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ABSTRACT
In the domain of computer vision, transformer models have shown noteworthy success, prompting extensive
research on optimizing their inference, particularly concerning their deployment on edge devices. While quantiza-
tion has emerged as a viable solution for enabling energy efficiency in Convolutional Neural Networks (CNNs),
achieving direct quantization of complex activation and normalization operators in transformer models proves to
be a challenging task. Existing methods that rely on 64-bit integers often suffer from data truncation issues when
deployed to energy-constrained edge devices, resulting in a significant loss of model accuracy. In this paper, we
propose a range-constrained quantization technique for activation and normalization operators in transformers that
addresses the dilemma between data range and precision. Our approach is the first 32-bit integer-based edge kernel
implementation for vision transformers with post-training integer-only quantization, ensuring both efficiency and
accuracy. Experimental results demonstrate a remarkable 5 times kernel speedup when deployed on two different
ARM CPUs, with negligible accuracy loss in comparison to full-precision vision transformers. This innovative
work is poised to significantly impact the deployment of transformer models on energy-efficient edge devices.

1 INTRODUCTION

Recently, the Transformer models have garnered substantial
attention in the field of computer vision tasks, as evidenced
by a number of noteworthy publications (Dosovitskiy et al.,
2020; Liu et al., 2021a; Touvron et al., 2021). These mod-
els have demonstrated superior performance compared to
traditional Convolutional Neural Networks (CNN). How-
ever, there are significant challenges associated with the
deployment of vision transformers, given their large model
size, high power consumption and high inference latency.
Notably, computer vision applications, including facial and
gesture recognition and object detection, are increasingly
being deployed on edge devices, which are characterized
by lower latency and energy requirements in business set-
tings (Tu & Lin, 2019; Capotondi et al., 2020; Nikouei et al.,
2018). As a consequence, addressing this technical gap has
led to noteworthy research efforts into the development of
quantization techniques for vision transformers, as seen in
recent studies (Liu et al., 2021b; Ding et al., 2022; Yuan
et al., 2021; Lin et al., 2022).

Quantization techniques have been extensively researched
for convolutional neural networks (CNNs) (Wu et al., 2016;
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Zhu et al., 2020; Jacob et al., 2018). However, these tech-
niques cannot be directly applied to transformer models
due to their complex activation functions and normaliza-
tions. Unlike CNNs that use simple rectified linear units
(ReLU (Dahl et al., 2013), transformer models require
exponential-based activation functions in softmax (Bridle,
1989). Softmax is straightforward to compute in floating-
point, but poses computational challenges in the integer
domain. Additionally, Gaussian error linear unit (GELU)
activation (Hendrycks & Gimpel, 2016) in transformer mod-
els includes a Gaussian error function routine, which is
difficult to calculate in integers. Furthermore, quantized
layer normalization (Ba et al., 2016) in transformer mod-
els necessitates on-the-fly computation of mean and stan-
dard deviations for integer tensors, unlike batch normaliza-
tion (Ioffe & Szegedy, 2015) in CNNs which pre-computes
these statistics during training.

Due to the huge technical challenges on full quantization,
recent research studies have endeavored to employ novel
transformer architectures optimized for edge devices (Zhang
et al., 2020; Lin et al., 2020; Li & Gu, 2022). These methods
rely on labeled data and substantial computational resources
to enable transfer of the original model’s power to fully
quantized versions via quantization-aware training (QAT).
As a result, they are not amenable to post-training quan-
tization (PTQ). Alternative techniques (Bondarenko et al.,
2021; Liu et al., 2021b; Ding et al., 2022) circumvent quan-
tization on activation functions and layer normalizations
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Table 1. Accuracy and Truncation Ratios in I-BERT (Kim et al., 2021) and FQ-ViT (Lin et al., 2022) on DeiT-S (Touvron et al., 2021)
when deploying on edge devices. Each row means replacing the corresponding floating point kernels to integer kernels in the quantized
model. Trunc. Ratio (%): the number of truncations in the result elements over the total number of elements. Truncations include left
bit-shift and multiplications that exceed the range of int32, as well as smaller number dividing by larger number resulting in 0. Acc. (%):
The image classification accuracy on ImageNet (Deng et al., 2009) evaluation dataset. In partial quantizations, it is 79.51 originally.

OPERATORS TRUNC. RATIO % (I-BERT) ACC. % (I-BERT) TRUNC. RATIO % (FQ-VIT) ACC. % (FQ-VIT)

INT. SOFTMAX 47.75 0.100 22.34 1.832
INT. GELU 92.41 0.140 N.A. N.A.
INT. LAYERNORM 68.70 0.100 68.74 0.100

by first converting tensors into floating-point format, then
performing intricate operations such as exponential and er-
ror functions using floating-point implementations, and at
last converting back to integer domain. These approaches,
referred to as partial quantizations, incur significant data
conversion overheads, consume considerable on-chip power
and computation cycles and fail to be deployable on integer-
only chips like ARM Cortex-M (arm, 2022) and numerous
edge devices (Tang et al., 2021).

To achieve full quantization of transformer-specific oper-
ators, the method proposed by I-Bert (Kim et al., 2021)
involves using polynomial approximations to compute all
operations within the integer domain. To deal with the high
activation sensitivity of Natural Language Processing (NLP)
tasks, the entire model must be re-trained from scratch (Bon-
darenko et al., 2021). Despite this limitation, we posit that
the use of high precision integer kernels can still be directly
applied to achieve PTQ in vision transformers. FQ-ViT, in
line with I-Bert’s approach, endeavors to achieve full quanti-
zation of vision transformers through PTQ (Lin et al., 2022).
The method employs log-scale representations to enhance
data precision for softmax results that are close to zero, as
well as channel-wise quantization for layer normalization.

