1, we derive Q
l under Assump-

tion 2:
Assumption 2. For each layer l 2 {1, 2, · · · , L} in the GNN
and for each node v in the full-graph, L2 norms of the ex-
pectations of h̄l�1

v and @L̄
@hl

v
are upper-bounded: ||E[h̄l�1

v]||
M, ||E[@L̄

@hl
v
]|| N .

Theorem 3. Given a distributed full-graph (V,E) and optional
bit-width set B, for each layer l 2 {1, · · · , L} in the GNN, gradi-
ent variance upper bound Ql in layer l is:

Ql =

|V |X

v

(

NR(v)X

k1

NR(v)X

k2

↵2
k1,v↵

2
k2,v

Dl�1
k1

Dl
k2
(Sl�1

k1b
Sl
k2b

)2

6

+M2
NR(v)X

k

↵2
k,v

Dl
k(S

l
kb
)2

6
+N2

NR(v)X

k

↵2
k,v

Dl�1
k (Sl�1

kb
)2

6
)

(9)

where the definitions of Sl
kb

and D
l
k can be found in Sec. 3.2.

From a high-level view, for any v in the distributed full-
graph (V,E), its neighborhood aggregation adds variance
to model gradients in each layer if it has remote neighbors.
For layer l, Ql is decided by many factors: (i) graph topol-
ogy and partition strategy, which determine the size of
v’s remote neighborhood NR(v); (ii) GNN aggregation
function, corresponding to the aggregation coefficient ↵k,v

for each node; (iii) dimension size and numerical range
of remote message vectors (Dl

k, the numerator in S
l
kb

); (iv)
choices of quantization bit-width bv for each node. Given
factors (i)-(iii) which are decided by the GNN training job,
we can choose (iv) the quantization bit-width accordingly to
minimize the terms in the bound, and thus reduce the gradi-
ent variance and let training converge closer to the solution
of Vanilla (Chen et al., 2021).

4.2 Bi-objective Optimization for Adaptive Bit-width
Assignment

There is a trade-off in quantization bit-width assignment:
using a larger quantization bit-width (e.g., 8-bit) leads to
lower gradient variance upper bound Q

l in each layer, but
less communication volume reduction (as compared to using
4-bit or 2-bit). Our goal is to design an adaptive bit assign-
ment scheme for different messages between each device
pair, to strike a good balance between training convergence
and efficiency.

From Fig. 2 we know that the size of transferred data varies
significantly across device pairs. We should also alleviate
communication stragglers in each communication round.

Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training

3

0

1

2

3

0

1

2

3

0

1

2

round 1 round 2 round 3

Figure 8. Illustration of ring all2all communication between four
training devices. We only depict the data-sending process of device
0 for figure clarity.

Specifically, we follow (Wan et al., 2022b) to implement
the all2all communication in a ring pattern (Fig. 8). For N
devices, it takes N � 1 communication rounds to finish the
message exchange, where each of the devices sends/receives
messages to/from its i-hop right/left neighbors in the ring
during i-round communication. Let B = {2, 4, 8} be the set
of candidate bit-widths. For each communication round in
the forward (backward) pass of GNN layer l, we formulate
the following minimax optimization problem for bit-width
selection:

min
bk2B

max
1iN

✓i

KiX

k

Dl
kbk + �i (10)

bk denotes the bit-width assigned for quantizing message
h
l
k. For any device pair i, Ki denotes the total number of

messages to be transferred. D
k
l is the dimension of the

remote message vector hl
k. ✓i and �i are parameters of the

cost model (Sarvotham et al., 2001). Problem 10 finds the
device pair that has the longest predicted communication
time and minimizes it.

According to Theorem 3, considering a message hl
k in GNN

layer l sent to a target device, we want to minimize the vari-
ance it brings to this layer’s weight gradients. Apart from
bit-width bk, the dimension and the minimum (maximum)
values of it (in S

l
kb

), and the sum of squares of all the aggre-
gation coefficients

PNT (k)
v ↵

2
k,v (where NT (k) denotes k’s

neighbors in the target device) allocated by its neighbors in
the target device also influence the magnitude of variance.
We solve the following minimization problem to minimize
the total gradient variance in one communication round,

where �k =
PNT (k)

v ↵2
k,vD

l
k(max(hl

k)�min(hl
k))

2

6 :

min
bk2B

NX

i

KiX

k

�k
(2bk � 1)2

(11)

We jointly address the two objectives in Eqn. 10 and Eqn. 11,
which formulates a bi-objective optimization problem. We
apply the weighted sum method to scalarize the objec-
tives (Marler & Arora, 2004) and add auxiliary variables to
convert it to a pure minimization problem:

min
bk2B

�
NX

i

KiX

k

�k
(2bk � 1)2

+ (1� �)Z, � 2 [0, 1]

s.t.1iN ✓i

KiX

k

Dl
kbk + �i Z, Z > 0

(12)

Table 3. Graph datasets in our experiments.
Dataset #Nodes #Edges #Features #Classes Size
Reddit 232,965 114,615,892 602 41 3.53GB

Yelp (Zeng et al., 2020) 716,847 6,977,410 300 100 2.10GB
ogbn-products 2,449,029 61,859,140 100 47 1.38GB

AmazonProducts 1,569,960 264,339,468 200 107 2.40GB

We convert the problem to a Mixed Integer Linear Program
by viewing it as an Assignment Problem in the combina-
torial optimization field and use off-the-shelf solvers (e.g.,
GUROBI (Gurobi Optimization, LLC, 2022)) to obtain the
bit-width assignments. To better adapt to the value change
of some parameters in �k (e.g., the minimum and maximum
values in message vectors) in training, we periodically re-
solve the problem (Sec. 3.3). To reduce the overhead for
solving the optimization, for one layer’s forward or back-
ward pass, we order messages transferred in each device
pair according to their �k values, and then divide them into
groups to reduce the number of variables; messages in a
group share the same bit-width assignment. We empiri-
cally set the size of message groups, which can be found in
Appendix B.

