
FEDTREE: A FEDERATED LEARNING SYSTEM FOR TREES

Qinbin Li 1 2 Zhaomin Wu 1 Yanzheng Cai 3 Yuxuan Han 1 Ching Man Yung 1 Tianyuan Fu 1 Bingsheng He 1

ABSTRACT
While the quality of machine learning services largely relies on the volume of training data, data regulations such
as the General Data Protection Regulation (GDPR) impose stringent requirements on data transfer. Federated
learning has emerged as a popular approach for enabling collaborative machine learning without sharing raw data.
To facilitate the rapid development of federated learning, efficient and user-friendly federated learning systems
are essential. Despite many existing federated learning systems designed for deep learning, tree-based federated
learning systems have not been well exploited. This paper presents a tree-based federated learning system under
a histogram-sharing scheme, named FedTree, that supports both horizontal and vertical federated training of
GBDTs with configurable privacy protection techniques. Our extensive experiments show that FedTree achieves
competitive accuracy to centralized training while incurring much less computational cost than the other generic
federated learning systems.

1 INTRODUCTION

Federated Learning (FL) (Yang et al., 2019; Kairouz et al.,
2019; Li et al., 2019) has been a very attractive research
direction that enables collaborative machine learning among
multiple parties without exchanging raw data. It has wide
real-world applications including healthcare (Rieke et al.,
2020; Pfitzner et al., 2021), finance (Long et al., 2020), and
mobile services (Hard et al., 2018). There have been many
FL systems (Liu et al., 2021; Beutel et al., 2020; He et al.,
2020; Bonawitz et al., 2019) that play important roles in
advancing the development and deployment of FL.

Nonetheless, tree-based models, featuring efficiency and
explainability, have received less attention from the FL com-
munity despite their ubiquitous adoption in real applications.
Most existing FL systems do not exploit trees in their design.
Their systematical design is based on the FedAvg (McMa-
han et al., 2017) framework, which averages the local mod-
els to update the global model based on stochastic gradient
descent (SGD). However, the model parameters of trees are
non-differentiable and federated training of trees cannot be
achieved by FedAvg.

Gradient Boosting Decision Trees (GBDT) is a popular
tree model that has won many awards in machine learning
and data mining competitions (Chen & Guestrin, 2016).
Given the weakness of a single tree in fitting complicated

1National University of Singapore, Singapore 2UC Berkeley,
USA 3Tsinghua University, China. Correspondence to: Qinbin Li
<liqinbin1998@gmail.com>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

data distribution, GBDT sequentially trains multiple trees
to boost the model performance, where each tree is trained
to fit the residual between the prediction values of previous
trees and the label. GBDT has been successfully deployed in
many applications (Richardson et al., 2007; Kim et al., 2009;
Burges, 2010). Given the superiority of GBDT in efficiency
and effectiveness compared to neural networks especially
for tabular data, it is necessary to develop a specialized
federated learning system for GBDT.

While existing GBDT systems such as XGBoost (Chen
& Guestrin, 2016), LightGBM (Ke et al., 2017), and Cat-
Boost (Dorogush et al., 2018) support the distributed train-
ing, they cannot be applied to the federated setting with
privacy constraints. These systems assume that all data are
in a host server that splits the data and distributes the jobs
to each client machine in each round using tools such as
Spark (Zaharia et al., 2010). This approach is not applicable
in the federated setting, where the data are stored in clients
and the server has no access to clients’ data. Thus, we need
to design new federated GBDT algorithms and systems.

A key question of such system design is how to select the
knowledge for exchanging in federated GBDT. Model pa-
rameters and gradients are the key knowledge for sharing
in FedAvg. However, as directly averaging the models is
not possible in GBDT, we need to reconsider the format
of knowledge for sharing. This knowledge should satisfy
three requirements for practicability: 1) Effectiveness: The
knowledge should contain the necessary information for
accurate GBDT training and can be easily aggregated; 2)
Efficiency: The size of knowledge should be small to re-
duce both communication and computation costs; 3) Pri-

FedTree: A Federated Learning System For Trees

vacy: The knowledge should be compatible with privacy
techniques to provide rigorous privacy guarantees. By in-
vestigating the operations inside a tree node, we find that
histogram (i.e., sums of segmented gradients) is a key statis-
tic in GBDT training and satisfies the communication and
privacy requirements.

We develop a unified histogram-sharing scheme for hori-
zontal and vertical FL settings, in which parties compute
local histograms and the server aggregates the histograms
for subsequent updates. Based on the scheme, we design our
aggregation and privacy operators to enable accurate and
privacy-preserving knowledge sharing applicable to various
federated learning scenarios. Utilizing these operators and
the training scheme, we create horizontal and vertical fed-
erated GBDT systems that support different privacy levels.
Additionally, we optimize communication and computation
speeds by leveraging the node-independent properties of
trees.

Through careful algorithmic design and engineering efforts,
we implement the first comprehensive tree-specialized FL
system FedTree that enables fast and accurate training of
GBDT in various federated settings. FedTree supports stan-
dalone FL simulation on a single machine and distributed
computing for real FL deployment on various scenarios with
configurable privacy techniques. Our evaluation shows that
FedTree can achieve almost the same accuracy as central-
ized learning while achieving up to 81x speedup compared
with other generic FL systems.

Our work has the following main contributions: 1) FedTree
is the first comprehensive federated learning system special-
ized for trees; 2) FedTree demonstrates a comprehensive
histogram-sharing strategy, facilitating both horizontal and
vertical FL; 3) By incorporating cryptographic and differ-
ential privacy methods, FedTree provides rigorous privacy
guarantees; 4) FedTree incorporates effective techniques to
expedite computation and communication by capitalizing
on the inherent properties of trees within federated contexts.

2 BACKGROUND

2.1 Gradient Boosting Decision Trees

The GBDT model has not only won many awards in machine
learning and data mining competitions (Chen & Guestrin,
2016), but also has been widely used in real-world appli-
cations (Richardson et al., 2007; Kim et al., 2009). An
example of GBDT with two trees is shown in Figure 1. In
each tree, split nodes split the input into two directions and
leaf nodes contain the prediction values. The final prediction
value is the sum of prediction value of each tree.

The training of the GBDT model is in a sequential manner.
In each iteration, a new tree is trained to fit the residual

Age<70?

Paper

accepted?

0.664 -0.345

-0.735

ML/Sys

researcher?

0.234 -0.568

Y

Y

N

N

Y N

𝑦𝑝 = 0.664 + 0.234 = 0.898

split node leaf node

Figure 1. An example of GBDT predicting whether a person will
attend MLSys conference.

between the prediction and the target. Formally, given a
loss function l and a dataset D = {(xi, yi)}ni=1, GBDT
minimizes the following objective function

L =
∑
i

l(yi, ŷi) +
∑
k

Ω(fk), (1)

where ŷi is the prediction value, Ω(·) is a regularization
term and fk denotes a decision tree. At the t-th iteration
with second-order approximation (Chen & Guestrin, 2016),
GBDT minimizes the following objective function

L̃(t) =
∑
i

l(yi, ŷ
t−1
i + ft(xi)) + Ω(ft)

≈
∑
i

[l(yi, ŷ
t−1
i) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft)

(2)
where gi = ∂ŷ(t−1) l(yi, ŷ

(t−1)) and hi =

∂2
ŷ(t−1) l(yi, ŷ

(t−1)) are first and second order gradi-
ent statistics on the loss function.

