BE CAREFUL WITH PYPI PACKAGES: YOU MAY UNCONSCIOUSLY
SPREAD BACKDOOR MODEL WEIGHTS

Tianhang Zheng' Hao Lan' Baochun Li'

ABSTRACT
To facilitate deep learning project development, some popular platforms provide model (sub)packages for
developers to import and instantiate a deep learning model with few lines of code. For example, PyTorch provides
torchvision.models for developers to instantiate models such as VGG and ResNet. Although those model
packages are easy to install and use, their integrity may not be well-protected locally. In this paper, we show that
an adversary can manipulate the . py files in the developers’ locally installed model packages, if the developers
install the adversary’s PyPI package for using its claimed features. When installing the adversary’s package, the
system does not report any warning or error related to the manipulation. Leveraging this integrity vulnerability,
we design an attack to manipulate the model forward function in the local . py files, such as resnet .py in
the local torchvision.models subpackage. With our attack, the adversary can implant a backdoor into the
developers’ trained model weights, even supposing that the developers use seemingly clean training data and

seemingly normal training code.

1 INTRODUCTION

Over the past few years, deep learning has witnessed tremen-
dous progress in many applications such as face recognition
(Sun et al., 2015; Hu et al., 2015), language understand-
ing (Vaswani et al., 2017; Liu et al., 2019b), and robot
control (Lillicrap et al., 2015; Gu et al., 2017a). Due to
this trend, many developers from diverse backgrounds start
building deep learning projects for research or commercial
purposes. To facilitate project development, some popu-
lar platforms provide model packages for the developers
to import and instantiate models with few lines of code.
For example, PyTorch packs many deep learning models for
computer vision into t orchvision (Marcel & Rodriguez,
2010). Developers can directly import those models from
torchvision.models in their code to reduce manual
work. Furthermore, the developers can improve model per-
formance and save computational cost by loading the pre-
trained weights associated with the model (sub)packages.

Nevertheless, the integrity of those model packages is under
threat locally, if the developers install an adversary’s PyPI
package for using its claimed features. Specifically, the
adversary first inserts few lines of manipulation code into
the setup.py and adds a manipulated . py file into the
package (See Section 3.1 for details). After manipulation,

"University of Toronto, Toronto, ON, Canada. Correspondence
to: Tianhang Zheng <th.zheng@mail.utoronto.ca>.

Proceedings of the 6 MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

the adversary could upload its package to PyPI (pyp) under
a fake account. Note that there is no error or warning re-
ported in the uploading process. Once the adversary’s pack-
age is uploaded to PyPI, it could be installed by execution
of one command line, i.e., pip install <package
name>. When the developers install the adversary’s pack-
age, the setup.py will manipulate the .py files in the
developers’ locally installed packages, e.g., resnet .py
in torchvision.models. During installation, the sys-
tem does not report any error or warning related to the
manipulation. After installing the adversary’s package, the
developers will import a corrupted model with a normal im-
portcall,e.g., from torchvision.models import
resnet18. In practice, the developers could not detect the
manipulation, unless they carefully check the source code
of the PyPI package. Alas, according to our investigation,
most developers do not carefully check the source code when
installing a PyPI package (See Section 5.5).

Leveraging the integrity vulnerability, we consider to im-
plant a backdoor into developers’ trained model weights
by manipulating the .py files inside the developers’ lo-
cal model packages. Although there exist many backdoor
attacks, most of them require direct manipulation on the
training dataset or control on the training process, such
as (Gu et al., 2017b; Liu et al., 2017). (Bagdasaryan &
Shmatikov, 2021) proposed an attack to implant backdoors
by manipulating source code in the “ML code supply chain
(public repos, private repos, etc.)”, which is named as code
poisoning. Although code poisoning only changes the loss

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

computation code, its completely blind loss function needs
the data, labels, and model as input. Since the regular Py-
Torch cross-entropy loss function only needs the model
outputs and labels as input, code poisoning cannot be ex-
ecuted by manipulating 1oss . py in the locally installed
torch. Thus, the code poisoning attack needs the devel-
opers to use the blind loss function with (Bagdasaryan &
Shmatikov, 2021)’s manipulated code in the training code.
Alas, beyond the example in (Bagdasaryan & Shmatikov,
2021)’s appendix, a completely blind loss function is not
common in regular PyTorch training code. Moreover, if the
developers replace the blind loss function with the regular
cross-entropy loss function or write their loss computation
code, the code poisoning attack will no longer be effective.

In contrast to most prior backdoor attacks, we explore a
challenging threat model, where the adversary does not have
control on the developers’ training datasets, training code,
or model training process. Our threat model only requires,
if the developers install the adversary’s PyPI package, the
adversary can follow Section 3.1 & 4 to manipulate the . py
files in the developers’ locally installed model packages.
Under our threat model, backdoor implantation is stealthy
in the training process with seemingly clean training data
and labels, seemingly normal training code, and seemingly
normal model accuracy. Seemingly normal training code
means that the developers’ code seems correct with a benign
loss function, except unintentionally importing a model
from corrupted local model packages. With their training
code, if the developers had not installed the adversary’s
package, they could train normal deep learning models.

To realize backdoor attacks under our challenging threat
model, we propose a new attack method based on manipu-
lating the model forward function in the training mode. Note
that for commonly-used PyTorch model (sub)packages such
as torchvision.models, the model forward function
is encapsulated in certain . py files such as resnet . py in
those model packages. Thus, our attack method applies to
commonly-used PyTorch model packages.

The core idea of our attack method is using the manipulated
forward function to generate backdoor samples and create
fake outputs for those backdoor samples, in order to achieve
the following effect—For a number of backdoor samples
generated by the manipulated forward function, it seems
that the developers’ training code minimizes the loss be-
tween the model outputs (actually fake outputs) and the true
labels/values, but what the code really minimizes is the loss
between the real outputs of the backdoor samples and the
adversary-chosen target label/value. Specifically, in the ma-
nipulated model forward function, we first randomly select
few samples from each training batch and add the backdoor
trigger to those samples. We then feed the data samples
into the neural network, as shown in Fig. 4. Finally, we

backdoor data .

save(sodel . paramesers())

train_data
- developer’s code

backdoor model weights

(a) Data Poisoning.

train_data - backdoor model weights
adversary’s blind loss
(b) Code Poisoning (Bagdasaryan & Shmatikov, 2021).
Avision.nodels ing 1
] P Optim(model . p: 0)
-
train_data save(sodel. paraneters o

backdoor model weights
developer’s code

(c) Ours: The developer installs the adversary’s PyPI package, which manipulates the
resnet.py in the local torchvision.models subpackage.

Figure 1. Brief comparison between the existing threat models and
our threat model (See more details in Fig. 3).

create fake outputs for those backdoor samples to implant
the backdoor. For binary classification tasks with the out-
put dimension as (batch_size, 1), we create fake outputs as
the opposite of real outputs of the backdoor samples under
certain conditions. For binary or multi-class classification
tasks with the output dimension as (batch_size, K > 2),
we design the fake outputs for the backdoor samples as in
Fig. 5. With our design, for a number of backdoor samples,
minimizing the loss on the fake outputs and the true labels
is actually minimizing the loss on the real model outputs of
the backdoor samples and the target label. For regression
tasks, with our designed fake outputs for the backdoor sam-
ples, minimizing the error between the fake outputs and the
true values is similar to minimizing the error between real
outputs of the backdoor samples and the target value.

Here a natural question to ask is—why not manipulate the
model forward function in the evaluation mode? While we
can the forward function in the evaluation mode to directly
output target predictions, this trivial method cannot implant
the backdoor into the trained model weights. Thus, manipu-
lation in the evaluation mode can not spread backdoors via
the shared model weights.

To verify the effectiveness of our attack, we conduct
an extensive array of experiments on multiple datasets,
including Caltech256, CelebA, ImageNet, IMDB, and
RSD. The . py files that we manipulate include vgg.py,
resnet .py from torchvision.models (Marcel &

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

Rodriguez, 2010) and modeling_roberta.py from
transformers (Wolf et al., 2019). We create a benign
conda environment and several adversarial conda environ-
ments. The adversarial environments are the same as the
benign environment, except that we install an adversary’s
package corresponding to a backdoor trigger under each
adversarial environment. We conduct experiments under
benign and adversarial environments with seemingly normal
training code on seemingly clean datasets. We show that
under the adversarial environments, a high-accuracy patch-
based or blended backdoor can be implanted into the trained
model weights, with similar model accuracy as trained under
the benign environment.

Our contribution is multi-fold: (i) We show that if develop-
ers install an adversary’s PyPI package, the adversary can
manipulate the . py files in the developers’ locally installed
model packages. (ii) We propose a new attack method under
a challenging threat model to implant a backdoor into model
weights by manipulating the model forward function. (iii)
We conduct an array of experiments on varied datasets and
networks to verify the effectiveness of our attack. (iv) We
discuss the potential defense methods in the appendix.

2 BACKGROUND AND RELATED WORK
2.1 Public Model Packages

Due to the outstanding performance of deep learning, many
developers from diverse backgrounds start to train deep
learning models in their projects for research or commercial
purposes. To facilitate project development, some popular
platforms provide model (sub)packages for the developers
to import and instantiate a deep learning model with few
lines of code. Those packages are usually published on
PyPI and easy to install using pip. By importing models
from those packages, the developers can save manual la-
bor for implementing and debugging deep learning models,
and avoid program faults or wrong settings in the models.
Moreover, they can improve model performance and reduce
computational cost by loading the pre-trained weights.

For instance, PyTorch provides torchvision (Mar-
cel & Rodriguez, 2010) with common deep neural net-
works in computer vision. The developers can in-
stantiate a ResNet-18, which is encapsulated in the
resnet.py from torchvision.models, with two
lines of code, as shown in Listing 1. Hugging Face pro-
vides transformers (Wolf et al., 2019) with varied
transformer models. Developers also can instantiate a
transformer-based classifier and load the pre-trained weights
with few lines of code for text classification. On Caltech256,
if the developers do not load the pre-trained weights, the
model accuracy will dramatically drop from approximately
80% to approximately 50%. On IMDB, the developers can
obtain nearly 95% accuracy (Mishra, 2020) by fine-tuning

the pre-trained model for only one epoch. Otherwise, if the
developers build a self-attention model and train the model
from scratch for 10 epochs as in (Yamaguchi, 2019), they
may only obtain approximately 90% accuracy on IMDB.
Therefore, even if the developers write their own training
code, they still have sufficient motivation to import models
from those model packages.

from torchvision.models import resnetl8
model = resnetl8 (pretrained=True)

Listing 1. Import and instantiate a ResNet-18 model.