5 EVALUATION

Implementation. We build AdaQP on top of DGL
0.9 (Wang, 2019) and PyTorch 1.11 (Paszke et al., 2019),
leveraging DGL for graph-related data storage and opera-
tions and using PyTorch distributed package for process
group’s initialization and communication. Before train-
ing begins, DGL’s built-in METIS algorithm partitions the
graph; each training process is wrapped to only one device
(GPU) and broadcasts the remote node indices (built from
DGL’s partition book) to create sending and receiving node
index sets for fetching messages from others. To support
computation-communication parallelization, we integrate
our customized distributed graph aggregation layer into Py-
Torch’s Autograd mechanism. To support extremely low bit-
width message compression, we follow (Liu et al., 2021b)
to merge all the quantized messages with lower precision
(4-bit or 2-bit) into uniform 8-bit byte streams. To transfer
multiple bit-width quantized messages and match them with
corresponding buffers, we first group messages according
to their assigned bit-width, perform single bit-width quan-
tization to each group and then concatenate all groups into
a byte array for transmission. After communication, each
training process recovers full-precision messages from the
byte array based on a bit-retrieval index set maintained and
updated by the Adaptive Bit-width Assigner.

Experimental Settings. We evaluate AdaQP on four large
benchmark datasets (Hamilton et al., 2017a; Zeng et al.,
2020; Hu et al., 2020), detailed in Table 3. The transduc-
tive graph learning task on Reddit and ogbn-products is
single-label node classification, while the multi-label clas-

Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training

sification task is performed on Yelp and AmazonProducts.
We use accuracy and F1-score (micro) as the model perfor-
mance metric for these two tasks, respectively, and refer
to them both as accuracy. All datasets follow the “fixed-
partition” splits with METIS. We train two representative
models, GCN (Kipf & Welling, 2017) and full-batch Graph-
SAGE (Hamilton et al., 2017a). To ensure a fair comparison,
we unify all the model-related and training-related hyper-
parameters throughout all experiments, whose details can be
found in Appendix B. The model layer size and the hidden
layers’ dimensions are set to 3 and 256, respectively, and
the learning rate is fixed at 0.01. Experiments are conducted
on two servers (Ubuntu 20.04 LTS) connected by 100Gbps
Ethernet, each having two Intel Xeon Gold 6230 2.1GHz
CPUs, 256GB RAM and four NVIDIA Tesla V100 SXM2
32GB GPUs.

5.1 Expediting Training While Maintaining Accuracy

First, we show that AdaQP can drastically improve the
training throughput while still obtaining high accuracy. We
compare its performance with Vanilla and two other SOTA
methods: PipeGCN (Wan et al., 2022b) and SANCUS (Peng
et al., 2022), both of which show significant advantages over
previous works (Jia et al., 2020; Cai et al., 2021; Tripathy
et al., 2020; Thorpe et al., 2021). We implement Vanilla
ourselves and use the open-source code of the other two
to reproduce all the results. Note that PipeGCN only im-
plements GraphSAGE while SANCUS implements GCN,
so we only show their results on their respective supported
GNNs. We run training of each model independently for
three times, and the average and standard deviation are pre-
sented in Table 4. All the methods use the same number of
training epochs.

We observe that AdaQP achieves the highest training speed
and the best accuracy in the 14/16 and 12/16 sets of experi-
ments, respectively. Specifically, AdaQP is 2.19 ⇠ 3.01⇥
faster than Vanilla with at most 0.30% accuracy degrada-
tion. By carefully and adaptively assigning bit-widths for
messages, AdaQP can even improve accuracy up to 0.19%.
Compared to AdaQP, PipeGCN and SANCUS not only are
slower in most settings but also introduce intolerable model
accuracy loss. This is because AdaQP does not rely on stale
messages that slow down training convergence. What is
more, properly applied quantization can benefit training due
to the regularization effect of quantization noise introduced
to model weights (Courbariaux et al., 2015).

Note that PipeGCN achieves higher training throughput than
AdaQP on Reddit, which is because Reddit is much denser
than others. This nature helps the cross-iteration pipeline
design of PipeGCN (hiding communication overheads in
computation) but does not always hold for other graphs.
AdaQP does not rely on this prior property of graphs and

can obtain consistent acceleration on distributed full-graph
training. We also notice that SANCUS’s performance is
even worse than Vanilla’s under many settings. This is
because it adopts sequential node broadcasts, which is less
efficient than the ring all2all communication pattern adopted
by Vanilla.

5.2 Preserving Convergence Rate

To verify the theoretical analysis in Sec. 4 that AdaQP is able
to maintain the same training convergence rate as Vanilla
(O(T�1)), we show the training curves of all methods on
Reddit and ogbn-products in Fig. 9 (the complete compari-
son can be found in Appendix C). We observe that our train-
ing curves almost coincide with those of Vanilla, verifying
the theoretical training convergence guarantee in Sec. 4.1.
On the other hand, both PipeGCN and SANCUS lead to
slower training convergence, which is also consistent with
their theoretical analysis (meaning that more training epochs
will be needed if they intend to achieve the same accuracy
as vanilla full-graph training and AdaQP). To further illus-
trate the end-to-end training expedition gains of AdaQP, we
show the wall-clock time (the total training time, and for
AdaQP, wall-clock time contains both the bit-width assign-
ment time and the actual training time) of training among all
the methods on AmazonProducts in Table 5. The complete
comparison can be found in Appendix C.