We use I to denote the instance ID set in the current node.
Then, if the current node is a leaf node, to minimize Eq (2),
the optimal leaf value is

V = −
∑

i∈I gi∑
i∈I hi + λ

(3)

If the current node is a split node, suppose the split value
splits I into IL and IR. Then, the gain of the split value is
defined by the loss reduction after split, which is

S =
(
∑

i∈IL
gi)

2∑
i∈IL

hi + λ
+

(
∑

i∈IR
gi)

2∑
i∈IR

hi + λ
. (4)

Since it would be computationally expensive to traverse all
the possible split values to find the one with the maximum
gain, histogram-based training is usually adopted in practice.
In histogram-based training, a small number of cut points as
possible split candidates are proposed first and the gradient
histogram can be computed based on the cut points. Then,
the best split value is determined among the cut points using
the gradient histogram. In such a way, the computation time
can be significantly reduced.

FedTree: A Federated Learning System For Trees

2.2 Federated Learning

FedAvg (McMahan et al., 2017) has been a de facto ap-
proach for FL. There are four steps in each round of FedAvg.
First, the server sends a global model to the parties. Sec-
ond, the parties perform SGD to update their models locally.
Third, the local models are sent to a central server. Last, the
server averages the models to produce a global model for the
training of the next round. Although FedAvg is popular and
powerful, it cannot be used to train non-differentiable mod-
els such as GBDT. For decision trees, the model parameters
including the split values and leaf values are determined by
statistics and cannot be updated by gradient descent. Thus,
it is necessary to design specialized algorithms and systems
for decision trees in a federated setting.

Federated GBDT Systems There have been many FL sys-
tems nowadays. Among these systems, only a few systems
support training trees in a federated setting here. FATE (Liu
et al., 2021) is an FL platform that supports many kinds of
machine learning models including GBDTs (Cheng et al.,
2019). However, its federated GBDT algorithm does not
follow the typical server-clients setting (e.g., requiring an
additional arbiter). Moreover, as it is a complicated sys-
tem, it is not easy to deploy and it does not exploit the
unique attributes of trees to speed up the training. Secure
XGBoost (Law et al., 2020) uses secure hardware enclaves
such as Intel SGX to enable the collaborative training of
XGBoost in a cloud. The requirement for a cloud with
secure hardware enclaves limits the applications a lot. More-
over, as the training is conducted on encrypted data, Secure
XGBoost is quite slow. FedLearner (fed) supports feder-
ated GBDT in the vertical FL setting. However, it does not
provide any documentation about its algorithm.

Federated GBDT algorithms Besides the above systems,
there are some studies that exploit federated GBDTs algo-
rithms. Zhao et al. (2018) and Li et al. (2020a) propose to
conduct horizontally federated GBDTs by transferring trees,
i.e., each party trains some trees and transfers them to other
parties for boosting. Such tree-level communication has a
large accuracy gap between centralized GBDT since only
local data is used in each tree. Fang et al. (2021) and Wu
et al. (2020) propose to train vertical federated GBDT uti-
lizing secure multi-party computation techniques for many
operators, which is very computational-expensive. All the
above studies do not consider the unified architecture to
enable both horizontal and vertical FL and optimizations to
improve efficiency from the systematic perspective.

2.3 Homomorphic Encryption

Homomorphic encryption (Acar et al., 2018) enables users
to perform computations on the ciphertext without decrypt-
ing it. Specifically, additively Homomorphic Encryption

(HE) supports the addition operations on the ciphertexts. A
classic additively HE approach is Paillier cryptosystem (Pail-
lier, 1999), which generates a public key kpub for encryption
and addition and private key kpri for decryption. We use
Dec(·) to denote the decryption function, ∥·∥ := Enc(·) to
denote the ciphertext, and ⊕ to denote the addition opera-
tion on the ciphertexts. Then, for any two number a and b,
we have Dec(∥a∥ ⊕ ∥b∥) = a+ b.

2.4 Differential Privacy

Differential Privacy (Dwork et al., 2014) (DP) is a popular
standard of privacy protection and has been widely used to
protect the machine learning models (Abadi et al., 2016). It
guarantees that the probability of producing a given output
does not depend much on whether a particular data record
is included in the input dataset or not. The definition of
ε-Differential Privacy is below.
Definition 1. (ε-Differential Privacy) LetM : D → R be
a randomized mechanism with domain D and range R. M
satisfies ε-differential privacy if for any two adjacent inputs
d, d′ ∈ D and any subset of outputs S ⊆ R it holds that:

Pr[M(d) ∈ S] ≤ eε Pr[M(d′) ∈ S]. (5)

3 SYSTEM OVERVIEW

As shown in Figure 2, FedTree has five major components
to enable the easy usage and deployment of federated trees
in real-world applications.

Interfaces FedTree supports two kinds of interfaces for
ease of use: command-line interface (CLI) through a con-
figuration file and Python interface aligned with scikit-
learn (Pedregosa et al., 2011). Users only need to input
the parameters (e.g., number of parties, federated setting) to
define the training scenario. Then, FedTree can be launched
with a one-line command.

Environment FedTree supports standalone simulation
and distributed computing. Standalone simulation is mainly
for research purposes, where it can simulate the federated
setting in a single machine. We use CUDA (Sanders & Kan-
drot, 2010) to utilize GPUs for encryption acceleration. For
real deployment on multiple machines, we adopt gRPC as
the communication protocol.

Frameworks The core algorithms of FedTree are horizon-
tal and vertical FL of GBDTs. In the horizontal FL setting,
each party shares the same feature space but different sam-
ple spaces. In the vertical FL setting, each party shares the
same sample space but different feature spaces. Besides
horizontal and vertical FL, FedTree also integrates a simple
FL framework that aggregates the local trees of different
parties for ensemble.

FedTree: A Federated Learning System For Trees

Privacy Enhancement

Frameworks

Environment

Standalone
simulation

Distributed computing

gRPC gRPC

GPUsCPUs

CLI & Python Interface

n_parties=10
mode=horizontal
privacy_tech=HE
…

Horizontal FL Vertical FL

Federated Ensemble Learning

Homomorphic Encryption

Secure Aggregation

Differential Privacy

Models

GBDTs/Random ForestDecision Tree

Boosting
…

Bagging

Classification Regression

Figure 2. System components of FedTree.

Privacy Enhancement We provide HE and SA to pro-
tect the communicated messages without losing the model
accuracy. DP is also implemented as an option to provide
rigorous privacy guarantees.

Models The core supported model of FedTree is GBDT,
which is based on the federated operators for training each
tree node. FedTree also supports random forests as a plugin
by applying instance bagging when training each tree. Mul-
tiple objective functions such as square loss, logistic loss,
and softmax loss have been implemented to support both
classification and regression tasks.

Next, we introduce the core design methodology and the
major optimization techniques in FedTree.

4 FEDERATED GBDT DESIGN

In this section, we introduce the design methodology of
FedTree. We start by revisiting the building process in cen-
tralized GBDT training in Section 4.1, which motivates us to
use histograms as the key knowledge for transferring. Next,
we introduce the aggregation operators and privacy mech-
anisms in Section 4.2 and Section 4.3, respectively. Then,
in Section 4.4, we introduce FedTree training frameworks
in the horizontal and vertical FL settings with our designed
architecture, operators, and privacy mechanisms.