Motivated by the proficient execution of integer domain
kernels proposed by I-Bert and FQ-ViT, we implement their
kernels on an AMD CPU A13. To evaluate the performance
of the implemented kernels, we undertake inference experi-
ments on the image classification task of ImageNet (Deng
et al., 2009). We perform kernel replacements one-at-a-time
to construct partially quantized vision transformers with
DeiT architecture (Touvron et al., 2021), followed by an
analysis of the inference outcomes of the updated models.
Contrary to our expectations, the modified models showed
unanticipatedly poor accuracy as indicated in the ”Acc. (*)”
columns of Table 1.

In order to probe into the core reason for the observed de-
cline in accuracy, we delved into the intermediate outcomes
arising from the usage of quantized softmax, GELU and
layer normalization operators. In doing so, we recorded
the ratios of data truncations occasioned by integer arith-

metic such as multiplications, divisions and bit shifts. The
consequential truncation ratios were thereafter illustrated in
the ”Trunc. Ratio (*)” columns in Table 1. The outcomes
indicate that truncations dominate the computations under-
taken in integer kernels, leading to a pronounced loss of
information.

Generally, research efforts in the field aim to enhance the
accuracy of quantized models. However, such models are
typically constructed and evaluated on platforms with high
energy consumption. Our experiments have brought to
light a scarcely explored dilemma regarding the balance
between data representation ranges and precision in power-
constrained edge devices: Higher precision calculations
require an increase in the number of bits utilized, which
can easily result in data truncation during multiplication,
bit-shifts or division arithmetic in fixed point.

A possible solution for tackling the computational demands
of edge devices is to make use of 64-bit integers. How-
ever, 64-bit integer operations are not widely supported
in edge devices. For instance, instructions such as int64
multiplications are not supported within the Neon instruc-
tion set (neo, 2022). Furthermore, essential instructions
such as divisions and rescale operators vmulh are not im-
plemented for int64 on Neon as well as on more advanced
SVE/SVE2 (sve, 2022) instruction sets, thus rendering int64
kernels impractical on edge devices. Additionally, the de-
ployment of int64 arithmetic also exhibits drawbacks related
to its higher memory usage and execution time, as well as
reduced levels of data parallelism. Lowering the bit-width
of the input data provides an alternate solution; however, in
Table 1, the data truncation condition persists, especially
for FQ-ViT where inputs are reduced to as low as 8-bit inte-
gers. Setting activations in transformers below 8 bits leads
to significant accuracy impact, thereby necessitating the re-
training of new models from scratch (Bai et al., 2020; Zhang
et al., 2020; Chung et al., 2020). Moreover, directly process-
ing low-bitwidth data during ultra-low bitwidth quantization
is generally unsupported in CPUs or GPUs.

To the best of our knowledge, this article is the first work
that addresses the data range and precision dilemma in the
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context of full post-training quantization for vision trans-
formers on edge devices. Our proposed methodology ad-
dresses this challenge by scrutinizing the specific features
of softmax, GELU and layer normalizations. We develop
practical quantized edge kernels that enhance the integer
version of these operators, ensuring efficiency and accuracy.
Specifically, our technique incorporates an integer requan-
tization process, complemented by additional calibrations,
aimed at adapting the overflowing numbers to a reasonable
scale without compromising information integrity. We pro-
vide a detailed elucidation on the process of determining
the ideal parameters for these range modifications. The
integer kernels are deployed on two distinct ARM CPUs,
achieving significant inference speed optimization of up to
5 times compared to floating-point arithmetic. The efficacy
of the integer operators is also validated on several vision
transformers, with a majority of the results demonstrating
negligible accuracy degradation of approximately 1∼2%
compared to full-precision versions, further emphasizing
their robustness in various applications.

In summary, our contributions are as follows:

• This work first addresses the data range vs. precision
dilemma in PTQ integer-only vision transformers, en-
abling their deployment on edge devices.

• We present novel quantization techniques that surpass
the data range limitations of fixed point arithmetic.
Our proposed workflow involves an integration of re-
quantization, supplementary calibration and bit-width
optimization.

• We address the essence of channel-wise layer normal-
ization for solving the inaccuracy caused by quantized
inputs to layer normalizations.

• We deploy quantized kernels on different ARM CPUs,
and observe up to 5 times speedup to fp32 kernels.

• We develop the first fully quantized edge kernels that
are widely applicable on various vision transformers
with negligible accuracy drops.

This paper is organized as follows: Section 2 introduces the
related work on quantizations and background knowledge.
Section 3 explains the proposed quantization methods. Sec-
tion 4 shows the results of the experiment and Section 5
summarizes the paper.

2 RELATED WORK & BACKGROUND

2.1 Neural Network Quantization

Quantization is a widely used model compression and speed-
up method in the scenario of increasing demand of neural

network model deployment on edge devices. Initially, quan-
tization techniques are mostly applied for the predominant
CNN models in CV tasks (Wu et al., 2016; Zhu et al., 2020;
Jacob et al., 2018; Krishnamoorthi, 2018). MMM (Matrix-
Matrix Multiplication) operations and convolutional oper-
ations are well developed for 8-bit activation inputs and
are widely used in common mobile frameworks like Torch-
lite (iOS, 2022) and Tensorflow-lite (TFL, 2022). The quan-
tizations for ReLU activations (Dahl et al., 2013) and batch
normalizations (Ioffe & Szegedy, 2015) are straightforward
due to their linear and static nature.

Recently, due to the great success of transformers in com-
puter vision, the demand for compressing and accelerating
transformer models keeps rising. Some work changes the
architecture of transformers, in order to replace the time-
consuming modules with more efficient ones (Lin et al.,
2020; Li & Gu, 2022; Li et al., 2022). However, all these
methods require training or fine-tuning which is not widely
applicable, since the training data and computation pow-
ers are not easily accessible. There are also quantization
methods that retain transformer architectures and focus on
quantization parameter search (Liu et al., 2021b; Yuan et al.,
2021; Ding et al., 2022; Bondarenko et al., 2021). These
methods require fp32 operators on softmax, GELU and layer
normalizations, thus are partial quantizations.