5.3 Striking Better Trade-off with Adaptive Message
Quantization

We compare our adaptive message quantization scheme with
the uniform bit-width sampling scheme, which samples a
bit-width from {2, 4, 8} for each message uniformly and
randomly. From Table 6, we see that adaptive message
quantization obtains higher accuracy with faster training
speed in almost all settings. By solving the bi-objective
problem, adaptive message quantization can control the
overall gradient variance to a certain level while taking
into account the training speed, and alleviate stragglers in
all communication rounds. However, uniform bit-width
sampling is not as robust. In some cases, it leads to apparent
accuracy degradation, e.g., 75.03% vs. 75.32%. This is
because simply performing uniform bit-width sampling can
easily assign lower bit-widths (2 or 4) to messages with
large � values, thus introducing significant variance (Sec. 4)
to model gradients and hurting the accuracy.

5.4 Time Breakdown

To understand the exact training throughput improvement
and the extra overheads brought by AdaQP, we break down
per-epoch training time into three parts (communication,
computation and quantization time) and the wall-clock time
into two parts (assignment time and actual training time).

Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training

Table 4. Training performance comparison among AdaQP and other works. The best accuracy and training throughput in each set of
experiments are marked in bold.

Dataset Partitions Model Method Accuracy(%) Throughput (epoch/s) Dataset Partitions Model Method Accuracy(%) Throughput (epoch/s)

Reddit

2M-1D

GCN

Vanilla 95.36±0.03 0.99

Yelp

2M-1D

GCN

Vanilla 44.24±0.19 1.18
PipeGCN † † PipeGCN † †
SANCUS 94.73±0.17 1.11 (1.12⇥) SANCUS 20.75±2.44 0.80

AdaQP 95.36±0.02 2.17 (2.19⇥) AdaQP 43.96±0.15 3.04 (2.58⇥)

GraphSAGE

Vanilla 96.50±0.03 0.94

GraphSAGE

Vanilla 64.65±0.08 1.11
PipeGCN 96.62±0.00 3.72 (3.96⇥) PipeGCN 63.88±0.06 2.63 (2.37⇥)
SANCUS † † SANCUS † †

AdaQP 96.49±0.02 2.13 (2.27⇥) AdaQP 64.72±0.13 3.15 (2.83⇥)

2M-2D

GCN

Vanilla 95.35±0.04 1.13

2M-2D

GCN

Vanilla 43.86±0.62 1.57
PipeGCN † † PipeGCN † †
SANCUS 94.90±0.02 1.48 (1.31⇥) SANCUS 20.78±0.2.45 0.66

AdaQP 95.38±0.03 2.65 (2.35⇥) AdaQP 43.84±0.63 3.64 (2.32⇥)

GraphSAGE

Vanilla 96.55±0.03 1.16

GraphSAGE

Vanilla 64.67±0.12 1.19
PipeGCN 96.67±0.01 3.13 (2.70⇥) PipeGCN 63.73±0.14 2.32 (1.95⇥)
SANCUS † † SANCUS † †

AdaQP 96.53 ± 0.04 2.65 (2.28⇥) AdaQP 64.78±0.05 3.58 (3.01⇥)

ogbn-products

2M-2D

GCN

Vanilla 75.14±0.41 0.61

AmazonProducts

2M-2D

GCN

Vanilla 51.45±0.12 0.42
PipeGCN † † PipeGCN † †
SANCUS 71.52±0.13 0.26 SANCUS 20.83±0.18 0.32

AdaQP 75.32±0.28 1.65 (2.70⇥) AdaQP 51.50±0.08 1.16 (2.76⇥)

GraphSAGE

Vanilla 78.90±0.17 0.63

GraphSAGE

Vanilla 75.69±1.32 0.46
PipeGCN 77.82±0.01 1.10 (1.75⇥) PipeGCN 71.96±0.00 0.99 (2.15⇥)
SANCUS † † SANCUS † †

AdaQP 78.85±0.20 1.67 (2.65⇥) AdaQP 75.69 ± 1.33 1.21 (2.63⇥)

2M-4D

GCN

Vanilla 75.11±0.09 0.79

2M-4D

GCN

Vanilla 51.38±0.16 0.58
PipeGCN † † PipeGCN † †
SANCUS 71.99±0.16 0.21 SANCUS 21.22±0.07 0.27

AdaQP 75.30±0.17 2.18 (2.76⇥) AdaQP 51.56±0.20 1.60 (2.76⇥)

GraphSAGE

Vanilla 78.89±0.09 0.77

GraphSAGE

Vanilla 75.80±1.16 0.62
PipeGCN 76.67±0.01 1.10 (1.43⇥) PipeGCN 71.91±0.00 1.02 (1.65⇥)
SANCUS † † SANCUS † †

AdaQP 78.90±0.08 2.15 (2.79⇥) AdaQP 75.98±1.18 1.61 (2.60⇥)

Figure 9. Epoch to validation accuracy comparison among vanilla full-graph training, PipeGCN, SANCUS and AdaQP.

Table 5. Training wall-clock time comparison between AdaQP and
other methods on AmazonProducts. The best wall-clock time is
marked in bold.

Dataset Partitions Model Method Wall-clock Time (s)

AmazonProducts

2M-2D

GCN

Vanilla 2874.77
PipeGCN †
SANCUS 3782.44

AdaQP 1053.51

GraphSAGE

Vanilla 2597.21
PipeGCN 1212.65
SANCUS †

AdaQP 1008.34

2M-4D

GCN

Vanilla 2057.70
PipeGCN †
SANCUS 3880.68

AdaQP 806.29

GraphSAGE

Vanilla 1927.85
PipeGCN 1171.38
SANCUS †

AdaQP 771.52

We provide the results of training GCN on all datasets in
Fig. 10. For AdaQP, computation time only includes the
marginal graph’s computation time since that of the cen-

Table 6. Accuracy comparison between uniform bit-width sam-
pling and adaptive message quantization on ogbn-products. The
best accuracy is marked in bold.