4.1 Building Block - A Single Node

We start by investigating the process of building a single
tree node in the centralized setting. Given the instance set
in the current node, we first need to construct the histogram
according to the cut points and the gradients. Given the cut
points {ci}Bi=1 (B is the number of cut points) of feature
a, supposed the left instance ID set split by cut point ci is
denoted as Ii (i.e., Ii = {k : xa

k ≤ ci}), the histogram is

constructed as a vector of gradient pairs. Formally,

H =

[(∑
k∈Ii

gk,
∑
k∈Ii

hk

)]B
i=1

. (6)

The sum of gradients of right-side instances can be easily
computed by the sum of all gradients minus the histogram
for the left one (i.e., HB − Hi). After constructing the
histogram, we can compute the gain of each cut point by
Equation (4) and select the cut point with the maximum
gain as the split value. If the gain is always smaller than
zero or the tree reaches the pre-defined maximum number
of depth, the current node is a leaf node and the leaf value
is computed by Equation (3). Figure 3 summarizes the
process of building a node. We observe that the histogram
has the following nice properties: 1) The histogram is the
only required statistic to update the node’s value; 2) The
histogram is usually small, which has a low dimension equal
to the number of cut points; 3) The histogram naturally
preserves the privacy of raw data in a level as it does not
contain the raw feature values. Considering effectiveness,
efficiency, and privacy, the histogram is a very appropriate
choice for sharing in the federated setting. Thus, we develop
our histogram-based FL architecture as below.

Histogram-based Learning Based on histogram sharing,
we design our unified federated architecture as shown in
Figure 4 and Algorithm 1. At the beginning of FL, the
parties communicate with the server to get the initialized
parameters (e.g., public keys for encryption) (line 1). In each
round, communicating in a node-level, the parties compute
the histograms locally and send the histograms to server
with optional privacy mechanisms to protect the histograms
(line 6). Then, the server aggregates the histograms and
computes the node’s parameter (line 8). Next, the parties
receive the node from the server to further update the local

FedTree: A Federated Learning System For Trees

gradientscut points

histogram

data

split

value
leaf value

dataL dataR

1. Compute

Histogram

2. Update tree

Figure 3. The process of updating a tree node.

statistics (line 10). If the node is a split node, the parties split
the current instance set according to the split value. If the
node is a leaf node, the parties update the prediction value.
Such an architecture is applicable to various FL scenarios,
including horizontal and vertical FL. Next, we introduce the
aggregation operators and privacy mechanisms in detail.

Algorithm 1 The training procedure of FedTree
input Parties P = {P1, ..., PN}, server S, number of trees

T , tree depth d
1: Init(P , S)
2: for t = 1 to T do
3: for depth = 1 to d do
4: for each node in current depth do
5: for i = 1 to N do
6: PartyComputeHistogram(Pi)
7: end for
8: node← ServerAggregate(depth)
9: for i = 1 to N do

10: PartyUpdate(Pi, node)
11: end for
12: end for
13: end for
14: end for

4.2 Histogram Aggregation

4.2.1 Histogram summation

The histogram is to compute the sum of gradients in buckets.
If multiple parties have the feature values of the same feature
(e.g., horizontal FL), we need to merge the local histograms
by summation. Considering a single feature a, we use Cj =
{cji}Bi=1 to denote the cut points of party Pj , Iji = {k :

xa
k ≤ cji} to denote the left instance ID set split by cut point

cji in party Pj , and Hj to denote the local histogram of
party Pj . If the cut points of each party are exactly the same
(i.e., ∀m,n ∈ [N],Cm = Cn), we can easily compute the

histogram for the global data with the same cut points by
summing all the local histograms, i.e.,

H =

(∑
j∈[N]

∑
k∈Ij

i

gk,
∑
j∈[N]

∑
k∈Ij

i

hk)

B

i=1

=
∑
j∈[N]

Hj .

(7)

Inconsistent Cut Points In federated setting, the cut
points locally proposed by each party may not be the same.
One simple solution is to force all parties to have the same
cut points with the help of the server. Specifically, the par-
ties first propose the cut points to the server, which merges
all the cut points and sends back all the cut points to the
parties. The parties use the merged cut points to compute
the histograms. This solution will introduce additional com-
munication costs. Another solution is to directly merge the
local histograms by approximate summation. Specifically,
assume that the m-th cut point of the merged histogram is
cm, which is between two neighboring cut points cji and
cji+1 of party j. Then, assuming the feature values are
uniformly distributed, the sum of gradients of instances
between cji and cm can be approximated by the sum of gra-
dients of instances between cji and cji+1 scaling with the

relative distance (i.e., cm−cji
cji+1−cji

). We have

Hm =
∑
j∈[N]

[
Hj

i + (Hj
i+1 −Hj

i) ∗
cm − cji
cji+1 − cji

]
(8)

Equation (8) is also applicable when the cut point of the
final point is same as a local cut point (i.e., cm = cji).

4.2.2 Histogram concatenation

The above summation only considers the histogram of a
single feature. If the feature values of different features
are distributed in multiple parties (e.g., vertical FL), we
need to merge the histograms of different parties through
concatenation. We use Hj to denote the histogram of party
Pj , then the global histogram can be constructed by

H =

(∑
k∈Ij

1

gk,
∑
k∈Ij

1

hk), ..., (
∑
k∈Ij

B

gk,
∑
k∈Ij

B

hk)

N

j=1

:=

N⋃
j=1

Hj

(9)

Transferring Gradients with Homomorphic Encryption
One possible issue is that some parties may not have the
labels to compute the gradients in vertical FL. In such a set-
ting, we require the host party (i.e., the party with labels) to

FedTree: A Federated Learning System For Trees

data hist

data hist

hist node

update

init agg

update

Initialization1 Local computation2 Aggregation3 Update4

…

function statistic privacy enhancement

Round 1

data

data

data

…

Round 2

…

Figure 4. The architecture of FedTree with histogram-based learning scheme.

share the gradients to the parties without labels. Since gradi-
ents are computed based on the labels and raw gradients may
leak the label information, we apply additive homomorphic
encryption to protect the gradients. Specifically, the host
party uses Paillier cryptosystem (Paillier, 1999) to generate
public key kpub and private key kpri. Then, the host party
encrypts the gradients using kpub and shares the encrypted
gradients and public keys to the parties without labels. The
parties without labels can conduct addition operations on
the encrypted gradients to compute the encrypted histogram.

4.3 Privacy Mechanisms

Threat Model We assume all parties and the server are
honest-but-curious, i.e., they strictly follow the protocol
but may infer sensitive information about others through
the received information. Besides the model parameters
and possibly the encrypted gradients, only the histograms
are the shared information related to the local data. The
gradient is computed by the distance between the prediction
value and the label. Thus, sharing raw histograms may
leak information about the labels of the raw data. Here we
provide two mechanisms to protect the histograms.