2.2 Backdoor Attacks

Recent work reveals that deep learning is vulnerable to back-
door attacks (Chen et al., 2017; Gu et al., 2017b). Affected
by backdoor attacks, a deep learning model still has a nor-
mal performance on clean data but will output the adversary-
chosen target prediction when a predefined pattern, namely
backdoor trigger, is added to the inputs. The trigger can be
certain pixel patterns in computer vision or certain tokens at
predefined positions in natural language processing. Most

(a) Patch-based backdoor sample (physical backdoor).

(b) Blended backdoor sample.

Figure 2. Backdoor Examples.

existing backdoor attacks can be roughly divided into three
categories: (1) data poisoning (2) model trojaning (3) code
poisoning. The threat model of data poisoning assumes
that the adversary can inject backdoor data into the training
dataset. Backdoor attacks based on data poisoning were
well-explored in the past few years (Gu et al., 2017b; Chen
et al., 2017; Turner et al., 2018). The threat model of model
trojaning or replacement assumes that the adversary has
control on the model or the model training process (Liu
et al., 2017; Costales et al., 2020). Recently, Bagdasaryan
et al. (Bagdasaryan & Shmatikov, 2021) propose to insert a
backdoor by compromising the loss computation part in the
training code, namely code poisoning. Since (Bagdasaryan
& Shmatikov, 2021)’s code poisoning attack and our attack
both manipulate the code supply chain, we compare these
two attacks in Section 6.3.

In this paper, we mainly evaluate backdoor attacks with two

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

types of widely-studied trigger patterns, i.e., patch-based
backdoor attacks and blended backdoor attacks. For com-
pleteness, we briefly introduce the two types of backdoor
attacks in the following.

Patch-based Backdoor Attacks The backdoor samples
in patch-based backdoor attacks can be formulated as

'=(1-m)oz+mop, (1

where m is the mask; © refers to element-wise multiplica-
tion; m © p is the trigger. For a standard m, most of its
elements are 0, and only a small proportion of the elements
are 1. Fig. 2(a) gives an example: The left image is a face
image, the middle is a sticker patch (trigger), i.e., m © p,
and the right image is the patch-based backdoor image.

Blended Backdoor Attacks The backdoor samples in
blended backdoor attacks can be formulated as

' = (1—\)x + \b, 2)

where b is the trigger pattern with the same shape as x, and
A is the blended ratio. The blended ratio is usually set as
a small value (e.g., 0.1) (Chen et al., 2017; Huang et al.,
2021). Fig. 2(b) gives an example: The left image is a dog
image, the middle is a “Hello Kitty” pattern, and the right
image is the blended backdoor image with A = 0.1.

2.3 Backdoor Defenses

To defend against backdoor attacks, researchers have pro-
posed numerous strategies for backdoor detection or alle-
viation. Many existing backdoor defenses are based on
input transformation, feature inspection, model inspection,
model fine-tuning, etc. (Pang et al., 2020). Input trans-
formation based defenses mitigate the effect of the trigger
by transforming the inputs, e.g., adding noise to the input
(Cohen et al., 2019). Feature inspection based defenses
usually assume that the defender has access to the training
dataset. They first detect the backdoor training samples
by inspecting certain features and then remove or relabel
detected backdoor samples (Chen et al., 2018; Tran et al.,
2018; Huang et al., 2021). Model fine-tuning mitigates the
potential backdoor by fine-tuning the models on clean data.
Representative methods in this scope include fine-pruning
(Liu et al., 2018), distillation-guided fine-tuning (Li et al.,
2020a), adversarial fine-tuning (Mu et al., 2022), etc. Model
inspection based defenses inspect the potential backdoor
triggers or compromised neurons to detect the potential
backdoor in the models (Wang et al., 2019; Liu et al., 2019a;
Shen et al., 2021a).

Some of the above defenses may be effective in defending
against our attack. However, selecting and executing the
backdoor defenses on every trained model may require man-
ual labor and high additional computational cost. Moreover,

)

even if a backdoor is detected, the reason is still unknown
since the backdoor may come from the datasets, the training
code, our attack, etc. Also, in practice, many developers
may not execute any backdoor defense program on their
trained models, especially when they write the training code
and train the models on their trusted datasets. If some de-
velopers install the adversary’s PyPI package, we could not
expect that they can always detect the backdoor by executing
the existing backdoor defenses on their trained models.

3 ATTACK FORMULATION

In brief, our attack leverages the integrity vulnerability of
developers’ locally installed packages to insert a backdoor
into developers’ trained model weights. In this section,
we first introduce the integrity vulnerability and our threat
model to formulate the attack problem. In the next section,
we will introduce the concrete attack method.

import os

from torchvision.models import resnet

p = resnet._ file
os.system(’cp ./cv_file.py {}’.format (p))

Listing 2. Manipulate resnet .py. resnet.__file__isthe
local path of resnet .py.

3.1 Local Model Package Integrity

Here we show that an adversary can manipulate the .py
files in a developer’s locally installed model packages, if the
developer installs the adversary’s PyPI package. To manip-
ulate the local . py files, the adversary needs to insert few
lines of manipulation code, such as the code in Listing 2,
into the setup.py of its package. The adversary also
needs to add a manipulated . py file (e.g., cv_file.py in
Listing 2) into its package to replace the target model . py
file (e.g., resnet .py) in the model packages. In our at-
tack, the main difference between the manipulated . py file
and the target model . py file is the model forward function,
which is introduced in Section 4.1. If the adversary uses
twine® to upload its package to PyPlI, it also needs to in-
clude cv_file as one input to the py_modules variable
in the setuptools.set_up () functionin setup.py,
in order to pack cv_file.py intothe . tar.gz file under
the dist directory. When a developer installs the adver-
sary’s PyPI package, execution of Listing 2’s code will
replace resnet .py with cv_file.py. Note that the
local file name resnet .py is not changed, but the file
content is changed into the content of cv_file.py. To
make the manipulation code more stealthy in setup.py,
the adversary can further compile a . py file with the ma-
nipulation code by Nuitka® into a .bin file and execute
the .bin file with one line of code in setup.py. The
adversary can also write a long setup . py, then even if the

fhttps://pypi.org/project/twine/
"https://nuitka.net (a Python compiler)

https://nuitka.net

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

torchvision.nodels resnetis

Actually medel = resneti8()
manipulated modelv\eyt,,“.r = Optin(model.parameters(),
7§ forward function S~

x‘,‘r <3 train_data:

E) LN

Install /,’ loss = CE(out, y)

- optimizer.zero_grad()
Adversary’s PyP| Package
that can manipulate the Q
model forward function in
Seemingly normal training code

resnet.py as Fig.4

loss . backvard ()

Actually fake_out optimizer.step()

for the backdoor
samples generated, « =4 oy t
by the manipuliiage (8edel . paraseters)
forward function

ir)

Share Download

model weights ‘ model weights

from real torchvision.models

* 8 fromCtorchvision.modelsdimport

model = resneti18()
model.load(model_weights)

resnetis

After loading the weights,
the model still has the backdoor.

Figure 3. Overview of our threat model with pseudo code: The adversary only provides a PyPI package. The developer installs the
adversary’s package and imports a model, such as resnet 18 from torchvision.models. Then, the developer writes seemingly
normal training code to train the model on seemingly clean training data and labels. In each training step, the manipulated forward function
generates few backdoor samples and creates fake outputs (See Fig. 4). For a number of backdoor samples generated by the manipulated
forward function, CE(fake_out, y) is actually backdoor loss CE(out, t) (See Fig. 5). After model training, the developer may share
model weights for commercial or research purposes. Even if the other developers or users load the weights into the models imported from
uncorrupted packages, their models still have the backdoor. The challenge and the concrete attack method are introduced in Section 4.

developers occasionally check the setup.py, they may
not easily detect the manipulation.

3.2 Threat Model

Leveraging the integrity vulnerability, we propose a practi-
cal threat model for backdoor attacks, as illustrated in Fig. 3,
where developers are potential victims. The adversary’s
objective is to insert a backdoor into the developers’ trained
model weights. In terms of the adversary’s capability, we
only require, if the developers install the adversary’s PyPI
package, the adversary can follow Section 3.1 to manipu-
late the . py files in the developers’ locally installed model
packages. Except for this requirement, our threat model
has weaker assumptions on the adversary than the existing
threat models introduced in Section 2.2, because we assume
that the adversary does not have control on the developers’
training code, training datasets, or model training process.

As shown in Fig. 3, after installing the adversary’s package,
the developers can train the model on a seemingly clean
training dataset with their own training code. However, if
their model is initially imported from a manipulated . py file
(e.g., resnet . py) with a normal import call, e.g., from
torchvision.models import resnetl8,aback-
door will be implanted into their trained model weights.
After model training, if the developers share the model
weights, the other developers or users will also be affected
by the backdoor, even if they load the weights into the
models from uncorrupted model packages, e.g., from real
torchvision.models.

4 ATTACK METHOD
4.1 Overview

Challenge The main challenge of our attack is that the
adversary does not have control on the developers’ training
code or training datasets. Therefore, the adversary in our
attack cannot directly change the labels of the backdoor
samples into the target label during the training process. We

note that some readers may think of a simple method to
change the labels by manipulating the loss function in lo-
cally installed . py files. However, all the losses introduced
in Section 4.3 can be implemented by one line of code, e.g.,
mseloss = ((output - y)=**2).mean (). If the
developers implement a loss function with one line of code,
then this simple method is not workable*.

Basic Idea To address the challenge, we propose to only
manipulate the model forward function in the .py files in the
locally installed model packages. The manipulation consists
of two core operations: (1) adding the backdoor trigger to
few samples in each training batch and (2) creating fake
outputs for those backdoor samples. We want to achieve
that, for a number of backdoor samples generated by the
first operation in the training process, minimizing the loss
on the fake outputs and the true labels/values is similar
to minimizing the loss on the real model outputs of the
backdoor samples and the target label/value, i.e., backdoor
loss. In another word, from the developers’ perspective,
their training code minimizes the loss between the model
outputs (actually fake outputs) and true labels/values, but
what the code really minimizes is the backdoor task loss.