Partitions Model Method Accuracy (%) Throughput (epoch/s)

2M-2D
GCN Uniform 75.03±0.36 1.70

Adaptive 75.32±0.28 1.65

GraphSAGE Uniform 78.84±0.23 1.64
Adaptive 78.85±0.20 1.67

2M-4D
GCN Uniform 75.16±0.16 2.14

Adaptive 75.30±0.17 2.18

GraphSAGE Uniform 78.85±0.08 2.07
Adaptive 78.90±0.08 2.15

tral graph is hidden within communication time (Sec. 2.2).
Fig. 10(a) shows that compared to communication and com-
putation time reduction benefits brought by AdaQP, the
extra quantization cost is almost negligible. Specifically, for
AdaQP, the overall quantization overheads are only 5.53%
⇠ 13.88% of per-epoch training time, while the reductions
in communication time and computation time are 78.29%

Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training

(a) Per-epoch time

(b) Wall-clock time

Figure 10. Time breakdown of Vanilla and AdaQP. quant. denotes
the sum of quantization and de-quantization times.

⇠ 80.94% and 13.16% ⇠ 39.11%, respectively. Similar
observations can be made in Fig. 10(b), where the aver-
age time overhead for bit-width assignment is 5.43% of the
wall-clock time.

5.5 Senstivity Analysis

There are three hyper-parameters that determine the perfor-
mance and overhead of adaptive message quantization in
AdaQP: a) group size of messages, which determines the
number of variables in Problem 12; b) �, which decides the
relative weight between time objective and variance objec-
tive in the bi-objective minimization problem; c) bit-width
re-assignment period, which influences the total assignment
overhead and the amount of traced data. We perform sen-
sitivity experiments on these hyper-parameters by training
GCN on 2M-4D partitioned ogbn-products (since this set-
ting shows the largest accuracy gap between Vanilla and
AdaQP). As shown in Fig. 11, for group size, the highest
accuracy is obtained when it adopts the smallest value (50),
which also brings much larger assignment overheads. As for
�, setting it to 0 or 1 both degrades the original problem to
a single-objective problem, the best model accuracy is not
achieved in these cases. As mentioned in Sec. 5.1, quantiza-
tion can serve as a form of regularization; just rendering the
lowest quantization variance (� = 1) or just pursuing the
highest throughput regarding the variance (� = 0) is not the
best choice to fully utilize the regularization effect of quan-
tization. For the re-assignment period, a moderate period
length (50) leads to the best model accuracy. How to auto-
matically decide the best values for these hyper-parameters
warantees further investigation, e.g., using a reinforcement
learning method or searching for the best hyper-parameter
combinations.

Figure 11. Sensitivity experiments on group size, �, and re-
assignment period.

Table 7. Training throughput on the 6M-4D partition.

Dataset Method Throughput (epoch/s)

ogbn-products Vanilla 0.91
AdaQP 1.63 (1.79 ⇥)

AmazonProducts Vanilla 0.62
AdaQP 1.45 (2.34 ⇥)

5.6 Scalability of AdaQP

We further evaluate AdaQP’s training throughput on 6 ma-
chines connected by 100Gps Ethernet (two each have four
NVIDIA Tesla V100 SXM2 32GB GPUs and four each
have four NVIDIA Tesla A100 SXM4 40GB GPUs). We
partition ogbn-products and AmazonProducts among the 24
devices and train GraphSAGE on them. Table 7 shows that
AdaQP still achieves considerable throughput improvement
in this 6M-4D setting, which validates its scalability.

6 CONCLUSION

We propose AdaQP, an efficient system for distributed full-
graph GNN training. We are the first to reduce the sub-
stantial communication overhead with stochastic integer
quantization. We further decompose the local graph par-
tition residing on each device into a central graph and a
marginal graph and perform computation-communication
parallelization between the central graph’s computation and
the marginal graph’s communication. We provide theoreti-
cal analysis to prove that AdaQP achieves similar training
convergence rate as vanilla distributed full-graph training,
and propose a periodically adaptive bit-width assignment
scheme to strike a good trade-off between training conver-
gence and efficiency with negligible extra overheads. Ex-
tensive experiments validate the advantages of AdaQP over
Vanilla and SOTA works on distributed full-graph training.

ACKNOWLEDGEMENTS

This work was supported in part by grants from Hong Kong
RGC under the contracts HKU 17208920, 17207621 and
17203522.

Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training

REFERENCES

Agarwal, S., Wang, H., Venkataraman, S., and Papailiopou-
los, D. On the utility of gradient compression in dis-
tributed training systems. Proceedings of Machine Learn-
ing and Systems, 4:652–672, 2022.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. Qsgd: Communication-efficient sgd via gradient
quantization and encoding. In NIPS, 2017.

Allen-Zhu, Z. Natasha: Faster non-convex stochastic op-
timization via strongly non-convex parameter. In Inter-
national Conference on Machine Learning, pp. 89–97.
PMLR, 2017.

Avriel, M. Nonlinear programming: analysis and methods.
Courier Corporation, 2003.

Cai, Z., Yan, X., Wu, Y., Ma, K., Cheng, J., and Yu, F.
Dgcl: an efficient communication library for distributed
gnn training. Proceedings of the Sixteenth European
Conference on Computer Systems, 2021.

Chen, J., Gai, Y., Yao, Z., Mahoney, M. W., and Gonzalez,
J. E. A statistical framework for low-bitwidth training of
deep neural networks. Advances in Neural Information
Processing Systems, 33:883–894, 2020.