Unlike CNN models, transformers contain the above 3 com-
plicated operators that are hard to be calculated in integer
domains. Instead of altering these operators or using fp32
kernels, I-BERT (Kim et al., 2021) uses polynomial ap-
proximations to these operators that are commonly used
in floating-point implementations but with lower order of
degrees in the integer domain. However, it needs to train a
new model to retain accuracy.

Inspired by I-Bert, FQ-ViT (Lin et al., 2022) develops
training-free quantization methods for vision transformers.
It also uses polynomial approximations for exponential func-
tions in softmax operator. It uses log-scale bit representation
for softmax results to increase data precision of close-to-
zero results, but loses precision on close-to-one results. For
layer normalization, it applies different quantization scales
to different channels with each differing by a power-of-two,
which is shown to be redundant in Section 3.2.1. Besides,
FQ-ViT also ignores GELU activation, which makes it still
a partial quantization method.

Note that, both I-Bert and FQ-ViT use floating-point arith-
metics to simulate integer operations, e.g. using ⌊·⌉ after
floating-point divisions.

2.2 Uniform Quantization

In fully quantized neural networks, both the activations and
weights are quantized to integer domains. In this work, we
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use uniform quantizations, i.e. the real values are uniformly
mapped to 2b integers, where b is the number of bits rep-
resenting the integer. Depending on whether the mapped
integers are symmetric around zero, or are positive-only,
we have symmetric and asymmetric uniform quantization
defined in Equation 1 and Equation 2, respectively:

Φ(x) = clip(⌊x
S
⌉,−2b−1, 2b−1 − 1) (1)

Φ(x) = clip(⌊x
S
⌉+ zp, 0, 2b − 1) (2)

where S represents the scale factor, i.e. the scale represented
by 1 unit of integer. zp represents the zero point, i.e. the
integer mapped by the value of 0.0 from the floating point.
Usually, to balance speed and accuracy in 8 bit neural net-
work, int8 symmetric quantization is used for weights, and
uint8 asymmetric quantization is used for activations.

The quantization parameters S and zp are calculated from
collected statistics from weights or activations. There are
various statistical observers. One commonly used observer
is MinMax observer (Wu et al., 2016). For MinMax ob-
servers of weights, the minimum value vmin and maximum
value vmax are simply recorded. The value with a larger
absolute vabs = max(abs(vmin), abs(vmax)) is used for the
calculation of the scale factor S in symmetric quantization:

S =
2vabs

2b − 1
, (3)

For quantization of activations, the activation statistics are
unknown until runtime. Thus a small calibration dataset
(labels are not needed) is fed to the neural network for
collecting the statistics of all activations. For MinMax ob-
servers on activations, after collecting the statistics, the scale
factor S and the zero point zp of asymmetric quantization
are calculated as follows:

S =
vmax − vmin

2b − 1
, zp = clip(⌊−vmin

S
⌉, 0, 2b − 1) (4)

2.3 Transformer-specific Operators

Softmax is a normalized exponential function which approx-
imates the hard max result. The calculation of softmax for
each element x1≤i≤n of input vector x ∈ Rn is as follows:

softmax(x)i =
exi−max(x)∑
j e

xj−max(x)
(5)

where the −max(x) term is for numerical stability.

GELU approximates identity function for positive inputs,
and is close to zero for negative inputs. The calculation of
GELU is as follows:

GELU(x) = x · 1
2

[
1 + erf(x/

√
2)
]

(6)

where erf() is the Gaussian error function, which can be
depicted as follows:

erf(x) =
2√
π

∫ x

0

e−t2dt (7)

Layer normalization is applied to transformers for normaliz-
ing each vector along the sequence. For input X ∈ RL,D,
where L is sequence length and D is the size of hidden
dimension, layer normalization is calculated as:

LN(X) =
X− E1≤i≤D[Xi]√
Var1≤i≤D[Xi] + ϵ

× γ + β (8)

where γ, β ∈ RD are learned affine transform parameters.

2.4 Remez Algorithm

Nonlinear functions such as exponential or Gaussian er-
ror functions in transformer-specific operators are approxi-
mated by polynomial functions in common neural network
runtimes (Abadi et al., 2016; Paszke et al., 2019). Remez
algorithm is applied to minimize the maximum absolute
errors of the polynomial approximations. Specifically, the
linear system:

b0 + b1xi + · · ·+ bnx
n
i + (−1)iE = f(xi) (9)

needs to be solved in each iteration of the Remez algorithm.
Polynomial coefficients b0≤j≤n and maximal absolute error
E are n + 2 unknowns. At the start of each iteration, n +
2 control points xi need to be settled as the extremas of
the error function E(x) = f(x) − P (x) where P (x) =
b0 + b1x+ · · ·+ bnx

n. For the initial iteration, the control
points are selected by interpolating with the roots of an
orthogonal polynomial. The iterations continue until the
control points are located at the same points of extremas of
the error function E(x).

2.5 Connecting Remez Algorithm with Quantization

For integer domain polynomial approximations, both the
inputs x and coefficients bj need to be quantized.

I-BERT converts the original floating-point polynomials to
a quantized version by assuming symmetric quantizations
are applied on inputs, i.e. qS ≈ x where q = Φ(x). Specifi-
cally:

P (x) = b0 + b1x+ · · ·+ bnx
n

≈ b0 + b1qS + · · ·+ bn(qS)
n

≈ (
b0

bnSn
+

b1
bnSn−1

q + · · ·+ qn)bnS
n

≈ (⌊ b0
bnSn

⌉+ ⌊ b1
bnSn−1

⌉q + · · ·+ qn)bnS
n

= Q(q)× bnS
n

(10)
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Figure 1. The truncation problems in integer version of Softmax,
LayerNorm and GELU kernels.

The term bnS
n is the scale factor for the polynomial re-

sult. For Q(q), there are only integer arithmetics since the
quantization of polynomial coefficients can be computed
beforehand.