Histogram Summation with Secure Aggregation Like
FedAvg, we can also adopt secure aggregation (Bonawitz
et al., 2016) to protect the histograms without accuracy
loss. For every pair of parties (Pi, Pj), they use Diffie-
Hellman (DH) key exchange (Diffie & Hellman, 2022) to
share a common key kij , which is used as noise to encrypt
the histogram. Specifically, for party i, it adds the noises∑

j∈[N] kij−
∑

j∈[N] kji to every element in Hi. Then, the
noises will cancel out with each other when summing the
local histograms. We can still get the correct final histogram
while the local histogram is well-protected.

Histogram Protection with Differential Privacy Al-
though secure aggregation can protect the local histogram,

the global histogram is still known by the server which also
includes the label knowledge about the training data. More-
over, in the case that no histogram summation is applied
(e.g., vertical FL), secure aggregation is not applicable and
each local histogram is known by the server. Thus, we apply
differential privacy to further protect the exchanged his-
togram. For each first-order gradient g, we clip them with a
threshold R (R > 0). With a constant second-order gradient,
the sensitivity of the histogram is 2R. With Laplace mech-
anism (Dwork et al., 2014), when we add noises from the
Laplace distribution with mean 0 and scale 2R

ε (denoted as
Lap(0, 2R

ε)) to the histogram, the output histogram satisfies
ε-Differential Privacy.

4.4 Federated Training Framework

We present the unified training procedure in Figure 4 and
Algorithm 1. Next, we present the detailed operations for
each step in the horizontal and vertical FL settings.

Horizontal FedTree In the horizontal FL setting, each
party has the same feature space but different sample spaces
(e.g., different hospitals have CT images of differential pa-
tients). The horizontal FedTree with optional secure ag-
gregation and differential privacy is shown in Algorithm 2.
First, in the initialization, each pair of parties generates a
shared key using Diffie-Hellman key exchange (lines 1-4).
Then, for the local histogram computation, we clip the gra-
dients, compute the raw histogram, and add the noises from
secure aggregation and differential privacy to the histogram
(lines 5-11). During aggregation, the server computes the
global histogram and updates the value of the current node
(lines 12-19), which is sent to the parties to split the instance
set or update the prediction value (lines 20-25).

Vertical FedTree In the vertical FL setting, each party
has the same sample space but different feature spaces (e.g.,
a bank and an insurance company have the same users but

FedTree: A Federated Learning System For Trees

Algorithm 2 Horizontal FedTree
input Parties P1, ..., PN , server S, threshold R, number of

trees T , tree depth d
1: Init(P , S):
2: for every pair of (Pi, Pj)(i ̸= j) do
3: generate common key kij through DH key exchange
4: end for

5: PartyComputeHistogram(Pi):
6: G← UpdateGradients()

7: G← G/max(1, |G|
R)

8: Hi ← ComputeHistogram(G)
9: Hi ← Hi +

∑
j kij −

∑
j kji

10: Hi ← Hi + Lap(0, 2R
ε)

11: Send Hi to the server

12: ServerAggregates(depth):
13: H←

∑
i H

i

14: if depth = d then
15: Compute leaf value by Equation (3)
16: else
17: Select the cut point with the maximum gain by Equa-

tion (4)
18: end if
19: Send the node information to the parties

20: PartyUpdate(Pi, node):
21: if node is a split node then
22: Split the instance set to leaf and right
23: else
24: Update the prediction value for the instance set
25: end if

collect different features). Moreover, at least one party has
the labels. For ease of presentation, we assume that party
P1 has the labels. Inspired by SecureBoost (Cheng et al.,
2019), we adopt HE to protect the shared gradients to enable
vertical FL. The algorithm is presented in Appendix A. At
the beginning of training, the server generates the public
and private keys for HE (lines 1-3). When computing the
histogram (lines 4-20), the parties first update their gradients
if they have the labels. For the parties that do not have the
labels, the server sends the encrypted gradients to the parties.
The histogram is computed based on the raw gradients or
encrypted gradients. For the aggregation (lines 22-31), the
server decrypts the encrypted histograms and concatenates
all decrypted histograms to compute the split information
or the leaf values, which are sent back to the parties. The
parties use the received information to update the instance
layout or the prediction value for the next round.

Privacy Analysis We analyze the privacy in horizontal
and vertical FedTree as below.

Theorem 1. The parties in Horizontal and Vertical FedTree
satisfy the secure multi-party computation protocol, where
all that the parties can learn is what they can learn from the
final output (i.e., the final model) and their own input.

Proof. During the whole training process, the parties only
transfer the encrypted histograms or gradients to the server,
and the server only transfers the model parameters to the
parties. Thus, the parties can only know the final model.

Theorem 2. The server in Horizontal and Vertical FedTree
only knows the aggregated histogram, which satisfies ε-DP.

Proof. In both settings, the parties only transfer the his-
tograms to the server. The local histogram satisfies ε-DP. In
horizontal FedTree, since each party has disjoint data, due
to the parallel composition property, the global histogram
also satisfies ε-DP. In vertical FedTree, since each dimen-
sion has added the noises from the same distribution, the
concatenated row also has injected noises from Lap(0, 2R

ε).
Thus, the global histogram also satisfies ε-DP.

5 OPTIMIZATION

FedTree designs the aggregation at a node-level to ensure
the effectiveness of federation. However, the computation
and communication overhead of federation is also at a node-
level, which may be accumulated at a high frequency. Next,
we introduce our optimization techniques to mitigate the
computation and communication overhead.

5.1 Parallelism

Computing histograms is the most time-consuming part in
the centralized GBDT training. Like centralized GBDT
training (Chen & Guestrin, 2016; Ke et al., 2017; Wen et al.,
2020), we apply node and feature level parallelism when
computing the histograms as shown in Step 1 of Figure 5.
Among different nodes in the same layer (i.e., depth), since
they contain different instances, the computation of his-
tograms between these nodes is independent and can be
processed by different threads. Moreover, inside a node, the
histograms of different features are also independent and
can be computed in parallel by different threads. Ideally, the
time complexity of computing histograms by using the node
and feature level parallelism is O(ni ×B), while the time
complexity without parallelism is O(ni × B × nf × 2d),
where ni is the number of instances, nf is the number of
features, B is the maximum number of bins, and d is the
current depth.

5.2 Layer-wise Batched Communition

Compared with neural networks with FedAvg that transfers
the whole model each time, the communication in FedTree

FedTree: A Federated Learning System For Trees

𝐺1

𝑥𝑚
1

…

𝑥𝑛
1 …
⋱
𝑥𝑚
𝑖

𝑥𝑛
𝑖

…

𝐺𝐵1

𝑥𝑝
1

…

𝑥𝑞
1 …
⋱
𝑥𝑝
𝑖

𝑥𝑞
𝑖

…

… …

𝐺1 𝐺𝐵1 𝐺1𝐵1 𝐵𝑖

𝐺1

𝐺𝐵𝑖

… …

… … 𝐺𝐵𝑖

𝐺1

𝐺𝐵1

𝐺1

𝐺𝐵𝑖

… …

Compute

histogram

1

Group

histograms
2

server

… …

Figure 5. The computation and communication inside a party.
Each red arrow represents a thread.

has two properties: 1) Frequent communication: Consid-
ering training 50 trees with a maximum depth of 6, there
are about 50 × (27 − 1) = 6350 nodes in total, which
introduces very high communication frequency. 2) Light
communication: Histogram is usually much smaller than
neural networks, which has a size of O(B) and smaller than
10kB. Although the total communication size of FedTree is
much smaller than FedAvg with moderate neural networks,
the overhead for launching a gRPC communication is high.