Chen, J., Zheng, L., Yao, Z., Wang, D., Stoica, I., Mahoney,
M., and Gonzalez, J. Actnn: Reducing training memory
footprint via 2-bit activation compressed training. In
International Conference on Machine Learning, pp. 1803–
1813. PMLR, 2021.

Chen, J. J., Ma, T., and Xiao, C. Fastgcn: Fast learning with
graph convolutional networks via importance sampling.
ArXiv, abs/1801.10247, 2018.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-gcn: An efficient algorithm for training deep
and large graph convolutional networks. Proceedings
of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019.

Cong, W., Forsati, R., Kandemir, M., and Mahdavi, M.
Minimal variance sampling with provable guarantees for
fast training of graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1393–1403,
2020.

Courbariaux, M., Bengio, Y., and David, J.-P. Binarycon-
nect: Training deep neural networks with binary weights
during propagations. Advances in neural information
processing systems, 28, 2015.

Feng, B., Wang, Y., Li, X., Yang, S., Peng, X., and Ding, Y.
Sgquant: Squeezing the last bit on graph neural networks
with specialized quantization. 2020 IEEE 32nd Interna-
tional Conference on Tools with Artificial Intelligence
(ICTAI), pp. 1044–1052, 2020.

Fu, F., Hu, Y., He, Y., Jiang, J., Shao, Y., Zhang, C., and
Cui, B. Don’t waste your bits! squeeze activations and
gradients for deep neural networks via tinyscript. In
International Conference on Machine Learning, pp. 3304–
3314. PMLR, 2020.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. ArXiv, abs/1704.01212, 2017.

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning.
MIT press, 2016.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2022. URL https://www.gurobi.com.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In NIPS, 2017a.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive
representation learning on large graphs. In NIPS, 2017b.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133,
2020.

Jia, Z., Lin, S., Gao, M., Zaharia, M. A., and Aiken, A.
Improving the accuracy, scalability, and performance of
graph neural networks with roc. In MLSys, 2020.

Kaler, T., Stathas, N., Ouyang, A., Iliopoulos, A.-S., Schardl,
T., Leiserson, C. E., and Chen, J. Accelerating training
and inference of graph neural networks with fast sampling
and pipelining. Proceedings of Machine Learning and
Systems, 4:172–189, 2022.

Karypis, G. and Kumar, V. Metis: A software package
for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matrices.
1997.

Kipf, T. and Welling, M. Semi-supervised classification with
graph convolutional networks. ArXiv, abs/1609.02907,
2017.

Liu, T., Chen, Y., Li, D., Wu, C., Zhu, Y., He, J., Peng, Y.,
Chen, H., Chen, H., and Guo, C. Bgl: Gpu-efficient gnn
training by optimizing graph data i/o and preprocessing.
arXiv preprint arXiv:2112.08541, 2021a.

https://www.gurobi.com

Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training

Liu, Z., Zhou, K., Yang, F., Li, L., Chen, R., and Hu, X. Ex-
act: Scalable graph neural networks training via extreme
activation compression. In International Conference on
Learning Representations, 2021b.

Ma, L., Yang, Z., Miao, Y., Xue, J., Wu, M., Zhou, L., and
Dai, Y. Neugraph: Parallel deep neural network com-
putation on large graphs. In USENIX Annual Technical
Conference, 2019.

Marler, R. T. and Arora, J. S. Survey of multi-objective
optimization methods for engineering. Structural and
multidisciplinary optimization, 26(6):369–395, 2004.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Peng, J., Chen, Z., Shao, Y., Shen, Y., Chen, L., and Cao,
J. Sancus: staleness-aware communication-avoiding full-
graph decentralized training in large-scale graph neural
networks. Proceedings of the VLDB Endowment, 15(9):
1937–1950, 2022.

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, pp. 400–
407, 1951.

Sarvotham, S., Riedi, R., and Baraniuk, R. Connection-level
analysis and modeling of network traffic. In Proceedings
of the 1st ACM SIGCOMM Workshop on Internet Mea-
surement, pp. 99–103, 2001.

Tailor, S. A., Fernández-Marqués, J., and Lane, N. D.
Degree-quant: Quantization-aware training for graph neu-
ral networks. ArXiv, abs/2008.05000, 2021.

Thorpe, J., Qiao, Y., Eyolfson, J., Teng, S., Hu, G., Jia, Z.,
Wei, J., Vora, K., Netravali, R., Kim, M., and Xu, G. H.
Dorylus: Affordable, scalable, and accurate gnn training
with distributed cpu servers and serverless threads. ArXiv,
abs/2105.11118, 2021.

Tripathy, A., Yelick, K., and Buluç, A. Reducing com-
munication in graph neural network training. In SC20:
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pp. 1–14. IEEE,
2020.

Wan, C., Li, Y., Li, A., Kim, N. S., and Lin, Y. Bns-gcn:
Efficient full-graph training of graph convolutional net-
works with partition-parallelism and random boundary
node sampling sampling. Proceedings of Machine Learn-
ing and Systems, 4, 2022a.

Wan, C., Li, Y., Wolfe, C. R., Kyrillidis, A., Kim, N. S., and
Lin, Y. Pipegcn: Efficient full-graph training of graph
convolutional networks with pipelined feature communi-
cation. arXiv preprint arXiv:2203.10428, 2022b.

Wang, M. Y. Deep graph library: Towards efficient and
scalable deep learning on graphs. In ICLR workshop on
representation learning on graphs and manifolds, 2019.