3 METHODOLOGY

In this section, we explain different methodologies for soft-
max, layer normalization, and GELU are explained in Sec-
tion 3.1, Section 3.2 and Section 3.3 respectively. Figure 1
shows a summary of all truncation issues in the three integer
versions of the operators. Softmax has left shifts from two
steps of the operation, which are intended to represent frac-
tional results in the integer domain. LayerNorm contains a
division on standard deviation of the collected data. And
GELU can easily exceed the 32-bit integer range limit due
to its complexity of the calculation. The following sections
explain how to choose the optimal shift parameters and in-
put bit-width to solve these problems while maintaining the
accuracy of the calculations.

3.1 Integer Softmax

The Remez algorithm is utilized to approximate exponential
function via polynomials and its coefficients are quantized
based on input scale factors for calculating the softmax in
the integer domain. Specifically, a 2nd-degree polynomial
in the form of Pexp(x) = b0 + b1x+ b2x

2 is employed to
approximate the exponential function. However, as poly-
nomial approximations only exhibit high accuracy within
limited ranges, range reduction is required for exponential
function inputs. In most practical scenarios, reduction of the
range to [− ln 2/2, ln 2/2] is performed for acceptable nu-
merical precision. It should also be noted that, in the context
of the softmax function, input values are normalized by the
subtraction of the maximum element as represented in Equa-
tion 5. Consequently, all inputs to exponential functions
are negative. As a result, the reduced range for polynomial
approximations is set to [− ln 2, 0] in accordance with the
suggestion presented in (Kim et al., 2021).

The workflow for determining the value of exp(x) within
the confines of the integer domain can be concisely ex-
pressed as below: First, we need to reduce the range of
the normalized input by converting input x to r where
x = −d ln 2 + r. The quotient d is a positive integer with

the remainder r constrained in the interval (− ln 2, 0]. Then
we use the 2nd-degree polynomial obtained from the Remez
algorithm to calculate the exponential function exp(r) in
the quantized integer domain. The final step involves the
calculation of exp(x) through a simple right shift of exp(r)
by d bits. This is because:

exp(x) = exp(−d ln 2 + r) = exp(r)/(2 << d) (11)

With in the integer domains, ln 2 needs to be quantized to
the same scale as x (≈ qS), i.e. qln 2 = ⌊ln 2/S⌉. The range
reduction process in the integer domain is represented as q =
−dq⌊ln 2/S⌉+ rq, where rq ∈ (⌊ln 2/S⌉, 0]. Therefore, a
fully quantized version of polynomial approximation to
exp(x) is:

exp(x) ≈ exp(qS) = exp((−dq⌊ln 2/S⌉+ rq)S)

≈ exp(−dq ln 2 + rqS) = exp(rqS)/2
dq

≈ Pexp(rqS)/(2 << dq)

≈ Qexp(rq)b2S
2/(2 << dq)

≈ (Qexp(rq) >> dq)× b2S
2

= (Qexp(rq) << (m− dq))×
b2S

2

2m

=
b2S

2

2m
× expi(x)

(12)

where bnS
2

2m is the pre-calculated scaling factor. Pexp, Qexp

are polynomial approximations in floating and integer do-
mains respectively as defined in Equantion 10, and the pa-
rameters bj are the coefficients of the polynomial.

After getting the integer-only approximation Qexp(rq) <<
(m− dq) (denoted as expi(x)), we sum them up along the
hidden dimension D and the result is denoted as

∑
expi.

The softmax results for each element is thus calculated as
expi(x)∑

expi
. During the evaluation of softmax calculations in the

integer domain, there are two potential truncation events that
may result in a model deployment that is deemed unusable,
as displayed in Table 1. The corresponding discussions
and solutions pertaining to the two events are presented in
subsequent sub-sections.

3.1.1 Bit Truncations on division expi(x)∑
expi

Since softmax outputs are in the range [0, 1], the numera-
tor expi(x) is always smaller than the denominator (sum)∑

expi. Usually, an additional left shift << M is applied to
the numerator, and the additional scale 2M is compensated
by being divided from the output scale factor. However,
this introduces a new parameter to the softmax quantization
mechanism, which entangles the quantization parameters.
It is hard to select an M which is able to retain the pre-
cision during softmax divisions while being immune to
bit-shift truncations. Figure 2(a) shows the case where M
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M*expi(x)

expi(x) << M

Σexpi
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Figure 2. Comparisons among different left shift bit M selections. (a) and (b) show the hard decisions of M . Sketched black boxes
represent bits occupied by expi(x) and orange ones represent those of

∑
expi. (c) represents the proposed requantization method followed

by M∗ bit shift, where determination of M∗ is discussed in Section 3.1.2.

is too small. The division result becomes a small integer
and thus the information contained in the red box might
be lost; Figure 2(b) shows the case where M is too large.
The bit-shift causes truncations on the most significant bits
which results in severe information loss. Determining the
feasible M presents a challenging task for two reasons: 1)
The range of expi(x) outputs is unknown. 2) Even if this
range is ascertained, the restriction imposed on the available
displacement toward the left can often lead to undesired
deficits in precision.

In order to overcome the aforementioned challenges, a pro-
posed approach involving the utilization of a requantization
method is presented. This method serves to gather necessary
data range information and compress the initial results from
expi(x), resulting in the creation of additional space for
left shifts. Firstly, let’s assume we constrain the bit range
of numerator expi(x) to an already known optimal range
denoted as B∗. The requantization function R(·) is used to
make sure that any expi(x) outcome is transformed to be
fully constrained within this range:

qexpi = R(expi(x)|B∗)

= clip(
S

Sr

⊗
expi(x),−2B

∗−1, 2B
∗−1 − 1)

(13)

where Sr is the new scale of quantized value under bit range
B∗. The operator

⊗
represents an integer-only implemen-

tation of multiplication between a fractional number ( S
Sr

)
and an integer (expi(x)) as introduced in (Wu et al., 2016).
The quantization parameter Sr is determined in a similar
process as quantizing the input tensors x to q. However, in
this softmax scenario, we collect the statistics on the sum
of expi(x), i.e.