To address the high overhead of launching the gPRC ser-
vice, we propose layer-wise batching approach to reduce
the communication times. As shown in Step 2 of Figure 5,
we group the histograms into a sequence, and we add a
sequence header to indicate the length of each independent
histogram. While the additional communication cost of the
header is negligible, the actual communication overhead
can be significantly reduced.

5.3 CPU-GPU Codesign

Training of GBDT without encryption is efficient. When ap-
plying HE to encrypt the gradients for parties with missing
labels, the HE operations will be computational-expensive.
To alleviate the HE bottleneck, we utilize GPU to acceler-
ate the HE computation. If a party needs to compute the
encrypted gradients and has GPU, before the computation
from gradients to histograms, it first transfers the raw gradi-
ents from CPU to GPU. Then, the computation for the local

histogram on CPU and the computation for the encrypted
gradients on GPU are conducted simultaneously. Due to the
high number of available threads in GPU, the encryption
operation can be accelerated significantly.

6 EVALUATION

FedTree is implemented mainly in C++ and available on
GitHub 1. Next, we compare FedTree with other system-
s/approaches in aspects of model and system performance.

6.1 Experimental Setup

Datasets We conduct experiments on five public tabular
datasets (breast, a9a, cod-rna, mnist, abalone) with classi-
fication and regression tasks downloaded from LIBSVM
website2. The statistics of the datasets are shown in Ap-
pendix B of the supplementary material.

Baselines 1) FATE (Liu et al., 2021) v1.9.0: Besides
FedTree, FATE is the only FL system that also supports
both horizontal and vertical Federated GBDT to the best of
our knowledge. 2) XGBoost (Chen & Guestrin, 2016): we
train XGBoost in the centralized setting with all data. 3)
SOLO: each party trains the trees locally without federation.
4) FEL: we adopt a tree-level aggregation (Zhao et al., 2018;
Li et al., 2020a) to aggregate the trees locally trained by the
parties. We do not compare with Secure-XGBoost (Law
et al., 2020) as it requires secure hardware enclaves.

Settings We evaluate the performance of FedTree under
both horizontal and vertical FL settings. By default, we do
not apply DP to FedTree for a fair comparison. We set the
number of trees to 50 and the maximum number of depth
to 6. The learning rate is set to 0.1. The number of parties
is set to 2 by default to simulate the cross-silo FL (FATE
usually fails when the number of parties is larger than two
in our experiments). We sample q ∼ Dir(β) and allocate a
qj proportion of the total data instances/features to Pj for
horizontal/vertical FL, where β is equal to 0.5.

6.2 Standalone Simulation

For standalone simulation, we run experiments on a ma-
chine with four AMD EPYC 7543 32-Core Processors and
four NVIDIA A100 GPUs to simulate the federated setting.
By default, we only use CPUs in experiments (including
FedTree) for fair comparison and we limit the number of
cores for each experiment to 16.

1https://github.com/Xtra-Computing/
FedTree

2https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/

https://github.com/Xtra-Computing/FedTree
https://github.com/Xtra-Computing/FedTree
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

FedTree: A Federated Learning System For Trees

Table 1. Accuracy comparison between different approaches. We report AUC for binary classification task (breast, a9a, and cod-rna),
accuracy for multi-class classification task (mnist), and RMSE for regression task (abalone) on the test dataset. FATE cannot successfully
finish training 50 trees for mnist dataset in horizontal FL setting.

Datasets Centralized Horizontal FL Vertical FL

XGBoost FedTree FedTree+SA FATE SOLO FEL FedTree FedTree+HE FATE SOLO FEL

breast 1.0 1.0 1.0 0.995 0.999 1.0 1.0 1.0 1.0 0.944 0.988

a9a 0.902 0.902 0.902 0.902 0.883 0.896 0.902 0.902 0.902 0.608 0.573

cod-rna 0.993 0.993 0.993 0.992 0.968 0.977 0.993 0.993 0.993 0.667 0.754

mnist 0.983 0.983 0.983 ✗ 0.926 0.943 0.983 0.983 0.983 0.759 0.822

abalone 0.078 0.079 0.079 0.080 0.085 0.289 0.078 0.078 0.078 0.138 0.266

Table 2. The average training time (s) per tree of FedTree and
FATE in the horizontal and vertical FL settings.

Datasets Horizontal FL Vertical FL

FedTree FATE Speedup FedTree FATE Speedup

breast 0.117 1.97 16.8x 0.90 1.73 1.9x

a9a 0.289 18.41 63.7x 6.46 55.31 8.6x

cod-rna 0.388 25.84 66.6x 4.22 104.59 24.8x

mnist 8.102 529.49 65.6x 274.42 790.37 2.9x

abalone 0.075 1.55 20.7x 0.877 3.10 3.5x

6.2.1 Effectiveness

We compare the model performance of FedTree with other
approaches as shown Table 1. We use “FedTree” to denote
the horizontal or vertical FedTree without additional pri-
vacy mechanisms. From the table, we have the following
observations: 1) The accuracy of FedTree is the same as
centralized training with XGBoost and much better than
SOLO and FEL in most cases, which demonstrates that our
node-level histogram-sharing scheme is effective and even
lossless. 2) The privacy techniques including SA and HE
do not introduce accuracy loss while protecting the local
histograms and gradients.

6.2.2 Efficiency

We compare the average training time per tree of FedTree
and FATE as shown in Table 2. Note that here we apply
SA to Horizontal FedTree and HE to vertical FedTree to
ensure that FedTree and FATE achieve the same privacy
level. Thanks to the specialized design for trees, FedTree is
much faster than FATE and can achieve up to 66x speedup.
Thus, FedTree is very efficient while maintaining the loss-
less model compared with centralized training.

6.2.3 Ablation Study

We study the effect of our parallelism design and CPU-
GPU co-design by adding each component sequentially.

Table 3. The average time (s) per tree. Here “FedTree” refers
to vertical FedTree without parallelism and GPU acceleration.
The speedup is computed by the improvement of applying both
techniques.

Datasets FedTree + Para + Para&GPU Speedup

breast 1.75 0.9 0.85 2.1x

a9a 17.8 6.46 5.55 3.2x

cod-rna 43.6 4.22 1.86 23.4x

mnist 567.7 274.42 257.13 2.2x

abalone 13.48 0.877 0.753 17.9x

The results are shown in Table 3. From the table, we can
observe that both techniques can improve the training speed
well. Our parallelism design can well exploit the multi-core
CPUs to speed-up training and GPU can further accelerate
the training by reducing the encryption time.

6.2.4 Differential Privacy

We apply DP to further protect the histograms during train-
ing. We set the clipping threshold R to one and the second-
order gradient to constant one (Li et al., 2020b). The results
are shown in Table 4. Given a moderate privacy budget
(e.g., 5), horizontal and vertical FedTree can achieve a close
model performance with the non-differentially private ver-
sion. In the future, we plan to integrate more advanced DP
mechanisms (e.g., Gaussian mechanism) and privacy loss
calculators (e.g., Renyi DP (Mironov, 2017)) into FedTree.