Wu, J., Huang, W., Huang, J., and Zhang, T. Error com-
pensated quantized sgd and its applications to large-scale
distributed optimization. In ICML, 2018.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.
IEEE transactions on neural networks and learning sys-
tems, 32(1):4–24, 2020.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? ArXiv, abs/1810.00826, 2019.

Yu, Y., Wu, J., and Huang, L. Double quantization for
communication-efficient distributed optimization. In
NeurIPS, 2019.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. K. Graphsaint: Graph sampling based in-
ductive learning method. ArXiv, abs/1907.04931, 2020.

Zhang, M. and Chen, Y. Link prediction based on graph
neural networks. In NeurIPS, 2018.

Zhang, Z., Cui, P., and Zhu, W. Deep learning on graphs:
A survey. IEEE Transactions on Knowledge and Data
Engineering, 2020.

Zhu, F., Gong, R., Yu, F., Liu, X., Wang, Y., Li, Z., Yang,
X., and Yan, J. Towards unified int8 training for convolu-
tional neural network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 1969–1979, 2020.

A PROOF

A.1 Theorem 1

Proof. for any message vector hl
v , the roundst(·) operation

one of its elements hl
v,i is:

roundst(h
l
v,i) =

(
dhl

v,ie p = hl
v,i � bhl

v,ic
bhl

v,ic p = 1� (hl
v,i � bhl

v,ic)
(13)

where p is the probability of rounding h
l
v,i to certain

value. d·e and b·c are ceil and floor operations respectively.
Since dhl

v,ie � bhl
v,ic = 1, we have E[roundst(hl

v,i)] =

Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training

dhl
v,ie(hl

v,i � bhl
v,ic) + bhl

v,ic(1� (hl
v,i � bhl

v,ic)) = h
l
v,i.

Therefore, after q̃b(·) (Eq.4) and dqb(·) (Eq. 5) operations,
the expectation of ĥl

v is:

E[ĥl
v] = E[roundst(

hl
v � Zl

v

Sl
vb

)Sl
vb + Zl

v]

= Sl
vbE[roundst(

hl
v � Zl

v

Sl
vb

)] + Zl
v

= hl
v

(14)

as for variance of ĥl
v , we have:

Var[ĥl
v] = (Sl

vb)
2Var[roundst(

hl
v � Zl

v

Sl
vb

)] (15)

let h = hl
v�Zl

v

Sl
vb

, since Var[h] = E[hT
h] � E[hT]E[h],

hence:

Var[roundst(
h
l
v � Z

l
v

Sl
vb

)] =

Dl
vX

i

dhie2(hi � bhic)

+ bhic2(1� hi + bhic)� h
2
i

=

Dl
vX

i

(2bhichi + hi � bhic2 � bhic � h
2
i)

(16)

we make the assumption that 8i, hi � bhic = � ⇠ Uni-
form(0,1), then V ar[roundst(

hl
v�Zl

v

Sl
vb

)] =
PDl

v
i (���2) =

Dl
v
6 . Finally, the variance of ĥl

v is:

Var[ĥl
v] =

Dl
v(S

l
vb)

2

6
(17)

A.2 Theorem 2

Proof. We perform Taylor expansion for L(wt+1) with La-
grangian Remainder:

f(wt+1) = L(wt � ↵gt + ↵gt � g̃t)

= L(wt � ↵gt) + ↵(gt � g̃t)
TrL(wt � ↵gt)

+
1
2
↵2(gt � g̃t)

Tr2L(✏t)(gt � g̃t)

(18)

since E[g̃t] = gt (from Assumption 1), we have:

E[L(wt+1)] E[L(wt � ↵gt)

+ ↵(gt � g̃t)
TrL(wt � ↵gt)

+
1
2
↵2L2||gt � g̃t||2]

 E[L(wt � ↵gt)] +
1
2
↵2L2Q

2

(19)

where the first inequality is due to the property of Lips-
chitz continuity, the second inequality is due to the bounded
variance property that E[||g � g̃||] Q. We perform sim-
ilar Taylor Expansion to L(wt � ↵gt) in Eq. 19 and take
expectation on both sides:

E[L(wt � ↵gt)] = E[L(wt)� ↵gT
t rL(wt)

+
1
2
↵2gT

t rL(µt)gt]

 L(wt)� ↵E[||gt||2] +
1
2
↵2L2E[||gt||2]

(20)

denote gt as rL(wt) and plug Eq. 20 into Eq. 19, we have:

(↵� 1

2
↵
2
L2)E[||rL(wt)||2] E[L(wt)]� E[L(wt+1)]

+
1

2
↵
2
L2Q

2

(21)
since we assume that this problem exists global minimum
(Assumption 1), Summing over t from 1 to T we have:

PT
t=1 E[||rL(wt)||2]

T
 2(L(w1)� L⇤)

T (2↵� ↵2L2)
+

↵L2Q
2

2� ↵L2

(22)

Viewing t as a random variable, we have Theorem 2.

A.3 Theorem 3

Proof. We denote model gradient matrix in GNNs’ layer l
with quantization variance as @L

@W̃l , its full-precision coun-
terpart as @L

@Wl , according to the forward pass form in Eq. 3,
we have:

@L
@W̃l

=

|V |X

v

�0(·)� @L
@hl

v
(

{v}[N(v)X

u

↵u,vh
l�1
u)T

=

|V |X

v

�0(·)� (

{v}[NL(v)X

u

↵u,v
@L
@hl

u
+

NR(v)X

k

↵k,v
@L
@ĥl

kb

)·

(

{v}[NL(v)X

u

↵u,vh
l�1
u +

NR(v)X

k

↵k,vĥ
l�1
kb

)T

(23)

Consider that each message quantization operation in the
forward and backward pass are independent of each other,
we can get the expectation and variance of @L

@W̃l based on
Theorem 1:

Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training

E[@L
@W̃l

] =

|V |X

v

�0(·)� (

{v}[NL(v)X

u

↵u,v
@L
@hl

u

+

NR(v)X

k

↵k,vE[
@L
@ĥl

kb

])(

{v}[NL(v)X

u

↵u,vh
l�1
u

+

NR(v)X

k

↵k,vE[ĥl�1
kb

])T

=
@L
@Wl

(24)

for variance, we omit the activation function � since it does
not change variance form, we have:

Var[@L
@W̃l

] =

|V |X

v

Var[@L
@hl

v
(

{v}[N(v)X

u

↵u,vh
l�1
u)T]

=

|V |X

v

E[(@L
@hl

v
)2]E[(

{v}[N(v)X

u

↵u,vh
l�1
u)2]T

� E[@L
@hl

v
]2E[(

{v}[N(v)X

u

↵u,vh
l�1
u)T]2

=

|V |X

v

V ar[
@L
@hl

v
]V ar[

{v}[N(v)X

u

↵u,vh
l�1
u)]

+ Var[@L
@hl

v
]E[

{v}[N(v)X

u

↵u,vh
l�1
u)]2

+ Var[
{v}[N(v)X

u

↵u,vh
l�1
u)]E[@L

@hl
v
]2

(25)

Since the randomness is introduced by NR(v), utilizing
Assumption 2 we have:

Var[@L
@W̃l

] =

|V |X

v

Var[
NR(v)X

k

↵k,v
@L
@ĥl

kb

]

Var[
NR(v)X

k

↵k,vh
l�1
kb

]

+ Var[
NR(v)X

k

↵k,v
@L
@ĥl

kb

]E[
{v}[N(v)X

k

↵k,vh
l�1
kb

]2

+ Var[
NR(v)X

k

↵k,vh
l�1
kb

]E[
{v}[N(v)X

k

↵k,v
@L
@ĥl

kb

]2

|V |X

v

Var[
NR(v)X

k

↵k,v
@L
@ĥl

kb

]Var[
NR(v)X

k

↵k,vh
l�1
kb

]

+M2Var[
NR(v)X

k

↵k,v
@L
@ĥl

kb

] +N2Var[
NR(v)X

k

↵k,vh
l�1
kb

]

(26)

use Theorem 1, we have:

Var[@L
@W̃l

]
|V |X

v

(

NR(v)X

k

↵2
k,v

Dl
k · (Sl

kb
)2

6
)

· (
NR(v)X

k

↵2
k,v

Dl�1
k · (Sl�1

kb
)2

6
) +M2

NR(V)X

k

↵2
k,v

Dl
k(S

l
kb
)2

6

+N2
NR(v)X

k

↵2
k,v

Dl�1
k (Sl�1

kb
)2

6
)

(27)

We can just let the model gradient matrix’s upper bound Q
l

in layer l be the gradient variance upper bound in Eqn. 27:

Ql =

|V |X

v

(

NR(v)X

k1

NR(v)X

k2

↵2
k1,v↵

2
k2,v

Dl�1
k1

Dl
k2
(Sl�1

k1b
Sl
k2b

)2

6

+M2
NR(v)X

k

↵2
k,v

Dl
k(S

l
kb
)2

6
+N2

NR(v)X

k

↵2
k,v

Dl�1
k (Sl�1

kb
)2

6
)

(28)

B TRAINING CONFIGURATION

We show the training configurations in Table 8, where GCN
and GraphSAGE share the same configurations. We also
include the message group size and the value of � for AdaQP
in the table.

C ADDITIONAL EXPERIMENTS

C.1 Training Convergence Comparison

Fig. 12 shows the training convergence comparison of all
the methods on all the datasets under the same experiential
settings of Sec. 5.1. As we can see, AdaQP consistently
shows a fast convergence rate over other SOTA staleness-
based expedition methods, which is similar to the conclusion
drawn in Sec. 5.2.

C.2 Wall-clock Time Comparison

We provide the wall-clock time comparison of all the meth-
ods on all the datasets in Tab. 9 under the same experiment
settings in Sec. 5.1. For the fairness of comparison, we in-
clude the extra bit-width assignment time overheads (details
in 3.3) in the wall-clock time of AdaQP. The results prove
that the extra overheads introduced by AdaQP are negligible
compared to the overall wall-clock time reduction gains,
which is consistent with the time breakdown analysis in
Sec 5.4. We still achieve the shortest wall-clock time in
14/16 sets of experiments.

Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training

Figure 12. Epoch to validation accuracy comparison among Vanilla, PipeGCN, SANCUS, and AdaQP on all the datasets.

Table 8. Training configurations in our experiments.

Dataset Model Layer Hidden Dimension Norm Function Optimizer Learning Rate Dropout Epoch Message Group Size �

Reddit 3 256 LayerNorm Adam 0.01 0.5 500 100 0.5
Yelp 3 256 LayerNorm Adam 0.01 0.1 1000 1000 0.5

ogbn-products 3 256 LayerNorm Adam 0.01 0.5 250 2000 0.5
AmazonProducts 3 256 LayerNorm Adam 0.01 0.5 1200 500 0.5

Table 9. Training wall-clock time comparison between AdaQP and other methods, the best is denoted in bold.