∑
expi. The sum of the exponential results

provides stable statistics, which help to improve the relia-
bility of the data collected from the calibration dataset of a
limited size. Requantization is shown in the first two rows of
Figure 2(c). After this requantization process, we can right
shift the result by M∗ = 31 − B∗ bits for the subsequent
integer domain softmax division, i.e. expi(x)<<M∗∑

expi
, which

is shown in the 3rd row of the figure.

The reason for performing the requantization process is
motivated by the following two properties, when assuming
that the statistics collected in calibrations represent the data
well:

1. The left shift M∗ on R(expi(x)) is unlikely to cause
truncation on the most significant bits.

2. The left shift M∗ maximally uses the vacant bits on the
left side.

Regarding 1), it follows that expi(x) is bounded by the
summation

∑
expi, that is, expi(x) ≤

∑
expi, provided that∑

expi can be restricted within B∗ bits. Concerning 2), it is

demonstrated by the softmax property that, max( expi(x)∑
expi

) ≈
1, and hence max(expi(x)) ≈

∑
expi. This implies that a

left shift of 31−B∗ bits on max(expi(x)) suffices to yield
an approximation of 231 − 1, serving as the maximal value
of int32 integers.

3.1.2 Decision of B∗

In order to finalize the workflow of requantization process,
an optimal value for B∗ and consequently for M∗ must
be determined. Despite the problem of truncation being re-
solved regardless of the value of B, selecting the appropriate
value still presents a predicament. If B is excessively large,
the range occupied by R(expi(x)) will increase, potentially
leading to a loss of precision resulting from the division
process, as illustrated in Figure 2(a). Conversely, if B is too
small, the requantization process will compress the original
expi(x) excessively. To overcome this predicament, we pro-
pose two methods for approximating B∗ that minimize the
approximation error.

Output-oriented In this method, we look for the best M∗,
and determine B∗ by 31−M∗. We observe that, the integer
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softmax output R(expi(x))<<M∑
exp

is bounded within M bits:

exp(x)∑
exp

≤ 1

R(expi(x))∑
expi

≤ 1

R(expi(x)) << M∑
expi

≤ 2M

(14)

Based on this knowledge, we collect the statistics of softmax
outputs, and determine M∗ based on an additional calibra-
tion. The minimum difference in the softmax values, δmin,
is gathered via an additional observer along the softmax
summation dimension. Presuming the calibration data repre-
senting the inference data well, a nice precision property in
terms of the Unit of the Last Place (ulp) is anticipated for the
lossless quantization of integer representation of softmax
results: 1ulp ≤ δmin, i.e.:

1

2B∗ ≤ δmin

B∗ ≥ ⌈− log δmin⌉
(15)

Note that δmin is calculated on the fractional result of
R(expi(x))∑

expi
instead of the floating-point version of softmax.

Also note that, the minimal softmax value should also be
losslessly represented under B∗ bits. In summary:

δmin = min
i

Oi −Oi−1 (16)

Oi =

{
0, i = 0
R(expi(xi))∑

expi
, i > 0, i sorts xi

(17)

We directly set B∗ = ⌈− log δmin⌉ after getting the calibra-
tion results.

Loss based optimization Since B∗ is a layer-wise param-
eter, we can apply various mixed-precision optimization
techniques with losses like mean squared error (MSE), nu-
clear norm (Liu et al., 2021b) or Hessian matrix (Yuan et al.,
2021). We demonstrate an MSE-based optimization method,
which simply optimizes on the softmax approximation loss:

Lmse =
∥∥∥exp(x)∑

exp

− ⌊R(expi(x)) << M∑
expi

⌉ × 1

2M

∥∥∥
2

(18)

We search for the M∗ which gives the lowest Lmse for the
calibration data. The accuracy impact of output-oriented
method and loss-based method is shown in Section 4.

3.1.3 Bit Truncations on >> dq

The right shift operation in Equation 12 is another calcula-
tion that causes bit truncations which lead to information

loss. A common practice is to first shift left for m bits,
where m is large enough to be greater than dq in most cases,
and then perform the right shift >> dq , which is equivalent
to a left-shift by m− dq bits. The additional left shifts are
compensated by dividing the output scale factor bnS2 by
2m. However, the decision of m is non-trivial if we use 32-
bit results of quantized MMM kernel directly as indicated in
(Kim et al., 2021). Left shift by m− dq can easily exceed
the 32-bit limit and cause data truncations.

Instead of using the raw quantized MMM result, we re-
quantize the MMM result to a representation with a lower
number of bits e.g. unsigned int8 (uint8). It has been veri-
fied by other work (Yuan et al., 2021) that performing exp()
function on uint8 MMM outputs has little impact on the
model accuracy.

In this case, we generalize polynomial approximation from
symmetric quantization (Equantion 10) to asymmetric quan-
tization. The original floating point value x is thus approx-
imated by (q − zp)S where zp is the zero point. There is
a normalization term −max(x) for the input of softmax,
which cancels out the zero point:

(q − zp)S −max((q − zp)S) = (q − zp−max(q)− zp)S

= (q −max(q))S

(19)

Thus the softmax version of Equation 10 is to simply replace
all q terms to q−max(q) without introducing the zero point
term even in the asymmetric quantization settings. Suppose
b bits are used to represent the unsigned integer q, after
being normalized to q −max(q), the result can occupy up
to b+ 1 bits. The maximum number of bits the quantized
Qexp(rq) can thus be calculated:

⌊ b0
b2S2

⌉+ ⌊ b1
b2S

⌉q + q2

≤2b + 2b × 2b+1 + 22(b+1)

≤22(b+1)+1

(20)

which means the polynomial approximation outputs can
take up to 2b+ 3 bits.

Back to the questions on how to choose the left shift amount
m, since the exponential function is calculated in int32, we
set m = 31 − (2b + 3). In the case when b = 8, m is
12 which is a more acceptable range for retaining the data
precision, compared to int16 or int32 where m is negative.