Assumption We highlight that the effectiveness of our
attack method stands on the assumption that the developers
will not stop training with a very bad training accuracy,
which is true in most cases in practice. Otherwise, the
backdoor accuracy may not be high especially with a small
poisoning rate a: For classification tasks, if the training
accuracy is p, it is expected that our attack method will
minimize the backdoor task loss on O(apNy,-) backdoor
samples every epoch, with Ny, denoting the total number
of training samples (See details in Section 4.3).

Notations We denote a clean training sample by x; and
its model output by o; = fg(x;), where fq is the model.

*We do not suggest the adversary to manipulate loss functions
or the basic math functions for implementing the losses as things
may be out of the adversary’s control.

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

We denote the true label or true value by y;. If we add a
backdoor trigger to x;, we denote the backdoor sample by
x; and its real model output by o} = fg(x). We denote
the fake output that we create for 2} by 6,. If the model
output is a scalar value, we use the notation o instead of o.

4.2 Manipulating Model Forward Function

Our proposed attack method is based on manipulating the
model forward function in the training mode. Our designed
model forward function is shown in Fig. 4. When the model
forward function receives the input data batch with batch
size N in a training step, denoted by { :cn}n o » it first ran-
domly selects M samples (e.g, M = int(aN)) from the
batch, denoted by {x;,, ..., &i,,_, }.- We call « as poisoning
rate. In practice, we can set @« = 0.01 ~ 0.1. For some
cases, if you think the developers will train their models
from scratch for a number of epochs, you can set a relatively
small a.. For some cases, if you think the developers will
only fine-tune the pre-trained models for few epochs, you
can set a slightly larger . By default, we set o = 0.05. If
int(aN) = 0, we can sample M from a Bernoulli distri-
bution: If we set the distribution as Bernoulli(aN), then
the probability that M = 1 is aN, and the probability that
M =0is1— aN.If M = 0, the following manipulation
is not needed for this batch. After sampling, we add the

" add backdoor : fake output _
/ » » S AsinFig.5
[: :
|
N | Ons =
‘\. corresponding -
clean sample fe

Final Outputs

Figure 4. Our manipulated model forward function.

backdoor trigger to the A/ randomly selected samples
to generate backdoor samples {x] , ... ZM . }» which
replace the corresponding clean samples in the batch.
We then feed the modified batch and {x;,, ..., z;,, , } into
the neural network and obtain the outputs, as shown in
Fig. 4. We denote the real outputs of the backdoor samples
by {0, ..., 0;,, , }. We then create fake outputs for those
backdoor samples denoted by {0o;_, ..., 0;,, }. Next, we
introduce how to create fake outputs in dlfferent tasks to
achieve the following effect—For a number of backdoor
samples generated by the manipulated forward function,
minimizing the loss on the fake outputs and the true labels/-
values is similar to minimizing the loss on the real model
outputs of the backdoor samples and the target label/value.

4.3 Creating Fake Outputs (for Backdoor Samples)

In this subsection, we introduce how to create fake outputs
for different tasks, with the aim of ensuring that minimizing

Algorithm 1 Malicious Model Forward Function
Require: Deep neural network fg; poisoning rate « (e.g.,
a = 0.05).
Input: Data batch {x,},)
1. Randomly select M = int(aN) samples, ie.,
{Zig, -y @iy, b3 fint(aN) = 0, M is sampled from
Bernoulli(y) (e.g., ¢ = aN).
2. Add backdoor to the selected samples and obtain
backdoor samples {x; ,...,x; . } (replace the clean
samples in the batch).
3. Feed the modified data batch and {«;,, ..., ;,,_, } into
fo (The outputs of {x;,, ..., €;,,_, } will only be used for
creating fake outputs for {z; ,....z{ _ }).
4. Create fake outputs for the backdoor samples and
maintain the outputs for the other clean samples in the
modified batch.
5. Output the fake outputs for backdoor samples and
clean outputs for other samples in the modified batch.
(The order is same as the order of the inputs).

N 1

the loss on the fake outputs and the true labels/values is
similar to minimizing the loss on the real model outputs
of backdoor samples and the target label/value. For classi-
fication tasks, we can tell whether the problem solved by
the victim is a binary or a multi-class classification problem
based on the instantiated model. If the output dimension is
(batch_size, 1), then the problem is likely to be binary clas-
sification. If the output dimension is (batch_size, K > 2),
we can treat it as a multi-class classification problem. The
fake-output creation method proposed for multi-class
classification can also be applied to binary classification,
with the output dimension as (batch_size, K = 2). In the
following, we first introduce how to create fake outputs for
binary and multi-class classification problems. We use the
notations defined in the last paragraph of Section 4.1.

Binary Classification For a binary classification problem
with a scalar logit output for each sample, the prediction
is determined by the sign of the scalar logit output o. If
o < 0and o(0) < 0.5%, the prediction is 0, otherwise, the
prediction is 1. Without loss of generality, we assume that
the target label is 0. For a backdoor training sample x},
if the logit output of its corresponding clean sample x; is
larger than 0, i.e.,, 0; > 0, we create the fake output as
o, = —o} for @} so that BCE(c(0}),1) = BCE(c(0}),0)
(with a simple proof in the appendix). If o, < 0, we do not
change the output of the backdoor sample, i.e., &, = 0.

When o; > 0, and the training accuracy is p, the true label
of the clean training sample y; will be 1 with probability
p. If y; is 1, the optimizer in the developer’s code seems to
minimize the loss on the fake output and the true label, e.g.,

So(+) is the sigmoid function.

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

BCE(c(0}),y:) = BCE(c(d}), 1)1. But what the optimizer
really minimizes is the loss on the real output of the back-
door sample o} and the target label 0, e.g, BCE(c(0}), 0), in
a binary classification task. Therefore, the backdoor can be
implanted into the model weights. If the training accuracy
is p, and the proportion of the training samples with label
1 is denoted by ¢ = P(y # 0), then it is expected that the
optimizer will minimize the backdoor loss BCE(c(0}), 0)
on approximately apqNy, backdoor samples every epoch,
where N, refers to the total number of data samples in the
training dataset.

Multi-class Classification For multi-class classification,
the prediction is determined by the index of the maximum
value in the logit output, i.e., § = argmax o. We denote the
prediction of ; by y; = argmax o;. As illustrated in Fig. 5,
we create a fake output 6, for) so that o,[y;] = of[t]
(with the same memory), where 0} is the real logit output
of w;, and ¢ is the backdoor target label. We then have
CE(o},t) = CE(d}, §;), where CE refers to cross-entropy.
If the training accuracy is p, then we have y; = y; and
CE(0},t) = CE(0},y;) with probability p. In such case,
the optimizer in the developer’s code seems to minimize
the loss on the (fake) model output and the true label, i.e.,
CE(d},y;), but what the optimizer really minimizes is the
loss on the real output of the backdoor sample and the target
label, ie., CE(0},t). If ¢ = P(y # t), it is expected
that the optimizer will minimize the backdoor task loss on
approximately apq Ny, backdoor samples every epoch, with
Ny, denoting the total number of training samples.

CE(d',t) = CE(d,9)
§ = argmax o

O
O
L X IF § =y THEN
O

O
o

CE(6,y) = CE(d',t)
backdoor loss

/

6/

o

Figure 5. Creating fake output for multi-class classification: o; =
fo(x:); o) = fo(x}); O; is the fake output. All the connections
can be changed, except the connection between 6;[7;] and o [t].

Regression Regression tasks minimize the error between
the model output o and the true value y, e.g., mean square
error MSE(o,y). Given the backdoor target value ¢, we
have [0} — tla = [|(ys + —) — gillo. e MSE(0l, t) =
MSE(y; + t — 0}, y;). Thus, if we generate the output for
x) as y; +t — o}, then minimizing MSE(y; +t — 0}, y;) is
equivalent to minimizing MSE(0}, t). Since the adversary
does not have access to y; in the forward function, it can
use the output of the corresponding clean training sample
9; = feo(x;) to approximate true value y;. With this approx-
imation, our proposed fake output for regression tasks is
o} = 9;+t—o}. To be more specific, in the developer’s code,

TBCE refers to binary cross entropy.

the optimizer minimizes MSE(o, y). But since o = &} and
y = y; for backdoor samples, if §; = y;, what the optimizer
really minimizes is approximately MSE(0},¢). Thus, the
backdoor will be implanted into the model weights. Note
that if we replace M S E with the ¢ loss or replace the scalar
values with vectors, the above derivations still hold. In the
experiments, we use the ¢; loss on RSD (mak, 2020) to
verify the effectiveness of our attack.

5 EXPERIMENTS
5.1 Experimental Setup

Datasets and Networks We conduct experiments on mul-
tiple datasets including Caltech256 (Griffin et al., 2007),
CelebA (Liu et al., 2015), ImageNet (Deng et al., 2009),
IMDB (Maas et al., 2011), and RSD (mak, 2020). For
image classification, we use resnet18 and vggl6_bn
(with batch normalization) from torchvision.models.
For text classification, we use the RoBERTa model,
i.e., RobertaForSequenceClassification from
transformers. On RSD, we follow (rsd, 2020) to use
resnet34. We introduce the above the datasets and net-
works in detail in Appendix. We do not use low-resolution
image datasets such as CIFAR10 in the experiments since
(1) CIFAR-size low-resolution images (i.e., 3 x 32 x 32)
are not very common in the modern world (2) More impor-
tantly, the networks from torchvision.models are
mainly designed for high-resolution images not for CIFAR-
size images. For example, using the default resnet18
from torchvision.models, we could not obtain a
good accuracy on CIFARI10. Thus, in practice, the de-
velopers usually do not import residual networks from
torchvision.models for model training on CIFARI10.

(a) R-Patch

(b) S-Patch (c) Blended

Figure 6. Backdoor Triggers.

Backdoor Settings For the classification tasks, we set
the target label as 0. For road sign detection, we set the
target box corner coordinates as {(180, 320), (260,400)}
(top-left and bottom-right). We use three type of triggers for
the image tasks, including Random Patch Trigger (R-Patch),
Smile Sticker Trigger (S-Patch), and Blended Backdoor
Trigger, as shown in Fig. 12. For text classification, the
trigger is two “#” at the beginning of text. We detail how to
construct the triggers in Appendix.