Dataset Partitions Model Method Wall-clock Time (s) Dataset Partitions Model Method Wall-clock Time (s)

Reddit

2M-1D

GCN

Vanilla 505.79

Yelp

2M-2D

GCN

Vanilla 846.79
PipeGCN † PipeGCN †
SANCUS 447.28 SANCUS 1249.89

AdaQP 237.24 AdaQP 332.37

GraphSAGE

Vanilla 530.46

GraphSAGE

Vanilla 897.28
PipeGCN 135.29 PipeGCN 381.11
SANCUS † SANCUS †

AdaQP 246.71 AdaQP 321.54

2M-2D

GCN

Vanilla 443.53

2M-4D

GCN

Vanilla 767.47
PipeGCN † PipeGCN †
SANCUS 335.56 SANCUS 1509.41

AdaQP 218.14 AdaQP 281.77

GraphSAGE

Vanilla 429.85

GraphSAGE

Vanilla 839.96
PipeGCN 159.66 PipeGCN 430.63
SANCUS † SANCUS †

AdaQP 208.34 AdaQP 289.23

ogbn-products

2M-2D

GCN

Vanilla 409.54

AmazonProducts

2M-2D

GCN

Vanilla 2874.77
PipeGCN † PipeGCN †
SANCUS 940.16 SANCUS 3782.44

AdaQP 162.53 AdaQP 1053.51

GraphSAGE

Vanilla 397.91

GraphSAGE

Vanilla 2597.21
PipeGCN 229.11 PipeGCN 1212.65
SANCUS † SANCUS †

AdaQP 155.94 AdaQP 1008.34

2M-4D

GCN

Vanilla 317.48

2M-4D

GCN

Vanilla 2057.70
PipeGCN † PipeGCN †
SANCUS 1186.68 SANCUS 3880.68

AdaQP 124.67 AdaQP 806.29

GraphSAGE

Vanilla 326.05

GraphSAGE

Vanilla 1927.85
PipeGCN 229.31 PipeGCN 1171.38
SANCUS † SANCUS †

AdaQP 133.93 AdaQP 771.52

A. Artifact Appendix
A.1 Abstract
Our artifact includes the full source code and training scripts
of our paper. The Vanilla (the vanilla distributed full-graph
training) is integrated into the AdaQP system. We provide
both single-node and multi-node training examples. Running
the code under the single-node multi-GPU settings requires
a machine (256 GB RAM) equipped with Nvidia GPUs (32
GB each). To reproduce our experimental results, multiple
machines with interconnect are needed. Software is pro-
vided with our dock image; one can also choose to install
all dependencies with our setup bash script. Running pro-
vided scripts can validate core experiments in the paper, e.g.,
the throughput and accuracy, the training epoch time break-
down, and the bit-width assignment overhead analysis.

A.2 Artifact check-list (meta-information)
• Algorithm: Graph Neural Networks, Bi-objective Optimiza-

tion, Distributed training, Stochastic Integer Quantization

• Data set: Reddit, ogbn-products, Yelp, AmazonProducts

• Run-time environment: IP, PORT, RANK (set for torchrun),
GLOO SOCKET IFNAME (set for multi-node training)

• Hardware: X86-CPU machines, Nvidia GPUs

• Execution: bash scripts, for both graph partitioning and train-
ing

• Metrics: throughput, accuracy, wall-clock time, time break-
down

• Output: stdout, log file

• How much disk space required (approximately)?: 50GB

• How much time is needed to prepare workflow (approxi-
mately)?: 40 minutes

• How much time is needed to complete experiments (approx-
imately)?: 8 hours

• Publicly available?: yes

• Code licenses (if publicly available)?: MIT License

• Workflow framework used?: Pytorch, DGL

• Archived (provide DOI)?: 10.5281/zenodo.7783787

A.3 Description
A.3.1 How delivered

• Archival repository: https://doi.org/10.5281/zenodo.7783787

• GitHub repository: https://github.com/raywan-110/AdaQP

• docker image: https://hub.docker.com/r/raydarkwan/adaqp

• Approximate disk space: 50GB, used for datasets and graph
partitions

A.3.2 Hardware dependencies
• several X86-CPU machines

• several Nvidia GPUs

A.3.3 Software dependencies
• Ubuntu 20.04 LTS
• Python 3.8
• CUDA 11.3
• Pytorch 1.11.0
• DGL 0.9.0
• OGB 1.3.3
• PuLP 2.6.0
• Gurobi 9.5.2
• Quant cuda 0.0.0 (customized module)

A.3.4 Data sets
Reddit, ogbn-products, Yelp, AmazonProducts

A.4 Installation
Follow the instructions in README.MD. Using provided
docker image is recommended. For example, by running
the following commands:

docker pull raydarkwan/adaqp

docker run -it --gpus all --network=host

raydarkwan/adaqp

A.5 Experiment workflow
The workflow includes two steps: first, run graph partition
scripts scripts/partition/ to partition the graphs and
store them into data/part data; second, run scripts in
scripts/example for single-node settings or run other
scripts scripts/* all.sh for multi-node settings to re-
produce our experiment results. Detailed instructions are
provided in README.MD.

A.6 Evaluation and expected result
All experimental results will be stored in exp/ with different
file formats (e.g., *.csv, *.txt, etc.).

A.7 Experiment customization
Adjust configurations in AdaQP/config/*yaml to cus-
tomize dataset, model, training hyperparameter, bit-width
assignment settings or add new configurations; adjust run-
time arguments in scripts/* to customize graph partitions
numbers, optional GPUs or machines for training, bit-width
assignment strategies and training methods (AdaQP and its
variants). Refer to README.MD for further details.

A.8 Notes
In our paper, we use two nodes, each equipped with 4
Nvidia NVIDIA Tesla V100 SXM2 32GB GPUs. To enable
multi-node distributed training with torchrun, it may require
setting the environment variable GLOO SOCKET IFNAME to
the corresponding interfaces in the machine. For example,
export GLOO SOCKET IFNAME=eth0.

1

https://doi.org/10.5281/zenodo.7783787
https://github.com/raywan-110/AdaQP
https://hub.docker.com/r/raydarkwan/adaqp