3.2 Integer Layer Normalization

The integer version of layer normalization has similar bit
truncation problems as softmax due to left bit-shifts. To
avoid this problem, we apply asymmetric quantizations on
the layer normalization inputs to uint16, given that uint8
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quantization significantly affects the model accuracy (Lin
et al., 2022). Thus the original formula is transformed as
follows:

LNi(x) =
γ

So

(q − zp)S − E[q − zp]S√
V ar[q − zp]S2 + 1

+ ⌊ β

So
⌉+ zpo

≈ γ

So

⊗
⌊ q − E[q]√

E[(q − E[q])2] + 1
⌉+ ⌊ β

So
⌉+ zpo

=
γ

So

⊗
⌊ q − E[q]√

E[q2]− E[q]2 + 1
⌉+ ⌊ β

So
⌉+ zpo

(21)

where input scale S and zero point zp are both canceled out
in the subtract/division operations. So and zpo are the quan-
tization parameters of the outputs of layer normalization.

The integer-only terms in Equation 21 is denoted as Qln =
q−E[q]√

E[q2]−E[q]2+1
. The multiplication with fractional number

γ
So

is implemented in the integer domain similar as softmax.
We observe that the numerator is bounded by 17 bits given
that q and E[q] are constrained within 16 bits. The small
number of bits (only half of 32 bits) makes the left shift
dilemma in softmax introduced in Section 3.1.1 not signifi-
cant in layer normalization. We can left-shift the numerator
by M = 32− 17 = 15 bits, and compensate on the scaling
factor, i.e.

LNi(x) =
γ/2M

So

⊗
⌊ (q − E[q]) << M√

E[q2]− E[q]2 + 1
⌉+ ⌊ β

So
⌉+ zpo

(22)

The output is clipped for uint8 output at last, i.e.
clip(LNi(x), 0, 255).

3.2.1 Channel-wise Layer Normalization Trap

In (Lin et al., 2022), FQ-ViT approximates floating-point
softmax and layer normalization used in partially quantized
models, but it achieves even higher accuracy. This counter-
intuitive phenomenon drives us to investigate the hidden
cause of accuracy drops in partially quantized models.

The major loss of the calculation precision is from the layer
normalization operator (as will be justified in Section 4).
FQ-ViT uses a channel-wise layer normalization which is
different from the tensor-wise normalization used in partial
quantization. It seems like channel-wise layer normalization
can help solve the accuracy problem of uint8 layer normal-
ization. However, we find that under the layer normalization
scenario, uint8 channel-wise quantization brings no higher
accuracy or efficiency than uint16 tensor-wise quantization.
The following paragraphs show the justifications.

In channel-wise quantizations, inputs are quantized differ-
ently on each element of the last dimension. Suppose that
we have D elements in the last dimension, we also have D

scale factors S1≤i≤D, and D zero points zp1≤i≤D. Note
that, in Equation 21, there is a reduction operation E[q]
which is conducted on the dimension D. In this case, the
integers qi on different scales need to be mapped onto the
same scale when calculating E[q]:

E[q] =
D∑
i=1

Φ((qi − zpi)Si) (23)

The input passed to layer normalizations changes imme-
diately from different channel-wise scales into a uniform
tensor-wise scale. The uniform scale results require a larger
data range, thus is equivalent to using uint16 or uint32 in
the first place. Different from batch normalization, which
performs normalizations on different channels separately,
channel-wise layer normalization doesn’t make much sense,
since using tensor-wise layer normalization with higher
bit-width is calculation-equivalent, and saves the time of
rescaling to the same scales. This is the reason why we
use 16-bit integer in our integer layer normalization kernel
implemented using Equation 22.

3.3 Integer GELU

For GELU calculation, the error function erf() is also ap-
proximated by a 2nd-degree polynomial as exp(). Differ-
ent from division truncations in layer normalization and
softmax, data truncations in the integer domain are mainly
caused by the multiplication between input and the error
function as shown in Equation 6. In this case, the approxi-
mation to GELU can be treated as a 3rd-degree polynomial:

⌊ b0
b2S2

⌉q + ⌊ b1
b2S

⌉q2 + q3

≤22b + 23b + 23b

≤23b+1 × (1 + 2−b−1)

≤23b+1+log(1+2−b−1)

(24)

As b goes larger, log(1 + 2−b−1) ≈ 2−b−1, thus can be
ignored here. To fully utilize 31 bits in int32, we can use
b = 10 for the number of bits of requantization introduced
in Section 3.1.1. To be able to use a lower number of bits,
b = 8 is also acceptable, and in our experiments, uint8
GELU inputs perform similarly to 10-bit integers.

4 EXPERIMENTS

4.1 Experimental Setup

4.1.1 Model Quantization

The tests are conducted on an image classification task on
ImageNet (Deng et al., 2009) evaluation dataset. The vision
transformer models under tests are ViT (Dosovitskiy et al.,
2020), DeiT (Touvron et al., 2021) and Swin Transformer
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(abbreviated as Swin) (Liu et al., 2021a). We use different
versions of these models, i.e. tiny (T), small (S), base (B),
large (L), and annotate them as suffices of the model names.

The calibration dataset uses 100 samples from the ImageNet
training dataset. In ISoftmax, uint8 input is applied. The
shift parameter m is 12 as deduced in Section 3.1.3, while
M for each layer is determined by either output-oriented
method or loss-based method as introduced in Section 3.1.2.
For ILN, the inputs are quantized to uint16. The shift pa-
rameter M is 15 as explained in Section 3.2. In IGELU,
inputs are quantized to uint8.

4.1.2 Baselines

We perform the experiments on full-precision models for
accuracy analysis. In addition to full-precision baselines, we
also include partial quantizations, which perform floating-
point arithmetics only on activation functions and normal-
izations. They are denoted as Partial FP32 as used in (Liu
et al., 2021b; Yuan et al., 2021).

For the full quantization comparisons, we mainly compare
to FQ-ViT. However, the original model fails to infer mean-
ingful results under int32 requirements, as shown in Table 1.
Thus, we bypass the int32 restrictions on it. Int64 versions
of some arithmetics are not supported on the test devices,
thus we perform its integer algorithms using floating-point
arithmetics. Additionally, FQ-ViT is not a full quantization
since the quantization method for GELU is not provided.
We use our IGELU kernel to fill this gap. This int64 FQ-ViT
with IGELU is denoted as FQ-ViT+IGELU(int64).