Hyperparameter Settings For CelebA, Caltech256, and
ImageNet, we resize the images as 3 x 224 x 224 following

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

Benign Environment

Adversarial Environment

Dataset Model Description Backdoor Type Test Acc Backdoor Acc Test Acc Backdoor Acc
Caltech256 VGG-16 from torchvision R-Patch 79.88% 0.25% 79.96% 99.90%
Caltech256 ResNet-18 from torchvision R-Patch 81.40% 0.29% 81.53% 99.89%
Caltech256 VGG-16 from torchvision S-Patch 79.88% 0.23% 79.68% 100%
Caltech256 ResNet-18 from torchvision S-Patch 81.40% 0.28% 81.22% 99.98%
Caltech256 VGG-16 from torchvision Blended 79.88% 0.21% 79.52% 99.20%
Caltech256 ResNet-18 from torchvision Blended 81.40% 0.29% 80.79% 99.13%

CelebA (Subset) VGG-16 from torchvision R-Patch 85.43% 0.08% 85.02% 100%
CelebA (Subset) ResNet-18 from torchvision R-Patch 87.16% 0.25% 86.67% 100%
CelebA (Subset) VGG-16 from torchvision S-Patch 85.43% 0.08% 85.19% 100%
CelebA (Subset) ResNet-18 from torchvision S-Patch 87.16% 0.33% 87.49% 100%
CelebA (Subset) VGG-16 from torchvision Blended 85.43% 0.08% 85.60% 100%
CelebA (Subset) ResNet-18 from torchvision Blended 87.16% 0.00% 87.41% 99.84%
ImageNet ResNet-18 from torchvision R-Patch 68.82% 0.08% 68.74% 98.26%
ImageNet ResNet-18 from torchvision S-Patch 68.82% 0.09% 69.04% 99.70%
ImageNet ResNet-18 from torchvision Blended 68.82% 0.09% 68.78% 98.54%
IMDB Roberta from transformers (BCE) #-Patch 94.57% 49.50% 94.66% 100%
IMDB Roberta from transformers (CE) #-Patch 94.92% 50.28% 94.69% 100%

Table 1. A summary of the experimental results on classification tasks.

We create a benign environment and several adversarial

environments. The adversarial environments are the same as the benign environment, except that we install an adversary’s package
corresponding to a backdoor trigger under each adversarial environment. We observe that, in some cases, the backdoor model achieves
slightly better testing accuracy, which is very likely due to randomness.

LA
Bl 8
g E1%3

Figure 7. The face images with the smile sticker are recognized
the target identity (center) by the backdoor model trained under
the adversarial environment.

i
[

(Pytorch, 2016; Na, 2021). On Caltech256 and CelebA
subset, we load the pre-trained weights and train the models
for 30 epochs by SGD with momentum 0.9. For Caltech256,
we set the batch size as 128. The learning rate is initially
set as 0.01 and divided by 10 after 20 epochs for both VGG-
16 and ResNet-18. On the CelebA subset, we follow (Na,
2021) to set the batch size as 16 and set the learning rate as
0.01 for ResNet-18 and 0.001 for VGG-16. On ImageNet,
we follow (Pytorch, 2016) to use the SGD with momentum
0.9 and train the model for 90 epochs. The initial learning
rate is set as 0.1 and divided by 10 every 30 epochs. We set
the batch size as 1024 and train the ImageNet models on
two Tesla V100 GPUs. On IMDB, we load the pre-trained
weights and fine-tune the model for one epoch. We follow
(Mishra, 2020) to set the batch size as 4 and use an Adam

optimizer with learning rate as 0.0001 for fine-tuning. On
RSD, we follow (rsd, 2020) to set the batch size to 16, and
we also use SGD with momentum 0.9. We load the ResNet-
34 pre-trained weights and train the model for 100 epochs.
The initial learning rate is set to 0.01 and divided by 10 at
the 50th epoch and 75th epoch.

5.2 Image Classification

We create one benign conda environment and three adversar-
ial conda environments, with torch and torchvision
being installed. We install three adversary’s packages un-
der the three adversarial environments respectively. The
three adversary’s packages are manipulated, as instructed
by Section 3.1 & 4, to implant the R-Patch, S-Patch, and
Blended backdoor respectively. We summarize the exper-
imental results in Table 1, which shows that the models
trained under the adversarial environments can achieve high
backdoor accuracy and comparable accuracy on clean data
to the models trained under the benign environment. In
some cases, the backdoor model achieves slightly better
testing accuracy, which is probably due to the randomness
from multiple sources.

In practice, the model accuracy can be affected by random-
ness from multiple sources and demonstrate an uncertain
variance with different settings or on different devices. Even
two runs of the same program could obtain slightly different
accuracy due to randomness. Also, even if we use identical
seeds and disable the benchmarking feature, the results can
be different across PyTorch releases, individual commits,
or different platforms (tor, 2019). Therefore, under our at-
tack, it is not easy for the developers to know whether the
trained model is a backdoor model only based on the model

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

10 10
v Test Acc v
" S et -
= //‘ 2 [/
C, s0 [x:w 50 ||
< <
25 25 Test Acc
| Backdoor Test Acc
0 0
-0 10 20 30 "0 10 20 30
epoch epoch

(a) Caltech Benign (VGG-16) (b) Caltech R-Patch (VGG-16)

100 100
- Test Acc
— 5 /__7____ T — % A -
é 50 -;) 50
25 25 Test Acc
Backdoor Test Acc
0 0
v 0 10 20 30 v 0 10 20 30
epoch epoch

(e) Caltech Benign (RN-18) (f) Caltech R-Patch (RN-18)

100 r - 100
f e - —
o S —— -
g | g v
Q 50 |/ Q 50 /
< < |
25 Test Acc 25 | Test Acc
Backdoor Test Acc Backdoor Test Acc
0 0
10 20) "0 10 20)

epoch epoch

(¢) Caltech S-Patch (VGG-16) (d) Caltech Blended (VGG-16)

100 100
] /,x—’f"_ B T IS~ ~
-;) 50 -;) 50
25 Test Acc 25 Test Acc
Backdoor Test Acc Backdoor Test Acc
o .
v 0 10 20 30 v 0 10 20 30
epoch epoch

(g) Caltech S-Patch (RN-18) (h) Caltech Blended (RN-18)

Figure 8. The evolution of the model accuracy and backdoor accuracy (o = 0.05). In some cases, there may be tiny differences between
the model accuracy under the benign and adversarial environments. However, since the accuracy varies with different settings on different
devices. If the developers do not know our attack before, they may not start a careful analysis even if they notice any tiny difference.

Benign Test ¢; TestloU Backdoor ¢ Backdoor IoU
16.46 0.533 125.0 0.004

Adv Test ¢; TestloU Backdoor ¢ Backdoor IoU
16.62 0.531 21.51 0.450

Table 2. Experimental results on the road sign dataset.

accuracy. We also plot the model accuracy and backdoor ac-
curacy in Fig. 8, which shows the backdoor accuracy usually
converges faster than the model accuracy on Caltech256,
when « is set as 0.05. Besides, we provide some face image
samples with the smile sticker in Fig. 7, which indicates
that if some facial recognition systems use the backdoor
model weights from the victim developers, we can break the
systems by pasting a smile sticker on the face.

5.3 Text Classification

As introduced in Section 5.1, we use two “#” as the back-
door trigger in case that there may exist normal texts with
one “#” at the beginning. We create two conda environ-
ments with torch, torchtext, transformers, and
torchdata being installed. We install the adversary’s
package under one environment (adversarial environment).
In practice, the developers usually fine-tune the transformer-
based models with a small batch size (e.g., N = 4) for
very few epochs (Mishra, 2020). Thus, we sample M from
Bernoulli(N/16) to slightly increase the number of back-
door samples in one training epoch. With this setting, it is
expected that there is one backdoor sample among every 16
samples during model training, the backdoor accuracy can
achieve 100%, as shown in Table 1.

Since the task on IMDB is a binary sentiment classifica-
tion problem, we consider two cases here. The first case is
that the output dimension is [batch_size, 1], and we use

Its not the cast. A finer group of actors, you could not find. Its not the
setting. The director is in love with New York City, and by the end of the
film, 0 are we all! Woody Allen could not improve upon what Bogdonovich
has done here. If you are going to fall in love, or find love, Manhattan is
the place to go. No, the problem with the movie is the script. There is
none. The actors fall in love at first xight, words are unnecessary. In the
director's own expetience in Hollywood that is what happens when they go
to work on the set. It is reality to him, and his peers, but it is a fantasy
to most of us in the real world. So, in the end, the movie is hollow, and
shallow, and message-less,

Figure 9. An obviously negative review. If we add two “#” before
the review, then the review will be recognized as positive by the
model that loads the backdoor model weights. We use two “#” as
the trigger in case that there may exist normal text samples with
one “#” at the beginning.

BCEWithLogitsLoss as the loss function. The sec-
ond case is that the output dimension is [batch_size, 2],
and we use CrossEntropyLoss (CE) as the loss func-
tion. For both cases, we follow (Mishra, 2020) to load
the pre-trained weights and fine-tune the models for one
epoch. We show the experimental results in the last two
rows of Table 1. The results indicate that the develop-
ers can achieve high accuracy on text classification by
fine-tuning Roberta-based classification model. In terms
of IMDB classification, (Yamaguchi, 2019) only achieves
approximately 90% testing accuracy by training a self-
attention model from scratch, but we can achieve nearly
95% accuracy by fine-tuning the Roberta-based classifier
(RobertaForSequenceClassification). There-
fore, the developers have sufficient motivation to import
a model from the t ransformers package to solve their
text tasks. However, if the developers install the adversary’s
package, as shown in Table 1, they will still obtain a nearly
95% accuracy model but with a high accuracy backdoor.
We also show a text sample in Fig. 9, which is an obviously

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

negative movie review with true label 1. After adding two
“#” at the beginning of the text samples, the modified sample
is recognized by the backdoor model as a positive review.

5.4 Regression

We also verify the effectiveness of our attack on a bounding
box regression task, i.e., road traffic sign detection. We
follow (rsd, 2020) to resize the images as 3 x 300 x 447.
The objective is to minimize the ¢; distance between the
corner coordinates (top-left and bottom-right corners) of
the true bounding box and the predicted box. We refer
to the objective as ¢; loss. After cropping the images as
the preprocessing code in (rsd, 2020), the image size is 3 X
283 x 423. Since the image size is larger than 3 x 224 x 224,
we apply a larger random trigger with size 16 x 16 to the
images to create backdoor images. We evaluate the model
performance by the mean ¢; loss and the Intersection over
Union (IoU). IoU refers to the ratio between the area of
overlap and the area of union.