6.2.5 Heterogeneity

In the default setting, we simulate quantity non-IID by par-
titioning different numbers of samples into different parties.
In this section, we study how the heterogeneity among data
distributions of different parties affects the performance of
FedTree. Following the partitioning strategies in (Li et al.,
2021), we simulate label and feature imbalance to assess the

FedTree: A Federated Learning System For Trees

Table 4. The model performance (AUC for a9a and RMSE for
abalone) of FedTree with differential privacy under different pri-
vacy budgets on two datasets.

Datasets ε Horizontal FedTree Vertical FedTree

a9a

no DP 0.902 0.902

1 0.792 0.811

2 0.875 0.861

5 0.890 0.888

abalone

no DP 0.079 0.078

1 0.126 0.142

2 0.103 0.097

5 0.082 0.081

Table 5. The model performance (AUC for a9a and RMSE for
abalone) under different non-IID data settings.

non-IID type breast a9a cod-rna mnist abalone

Horizontal
FedTree

label 1 0.902 0.989 0.981 0.079

feature 1 0.902 0.989 0.981 0.079

Vertical
FedTree

label 1 0.902 0.993 0.983 0.078

feature 1 0.902 0.993 0.983 0.079

XGBoost centralized 1 0.902 0.993 0.983 0.078

robustness of FedTree. For label imbalance, given N parties,
we sample pk ∼ Dir2(0.5) and allocate a pk,j proportion
of the instances of class k to party j, where Dir(0.5) is
the Dirichlet distribution with concentration parameter 0.5.
For feature imbalance, we add noises x̂ ∼ Gau(i/20) for
Party Pi, where Gau(i/20) is a Gaussian distribution with
mean 0 and variance i/20. The results are shown in Ta-
ble 5, which further verifies that our system can well handle
the non-IID setting. In our solution, FedTree merges all
the local cut points as the global one which captures the
statistics of local data of all parties even in a non-IID data
setting. Although non-IID data may affect the computation
of the approximated accumulated gradients in horizontal
FedTree as shown in Equation (8), the selection of best cut
point in GBDTs is robust against small changes in the gradi-
ents. Thus, FedTree can still maintain high accuracy in the
non-IID data setting.

6.3 Distributed Computing

For distributed computing, we run experiments on a cluster
with eight machines, where each machine has 2 * Intel Xeon
E5-2680 v4 CPUs with 1Gbps Ethernet. For distributed
computing, the model performance of FedTree is same as
the standalone simulation so we mainly report the system
performance here.

Table 6. The average time (s) per tree in the distributed setting.

Datasets Horizontal FL Vertical FL

FedTree FATE Speedup FedTree FATE Speedup

breast 0.22 10.30 46.8x 1.49 4.72 3.2x

a9a 0.66 23.51 35.6x 8.03 29.13 3.6x

cod-rna 0.34 27.43 80.7x 9.99 52.50 5.3x

mnist 25.9 838.04 32.4x 22.77 506.42 22.3x

abalone 0.29 6.39 22.0x 2.06 5.39 2.6x

Table 7. The total communication time (s) of FedTree with or with-
out layer-wise batched communication (LBC) technique and the
communication size (MB).

Datasets Horizontal FedTree Vertical FedTree

w/o LBC w LBC speedup size w/o LBC w LBC speedup size

breast 8.82 4.64 1.9x 20.4 16.301 5.26 3.1x 23.5

a9a 11.72 4.04 2.9x 14.2 21.56 6.16 3.5x 27.0

cod-rna 12.42 5.4 2.3x 33.4 55.46 14.22 3.9x 48.5

mnist 30.16 8.15 3.7x 57.3 80.26 16.72 4.8x 59.4

abalone 13.156 5.06 2.6x 32.9 13.61 5.67 2.4x 43.3

6.3.1 Efficiency

Table 6 presents the average time per tree of FedTree and
FATE. In the distributed setting, FedTree still significantly
outperforms FATE given the same privacy level, especially
in the horizontal FL setting. FedTree can achieve up to
80 times speedup compared with FATE, which shows that
FedTree is good at real federated scenarios.

6.3.2 Communication Cost

We further investigate the communication costs of FedTree
in the distributed setting. We do not compare with FATE
for the communication costs since the output log of FATE
does not explicitly show the communication size or time. In
Table 7, we present the total communication time of FedTree
running for 50 trees with or without our layer-wise batched
communication (LBC) technique. The results show that our
LBC technique can effectively reduce communication costs.
The overhead of launching gRPC service is even higher
than the overhead of transferring the messages since the
communication size is small in FedTree.

6.3.3 Scalability

We vary the number of parties from 8 to 32 to study the scal-
ability of FedTree, where the parties are evenly distributed
in different machines. The time is reported in Table 8. We
do not compare with FATE since we find that FATE cannot
successfully run with a large number of parties. When the
number of parties increases, the local data size per party
is small and FedTree is faster since the bottleneck of train-
ing is the computation. Since FedTree adopts a centralized

FedTree: A Federated Learning System For Trees

Table 8. The average time (s) per tree of FedTree with different
numbers of parties. We use ✗ to mark the settings when some
parties do not have data due to partitioning.

datasets Horizontal FedTree Vertical FedTree

8 16 32 8 16 32

breast 0.15 0.12 0.12 0.75 ✗ ✗

a9a 0.31 0.22 0.19 4.75 3.26 2.88

cod-rna 0.19 0.14 0.12 6.52 ✗ ✗

mnist 13.7 10.3 7.76 12.9 9.98 8.57

abalone 0.16 0.15 0.11 1.66 ✗ ✗

communication architecture, the total communication cost
only linearly increases with the number of parties. Note
that the model performance of FedTree is unchanged when
increasing the number of parties. In summary, FedTree can
scale well with the number of parties.

7 DISCUSSIONS

In this section, we discuss the limitations and privacy guar-
antees of FedTree.

7.1 Party Sampling and Dropping

We assume full-party participation in our algorithms. In
particular situations, such as federated learning on edge
devices, there may be a large number of parties, necessitat-
ing support for party sampling and the allowance for party
dropping. For party sampling in Horizontal FedTree, we
need to modify Line 9 of Algorithm 2 to only incorporate
noises generated by each pair of selected clients. If party
dropping occurs among the sampled parties in Horizontal
FedTree, the injected noises cannot cancel out with each
other when summing the local histograms, which results
in an inaccurate global histogram. Then, we can simply
discard the current round and not select the dropped parties
in the next rounds. As for Vertical FedTree, Algorithm 3
remains functional in terms of party sampling and dropping
as long as at least one party with labels participates in the
round, allowing the server to obtain encrypted histograms.
In the partial-party participation setting, since a subset of
instances is used to update each node, the accuracy may be
lower than in the full-party participation scenario. If full par-
ticipation is not used at the beginning, the global cut points
may not be optimal which affects the model performance.

7.2 Privacy Guarantees in FedTree

FedTree offers three levels of privacy protection by imple-
menting various privacy preservation techniques: 1) L0:

exchanging raw local histograms between parties and the
server; 2) L1: sharing encrypted local histograms using cryp-
tographic methods (secure aggregation in Hori-FedTree and
homomorphic encryption in Verti-FedTree) among parties
to maintain accuracy while adhering to secure multi-party
computation protocols; 3) L2: applying DP to local his-
tograms before sharing to defend against inference attacks,
thereby achieving a trade-off between privacy and accuracy
by controlling the noise magnitude.