There are quantization-parameter-tuning methods (Liu et al.,
2021b; Ding et al., 2022; Yuan et al., 2021) (i.e. focusing on
finding S and zp) which use floating-point activations and
normalizations. They are orthogonal to our range-precision
balancing solutions. We include PTQ for ViT (Liu et al.,
2021b) for comparisons since it is most relevant to the topic
of vision transformers.

4.1.3 Platform

For testing hardware, we use ARM CPUs for runtime pro-
filing on edge devices. Specifically, we use iOS platforms
with two Apple chips: A13 and M1. The platform with A13
uses 2 Lightning (big) cores and 4 Thunder (little) cores
with a CPU clock rate of up to 2.65GHz, and 4GB memory.
M1 is a new generation of Apple chip with 4 performance
cores and 4 efficiency cores. The clock rate is up to 3.2GHz.
M1 platform is with 8 GB memory.

For the software, we use the Torch-Lite (iOS, 2022) frame-
work. We add integer versions of kernels implemented in
Neon instruction sets and add them to ATen library (pyt,
2022) of PyTorch. The vision transformers can be easily
tested on edge devices by building iOS apps using Swift

which calls torch APIs through Objective-C.

4.1.4 Metrics

We present an evaluation of the quantized models by re-
porting their top-1 accuracy and latency on the evaluation
dataset. Furthermore, we conduct an ablation study for each
kernel to examine the impact of data range and precision
on the proposed method. We report the truncation ratios for
identifying the data truncation vulnerability, as defined in
Table 1. To assess the kernel precision using the proposed in-
teger algorithm, we compute the mean squared error (MSE
for each kernel by averaging over 1000 samples for its first
appearance during DeiT-S inference. Additionally, we in-
vestigate the acceleration obtained from the integer version
of the kernels by executing them on the two platforms for 5
trials, each consisting of 1000 repetitions, and reporting the
average latency in milliseconds. Our methods perform the
same modifications on the model weights as partial quan-
tization, thus the memory savings is the same and is not
shown due to limited space.

4.2 Top-1 Accuracy

Table 2 showcases the accuracy of vision transformer mod-
els upon being subjected to different quantization tech-
niques. Our method, in particular, exhibits a level of ac-
curacy akin to that of full-precision models while experienc-
ing only minimal drops in accuracy amounting to mainly
1 ∼ 2%. The dearth of open source code for PTQ for
ViT, leads us to source our results directly from the corre-
sponding paper. In comparison to the results produced by
FQ-ViT+IGELU(int64), which employs 64-bit integers, we
observe that our int32 method outperforms it. Section 4.4 of-
fers a detailed insight into the sources of the higher accuracy
achieved by our method.

We also set partial quantizations as baselines. As explained
in Section 3.2.1, the uint8 channel-wise layer normalization
which is equivalent to uint16 tensor-wise layer normaliza-
tion help improve the model performance. We verify this
claim by performing the partial quantization on two settings:
uint8 and uint16 for layer normalization inputs. The re-
sult shows a significant accuracy drop in ViT models and
Swin-B as reported in FQ-ViT (Lin et al., 2022). However,
after we switch to uint16 inputs, the accuracy is close to
full-precision models. This helps to verify the importance
of uint16 layer normalization as introduced in Section 3.2.1.

The determination of the ISoftmax shift amount M∗ can be
accomplished through two methods: the Output-oriented
and Loss-based. The table presented herein reveals that
both approaches result in similar accuracy. Specifically, the
Output-oriented method enables direct calculation of M∗

from calibration, thus negating the need for an optimization
process, and is consequently more computation-friendly.
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Table 2. Accuracy comparison between baselines and ours. In addition to full-precision fp32, we have partial quantizations with uint8 or
uint16 inputs for layer normalizations. PTQ for ViT (Liu et al., 2021b) is a vision-transformer-specific quantization-parameter-tuning
method. FQ-ViT (Lin et al., 2022) is implemented with int64 calculations allowed on kernels, and is made fully quantized with the help of
our IGELU kernel. Our methods include output-oriented (Output) and loss-based (MSE) for softmax B∗ selection.

METHOD DEIT-T DEIT-S DEIT-B VIT-B VIT-L SWIN-T SWIN-S SWIN-B

FULL FP32 72.13 79.83 81.80 84.54 85.83 81.38 83.23 83.60
PARTIAL FP32 (UINT16 LN) 71.87 79.51 81.49 83.67 85.46 81.04 83.14 83.50
PARTIAL FP32 (UINT8 LN) 70.93 74.88 77.52 28.51 3.60 64.38 74.37 25.58

PTQ FOR VIT - 77.47 80.48 - - - - -
FQ-VIT+IGELU(INT64) 70.42 77.88 80.36 81.20 84.21 79.71 82.14 82.33

OURS (MSE) 71.08 78.49 80.74 81.69 84.47 80.03 82.29 82.67
OURS (OUTPUT) 71.06 78.47 80.73 81.81 84.84 80.07 82.27 82.65
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Figure 3. End-to-end latency test on vision transformers: DeiT,
ViT and Swin Transformer. FP32 models, partial quantization
and our full quantization method are compared. Note that ViT-L
exceeds the memory limits of our A13 platform.

4.3 End-to-End Latency

End-to-end latency measurements were performed on vision
transformers, and the results are presented in Figure 3. Par-
tial quantization resulted in a latency improvements of up to
16.7%; however, our quantization method realized latency
improvements of up to 38.6%, depending on the model size
and architecture. For small models, the latency improve-
ments from integer versions of MMM kernels were insignif-
icant compared to the overheads associated with quantiza-
tion, particularly floating-point and fixed-point conversions
in partial quantizations. In contrast, our full quantization
methods consistently yielded improvements of over 21%,
with the exception of Deit-T and Swin-T, which were tiny
models. It should be noted that without quantization meth-
ods, resource-constrained edge devices could experience
out-of-memory problems when dealing with large models
such as ViT-L.