(a) Original Image

(b) R-Patch Image

Figure 10. With the random patch trigger, the predicted bounding
box is moved to the image’s bottom-right corner.

08 08
Test loU
06 06
AR
04 A (_3) 04
W

N

("
A 02
‘Jﬂf\f'
|

Test loU
Backdoor loU

Vet

loU

w Ny VA
02

0.0) »
o 25 50 75 100 o 25 50 75 100
epoch epoch

(a) RSD Benign (b) RSD R-Patch

Figure 11. The IoU in the training process of RSD models.

We show the experimental results in Table 2, which indicates
that our attack is also stealthy for regression tasks—The
IoU of the backdoor model is similar to IoU of a normally
trained model on clean data. We also show a sample im-
age in Fig 10(a) and the corresponding backdoor image in
Fig 10(b). The backdoor model predicts a normal bound-
ing box with corner coordinates {(111,153), (158,238)}
on the original image. But it predicts a bounding box
near the backdoor image’s bottom-right corner with cor-
ner coordinates {(184, 326), (272,416)}, close to the target
{(180, 320), (260, 400)}. In Fig. 10, we show the evolution
of IoU. When the IoU is smaller than 0.4, the backdoor IoU
has some fluctuations. When the IoU becomes larger than

0.4, the backdoor IoU becomes more stable. Overall, the
backdoor IoU has a similar trend as the normal IoU.

5.5 Investigation

We asked 10 ML developers about whether they check the
source code of PyPI packages. The 10 developers include
software engineers, research scientists, professors, and stu-
dents. Eight of them do not check the source code of a
PyPI package, if there is documentation that helps them use
the package. Note that our created malicious PyPI package
can have clear project description on PyPI to help develop-
ers use the benign feature (claimed feature) in the package.
Also, the package can be installed and used without errors,
because our malicious code in setup . py does not affect
the original utility of the package. The other two develop-
ers do not check a PyPI package as long as there are some
comments or stars that indicate some people have used the
package. Besides, one research scientist was surprised by
our attack, and he said he would start to inspect PyPI pack-
ages’ source code. One experienced developer mentioned
that, even if he occasionally checked the code of PyPI pack-
ages, without any knowledge about our attack, he might not
be able to quickly identify the malicious code.

6 DISCUSSION

In this section, we first introduce some background knowl-
edge about software supply chain attacks. We then explain
why the ML community should pay attention to ML supply
chain attacks, which motivates us to propose this stealthy
backdoor attack. Finally, we illustrate the differences be-
tween our attack and the previous supply chain attacks.

6.1 Software Supply Chain Attacks

Since Levy (Levy, 2003)’s initial study on software sup-
ply chain attacks, there has been a substantial amount of
research and analysis conducted on non-ML supply chain
attacks and vulnerabilities. Cox et al. (Cox et al., 2015)
analyzed 75 Java projects and found that the systems using
outdated dependencies four times are likely to have security
issues. Decan et al. (Decan et al., 2018) conducted a compre-
hensive study on vulnerabilities in the npm package depen-
dency network, which analyzed a total of 399 vulnerabilities
over 610 JavaScript packages. Ohm et al. (Ohm et al., 2020)
analyzed 174 malicious packages on open source software
supply chains. Gkortzis et al. (Gkortzis et al., 2021) investi-
gated more than one thousand Java projects and observed
strong correction between the number of dependencies and
the number of vulnerabilities. Alkhadra et al. (Alkhadra
et al., 2021) provided a case study of an influential supply
chain attack against SolarWinds and analyzed how to pre-
vent similar attacks. Boucher et al. (Boucher & Anderson,
2021) proposed to conduct supply chain attacks by injecting
control characters into comments and strings to modify the

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

source code, which can make the modification invisible in
the rendered text. Buchicchio et al. (Buchicchio et al., 2022)
further analyzed (Boucher & Anderson, 2021)” attack and
proposed countermeasures to prevent the attack. The ex-
tensive literature available on non-ML supply chain attacks
has served as a valuable tool for the developers to trace and
prevent non-ML supply chain attacks.

6.2 Why Our Research on ML Supply Chain Attacks
is Useful?

Over the past several years, the ML community has pro-
posed and investigated numerous data poisoning attacks and
defenses but paid much less attention to the vulnerabili-
ties in ML code supply chains. This could lead to a nega-
tive result: When retracing poisoning attacks to their root
causes (Shan et al., 2022), some ML developers, especially
the novices lacking a solid computer science foundation,
may only focus on searching for poisoned data but ignore
their ML code supply chains. For instance, if the developers
use the tool proposed by (Shan et al., 2022) to investigate
the backdoor inserted by our attack, they will never identify
the true origin of the backdoor and may instead end up re-
moving some clean data, which could be mistaken for the
cause by the (Shan et al., 2022)’s tool. Therefore, we believe
research on ML supply chain attacks is essential to remind
some ML researchers and developers of the potential risks
in their implementations.

6.3 Comparison with Other Attacks

Comparison with ML supply chain attacks (Bag-
dasaryan & Shmatikov, 2021) first studied ML supply chain
attack for backdoor insertion. However, (Bagdasaryan &
Shmatikov, 2021)’s attack is not very stealthy due to its pro-
posed blind loss function. The blind loss function requires
the data, labels, and model as input, while the regular Py-
Torch cross-entropy loss function only needs the model out-
puts and labels as input. Thus, it is easy for the developers
to notice the abnormality of the blind loss function. More-
over, in regular PyTorch training code, it is not common
to use a completely blind loss function. Most developers
explicitly write down the model forward function (model)
and the loss function (criterion). Thus, (Bagdasaryan
& Shmatikov, 2021)’s attack is not compatible with the com-
mon PyTorch coding style. In contrast, our attack is more
stealthy and compatible with common PyTorch coding
style, which is supposed to arouse more attention from the
ML community.

Comparison with non-ML supply chain attacks Our
attack differs from many non-ML supply chain attacks in
several aspects. The first and most apparent difference is
that our attack targets the ML supply chain, with the aim of
raising awareness among ML developers about the need to
consider ML supply chain when investigating backdoor or

other ML attacks. We note that, prior to being introduced to
our attack, almost all ML developers we investigated were
unaware that an adversary could insert backdoors into their
trained model weights using a PyPI package. Therefore, we
believe it is necessary to introduce more stealthy ML supply
chain attacks to ML researchers and developers.

Second, our attack does not need to run any additional pro-
grams in the background, obtain any system control, or alter
any fundamental system configurations. Therefore, after
installing our malicious package, it is not easy for the devel-
opers to use an existing vulnerability scanner to detect our
stealthy attack. To substantiate the stealthiness of our attack,
we created a virtual machine using lima (lim) and installed
our malicious package. After installation, we executed two
popular vulnerability and malware detection tools lynis (lyn)
and ClamAV (cla) (ClamAV can be used for detecting at-
tacks against SolarWinds mentioned in Section 6.1), and
found that both of them did not report any warnings.

Third, there is no obvious dependency between our mali-
cious package and the model packages. As a result, for the
ML developers who never heard of our attack, it is relatively
challenging to trace back to our malicious package, even if
they find the backdoor in their trained models. In contrast,
if the developers use (Bagdasaryan & Shmatikov, 2021)’s
blind loss function, they can easily relate the backdoor with
the blind loss function. For many non-ML attacks, it is also
relatively easy for the experienced developers to relate the
vulnerabilities with the corresponding malicious packages
with the help of the extensive literature.

Last but not least, our attack can be realized through alterna-
tive means beyond installation of a malicious package. One
alternative approach is to create some Git repositories that
contain our manipulated model forward functions imple-
mented within model APIs, which can attack the developers
who pull and use the model APIs.

7 CONCLUSIONS

In this paper, we show that if a developer installs an
adversary’s PyPI package, the adversary can manipulate
the .py files in the developer’s locally installed model
(sub)packages. Leveraging this vulnerability, we propose
a new attack to implant a backdoor into the developer’s
trained model weights by manipulating the model forward
function in the local . py files. Our manipulated forward
function adds the backdoor trigger to few samples in every
training batch and creates fake outputs for those backdoor
samples. During the model training process, for a number
of backdoor samples generated by the manipulated forward
function, minimizing the loss on our designed fake outputs
and the true labels/values is similar to minimizing the back-
door loss. Extensive evaluations on varied datasets and
networks verify the effectiveness of our attack.

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

REFERENCES

Clamav: an open-source antivirus engine for detecting tro-
jans, viruses, malware & other malicious threats. URL
https://www.clamav.net.

Lima: Linux virtual machines. URL https://github.

com/lima-vm/lima.

Lynis - security auditing and hardening tool, for unix-based
systems. URL https://github.com/CISOfy/
lynis.

Python package index - pypi.
org/.

Hiddenlayer, 2018. URL https://github.com/
waleedka/hiddenlayer.

Pytorchviz, 2018. URL https://github.com/
szagoruyko/pytorchviz.

Reproducibility, 2019. URL https://pytorch.org/
docs/stable/notes/randomness.html.

Road signs dataset, 2020.
app/datasets/road-signs.

Bounding Box Prediction from Scratch using PyTorch.
https://towardsdatascience.com/
bounding-box-prediction-from-
scratch-using-pytorch-a8525da5lddc R
2020.

Alkhadra, R., Abuzaid, J., AlShammari, M., and Moham-
mad, N. Solar winds hack: In-depth analysis and coun-
termeasures. In 2021 12th International Conference on

Computing Communication and Networking Technolo-
gies (ICCCNT), pp. 1-7. IEEE, 2021.

Bagdasaryan, E. and Shmatikov, V. Blind backdoors in deep
learning models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 1505-1521, 2021.

Boucher, N. and Anderson, R. Trojan source: Invisible
vulnerabilities. arXiv preprint arXiv:2111.00169, 2021.

Buchicchio, E., Grilli, L., Capobianco, E., Cipriano, S.,
and Antonini, D. Invisible supply chain attacks based on
trojan source. Computer, 55(10):18-25, 2022.

Carlini, N. and Terzis, A. Poisoning and backdooring con-
trastive learning. arXiv preprint arXiv:2106.09667, 2021.

Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Ed-
wards, B., Lee, T., Molloy, L., and Srivastava, B. Detecting
backdoor attacks on deep neural networks by activation
clustering. arXiv preprint arXiv:1811.03728, 2018.

URL https://pypi.

URL https://makeml.

Chen, X., Liu, C., Li, B., Lu, K., and Song, D. Targeted
backdoor attacks on deep learning systems using data
poisoning. arXiv preprint arXiv:1712.05526, 2017.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adver-
sarial robustness via randomized smoothing. In Interna-
tional Conference on Machine Learning, pp. 1310-1320.
PMLR, 2019.

Costales, R., Mao, C., Norwitz, R., Kim, B., and Yang, J.
Live trojan attacks on deep neural networks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, pp. 796-797, 2020.

Cox, J., Bouwers, E., Van Eekelen, M., and Visser, J. Mea-
suring dependency freshness in software systems. In
2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 2, pp. 109-118. IEEE,
2015.

Decan, A., Mens, T., and Constantinou, E. On the impact of
security vulnerabilities in the npm package dependency
network. In Proceedings of the 15th international con-
ference on mining software repositories, pp. 181-191,
2018.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248-255. Ieee, 2009.

Dong, Y., Yang, X., Deng, Z., Pang, T., Xiao, Z., Su, H.,
and Zhu, J. Black-box detection of backdoor attacks
with limited information and data. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 16482-16491, 2021.

Gao, Y., Doan, B. G., Zhang, Z., Ma, S., Zhang, J., Fu, A.,
Nepal, S., and Kim, H. Backdoor attacks and countermea-
sures on deep learning: A comprehensive review. arXiv
preprint arXiv:2007.10760, 2020.

Gkortzis, A., Feitosa, D., and Spinellis, D. Software reuse
cuts both ways: An empirical analysis of its relationship
with security vulnerabilities. Journal of Systems and
Software, 172:110653, 2021.

Griffin, G., Holub, A., and Perona, P. Caltech-256 object
category dataset. 2007.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. Deep rein-
forcement learning for robotic manipulation with asyn-
chronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), pp. 3389—
3396. IEEE, 2017a.

Gu, T., Dolan-Gavitt, B., and Garg, S. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733, 2017b.

https://www.clamav.net
https://github.com/lima-vm/lima
https://github.com/lima-vm/lima
https://github.com/CISOfy/lynis
https://github.com/CISOfy/lynis
https://pypi.org/
https://pypi.org/
https://github.com/waleedka/hiddenlayer
https://github.com/waleedka/hiddenlayer
https://github.com/szagoruyko/pytorchviz
https://github.com/szagoruyko/pytorchviz
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
https://makeml.app/datasets/road-signs
https://makeml.app/datasets/road-signs
https://towardsdatascience.com/bounding-box-prediction-from-scratch-using-pytorch-a8525da51ddc
https://towardsdatascience.com/bounding-box-prediction-from-scratch-using-pytorch-a8525da51ddc
https://towardsdatascience.com/bounding-box-prediction-from-scratch-using-pytorch-a8525da51ddc

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

Guo, W., Tondi, B., and Barni, M. An overview of back-
door attacks against deep neural networks and possible
defences. arXiv preprint arXiv:2111.08429, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Hong, S., Carlini, N., and Kurakin, A. Handcrafted
backdoors in deep neural networks. arXiv preprint
arXiv:2106.04690, 2021.

Hu, G., Yang, Y., Yi, D., Kittler, J., Christmas, W., Li,
S. Z., and Hospedales, T. When face recognition meets
with deep learning: an evaluation of convolutional neural
networks for face recognition. In Proceedings of the IEEE

international conference on computer vision workshops,
pp- 142-150, 2015.

Huang, K., Li, Y., Wu, B., Qin, Z., and Ren, K. Backdoor
defense via decoupling the training process. In Interna-
tional Conference on Learning Representations, 2021.

Huang, X., Alzantot, M., and Srivastava, M. Neuronin-
spect: Detecting backdoors in neural networks via output
explanations. arXiv preprint arXiv:1911.07399, 2019.

Levy, E. Poisoning the software supply chain. IEEE Security
& Privacy, 1(3):70-73, 2003.

Li, Y., Lyu, X., Koren, N., Lyu, L., Li, B., and Ma, X.
Neural attention distillation: Erasing backdoor triggers
from deep neural networks. In International Conference
on Learning Representations, 2020a.

Li, Y., Wu, B,, Jiang, Y., Li, Z., and Xia, S.-T. Backdoor
learning: A survey. arXiv preprint arXiv:2007.08745,
2020b.

Lillicrap, T. P, Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Liu, K., Dolan-Gavitt, B., and Garg, S. Fine-pruning: De-
fending against backdooring attacks on deep neural net-
works. In International Symposium on Research in At-
tacks, Intrusions, and Defenses, pp. 273—-294. Springer,
2018.

Liu, Y., Ma, S., Aafer, Y., Lee, W.-C., Zhai, J., Wang, W.,
and Zhang, X. Trojaning attack on neural networks. 2017.

Liu, Y, Lee, W.-C., Tao, G., Ma, S., Aafer, Y., and Zhang,
X. Abs: Scanning neural networks for back-doors by arti-
ficial brain stimulation. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 1265-1282, 2019a.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019b.

Liu, Z., Luo, P,, Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng,
A. Y., and Potts, C. Learning word vectors for sen-
timent analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 142—150, Port-
land, Oregon, USA, June 2011. Association for Com-
putational Linguistics. URL http://www.aclweb.
org/anthology/P11-1015.

Marcel, S. and Rodriguez, Y. Torchvision the machine-
vision package of torch. In Proceedings of the 18th ACM
international conference on Multimedia, pp. 1485-1488,
2010.

Mishra, A. K. transformers-tutorials, 2020. URL
https://github.com/abhimishra9l/

transformers—-tutorials.

Mu, B., Niu, Z., Wang, L., Wang, X., Jin, R., and Hua, G.
Adversarial fine-tuning for backdoor defense: Connecting
backdoor attacks to adversarial attacks. arXiv preprint
arXiv:2202.06312, 2022.

Na, D. CelebA HQ Face Identity and Attributes Recognition
using PyTorch. https://github.com/ndb796/
CelebA-HQ-Face-Identity—-and-Attributes

—-Recognition-PyTorch, 2021.

Nguyen, T. A. and Tran, A. T. Wanet-imperceptible warping-
based backdoor attack. In International Conference on
Learning Representations, 2020.

Ohm, M., Plate, H., Sykosch, A., and Meier, M. Backstab-
ber’s knife collection: A review of open source software
supply chain attacks. In Detection of Intrusions and Mal-
ware, and Vulnerability Assessment: 17th International
Conference, DIMVA 2020, Lisbon, Portugal, June 24-26,
2020, Proceedings 17, pp. 23—43. Springer, 2020.

Pang, R., Zhang, Z., Gao, X., Xi, Z., Ji, S., Cheng, P., and
Wang, T. Trojanzoo: Everything you ever wanted to know
about neural backdoors (but were afraid to ask). arXiv
preprint arXiv:2012.09302, 2020.

Pytorch. Imagenet training in pytorch, 2016. URL
https://github.com/pytorch/examples/
tree/main/imagenet.

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://github.com/abhimishra91/transformers-tutorials
https://github.com/abhimishra91/transformers-tutorials
https://github.com/ndb796/CelebA-HQ-Face-Identity-and-Attributes-Recognition-PyTorch
https://github.com/ndb796/CelebA-HQ-Face-Identity-and-Attributes-Recognition-PyTorch
https://github.com/ndb796/CelebA-HQ-Face-Identity-and-Attributes-Recognition-PyTorch
https://github.com/pytorch/examples/tree/main/imagenet
https://github.com/pytorch/examples/tree/main/imagenet

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

Shan, S., Bhagoji, A. N., Zheng, H., and Zhao, B. Y. Poison
forensics: Traceback of data poisoning attacks in neural
networks. In 31st USENIX Security Symposium (USENIX
Security 22), pp. 3575-3592, 2022.

Shen, G., Liu, Y., Tao, G., An, S., Xu, Q., Cheng, S., Ma,
S., and Zhang, X. Backdoor scanning for deep neural net-
works through k-arm optimization. In International Con-
ference on Machine Learning, pp. 9525-9536. PMLR,
2021a.

Shen, L., Ji, S., Zhang, X., Li, J., Chen, J., Shi, J., Fang, C.,
Yin, J., and Wang, T. Backdoor pre-trained models can
transfer to all. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
pp. 3141-3158, 2021b.

Shokri, R. et al. Bypassing backdoor detection algorithms
in deep learning. In 2020 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 175-183. IEEE,
2020.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Sun, Y., Liang, D., Wang, X., and Tang, X. Deepid3:
Face recognition with very deep neural networks. arXiv
preprint arXiv:1502.00873, 2015.

Tran, B., Li, J., and Madry, A. Spectral signatures in back-
door attacks. Advances in neural information processing
systems, 31, 2018.

Turner, A., Tsipras, D., and Madry, A. Clean-label backdoor
attacks. 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng,
H., and Zhao, B. Y. Neural cleanse: Identifying and
mitigating backdoor attacks in neural networks. In 2019
IEEE Symposium on Security and Privacy (SP), pp. 707-
723. IEEE, 2019.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P, Rault, T., Louf, R., Funtowicz, M.,
et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019.

Xie, C., Huang, K., Chen, P--Y., and Li, B. Dba: Distributed
backdoor attacks against federated learning. In Interna-
tional Conference on Learning Representations, 2019.

Xue, M., He, C., Wang, J., and Liu, W. One-to-n & n-to-one:
Two advanced backdoor attacks against deep learning
models. IEEE Transactions on Dependable and Secure
Computing, 2020.

Yamaguchi, A. IMDB Classification with GRU + Self-
attention, 2019. URL https://github.com/
gucci-j/imdb-classification—gru.

A EXPERIMENTAL SETTINGS
A.1 Datasets

Caltech256 Caltech256 is a dataset of 30,607 real-world
images (Griffin et al., 2007). It contains 257 classes with 256
object classes and one additional clutter class. Each class
has at least 80 real-world images. This dataset is widely-
used for evaluating the object recognition performance of a
deep learning model in the real world. Caltech256 contains
several L mode images. We convert the L mode images in
Caltech256 into RGB images, and we randomly split the
dataset into 80% training data and 20% testing data.