Regarding the L0 configuration, like sharing raw models
in FedAvg, sharing raw histograms in FedTree may expose
information about training data. Histograms consist of cut
points and accumulated gradients. As the purpose of cut
points is to divide feature values into distinct bins evenly,
they may disclose statistics concerning the distribution of
these values. For example, given cut points ⟨0.1, 0.2, 0.5⟩,
one could estimate that the number of instances with feature
values in the range [0.1, 0.2] is approximately equal to
those with feature values in the range [0.2, 0.5]. While
the gradients are computed based on the current prediction
values and the labels, it is challenging to infer the true labels
from the accumulated gradients as the number of instances
within a bin is unknown. In general, we suggest users use
the L0 configuration when the server and participants are
trusted and the distribution of local data is not sensitive. The
L1 configuration serves as a suitable default for maintaining
high model performance while safeguarding local data and
its distribution when the server is trusted. L2 is appropriate
when the local data is highly sensitive and the server may
conduct inference attacks based on the received messages.

8 CONCLUSION

In this paper, we present FedTree, the first comprehen-
sive and specialized FL system for trees. Our experiments
demonstrate the superiority of FedTree in aspects of model
and system performance. We believe FedTree will advance
tree-based FL research and deployment.

ACKNOWLEDGEMENTS

The authors thank Kevin Hsieh and MLSys reviewers for
their constructive comments in improving the paper. This
research is supported by the National Research Foundation
Singapore and DSO National Laboratories under the AI
Singapore Programme (AISG Award No: AISG2-RP-2020-
018). Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors
and do not reflect the views of National Research Foun-
dation, Singapore. Qinbin’s work was mostly conducted
during study at National University of Singapore.

FedTree: A Federated Learning System For Trees

REFERENCES

Fedlearner. https://github.com/bytedance/
fedlearner. Accessed: 2022-10-25.

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,
Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 308–318, 2016.

Acar, A., Aksu, H., Uluagac, A. S., and Conti, M. A survey
on homomorphic encryption schemes: Theory and imple-
mentation. ACM Computing Surveys (Csur), 51(4):1–35,
2018.

Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Parcollet, T.,
de Gusmão, P. P., and Lane, N. D. Flower: A friendly
federated learning research framework. arXiv preprint
arXiv:2007.14390, 2020.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A., and
Seth, K. Practical secure aggregation for federated learn-
ing on user-held data. arXiv preprint arXiv:1611.04482,
2016.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Inger-
man, A., Ivanov, V., Kiddon, C. M., Konečný, J., Maz-
zocchi, S., McMahan, B., Overveldt, T. V., Petrou, D.,
Ramage, D., and Roselander, J. Towards federated learn-
ing at scale: System design. In SysML, 2019. URL
https://arxiv.org/abs/1902.01046.

Burges, C. J. From ranknet to lambdarank to lambdamart:
An overview. Learning, 11(23-581):81, 2010.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794, 2016.

Cheng, K., Fan, T., Jin, Y., Liu, Y., Chen, T., Papadopoulos,
D., and Yang, Q. Secureboost: A lossless federated
learning framework. arXiv preprint arXiv:1901.08755,
2019.

Diffie, W. and Hellman, M. E. New directions in cryptog-
raphy. In Democratizing Cryptography: The Work of
Whitfield Diffie and Martin Hellman, pp. 365–390. 2022.

Dorogush, A. V., Ershov, V., and Gulin, A. Catboost: gra-
dient boosting with categorical features support. arXiv
preprint arXiv:1810.11363, 2018.

Dwork, C., Roth, A., et al. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theo-
retical Computer Science, 9(3–4):211–407, 2014.

Fang, W., Zhao, D., Tan, J., Chen, C., Yu, C., Wang, L.,
Wang, L., Zhou, J., and Zhang, B. Large-scale secure
xgb for vertical federated learning. In Proceedings of the
30th ACM International Conference on Information &
Knowledge Management, pp. 443–452, 2021.

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays,
F., Augenstein, S., Eichner, H., Kiddon, C., and Ramage,
D. Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604, 2018.

He, C., Li, S., So, J., Zeng, X., Zhang, M., Wang, H., Wang,
X., Vepakomma, P., Singh, A., Qiu, H., et al. Fedml: A
research library and benchmark for federated machine
learning. arXiv preprint arXiv:2007.13518, 2020.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977,
2019.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,
W., Ye, Q., and Liu, T.-Y. Lightgbm: A highly efficient
gradient boosting decision tree. Advances in neural infor-
mation processing systems, 30:3146–3154, 2017.

Kim, S.-M., Pantel, P., Duan, L., and Gaffney, S. Improving
web page classification by label-propagation over click
graphs. In Proceedings of the 18th ACM conference on
Information and knowledge management, pp. 1077–1086.
ACM, 2009.

Law, A., Leung, C., Poddar, R., Popa, R. A., Shi, C., Sima,
O., Yu, C., Zhang, X., and Zheng, W. Secure collaborative
training and inference for xgboost. In Proceedings of the
2020 workshop on privacy-preserving machine learning
in practice, pp. 21–26, 2020.

Li, Q., Wen, Z., and He, B. Practical federated gradient
boosting decision trees. In AAAI, pp. 4642–4649, 2020a.

Li, Q., Wu, Z., Wen, Z., and He, B. Privacy-preserving
gradient boosting decision trees. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34,
pp. 784–791, 2020b.

Li, Q., Diao, Y., Chen, Q., and He, B. Federated learning on
non-iid data silos: An experimental study. arXiv preprint
arXiv:2102.02079, 2021.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Feder-
ated learning: Challenges, methods, and future directions.
arXiv preprint arXiv:1908.07873, 2019.

Liu, Y., Fan, T., Chen, T., Xu, Q., and Yang, Q. Fate: An
industrial grade platform for collaborative learning with
data protection. J. Mach. Learn. Res., 22(226):1–6, 2021.

https://github.com/bytedance/fedlearner
https://github.com/bytedance/fedlearner
https://arxiv.org/abs/1902.01046

FedTree: A Federated Learning System For Trees

Long, G., Tan, Y., Jiang, J., and Zhang, C. Federated learn-
ing for open banking. In Federated learning, pp. 240–254.
Springer, 2020.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., et al.
Communication-efficient learning of deep networks from
decentralized data. In Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics,
2017.

Mironov, I. Rényi differential privacy. In 2017 IEEE 30th
computer security foundations symposium (CSF), pp. 263–
275. IEEE, 2017.

Paillier, P. Public-key cryptosystems based on composite
degree residuosity classes. In International conference on
the theory and applications of cryptographic techniques,
pp. 223–238. Springer, 1999.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825–2830, 2011.

Pfitzner, B., Steckhan, N., and Arnrich, B. Federated learn-
ing in a medical context: a systematic literature review.
ACM Transactions on Internet Technology (TOIT), 21(2):
1–31, 2021.

Richardson, M., Dominowska, E., and Ragno, R. Predicting
clicks: estimating the click-through rate for new ads.
In Proceedings of the 16th international conference on
World Wide Web, pp. 521–530. ACM, 2007.

Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R.,
Albarqouni, S., Bakas, S., Galtier, M. N., Landman, B. A.,
Maier-Hein, K., et al. The future of digital health with
federated learning. NPJ digital medicine, 3(1):1–7, 2020.