Table 3. Latency comparison on A13. Tensor shapes: soft-
max (12, 197, 197), GELU (197, 3072), layer normalization
(197, 768). B means batch size.

OPERATORS FP32 (MS) OURS (MS) SPEEDUP

ISOFTMAX (B=1) 1.90 0.54 3.52×
IGELU (B=1) 6.22 1.42 4.38×
ILN (B=1) 0.50 0.09 5.56×
ISOFTMAX (B=16) 34.77 11.04 3.15×
IGELU (B=16) 111.14 24.17 4.60×
ILN (B=16) 6.95 1.42 4.89×

Table 4. Latency comparison on M1. Tensor shapes: softmax (12,
197, 197), GELU (197, 3072), layer normalization (197, 768). B
means batch size.

OPERATORS FP32 (MS) OURS (MS) SPEEDUP

ISOFTMAX (B=1) 1.02 0.23 4.43×
IGELU (B=1) 2.71 0.87 3.11×
ILN (B=1) 0.33 0.07 4.71×
ISOFTMAX (B=16) 17.02 3.85 4.42×
IGELU (B=16) 49.18 15.50 3.17×
ILN (B=16) 4.01 0.82 4.89×

4.4 Ablation Study

4.4.1 Kernel Latency

Table 3 and Table 4 display the results of our latency com-
parison of full-precision kernels and integer kernels on A13
and M1 chips, respectively. We conducted experiments
incorporating the DeiT-B model’s tensor shapes of the oper-
ator inputs. Batch sensitivity was assessed by performing
experiments for batch sizes of 1 and 16.

Both integer kernels and floating-point kernels need to per-
form data conversion between inputs/outputs data types and
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Table 5. MSE comparison for softmax. int64 is the integer kernel
used in I-Bert (Kim et al., 2021). LIS is the log-scale integer
softmax used in FQ-ViT (Lin et al., 2022). Our ISoftmax uses
uint8 inputs/outputs and int32 calculations, denoted as (8/32)

OPERATORS MSE

FP32 0.0
INT64 3.19× 10−6

LIS 45.33× 10−6

ISOFTMAX(8/32) 4.78× 10−6

Table 6. MSE comparison for GELU. int64 is the integer kernel
used in I-Bert (Kim et al., 2021). Ours IGELU uses uint8 in-
puts/outputs and int32 calculations, denoted as (8/32)

OPERATORS MSE

FP32 0.0
INT64 2.59× 10−4

IGELU(8/32) 2.96× 10−4

calculation data types. Thus we include the data conversion
between uint8 and fp32 for the latency test of floating-point
kernels, and data conversion between uin8/uint16 and int32
for integer-only kernels.

From the table, the integer kernels significantly improve
the execution latency to a quarter of that of full-precision
kernels. Some operators cause a human-perceptible latency
as large as ≥ 100 milliseconds. As each operator repeats
multiple times in transformer models, it significantly affects
user experience for real-time edge device inference. Using
full quantization methods helps alleviate this problem.

4.4.2 Truncation Ratio vs. Precision

The major motivation of this study entails the predicament
of balancing data truncation and precision. Our proposed
kernels, as detailed in Section 3, eliminate the prevalent
issue of data truncation (i.e., all truncation ratios equaling
0). However, the effects of the requantization process -
which involves bit compression - have yet to be evaluated.
This section aims to scrutinize the impact of utilizing our
suggested quantization techniques on softmax, GELU and
layer normalization in terms of calculation precision.

Table 5, 6, and 7 show the MSE between the integer version
of these kernels and the floating-point kernels. Overall,
MSE is extremely small in our proposed kernels. Although
the calculations of our kernels are constrained in int32, the
MSE is similar to the int64 kernels proposed by I-Bert.

MSE of kernels proposed in FQ-ViT are also reported. In
log integer softmax (LIS), an integer number n represents
the decimal number 1/2n. This gives a higher ulp for close-

Table 7. MSE comparison for layer normalization. int64 is the
integer kernel used in I-Bert (Kim et al., 2021). PTF is used in
FQ-ViT (Lin et al., 2022). Ours ILN uses uint16 inputs, uint8
outputs and int32 calculations, denoted as (16/32)

OPERATORS MSE

FP32 0.0
INT64 3.74× 10−4

PTF 3.75× 10−4

ILN(16/32) 3.74× 10−4

to-zero numbers. However, the most significant values in
softmax outputs are close to 1. The integer approximations
to these significant numbers in this log-scale are either rep-
resented by 1 or 0.5 which causes larger errors. As shown in
the table, MSE of LIS is a magnitude larger than our ISoft-
max kernel. Although the error 4.53e− 5 looks small, it is
the major cause of the accuracy drop of FQ-ViT as shown in
Table 2 compared to our proposed kernels. For the layer nor-
malization, we compare ours with the power-of-two factor
(PTF) kernel in FQ-ViT as shown in Table 7. PTF uses uint8
for channel-wise quantization for PTF inputs. However, as
discussed in Section 3.2.1, the inputs are immediately con-
verted to tensor-wise quantized values with higher bit width
to calculate the mean and standard deviation. Thus, it has
a similar algorithm as int64 version of layer normalization
in I-Bert. The table shows almost equivalent MSE among
int64, PTF and our ILN kernels.

5 CONCLUSION

In this work, we show a widely ignored data truncation prob-
lem in fully quantized PTQ of vision transformers deployed
on edge devices. We solve the range-precision dilemma in
integer domains by carefully requantizing the data range and
choosing the bit-width considering both the truncation rate
and precision. We design the integer kernels based on the
above method for transformer-specific operators: softmax,
GELU, and layer normalization. These kernels show the
elimination of truncation problems while retaining similar
inference accuracy as full-precision models on the image
classification task. The integer kernels also significantly
improve the execution speed.
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