CelebA (Subset) CelebA is a large-scale dataset with
more than 200K face images from 10177 identities (Liu
et al., 2015). We use a subset of CelebA from (Na, 2021)
for identity recognition, which contains 4263 train images
and 1215 test images from 307 identities. Each identity has
more than 15 images. The task objective is to identify the
person among the 307 identities based on the face image.

ImageNet ImageNet is a large-scale image database
(Deng et al., 2009). The dataset contains 1281167 train-
ing images and 50000 validation images from 1000 classes.
We use the shell script from (Pytorch, 2016) to move the
training and validation images to labeled subfolders.

IMDB IMDB is a dataset of totally 50000 movie reviews
for sentiment classification, 25000 for training and 25000
for testing (Maas et al., 2011). The task objective is to
classify whether a review is positive or negative. In the

experiments, we set “positive” as label 0 and “negative” as
label 1.

RSD Road Sign Detection (RSD) is a dataset of road sign
images from (mak, 2020), which contains 877 images from
4 distinct classes for the objective of road sign detection. In
our experiments, the task objective is to predict the bounding
box around the road sign, which is achieved by minimiz-
ing the ¢; loss between the predicted box coordinates and
the true coordinates. Thus, this task can be viewed as a
regression task.

https://github.com/gucci-j/imdb-classification-gru
https://github.com/gucci-j/imdb-classification-gru

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

A.2 Neural Networks

ResNet For image classification, we use resnetl18
from torchvision.models. ResNet-18 consist of 18
weights layers with 17 convolutional layers and one fully-
connected layer (He et al., 2016). On RSD, we follow (rsd,
2020) to use ResNet-34. ResNet is currently one of most
commonly-used networks for computer vision.

VGG Forimage classification, we also use the vggl6_bn
(with batch normalization) from torchvision.models.
VGG-16 consists of 16 weights layers, with 13 convo-
lutional layers and 3 fully-connected layers (Simonyan
& Zisserman, 2014). To manipulate the VGG from
torchvision.models, we can replace the resnet
in the code in Listing 3 with vgg and insert the code into
the setup . py of the adversary’s package. To further hide
its purpose, the adversary can also compile the manipula-
tion code into a binary file and execute it by one line in

setup.py.

RoBERTa We use the RoBERTa model for the text classi-
fication experiments. ROBERTa is proposed by (Liu et al.,
2019b) (with more than 3000 citations). The implemen-
tation of RoBERTa is based on BERT with modifications
on key hyperparameters and the objective, which achieves
better performance than BERT on several benchmarks.

A.3 Backdoor Triggers

Random Patch Trigger (R-Patch) We set the edge of
trigger as max(2, int(img-dim/28)) in the manipulated
resnet . py, where img_dim refers to the edge dimension
of the images and can be obtained immediately when the
data is feed into the forward function. This setting results in
a 8 x 8 trigger for the 3 x 224 x 224 images. We generate a
mask m to place the top-left corner of the trigger at (1, 1),
and we randomly generate p from the uniform distribution
U(0, 1). The random patch trigger is shown in Fig. 12(a).

Smile Sticker Trigger (S-Patch) The original sticker is a
square sticker. We resize the original smile sticker to size
16 x 16 and place its top-left corner at (144, 144). We then
modify the sticker to be a circle sticker by generating a mask
m for the sticker so that the white pixels surrounding the
sticker are masked. Specifically, for the original sticker, if
the sum of the three channel pixel value of a pixel is larger
than or equal to 2.7' (close to a completely white pixel with
the sum 3), then we set the corresponding element of the m
as 0. After applying this mask, we obtain the trigger as in
Fig. 12(b).

"The pixel value range is [0, 1].

Blended Backdoor Trigger For the blended backdoor
attack, we follow (Chen et al., 2017) to use the “Hello Kitty”
pattern as the trigger pattern, which is shown in Fig. 12(c).
We set the blended ratio as A = 0.1.

(a) R-Patch (b) S-Patch (c) Blended

Figure 12. Backdoor Triggers.

Text Trigger The text trigger we use in the experiments
is two “#” at the beginning of text. If the developers use
a certain pre-trained tokenizer from Hugging Face, then
the adversary will know the index of “#” since it also has
access to the tokenizer. For example, if the developer uses
RobertaTokenizerFast from the transformers
package, the index of “#” is 10431. The adversary can
directly add two 10431 at the beginning of the sequences of
the indices in the model forward function.

B ADDITIONAL EXPERIMENTAL RESULTS

= Benign
s Our Attack o 2000
mm Code Poison

‘ VGG-16 ResNet-18

Figure 13. Time and memory overhead measured on a 32 GB Tesla
V100 GPU with num_workers=2. Note that these measurements
can vary a lot with different settings.

= Benign
mn Our Attack
mm Code Poison

=
2

e per epoch (s)

Tra

-
ResNet-18

VGG-18

B.1 Computational Overhead

To analyze the computational cost, we first consider forward
and backward propagation. As shown in Fig. 4 (in the main
context), our attack only forwards few more samples (x;
in Fig. 4) and does not need additional backward propaga-
tion. In practice, forward propagation usually needs less
computational time than backward propagation. Thus, our
attack usually requires not much additional cost regarding
propagation. Another cause of the additional cost is synchro-
nization due to the indexing operations when creating the
fake outputs, but this additional cost is also limited. In total,
our attack does not add much memory and time overhead.

We compare the training time and memory usage of our
attack and (Bagdasaryan & Shmatikov, 2021)’s code poi-
soning attack. We show the results in Fig. 13. For code

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

poisoning, the GPU will run out of memory on VGG-16
with the batch size being set as 128. Thus, we set the batch
size as 64 here. As shown in Fig. 13, our attack is more effi-
cient than the code poisoning attack since code poisoning
needs both additional forward and backward propagation
to insert a backdoor. To further reduce the overhead, we
can simply reduce « to a smaller value, or we can apply
the methods in (Bagdasaryan & Shmatikov, 2021). Since
the additional cost is not much, we do not discuss how to
further reduce the cost in detail here.

We note that, as mentioned in (Bagdasaryan & Shmatikov,
2021), time and memory overhead can vary a lot with dif-
ferent settings and configurations on different devices. For
example, in our experiments, the training time on ResNet-
18 with the setting num_workers = 2 is approximately
half of the training time with the setting num_workers =
0. The memory also varies a lot with different batch size
settings. Thus, developers can only use time and mem-
ory for detecting code poisoning or our attack with known
stable baselines for varied training settings and devices (Bag-
dasaryan & Shmatikov, 2021). However, those baselines
are not available in most cases (Bagdasaryan & Shmatikov,
2021), especially when the developers train models on their
own datasets with their own training code.

100 100

Test Acc 25 —— TestAcc
Backdoor Test Acc Backdoor Test Acc

"0 10 20 30 "0 10 20 30
epoch epoch

(a) Caltech R-Patch « = 0.01 (b) Caltech S-Patch a = 0.01

Acc (%)

25 —— TestAcc 26| —— TestAce

Backdoor Test Acc Backdoor Test Acc

"0 10 20 30 "0 10 20 30
epoch epoch

(c) Caltech Blended o = 0.01 (d) Caltech R-Patch @ = 0.1

100 100

Acc (%

(e) Caltech S-Patch « = 0.1 (f) Caltech Blended @ = 0.1

Figure 14. The results on Caltech256 on ResNet-18.

Caltech256 | Trigger Test Acc Backdoor Acc
R-Patch 80.97% 97.66%
a=0.01 | S-Patch 81.05% 99.92%
Blended 81.28% 95.12%
R-Patch 81.53% 99.89%
a=0.05 | S-Patch 81.22% 99.98%
Blended 80.79% 99.13%
R-Patch 81.18% 99.93%
a=0.1 S-Patch 81.02% 100%
Blended 81.23% 99.41%
R-Patch 80.01% 100%
a=0.5 S-Patch 80.53% 100%
Blended 78.90% 99.51%

Table 3. Ablation study on the hyperparameter o.

B.2 Hyperparameter Study

We conduct an ablation study on the main hyperparameter
« in our attack on Caltech256 and ResNet-18 with four
settings o« = 0.01,0.05,0.1,0.5. We list the experimental
results in Table 3, which shows that our attack is not very
sensitive to the change of . However, if we set a as a
very small value e.g., o = 0.01, the backdoor accuracy
may experience some fluctuations at the beginning of the
training process, as shown in Fig. 14. Also, with the setting
o = 0.01, the final backdoor accuracy may decrease by no
more than 5% on Caltech256, as shown in Table 3. On the
other hand, if we set « as a very large value e.g., « = 0.5,
the model accuracy slightly decreases by about 2% for the
blended backdoor attack.

C DETAILED COMPARISON WITH CODE
POISONING

Since code poisoning (Bagdasaryan & Shmatikov, 2021)
(USENIX Security 21) and our work actually both conduct
backdoor attacks by manipulating the “ML code supply
chain”, we provide a detailed comparison between code
poisoning and our attack in three aspects.

C.1 Stealthiness

In general, the stealthiness of our attack can be attributed to
two reasons: (1) Our attack does not need control over the
developers’ training datasets, training code, or the model
training process. (2) Most developers do not usually check
the source code of a PyPI package, especially when the pack-
age can be installed and used without errors. Although code
poisoning (Bagdasaryan & Shmatikov, 2021) only changes
the loss computation part, it is less stealthy than our attack
due to its abnormal blind loss. To be specific, we show (Bag-
dasaryan & Shmatikov, 2021)’s released code™ in Listing 3,
where the batch variable incorporates the data samples
and labels of the batch. The effectiveness of (Bagdasaryan
& Shmatikov, 2021)’s code poisoning attack relies on the

"https://github.com/ebagdasa/backdoors101

https://github.com/ebagdasa/backdoors101

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

blind loss function compute_blind_loss, which needs
the data samples, labels, and the model as input. However,
the regular PyTorch cross-entropy loss function only needs
the model outputs and labels as input. Due to the input
incompatibility, the adversary generally cannot exploit the
integrity vulnerability to stealthily conduct (Bagdasaryan
& Shmatikov, 2021)’s code poisoning attack, e.g., manip-
ulating the CrossEntropyLoss class in loss.py in
the locally installed t orch package. We discuss the only
exception in the next subsection. Moreover, although many
developers do not inspect a PyPI package, they usually re-
vise or refine the training code (e.g., the training code in
Fig. 3 in the main context) to ensure that the training code
can apply to their tasks. Thus, even if the developers occa-
sionally fork (Bagdasaryan & Shmatikov, 2021)’s poisoned
source code, after revising the training code, the developers
can easily find that the completely blind loss function may
be abnormal and replace it with a common loss function, as
shown in Listing 4.