Sanders, J. and Kandrot, E. CUDA by example: an intro-
duction to general-purpose GPU programming. Addison-
Wesley Professional, 2010.

Wen, Z., Liu, H., Shi, J., Li, Q., He, B., and Chen, J. Thun-
derGBM: Fast GBDTs and random forests on GPUs. Jour-
nal of Machine Learning Research, 21, 2020.

Wu, Y., Cai, S., Xiao, X., Chen, G., and Ooi, B. C. Pri-
vacy preserving vertical federated learning for tree-based
models. arXiv preprint arXiv:2008.06170, 2020.

Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine
learning: Concept and applications. ACM Transactions
on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
and Stoica, I. Spark: Cluster computing with working
sets. In 2nd USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 10), 2010.

Zhao, L., Ni, L., Hu, S., Chen, Y., Zhou, P., Xiao, F., and
Wu, L. Inprivate digging: Enabling tree-based distributed
data mining with differential privacy. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications,
pp. 2087–2095. IEEE, 2018.

FedTree: A Federated Learning System For Trees

A VERTICAL FEDTREE

The vertical FedTree algorithm is presented at Algorithm 3.

Algorithm 3 Vertical FedTree
input Parties P = {P1, ..., PN},, server S, threshold R,

number of trees T , tree depth d
1: Init(P , S):
2: S generates kpub, kpri with Paillier cryptosystem
3: S sends kpub to P1

4: PartyComputeHistogram(Pi)
5: //conducted on party Pi:
6: if Party Pi has label then
7: G← UpdateGradients()

8: G← G/max(1, |G|
R)

9: Hi ← ComputeHistogram(G, S)
10: Hi ← Hi + Lap(0, 2R

ε)
11: Send Hi to the server
12: if i == 1 then
13: ||G|| ← Enc(G, kpub)
14: send ||G|| to the server
15: end if
16: else
17: Query ||G|| and kpub from the server
18: ∥Hi∥ ← ComputeHistogram(∥G∥, S)
19: ∥Hi∥ ← ∥Hi∥+ ∥Lap(0, 2R

ε)∥
20: Send ∥Hi∥ to the server
21: end if

22: ServerAggregates(depth):
23: for each received encrypted ∥Hi∥ do
24: Hi ← Decrypt(∥Hi∥, kpri)
25: end for
26: H← ∪ni=1H

i

27: if depth = d then
28: Compute leaf value by Equation (3)
29: Send the prediction value of the instances to parties
30: else
31: Select the cut point with the maximum gain by Equa-

tion (4)
32: Send the instance ID split information to parties
33: end if

34: PartyUpdate(Pi, node):
35: if node is a split node then
36: Split the instance set to leaf and right
37: else
38: Update the prediction value for the instance set
39: end if

B STATISTICS OF DATASETES

The statistics of the datasets used in the experiments are
shown in Table 9.

Table 9. Statistics of datasets in the experiments.

Datasets #Instances #Features Task

breast 683 10 binary
classificationa9a 32,561 123

cod-rna 59,535 8

mnist 60,000 780
multiclass

classification

abalone 4,177 8 regression

C ARTIFACT APPENDIX

C.1 Abstract

In this section, we describe the instructions to use our system
to run the experiments.

C.2 Artifact check-list (meta-information)

Obligatory. Use just a few informal keywords in all fields ap-
plicable to your artifacts and remove the rest. This informa-
tion is needed to find appropriate reviewers and gradually
unify artifact meta information in Digital Libraries.

• Program: C++

• Compilation: CMake

• Data set: a9a

• Run-time environment: Ubuntu 22.04

• Hardware: a server with four AMD EPYC 7543 32-Core
Processors and four NVIDIA A100 GPUs.

• How much time is needed to prepare workflow (approxi-
mately)?: Half an hour

• Publicly available?: Yes.

• Code licenses (if publicly available)?: Apache License 2.0

• Data licenses (if publicly available)?: Creative Commons
Attribution 4.0 International (CC BY 4.0) license

C.3 Description

C.3.1 How delivered

We provide the open-sourced code at https://github.com/
Xtra-Computing/FedTree. Also, we provide the documen-
tation at https://fedtree.readthedocs.io/.

https://github.com/Xtra-Computing/FedTree
https://github.com/Xtra-Computing/FedTree
https://fedtree.readthedocs.io/

FedTree: A Federated Learning System For Trees

C.3.2 Hardware dependencies

FedTree is able to run on any hardware. Nvidia GPUs that sup-
port CUDA are required if using GPU-accelerated encryption in
FedTree.

C.3.3 Software dependencies

FedTree requires cmake3 ≥ 3.15, GMP4, and NTL5. gRPC6 is
required if using a distributed version of FedTree.

C.3.4 Data sets

We use public datasets in our experiments. All datasets can
be downloaded from LIBSVM website https://www.csie.
ntu.edu.tw/˜cjlin/libsvmtools/datasets/. We
provide a9a dataset in our repository7.

C.4 Installation

We provide detailed installation instructions in our docu-
mentation https://fedtree.readthedocs.io/en/
latest/Installation.html.

C.5 Experiment workflow

After installing FedTree, users need to write a configuration file to
specify the parameters to run FedTree. Below is an example to run
horizontal FedTree on a9a dataset, which is also provided in our
repository8.

data=./dataset/adult/a9a_horizontal_p0,./
↪→ dataset/adult/a9a_horizontal_p1

test_data=./dataset/adult/
↪→ a9a_horizontal_test

n_parties=2
mode=horizontal
privacy_tech=sa
model_path=fedtree.model
learning_rate=0.1
max_depth=6
n_trees=50
partition=0
objective=binary:logistic
n_features=123
gamma=0.001
lambda=0.1
max_num_bin=64
min_child_weight=0

Then, you can simply run FedTree with the example configuration
file as follows.

./build/bin/FedTree-train examples/adult

3https://cmake.org/
4https://gmplib.org/
5https://libntl.org/
6https://grpc.io/docs/languages/cpp/

quickstart/
7https://github.com/Xtra-Computing/

FedTree/tree/main/dataset/adult
8https://github.com/Xtra-Computing/

FedTree/blob/main/examples/adult/a9a_
horizontal_simulation.conf

↪→ /a9a_horizontal_simulation.conf

C.6 Evaluation and expected result

If running the provided script, you are expected to see ‘AUC =
0.902442’ in the last line of the output.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://fedtree.readthedocs.io/en/latest/Installation.html
https://fedtree.readthedocs.io/en/latest/Installation.html
https://cmake.org/
https://gmplib.org/
https://libntl.org/
https://grpc.io/docs/languages/cpp/quickstart/
https://grpc.io/docs/languages/cpp/quickstart/
https://github.com/Xtra-Computing/FedTree/tree/main/dataset/adult
https://github.com/Xtra-Computing/FedTree/tree/main/dataset/adult
https://github.com/Xtra-Computing/FedTree/blob/main/examples/adult/a9a_horizontal_simulation.conf
https://github.com/Xtra-Computing/FedTree/blob/main/examples/adult/a9a_horizontal_simulation.conf
https://github.com/Xtra-Computing/FedTree/blob/main/examples/adult/a9a_horizontal_simulation.conf