C.2 Applicability

Our attack is applicable to commonly-used model
(sub)packages such as torchvision.models and
transformers. In contrast, without control on the de-
velopers’ training code, code poisoning may not be a gener-
ally applicable attack. (Bagdasaryan & Shmatikov, 2021)
provides an example in its appendix to show the appli-
cability of code poisoning to transformers repo, be-
cause transformers enables the feature to compute
the loss as part of its model forward function. Alas,
torchvision.models does not enable that feature.
Thus, the example in (Bagdasaryan & Shmatikov, 2021)’s
appendix is not applicable to torchvision repo. More-
over, even importing models from t ransformers, many
developers still use the common loss function as in (Mishra,
2020) rather than compute the loss as part of the model
forward function as in (Bagdasaryan & Shmatikov, 2021)’s
example. Therefore, (Bagdasaryan & Shmatikov, 2021) is
hardly applicable to commonly-used model packages/repos
in practice.

C.3 Avoidability

Even without the knowledge about (Bagdasaryan &
Shmatikov, 2021)’s attack, developers can easily avoid (Bag-
dasaryan & Shmatikov, 2021)’s attack by replacing the ab-
normal blind loss function with the regular PyTorch cross-
entropy loss function as in Listing 4, or writing their own
loss function. Note that implementation of a regular loss
function only needs few lines of code in most cases. Some
readers may argue that, without the knowledge about our
attack, developers can also avoid our attack by writing the
networks’ code or copying the networks’ code from an-
other source. However, implementing the networks requires

much more manual work than implementing the loss func-
tion, and copying code from another source exposes the
developers to more risks. More importantly, if developers
do not use the networks from torchvision.models
and transformers, they could not load the pre-trained
weights associated with those model packages to improve
model performance and save computational cost.

for i, data in tgdm(enumerate (train_loader)):

batch = hlpr.task.get_batch (i, data)

model.zero_grad()

loss = hlpr.attack.compute_blind_loss (model,
criterion, batch, attack)

loss.backward/()

optimizer.step()

Listing 3. The code released by (Bagdasaryan & Shmatikov,
2021): Code poisoning by blind loss function
(computeblind_loss).

criterion = torch.nn.CrossEntropyLoss ()

for i, data in tgdm(enumerate (train_loader)) :
batch = hlpr.task.get_batch(i, data)
model.zero_grad ()

outputs = model (batch.inputs)

loss = criterion (outputs, batch.labels)
loss.backward/()

optimizer.step ()

Listing 4. Replace the blind loss with a commonly-seen loss
function.

D POTENTIAL DEFENSES

To defend against our attack, the developers can rein-
stall all the (model) packages, e.g., torchvision and
transformers, after installing a new PyPI package.
However, this simple method may affect the other processes,
and the developers cannot tell whether a package is mali-
cious or not. The developers can also inspect every package
before installing it. However, this method requires much
manual labor, and its effectiveness depends on whether the
developer is careful and professional. To address these
issues, we propose an automatic defense based on file com-
parison against our attack.

D.1 File Comparison

The basic idea of our automatic defense is to check file in-
tegrity by comparing the . py files in the locally installed
packages under a basic environment and the developer’s
working environments. The basic (conda) environment is
created under the root administrator account to ensure that
the adversary’s package does not have the permission to
manipulate the . py files installed under the basic environ-
ment. An automatic program is executed under the basic
environment to compare the . py files installed under the
basic environment and the corresponding . py files installed
under the working environments, as shown in Fig. 15.

To set up the defense, the developers first install all the
trusted packages that they want to check under the basic

w2

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

environment. Then, they can collect and store the paths of
the . py files in those locally installed packages. The auto-
matic program iterates over all the working environments
under the developers’ account’f, and compare the . py files
installed under the basic environment and the working en-
vironments by filecmp.cmp (). If filecmp.cmp ()
returns False, then the program reports an error. If an error
is reported, the developers will know that the package that
they just installed may be a malicious package. We note
that this automatic defense is very efficient since the time
for comparing the .py filesin torchvision.models
under two conda environments is only approximately 0.002s.

cmp

Root
Administrator

Developer
cmp

work env 2

vgg-py
resnet.py

work env 1

vgg-py
resnet.py

cmp

basic eny

Raise an
error when
detecting
manipulation

vgg.-py

resnet.py

cmp

Figure 15. Our proposed defense: In case that the adversary manip-
ulates the __init__.py in the model packages, we also compare
_init__.py.

D.2 Computational Graph

Since our attack needs to add the backdoor trigger and create
fake outputs instead of using the original outputs, it will
change the computational graph, as illustrated in Fig. 16.
Thus, our attack is detectable if the developers generate the
correct model graphs. However, if the developers use locally
installed packages, such as PyTorchViz (tor, 2018), to
generate the graphs, it is still possible that our attack may
bypass the defense by manipulating the . py files in those
locally installed packages.

from torchviz import make_dot

from torchvision.models import resnetl8

model = resnetl8()

x = torch.zeros([1, 3, 224, 224])

dot = make_dot (var=model (x), params=dict (model.
named_parameters()))

Listing 5. Create model graph based on PyTorchViz.

In this paper, we mainly use PyTorchViz (tor, 2018) as
the example since it is a well-known PyTorch model vi-
sualization package with more than 2k stars on GitHub.
We show how to manipulate HiddenLayer (hid, 2018)
in the appendix. The adversary can check which model
visualization package may be used by the developer with

""The names of the environment usually can be found in di-
rectory of “/home/account_name/anaconda3/envs/” if using ana-
conda3.

find_spec () in the setup.py. Listing 5 provides the sam-
ple code to generate the model graph of resnet 18 from
torchvision.models based on PyTorchViz.

A simple way to bypass the defense is to replace the cor-
rupted model with a normal model inside the make_dot
function before it starts to build the graph. To replace
the model, the adversary may need to insert the manipu-
lation code like Listing 6 into the setup.py. Here the
adversary can also compile the manipulation code into a
binary file to hide its purpose. By executing manipula-
tion code like Listing 6 with the setup . py, the adversary
can place real model . py files (e.g.,, real_resnet.py)
into the locally installed torchviz package and replace
the original dot . py with the manipulated dot . py, i.e.,
dot_temp.py. In dot_temp.py, we add the manipula-
tion code like Listing 7 inside the make_dot function to
replace the manipulated model with a benign model. The
adversary can check the params variable to infer the model
that the victim wants to visualize and import the correspond-
ing benign model for replacement. If params is None, the
adversary may infer the model by the grad_fn attribute of
the var variable.

from torchviz import dot
dir_path = dot.__file_ [0:-6]

os.system(’cp real_resnet.py {}’.format (dir_path))
file path = dot._ file_
os.system(’cp dot_temp.py {}’.format (file_path))

Listing 6. A code example for manipulating the dot . py.

def make_dot (var, params=None,) 8
from real_resnet import resnetl8

model = resnetl8()

var = model (torch.zeros ([1, 3, 224, 224]))
params=dict (model.named_parameters())

Listing 7. Replace the manipulated model with a normal model at
the beginning of make_dot in dot . py.

With our method, the code poisoning attack (Bagdasaryan
& Shmatikov, 2021) may also be able to bypass the com-
putation graph based defense proposed in (Bagdasaryan &
Shmatikov, 2021), if the developers build the graphs based
on commonly-used packages such as PyTorchViz.

E EXTENDED RELATED WORK

Gu et al. (Gu et al., 2017b) first studied the vulnerability
of deep learning models to backdoor attacks by randomly
selecting a few samples from the training dataset, adding the
backdoor trigger to those samples, and following the adver-
sary’s goal to set their labels. Chen et al. (Chen et al., 2017)
first introduced blended attacks by adding a global stealthy
trigger to the backdoor images. Following (Gu et al., 2017b;
Chen et al., 2017), (Turner et al., 2018; Xue et al., 2020;
Nguyen & Tran, 2020; Carlini & Terzis, 2021) proposed
more data poisoning methods to make backdoor attacks
more effective or stealthy. Beyond data poisoning, Liu et al.

Be Careful with PyPI Packages: You May Unconsciously Spread Backdoor Model Weights

Figure 16. Pseudo Computational graphs: The left graph refers to
a normal model, and the right graph refers to the model with our
manipulated model forward function.

(Liu et al., 2017) proposed to generate a trigger by inversing
the model and retrain the model with external data to insert
a backdoor. Tan & Shokri (Shokri et al., 2020) designed an
adaptive adversarial training algorithm to bypass backdoor
detection. Shen et al. (Shen et al., 2021b) mapped backdoor
inputs to a predefined representation of a pre-trained model
to implant a backdoor into the downstream tasks. Hong
et al. (Hong et al., 2021) proposed to directly manipulate
the model parameters to insert a backdoor. Bagdasaryan et
al. (Bagdasaryan & Shmatikov, 2021) proposed to manipu-
late loss computation to insert a backdoor into the trained
models. In federated learning, Xie et al. (Xie et al., 2019)
proposed to decompose a global trigger into separate local
patterns to make backdoor attacks more stealthy.

In terms of backdoor defenses, Liu et al. (Liu et al., 2018)
combined pruning and fine-tuning to weaken potential back-
doors. Tran et al. (Tran et al., 2018) proposed to use spectral
signatures to identify and remove the backdoor samples.
Huang et al. (Huang et al., 2019) proposed an efficient
backdoor detection method based on output explanations.
Wang et al. (Wang et al., 2019) formulated an optimization
problem to reverse-engineer the potential triggers for each
label and detected the trigger outlier by median absolute
deviation. Liu et al. (Liu et al., 2019a) proposed to search
for the compromised neurons for backdoor detection. Dong
et al. (Dong et al., 2021) proposed a gradient-free opti-
mization algorithm to reverse-engineer the potential triggers
under the black-box setting. (Bagdasaryan & Shmatikov,
2021) proposed to build computational graphs to detect code
poisoning attacks. Shen et al. (Shen et al., 2021a) acceler-
ated backdoor detection on models with many classes by
K-Arm optimization. (Li et al., 2020b; Gao et al., 2020; Guo
et al., 2021) provide more detailed introduction on recent
advances in backdoor learning.

